lectures_on_knot_theory/lectures_on_knot_theory.tex

722 lines
23 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[12pt, twoside]{article}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{advdate}
\usepackage{amsthm}
\usepackage[english]{babel}
\usepackage{caption}
\usepackage{comment}
\usepackage{csquotes}
\usepackage[useregional]{datetime2}
\usepackage{enumitem}
\usepackage{fontspec}
\usepackage{float}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{mathtools}
\usepackage{pict2e}
\usepackage[section]{placeins}
\usepackage[pdf]{pstricks}
\usepackage{tikz}
\usepackage{titlesec}
\usepackage{xfrac}
\usepackage{unicode-math}
\usetikzlibrary{cd}
\hypersetup{
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=black,
urlcolor=black
}
\newtheoremstyle{break}
{\topsep}{\topsep}%
{\itshape}{}%
{\bfseries}{}%
{\newline}{}%
\theoremstyle{break}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{fact}{Fact}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{example}{Example}[section]
\newtheorem{problem}{Problem}[section]
\newtheorem{definition}{Definition}[section]
\newtheorem{theorem}{Theorem}[section]
\newcommand{\contradiction}{%
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}}
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
\newcommand{\overbar}[1]{%
\mkern 1.5mu=\overline{%
\mkern-1.5mu#1\mkern-1.5mu}%
\mkern 1.5mu}
\newcommand{\sdots}{\smash{\vdots}}
\DeclareRobustCommand\longtwoheadrightarrow
{\relbar\joinrel\twoheadrightarrow}
\newcommand{\longhookrightarrow}{\lhook\joinrel\longrightarrow}
\newcommand{\longhookleftarrow}{\longleftarrow\joinrel\rhook}
\AtBeginDocument{\renewcommand{\setminus}{%
\mathbin{\backslash}}}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\mytop}{top}
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\Sl}{SL}
\DeclareMathOperator{\Lk}{lk}
\DeclareMathOperator{\pt}{\{pt\}}
\DeclareMathOperator{\sign}{sign}
\titleformat{\subsection}{%
\normalfont \fontsize{12}{15}\bfseries}{%
}{.0ex plus .2ex}{}
\titleformat{\section}{%
\normalfont \fontsize{13}{15} \bfseries}{%
Lecture\ \thesection}%
{2.3ex plus .2ex}{}
\titlespacing*{\section}
{0pt}{16.5ex plus 1ex minus .2ex}{4.3ex plus .2ex}
\setlist[itemize]{topsep=0pt,before=%
\leavevmode\vspace{0.5em}}
\input{knots_macros}
\graphicspath{ {images/} }
\begin{document}
\tableofcontents
%\newpage
%\input{myNotes}
\section{Basic definitions \hfill\DTMdate{2019-02-25}}
\input{lec_1.tex}
\section{Alexander polynomial \hfill\DTMdate{2019-03-04}}
\input{lec_2.tex}
%add Hurewicz theorem?
\section{Examples of knot classes
\hfill\DTMdate{2019-03-11}}
\input{lec_3.tex}
\section{Concordance group \hfill\DTMdate{2019-03-18}}
\input{lec_4.tex}
\section{Genus $g$ cobordism \hfill\DTMdate{2019-03-25}}
\input{lec_5.tex}
\section{\hfill\DTMdate{2019-04-08}}
\input{lec_6.tex}
\section{\hfill\DTMdate{2019-04-15}}
\begin{theorem}
Suppose that $K \subset S^3$ is a slice knot (i.e. $K$ bound a disk in $B^4$).
Then if $F$ is a Seifert surface of $K$ and $V$ denotes the associated Seifet matrix, then there exists $P \in \Gl_g(\mathbb{Z})$ such that:
\\??????????????? T ????????
\begin{align}
PVP^{-1} =
\begin{pmatrix}
0 & A\\
B & C
\end{pmatrix}, \quad A, C, C \in M_{g \times g} (\mathbb{Z})
\end{align}
\end{theorem}
In other words you can find rank $g$ direct summand $\mathcal{Z}$ of $H_1(F)$ \\
????????????\\
such that for any
$\alpha, \beta \in \mathcal{L}$ the linking number $\Lk (\alpha, \beta^+) = 0$.
\begin{definition}
An abstract Seifert matrix (i. e.
\end{definition}
Choose a basis $(b_1, ..., b_i)$ \\
???\\
of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection form:
\begin{align*}
\quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}).
\end{align*}
In particular $\vert \det A\vert = \# H_1(Y, \mathbb{Z})$.\\
That means - what is happening on boundary is a measure of degeneracy.
\begin{center}
\begin{tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style =%
{draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
H_1(Y, \mathbb{Z}) &
\times \quad H_1(Y, \mathbb{Z})&
\longrightarrow &
\quot{\mathbb{Q}}{\mathbb{Z}}
\text{ - a linking form}
\\
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &\\
\end{tikzcd}
$(a, b) \mapsto aA^{-1}b^T$
\end{center}
?????????????????????????????????\\
\noindent
The intersection form on a four-manifold determines the linking on the boundary. \\
\noindent
Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If $V$ is a Seifert matrix for $K$, then
$H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}$ where
$A = V \times V^T$, $n = \rank V$.
%\input{ink_diag}
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4.pdf_tex}}
\caption{Pushing the Seifert surface in 4-ball.}
\label{fig:pushSeifert}
}
\end{figure}
\noindent
Let $X$ be the four-manifold obtained via the double branched cover of $B^4$ branched along $\widetilde{\Sigma}$.
\begin{fact}
\begin{itemize}
\item $X$ is a smooth four-manifold,
\item $H_1(X, \mathbb{Z}) =0$,
\item $H_2(X, \mathbb{Z}) \cong \mathbb{Z}^n$
\item The intersection form on $X$ is $V + V^T$.
\end{itemize}
\end{fact}
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_cycle.pdf_tex}}
\caption{Cycle pushed in 4-ball.}
\label{fig:pushCycle}
}
\end{figure}
\noindent
Let $Y = \Sigma(K)$. Then:
\begin{align*}
H_1(Y, \mathbb{Z}) \times H_1(Y, \mathbb{Z}) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}
\\
(a,b) &\mapsto a A^{-1} b^{T},\qquad
A = V + V^T.
\end{align*}
????????????????????????????
\begin{align*}
H_1(Y, \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}\\
A \longrightarrow BAC^T \quad \text{Smith normal form}
\end{align*}
???????????????????????\\
In general
%no lecture at 29.04
\section{\hfill\DTMdate{2019-05-20}}
Let $M$ be compact, oriented, connected four-dimensional manifold. If ${H_1(M, \mathbb{Z}) = 0}$ then there exists a
bilinear form - the intersection form on $M$:
\begin{center}
\begin{tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style = {draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
H_2(M, \mathbb{Z})&
\times & H_2(M, \mathbb{Z})
\longrightarrow &
\mathbb{Z}
\\
\ar[u,isomorphic] \mathbb{Z}^n && &\\
\end{tikzcd}
\end{center}
\noindent
Let us consider a specific case: $M$ has a boundary $Y = \partial M$.
Betti number $b_1(Y) = 0$, $H_1(Y, \mathbb{Z})$ is finite.
Then the intersection form can be degenerated in the sense that:
\begin{align*}
H_2(M, \mathbb{Z})
\times H_2(M, \mathbb{Z})
&\longrightarrow
\mathbb{Z} \quad&
H_2(M, \mathbb{Z}) &\longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\
(a, b) &\mapsto \mathbb{Z} \quad&
a &\mapsto (a, \_) H_2(M, \mathbb{Z})
\end{align*}
has coker precisely $H_1(Y, \mathbb{Z})$.
\\???????????????\\
Let $K \subset S^3$ be a knot, $X = S^3 \setminus K$ a knot complement and
$\widetilde{X} \xrightarrow{\enspace \rho \enspace} X$ an infinite cyclic cover (universal abelian cover). By Hurewicz theorem we know that:
\begin{align*}
\pi_1(X) \longrightarrow \quot{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = H_1(X, \mathbb{Z} ) \cong \mathbb{Z}
\end{align*}
????????????????????????????????????????????????????????????????????????\\
????????????????????????????????????????????????????????????????????????\\
????????????????????????????????????????????????????????????????????????\\
????????????????????????????????????????????????????????????????????????\\
$C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$ module. \\
Let $H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}])$ be the Alexander module of the knot $K$ with an intersection form:
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}
\end{align*}
\begin{fact}
\begin{align*}
&H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong
\quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n}\;, \\
&\text{where $V$ is a Seifert matrix.}
\end{align*}
\end{fact}
\begin{fact}
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
(\alpha, \beta) \quad &\mapsto \alpha^{-1}(t -1)(tV - V^T)^{-1}\beta
\end{align*}
\end{fact}
\noindent
Note that $\mathbb{Z}$ is not PID.
Therefore we don't have primary decomposition of this module.
We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition, but we can
\begin{align*}
\xi \in S^1 \setminus \{ \pm 1\}
&\quad
p_{\xi} =
(t - \xi)(t - \xi^{-1}) t^{-1}
\\
\xi \in \mathbb{R} \setminus \{ \pm 1\}
&\quad
q_{\xi} = (t - \xi)(t - \xi^{-1}) t^{-1}
\\
\xi \notin \mathbb{R} \cup S^1
&\quad
q_{\xi} = (t - \xi)(t - \overbar{\xi})(t - \xi^{-1})
(t - \overbar{\xi}^{-1}) t^{-2}
\end{align*}
Let $\Lambda = \mathbb{R}[t, t^{-1}]$. Then:
\begin{align*}
H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}}
( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi}
\oplus
\bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}}
(\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi}&
\end{align*}
We can make this composition orthogonal with respect to the Blanchfield paring.
\vspace{0.5cm}\\
Historical remark:
\begin{itemize}
\item John Milnor, \textit{On isometries of inner product spaces}, 1969,
\item Walter Neumann, \textit{Invariants of plane curve singularities}
%in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva
, 1983,
\item András Némethi, \textit{The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities}, 1995,
%Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41
\item Maciej Borodzik, Stefan Friedl
\textit{The unknotting number and classical invariants II}, 2014.
\end{itemize}
\vspace{0.5cm}
Let $p = p_{\xi}$, $k\geq 0$.
\begin{align*}
\quot{\Lambda}{p^k \Lambda} \times
\quot{\Lambda}{p^k \Lambda} &\longrightarrow \quot{\mathbb{Q}(t)}{\Lambda}\\
(1, 1) &\mapsto \kappa\\
\text{Now: } (p^k \cdot 1, 1) &\mapsto 0\\
p^k \kappa = 0 &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\text{therfore } p^k \kappa &\in \Lambda\\
\text{we have } (1, 1) &\mapsto \frac{h}{p^k}\\
\end{align*}
$h$ is not uniquely defined: $h \rightarrow h + g p^k$ doesn't affect paring. \\
Let $h = p^k \kappa$.
\begin{example}
\begin{align*}
\phi_0 ((1, 1))=\frac{+1}{p}\\
\phi_1 ((1, 1)) = \frac{-1}{p}
\end{align*}
$\phi_0$ and $\phi_1$ are not isomorphic.
\end{example}
\begin{proof}
Let $\Phi:
\quot{\Lambda}{p^k \Lambda} \longrightarrow
\quot{\Lambda}{p^k \Lambda}$
be an isomorphism. \\
Let: $\Phi(1) = g \in \lambda$
\begin{align*}
\quot{\Lambda}{p^k \Lambda}
\xrightarrow{\enspace \Phi \enspace}&
\quot{\Lambda}{p^k \Lambda}\\
\phi_0((1, 1)) = \frac{1}{p^k} \qquad&\qquad
\phi_1((g, g)) = \frac{1}{p^k} \quad \text{($\Phi$ is an isometry).}
\end{align*}
Suppose for the paring $\phi_1((g, g))=\frac{1}{p^k}$ we have $\phi_1((1, 1)) = \frac{-1}{p^k}$. Then:
\begin{align*}
\frac{-g\overbar{g}}{p^k} = \frac{1}{p^k} &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\frac{-g\overbar{g}}{p^k} - \frac{1}{p^k} &\in \Lambda \\
-g\overbar{g} &\equiv 1\pmod{p} \text{ in } \Lambda\\
-g\overbar{g} - 1 &= p^k \omega \text{ for some } \omega \in \Lambda\\
\text{evalueting at $\xi$: }\\
\overbrace{-g(\xi)g(\xi^{-1})}^{>0} - 1 = 0 \quad \contradiction
\end{align*}
\end{proof}
????????????????????\\
\begin{align*}
g &= \sum{g_i t^i}\\
\overbar{g} &= \sum{g_i t^{-i}}\\
\overbar{g}(\xi) &= \sum g_i \xi^i \quad \xi \in S^1\\
\overbar{g}(\xi) &=\overbar{g(\xi)}
\end{align*}
Suppose $g = (t - \xi)^{\alpha} g^{\prime}$. Then $(t - \xi)^{k - \alpha}$ goes to $0$ in $\quot{\Lambda}{p^k \Lambda}$.
\begin{theorem}
Every sesquilinear non-degenerate pairing
\begin{align*}
\quot{\Lambda}{p^k} \times \quot{\Lambda}{p}
\longleftrightarrow \frac{h}{p^k}
\end{align*}
is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number).
\end{theorem}
\begin{proof}
There are two steps of the proof:
\begin{enumerate}
\item
Reduce to the case when $h$ has a constant sign on $S^1$.
\item
Prove in the case, when $h$ has a constant sign on $S^1$.
\end{enumerate}
\begin{lemma}
If $P$ is a symmetric polynomial such that $P(\eta)\geq 0$ for all $\eta \in S^1$, then $P$ can be written as a product $P = g \overbar{g}$ for some polynomial $g$.
\end{lemma}
\begin{proof}[Sketch of proof]
Induction over $\deg P$.\\
Let $\zeta \notin S^1$ be a root of $P$, $P \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that polynomial $P$ is divisible by
$(t - \zeta)$, $(t - \overbar{\zeta})$, $(t^{-1} - \zeta)$ and $(t^{-1} - \overbar{\zeta})$.
Therefore:
\begin{align*}
&P^{\prime} = \frac{P}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\
&P^{\prime} = g^{\prime}\overbar{g}
\end{align*}
We set $g = g^{\prime}(t - \zeta)(t - \overbar{\zeta})$ and
$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \vert P$ (at least - otherwise it would change sign). Therefore:
\begin{align*}
&P^{\prime} = \frac{P}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\
&g = (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}
\end{align*}
The map $(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k}$ is isometric whenever $g$ is coprime with $P$.
\end{proof}
\begin{lemma}\label{L:coprime polynomials}
Suppose $A$ and $B$ are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either $A(z) > 0$ or $B(z) > 0$. Then there exist
symmetric polynomials $P$, $Q$ such that
$P(z), Q(z) > 0$ for $z \in S^1$ and $PA + QB \equiv 1$.
\end{lemma}
\begin{proof}[Idea of proof]
For any $z$ find an interval $(a_z, b_z)$ such that if $P(z) \in (a_z, b_z)$ and $P(z)A(z) + Q(z)B(z) = 1$, then $Q(z) > 0$, $x(z) = \frac{az + bz}{i}$ is a continues function on $S^1$ approximating $z$ by a polynomial .
\\??????????????????????????\\
\begin{flalign*}
(1, 1) \mapsto \frac{h}{p^k} \mapsto \frac{g\overbar{g}h}{p^k}&\\
g\overbar{g} h + p^k\omega = 1&
\end{flalign*}
Apply Lemma \ref{L:coprime polynomials} for $A=h$, $B=p^{2k}$. Then, if the assumptions are satisfied,
\begin{align*}
Ph + Qp^{2k} = 1\\
p>0 \Rightarrow p = g \overbar{g}\\
p = (t - \xi)(t - \overbar{\xi})t^{-1}\\
\text{so } p \geq 0 \text{ on } S^1\\
p(t) = 0 \Leftrightarrow
t = \xi or t = \overbar{\xi}\\
h(\xi) > 0\\
h(\overbar{\xi})>0\\
g\overbar{g}h + Qp^{2k} = 1\\
g\overbar{g}h \equiv 1 \mod{p^{2k}}\\
g\overbar{g} \equiv 1 \mod{p^k}
\end{align*}
???????????????????????????????\\
If $P$ has no roots on $S^1$ then $B(z) > 0$ for all $z$, so the assumptions of Lemma \ref{L:coprime polynomials} are satisfied no matter what $A$ is.
\end{proof}
?????????????????\\
\begin{align*}
(\quot{\Lambda}{p_{\xi}^k} \times
\quot{\Lambda}{p_{\xi}^k}) &\longrightarrow
\frac{\epsilon}{p_{\xi}^k}, \quad \xi \in S^1 \setminus\{\pm 1\}\\
(\quot{\Lambda}{q_{\xi}^k} \times
\quot{\Lambda}{q_{\xi}^k}) &\longrightarrow
\frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\
\end{align*}
??????????????????? 1 ?? epsilon?\\
\begin{theorem}(Matumoto, Borodzik-Conway-Politarczyk)
Let $K$ be a knot,
\begin{align*}
&H_1(\widetilde{X}, \Lambda) \times
H_1(\widetilde{X}, \Lambda)
= \bigoplus_{\substack{k, \xi, \epsilon\\ \xi in S^1}}
(\quot{\Lambda}{p_{\xi}^k}, \epsilon)^{n_k, \xi, \epsilon} \oplus \bigoplus_{k, \eta}
(\quot{\Lambda}{p_{\xi}^k})^{m_k}
\end{align*}
\begin{align*}
\text{Let } \delta_{\sigma}(\xi) = \lim_{\varepsilon \rightarrow 0^{+}}
\sigma(e^{2\pi i \varepsilon} \xi)
- \sigma(e^{-2\pi i \varepsilon} \xi),\\
\text{then }
\sigma_j(\xi) = \sigma(\xi) - \frac{1}{2} \lim_{\varepsilon \rightarrow 0}
\sigma(e^{2\pi i \varepsilon}\xi)
+ \sigma(e^{-2 \pi i \varepsilon}\xi)
\end{align*}
The jump at $\xi$ is equal to
$2 \sum\limits_{k_i \text{ odd}} \epsilon_i$. The peak of the signature function is equal to $\sum\limits_{k_i \text{even}} \epsilon_i$.
%$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$
\end{theorem}
\end{proof}
\section{\hfill\DTMdate{2019-05-27}}
....
\begin{definition}
A square hermitian matrix $A$ of size $n$ with coefficients in \\
the Blanchfield pairing if:
$H_1(\bar{X}$
\end{definition}
field of fractions
\section{\hfill\DTMdate{2019-06-03}}
\begin{theorem}
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
\[
u(K) \geq g_4(K)
\]
\begin{proof}
Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points.
\\
\noindent
Remove from $\Delta$ the two self intersecting and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$ .
\end{proof}
???????????????????\\
\begin{example}
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
\end{example}
%ref Structure in the classical knot concordance group
%Tim D. Cochran, Kent E. Orr, Peter Teichner
%Journal-ref: Comment. Math. Helv. 79 (2004) 105-123
\subsection*{Surgery}
%Rolfsen, geometric group theory, Diffeomorpphism of a torus, Mapping class group
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^3$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \pt]}$ and ${\beta=[\pt \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
Consider an induced map on homology group:
\begin{align*}
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
\phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\
\phi_* &=
\begin{pmatrix}
p & q\\
r & s
\end{pmatrix}
\end{align*}
As $\phi_*$ is diffeomorphis, it must be invertible over $\mathbb{Z}$. Then for a direction preserving diffeomorphism we have $\det \phi_* = 1$. Therefore $\phi_* \in \Sl(2, \mathbb{Z})$.
\end{theorem}
\vspace{10cm}
\begin{theorem}
Every such a matrix can be realized as a torus.
\end{theorem}
\begin{proof}
\begin{enumerate}[label={(\Roman*)}]
\item
Geometric reason
\begin{align*}
\phi_t:
S^1 \times S^1 &\longrightarrow S^1 \times S^1 \\
S^1 \times \pt &\longrightarrow \pt \times S^1 \\
\pt \times S^1 &\longrightarrow S^1 \times \pt \\
(x, y) & \mapsto (-y, x)
\end{align*}
\item
\end{enumerate}
\end{proof}
\section{balagan}
\noindent
\noindent
\section{\hfill\DTMdate{2019-05-06}}
\begin{definition}
Let $X$ be a knot complement.
Then $H_1(X, \mathbb{Z}) \cong \mathbb{Z}$ and there exists an epimorphism
$\pi_1(X) \overset{\phi}\twoheadrightarrow \mathbb{Z}$.\\
The infinite cyclic cover of a knot complement $X$ is the cover associated with the epimorphism $\phi$.
\[
\widetilde{X} \longtwoheadrightarrow X
\]
\end{definition}
%Rolfsen, bachalor thesis of Kamila
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{1\textwidth}{!}{\input{images/covering.pdf_tex}}
\caption{Infinite cyclic cover of a knot complement.}
\label{fig:covering}
}
\end{figure}
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.8\textwidth}{!}{\input{images/knot_complement.pdf_tex}}
\caption{A knot complement.}
\label{fig:complement}
}
\end{figure}
\noindent
Formal sums $\sum \phi_i(t) a_i + \sum \phi_j(t)\alpha_j$ \\
finitely generated as a $\mathbb{Z}[t, t^{-1}]$ module.
\\
Let $v_{ij} = \Lk(a_i, a_j^+)$. Then
$V = \{ v_ij\}_{i, j = 1}^n$ is the Seifert matrix associated to the surface $\Sigma$ and the basis $a_1, \dots, a_n$. Therefore $a_k^+ = \sum_{j} v_{jk} \alpha_j$. Then
$\Lk(a_i, a_k^+)= \Lk(a_k^+, a_i) = \sum_j v_{jk} \Lk(\alpha_j, a_i) = v_{ik}$.
We also notice that $\Lk(a_i, a_j^-) = \Lk(a_i^+, a_j)= v_{ij}$ and
$a_j^- = \sum_k v_{kj} t^{-1} \alpha_j$.
\\
\noindent
The homology of $\widetilde{X}$ is generated by $a_1, \dots, a_n$ and relations.
\begin{definition}
The Nakanishi index of a knot is the minimal number of generators of $H_1(\widetilde{X})$.
\end{definition}
%see Maciej page
\noindent
Remark about notation: sometimes one writes $H_1(X; \mathbb{Z}[t, t^{-1}])$ (what is also notation for twisted homology) instead of $H_1(\widetilde{X})$.
\\
?????????????????????
\\
\noindent
$\Sigma_?(K) \rightarrow S^3$ ?????\\
$H_1(\Sigma_?(K), \mathbb{Z}) = h$\\
$H \times H \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}$\\
...\\
Let now $H = H_1(\widetilde{X})$. Can we define a paring? \\
Let $c, d \in H(\widetilde{X})$ (see Figure \ref{fig:covering_pairing}), $\Delta$ an Alexander polynomial. We know that $\Delta c = 0 \in H_1(\widetilde{X})$ (Alexander polynomial annihilates all possible elements). Let consider a surface $F$ such that $\partial F = c$. Now consider intersection points $F \cdot d$. This points can exist in any $N_k$ or $S_k$.
\[
\frac{1}{\Delta} \sum_{j\in \mathbb{Z} t^{-j}}(F \cdot t^j d) \in \quot{\mathbb{Q}[t, t^{-1}]}{\mathbb{Z}[t, t^{-1}]}
\]
\\
?????????????\\
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{1\textwidth}{!}{\input{images/covering_pairing.pdf_tex}}
\caption{$c, d \in H_1(\widetilde{X})$.}
\label{fig:covering_pairing}
}
\end{figure}
\begin{definition}
The $\mathbb{Z}[t, t^{-1}]$ module $H_1(\widetilde{X})$ is called the Alexander module of knot $K$.
\end{definition}
\noindent
Let $R$ be a PID, $M$ a finitely generated $R$ module. Let us consider
\[
R^k \overset{A} \longrightarrow R^n \longtwoheadrightarrow M,
\]
where $A$ is a $k \times n$ matrix, assume $k\ge n$. The order of $M$ is the $\gcd$ of all determinants of the $n \times n$ minors of $A$. If $k = n$ then $\ord M = \det A$.
\begin{theorem}
Order of $M$ doesn't depend on $A$.
\end{theorem}
\noindent
For knots the order of the Alexander module is the Alexander polynomial.
\begin{theorem}
\[
\forall x \in M: (\ord M) x = 0.
\]
\end{theorem}
\noindent
$M$ is well defined up to a unit in $R$.
\subsection*{Blanchfield pairing}
\section{balagan}
\begin{fact}[Milnor Singular Points of Complex Hypersurfaces]
\end{fact}
%\end{comment}
\noindent
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
\begin{problem}
Prove that if $K$ is negative amphichiral, then $K \# K = 0$ in
$\mathscr{C}$.
%
%\\
%Hint: $ -K = m(K)^r = (K^r)^r = K$
\end{problem}
\begin{example}
Figure 8 knot is negative amphichiral.
\end{example}
%
%
\begin{theorem}
Let $H_p$ be a $p$ - torsion part of $H$. There exists an orthogonal decomposition of $H_p$:
\[
H_p = H_{p, 1} \oplus \dots \oplus H_{p, r_p}.
\]
$H_{p, i}$ is a cyclic module:
\[
H_{p, i} = \quot{\mathbb{Z}[t, t^{-1}]}{p^{k_i} \mathbb{Z} [t, t^{-1}]}
\]
\end{theorem}
\noindent
The proof is the same as over $\mathbb{Z}$.
\noindent
%Add NotePrintSaveCiteYour opinionEmailShare
%Saveliev, Nikolai
%Lectures on the Topology of 3-Manifolds
%An Introduction to the Casson Invariant
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}}
}
%\caption{Sketch for Fact %%\label{fig:concordance_m}
\end{figure}
\end{document}