lectures_on_knot_theory/lectures_on_knot_theory.tex

1119 lines
36 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[12pt, twoside]{article}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{advdate}
\usepackage{amsthm}
\usepackage[english]{babel}
\usepackage{comment}
\usepackage{csquotes}
\usepackage[useregional]{datetime2}
\usepackage{enumitem}
\usepackage{fontspec}
\usepackage{float}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{mathtools}
\usepackage{pict2e}
\usepackage[pdf]{pstricks}
\usepackage{tikz}
\usepackage{titlesec}
\usepackage{xfrac}
\usepackage{unicode-math}
\usetikzlibrary{cd}
\hypersetup{
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=black,
urlcolor=black
}
\newtheoremstyle{break}
{\topsep}{\topsep}%
{\itshape}{}%
{\bfseries}{}%
{\newline}{}%
\theoremstyle{break}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{fact}{Fact}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{example}{Example}[section]
\newtheorem{problem}{Problem}[section]
\newtheorem{definition}{Definition}[section]
\newtheorem{theorem}{Theorem}[section]
\newcommand{\contradiction}{%
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}}
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
\newcommand{\overbar}[1]{%
\mkern 1.5mu=\overline{%
\mkern-1.5mu#1\mkern-1.5mu}%
\mkern 1.5mu}
\newcommand{\sdots}{\smash{\vdots}}
\DeclareRobustCommand\longtwoheadrightarrow
{\relbar\joinrel\twoheadrightarrow}
\newcommand{\longhookrightarrow}{\lhook\joinrel\longrightarrow}
\newcommand{\longhookleftarrow}{\longleftarrow\joinrel\rhook}
\AtBeginDocument{\renewcommand{\setminus}{%
\mathbin{\backslash}}}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\Sl}{SL}
\DeclareMathOperator{\Lk}{lk}
\DeclareMathOperator{\pt}{\{pt\}}
\titleformat{\section}{\normalfont \fontsize{12}{15} \bfseries}{%
Lecture\ \thesection}%
{2.3ex plus .2ex}{}
\titlespacing*{\section}
{0pt}{16.5ex plus 1ex minus .2ex}{4.3ex plus .2ex}
\setlist[itemize]{topsep=0pt,before=%
\leavevmode\vspace{0.5em}}
\input{knots_macros}
\graphicspath{ {images/} }
\begin{document}
\tableofcontents
%\newpage
%\input{myNotes}
\section{Basic definitions \hfill\DTMdate{2019-02-25}}
\input{lec_1.tex}
\section{\hfill\DTMdate{2019-03-04}}
\begin{theorem}
For any knot $K \subset S^3$ there exists a connected, compact and orientable surface $\Sigma(K)$ such that $\partial \Sigma(K) = K$
\end{theorem}
\begin{proof}("joke")\\
Let $K \in S^3$ be a knot and $N = \nu(K)$ be its tubular neighbourhood. Because $K$ and $N$ are homotopy equivalent, we get:
\begin{align*}
H^1(S^3 \setminus N ) \cong H^1(S^3 \setminus K).
\end{align*}
Let us consider a long exact sequence of cohomology of a pair $(S^3, S^3 \setminus N)$ with integer coefficients:
\begin{center}
\begin{tikzcd}
[
column sep=0cm, fill=none,
row sep=small,
ar symbol/.style =%
{draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
&\mathbb{Z}
\\
& H^0(S^3) \ar[u,isomorphic] \to
&H^0(S^3 \setminus N) \to
\\
\to H^1(S^3, S^3 \setminus N) \to
& H^1(S^3) \to
& H^1(S^3\setminus N) \to
\\
& 0 \ar[u,isomorphic]&
\\
\to H^2(S^3, S^3 \setminus N) \to
& H^2(S^3) \ar[u,isomorphic] \to
& H^2(S^3\setminus N) \to
\\
\to H^3(S^3, S^3\setminus N)\to
& H^3(S) \to
& 0
\\
& \mathbb{Z} \ar[u,isomorphic] &\\
\end{tikzcd}
\end{center}
\begin{align*}
N \cong & D^2 \times S^1\\
\partial N \cong & S^1 \times S^1\\
H^1(N, \partial N) \cong & \mathbb{Z} \oplus \mathbb{Z}
\end{align*}
\begin{align*}
H^* (S^3, S^3 \setminus N) &\cong H^* (N, \partial N)\\
\\
H^ 1 (S^3\setminus N) &\cong H^1(S^3\setminus K) \cong \mathbb{Z}
\end{align*}
\begin{equation*}
\begin{tikzcd}[row sep=huge]
H^1(S^3 \setminus K) \arrow[r,] \arrow[d,"\widetilde{\Theta}"] &
H^1(N \setminus K) \arrow[d,"\Theta"] \\
{[S^3 \setminus K, S^1]} \arrow[r,]&
{[N \setminus K, S^1]}
\end{tikzcd}
\end{equation*}
\noindent
$\Sigma = \widetilde{\Theta}^{-1}(X)$ is a surface, such that $\partial \Sigma = K$, so it is a Seifert surface.
%
%
% Thom isomorphism,
\end{proof}
\begin{definition}
Let $S$ be a Seifert matrix for a knot $K$. The Alexander polynomial $\Delta_K(t)$ is a Laurent polynomial:
\[
\Delta_K(t) := \det (tS - S^T) \in
\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]
\]
\end{definition}
\begin{theorem}
$\Delta_K(t)$ is well defined up to multiplication by $\pm t^k$, for $k \in \mathbb{Z}$.
\end{theorem}
\begin{proof}
We need to show that $\Delta_K(t)$ doesn't depend on $S$-equivalence relation.
\begin{enumerate}[label={(\arabic*)}]
\item Suppose $S\prime = CSC^T$, $C \in \Gl(n, \mathbb{Z})$ (matrices invertible over $\mathbb{Z}$). Then $\det C = 1$ and:
\begin{align*}
&\det(tS\prime - S\prime^T) =
\det(tCSC^T - (CSC^T)^T) =\\
&\det(tCSC^T - CS^TC^T) =
\det C(tS - S^T)C^T =
\det(tS - S^T)
\end{align*}
\item
Let \\
$ A := t
\begin{pmatrix}
\begin{array}{c|c}
S &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & 0\\
1 & 0
\end{matrix}
\end{array}
\end{pmatrix}
-
\begin{pmatrix}
\begin{array}{c|c}
S^T &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & 1\\
0 & 0
\end{matrix}
\end{array}
\end{pmatrix}
=
\begin{pmatrix}
\begin{array}{c|c}
tS - S^T &
\begin{matrix}
\ast & 0 \\
\sdots & \sdots\\
\ast & 0
\end{matrix} \\
\hline
\begin{matrix}
\ast & \dots & \ast\\
0 & \dots & 0
\end{matrix}
&
\begin{matrix}
0 & -1\\
t & 0
\end{matrix}
\end{array}
\end{pmatrix}
$
\\
\\
Using the Laplace expansion we get $\det A = \pm t \det(tS - S^T)$.
\end{enumerate}
\end{proof}
%
%
%
\begin{example}
If $K$ is a trefoil then we can take
$S = \begin{pmatrix}
-1 & -1 \\
0 & -1
\end{pmatrix}$. Then
\[
\Delta_K(t) = \det
\begin{pmatrix}
-t + 1 & -t\\
1 & -t +1
\end{pmatrix}
= (t -1)^2 + t = t^2 - t +1 \ne 1
\Rightarrow \text{trefoil is not trivial.}
\]
\end{example}
\begin{fact}
$\Delta_K(t)$ is symmetric.
\end{fact}
\begin{proof}
Let $S$ be an $n \times n$ matrix.
\begin{align*}
&\Delta_K(t^{-1}) = \det (t^{-1}S - S^T) = (-t)^{-n} \det(tS^T - S) = \\
&(-t)^{-n} \det (tS - S^T) = (-t)^{-n} \Delta_K(t)
\end{align*}
If $K$ is a knot, then $n$ is necessarily even, and so $\Delta_K(t^{-1}) = t^{-n} \Delta_K(t)$.
\end{proof}
\begin{lemma}
\begin{align*}
\frac{1}{2} \deg \Delta_K(t) \leq g_3(K),
\text{ where } deg (a_n t^n + \dots + a_1 t^l )= k - l.
\end{align*}
\end{lemma}
\begin{proof}
If $\Sigma$ is a genus $g$ - Seifert surface for $K$ then $H_1(\Sigma) = \mathbb{Z}^{2g}$, so $S$ is an $2g \times 2g$ matrix. Therefore $\det (tS - S^T)$ is a polynomial of degree at most $2g$.
\end{proof}
\begin{example}
There are not trivial knots with Alexander polynomial equal $1$, for example:
\includegraphics[width=0.3\textwidth]{11n34.png}
$\Delta_{11n34} \equiv 1$.
\end{example}
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
%
%
%
\begin{lemma}[Dehn]
Let $M$ be a $3$-manifold and $D^2 \overset{f} \rightarrow M^3$ be a map of a disk such that $f_{\big|\partial D^2}$ is an embedding. Then there exists an embedding
${D^2 \overset{g}\longhookrightarrow M}$ such that:
\[
g_{\big| \partial D^2} = f_{\big| \partial D^2.}
\]
\end{lemma}
\noindent
Remark: Dehn lemma doesn't hold for dimension four.\\
Let $M$ be connected, compact three manifold with boundary.
Suppose $\pi_1(\partial M) \longrightarrow \pi_1(M)$ has non-trivial kernel. Then there exists a map $f: (D^2, \partial D^2) \longrightarrow (M, \partial M)$ such that $f\big| \partial D^2$ is non-trivial loop in $\partial M$
\begin{theorem}[Sphere theorem]
Suppose $\pi_1(M) \ne 0$. Then there exists an embedding $f: S^2 \hookrightarrow M$ that is homotopy non-trivial.
\end{theorem}
\begin{problem}
Prove that $S^3 \ K$ is EilenbergMacLane space of type $K(\pi, 1)$.
\end{problem}
\begin{corollary}
Suppose $K \subset S^3$ and $\pi_1(S^3 \setminus K)$ is infinite cyclic ($\mathbb{Z})$. Then $K$ is trivial.
\end{corollary}
\subsection*{Construction}
We know that $3$ - sphere can be obtained by gluing two solid tori:
$S^3 = (D^2 \times S^1) \cup (S^1 \times D^2)$. So the complement of solid torus in $S^3$ is another solid torus.\\
Take $(z_1, z_2) \in \mathbb{C}$ such that $max(\mid z_1 \mid, \mid z_2, \mid) = 1
$
\begin{figure}[h]
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.3\textwidth}{!}{\includegraphics[width=0.3\textwidth]{sphere_as_torus.png}}
\caption{The complement of solid torus in $S^3$ is another solid torus.}
\label{fig:sphere_as_tori}
}
\end{figure}
\begin{example}
\begin{align*}
&F: \mathbb{C}^2 \rightarrow \mathbb{C} \text{ a polynomial} \\
&F(0) = 0
\end{align*}
\end{example}
????????????
\\
\noindent
as a corollary we see that $K_T^{n, }$ ???? \\
is not slice unless $m=0$.
\begin{theorem}
The map $j: \mathscr{C} \longrightarrow \mathbb{Z}^{\infty}$ is a surjection that maps ${K_n}$ to a linear independent set. Moreover $\mathscr{C} \cong \mathbb{Z}$
\end{theorem}
\begin{fact}[Milnor Singular Points of Complex Hypersurfaces]
\end{fact}
%\end{comment}
\noindent
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
\begin{problem}
Prove that if $K$ is negative amphichiral, then $K \# K = 0$ in
$\mathscr{C}$.
%
%\\
%Hint: $ -K = m(K)^r = (K^r)^r = K$
\end{problem}
\begin{example}
Figure 8 knot is negative amphichiral.
\end{example}
%
%
%
\section{Concordance group \hfill\DTMdate{2019-03-18}}
\begin{definition}
Two knots $K$ and $K^{\prime}$ are called (smoothly) concordant if there exists an annulus $A$ that is smoothly embedded in ${S^3 \times [0, 1]}$ such that
\[
\partial A = K^{\prime} \times \{1\} \; \sqcup \; K \times \{0\}.
\]
\end{definition}
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.8\textwidth}{!}{\input{images/concordance.pdf_tex}}
}
\end{figure}
\begin{definition}
A knot $K$ is called (smoothly) slice if $K$ is smoothly concordant to an unknot. \\
Put differently: a knot $K$ is smoothly slice if and only if $K$ bounds a smoothly embedded disk in $B^4$.
\end{definition}
\noindent
Let $m(K)$ denote a mirror image of a knot $K$.
\begin{fact}
For any $K$, $K \# m(K)$ is slice.
\end{fact}
\begin{fact}
Concordance is an equivalence relation.
\end{fact}
\begin{fact}\label{fakt:concordance_connected}
If $K_1 \sim {K_1}^{\prime}$ and $K_2 \sim {K_2}^{\prime}$, then
$K_1 \# K_2 \sim {K_1}^{\prime} \# {K_2}^{\prime}$.
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{1\textwidth}{!}{\input{images/concordance_sum.pdf_tex}}
}
\caption{Sketch for Fakt \ref{fakt:concordance_connected}.}
\label{fig:concordance_sum}
\end{figure}
\end{fact}
\begin{fact}
$K \# m(K) \sim $ the unknot.
\end{fact}
\noindent
\begin{theorem}
Let $\mathscr{C}$ denote a set of all equivalent classes for knots and $\{0\}$ denote class of all knots concordant to a trivial knot.
$\mathscr{C}$ is a group under taking connected sums. The neutral element in the group is $\{0\}$ and the inverse element of an element $\{K\} \in \mathscr{C}$ is $-\{K\} = \{mK\}$.
\end{theorem}
\begin{fact}
The figure eight knot is a torsion element in $\mathscr{C}$ ($2K \sim $ the unknot).
\end{fact}
\begin{problem}[open]
Are there in concordance group torsion elements that are not $2$ torsion elements?
\end{problem}
\noindent
Remark: $K \sim K^{\prime} \Leftrightarrow K \# -K^{\prime}$ is slice.
\\
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_seifert.pdf_tex}}
}
\caption{$Y = F \cup \Sigma$ is a smooth close surface.}
\label{fig:closed_surface}
\end{figure}
\noindent
\\
Pontryagin-Thom construction tells us that there exists a compact three - manifold $\Omega \subset B^4$ such that $\partial \Omega = Y$.
Suppose $\Sigma$ is a Seifert surface and $V$ a Seifert form defined on $\Sigma$: ${(\alpha, \beta) \mapsto \Lk(\alpha, \beta^+)}$. Suppose $\alpha, \beta \in H_1(\Sigma, \mathbb{Z})$, i.e. there are cycles and
$\alpha, \beta \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$. Then there are two cycles $A, B \in \Omega$ such that $\partial A = \alpha$ and $\partial B = \beta$.
Let $B^+$ be a push off of $B$ in the positive normal direction such that
$\partial B^+ = \beta^+$.
Then
$\Lk(\alpha, \beta^+) = A \cdot B^+$. But $A$ and $B$ are disjoint, so $\Lk(\alpha, \beta^+) = 0$. Then the Seifert form is zero.
\\
?????????????????
\\
Let us consider following maps:
\[
\Sigma \overset{\phi} \longhookrightarrow Y \overset{\psi} \longhookrightarrow \Omega.
\]
Let $\phi_*$ and $\psi_*$ be induced maps on the homology group. If an element $\gamma \in \ker (H_1(\Sigma, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z}))$, then $\gamma \in \ker \phi_*$ or $\gamma \in \ker \psi_*$.
%
\\
????????????\\
%
%
\begin{proposition}
\[
\dim \ker (H_1(Y, \mathbb{Z}) \longrightarrow H_1(\Omega, \mathbb{Z})) = \frac{1}{2} b_1(Y),
\]
where $b_1$ is first Betti number.
\end{proposition}
\begin{proof}
\begin{align*}
& 0 \to H_3(\Omega) \to H_3(\Omega, Y) \to
\\
\to & H_2(Y) \to H_2(\Omega) \to H_2(\Omega, Y) \to \\
\to & H_1(Y) \to \H_1(\Omega) \to H_1(\Omega, Y) \to \\
\to & H_0(Y) \to H_0(\Omega) \to 0
\end{align*}
\end{proof}
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}}
}
%\caption{Sketch for Fakt %%\label{fig:concordance_m}
\end{figure}
\section{\hfill\DTMdate{2019-03-25}}
\begin{definition}
The (smooth) four genus $g_4(K)$ is the minimal genus of the surface $\Sigma \in B^4$ such that $\Sigma$ is compact, orientable and $\partial \Sigma = K$.
\end{definition}
\noindent
Remark: $3$ - genus is additive under taking connected sum, but $4$ - genus is not.
\section{\hfill\DTMdate{2019-04-08}}
%
%
$X$ is a closed orientable four-manifold. Assume $\pi_1(X) = 0$ (it is not needed to define the intersection form). In particular $H_1(X) = 0$.
$H_2$ is free (exercise).
\begin{align*}
H_2(X, \mathbb{Z}) \xrightarrow{\text{Poincar\'e duality}} H^2(X, \mathbb{Z} ) \xrightarrow{\text{evaluation}}\Hom(H_2(X, \mathbb{Z}), \mathbb{Z})
\end{align*}
Intersection form:
$H_2(X, \mathbb{Z}) \times
H_2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ - symmetric, non singular.
\\
Let $A$ and $B$ be closed, oriented surfaces in $X$.
\begin{proposition}
$A \cdot B$ doesn't depend of choice of $A$ and $B$ in their homology classes.
%$A \cdot B$ gives the pairing as ??
\end{proposition}
\begin{proof}
By Poincar\'e duality we know that:
\begin{align*}
H_3(\Omega, Y) &\cong H^0(\Omega),\\
H_2(Y) &\cong H^0(Y),\\
H_2(\Omega) &\cong H^1(\Omega, Y),\\
H_2(\Omega, Y) &\cong H^1(\Omega).
\end{align*}
Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V}
= \dim_{\mathbb{Q}} V
$.\\
\noindent
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $K$
has a subspace of dimension $g_{\Sigma}$ on which it is zero:
\begin{align*}
\newcommand\coolover[2]%
{\mathrlap{\smash{\overbrace{\phantom{%
\begin{matrix} #2 \end{matrix}}}^{\mbox{$#1$}}}}#2}
\newcommand\coolunder[2]{\mathrlap{\smash{\underbrace{\phantom{%
\begin{matrix} #2 \end{matrix}}}_{\mbox{$#1$}}}}#2}
\newcommand\coolleftbrace[2]{%
#1\left\{\vphantom{\begin{matrix} #2 \end{matrix}}\right.}
\newcommand\coolrightbrace[2]{%
\left.\vphantom{\begin{matrix} #1 \end{matrix}}\right\}#2}
\vphantom{% phantom stuff for correct box dimensions
\begin{matrix}
\overbrace{XYZ}^{\mbox{$R$}}\\ \\ \\ \\ \\ \\
\underbrace{pqr}_{\mbox{$S$}}
\end{matrix}}%
V =
\begin{matrix}% matrix for left braces
\coolleftbrace{g_{\Sigma}}{ \\ \\ \\}
\\ \\ \\ \\
\end{matrix}%
\begin{pmatrix}
\coolover{g_{\Sigma}}{0 & \dots & 0 } & * & \dots & *\\
\sdots & & \sdots & \sdots & & \sdots \\
0 & \dots & 0 & * & \dots & *\\
* & \dots & * & * & \dots & *\\
\sdots & & \sdots & \sdots & & \sdots \\
* & \dots & * & * & \dots & *
\end{pmatrix}_{2g_{\Sigma} \times 2g_{\Sigma}}
\end{align*}
\end{proof}
\section{\hfill\DTMdate{2019-03-11}}
\begin{definition}
A link $L$ is fibered if there exists a map ${\phi: S^3\setminus L \longleftarrow S^1}$ which is locally trivial fibration.
\end{definition}
\section{\hfill\DTMdate{2019-04-15}}
In other words:\\
Choose a basis $(b_1, ..., b_i)$ \\
???\\
of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection form:
\begin{align*}
\quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}).
\end{align*}
In particular $\mid \det A\mid = \# H_1(Y, \mathbb{Z})$.\\
That means - what is happening on boundary is a measure of degeneracy.
\begin{center}
\begin{tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style =%
{draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
H_1(Y, \mathbb{Z}) &
\times \quad H_1(Y, \mathbb{Z})&
\longrightarrow &
\quot{\mathbb{Q}}{\mathbb{Z}}
\text{ - a linking form}
\\
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &\\
\end{tikzcd}
$(a, b) \mapsto aA^{-1}b^T$
\end{center}
?????????????????????????????????\\
\noindent
The intersection form on a four-manifold determines the linking on the boundary. \\
\noindent
Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If $V$ is a Seifert matrix for $K$, then
$H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}$ where
$A = V \times V^T$, $n = \rank V$.
%\input{ink_diag}
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4.pdf_tex}}
\caption{Pushing the Seifert surface in 4-ball.}
\label{fig:pushSeifert}
}
\end{figure}
\noindent
Let $X$ be the four-manifold obtained via the double branched cover of $B^4$ branched along $\widetilde{\Sigma}$.
\begin{fact}
\begin{itemize}
\item $X$ is a smooth four-manifold,
\item $H_1(X, \mathbb{Z}) =0$,
\item $H_2(X, \mathbb{Z}) \cong \mathbb{Z}^n$
\item The intersection form on $X$ is $V + V^T$.
\end{itemize}
\end{fact}
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_cycle.pdf_tex}}
\caption{Cycle pushed in 4-ball.}
\label{fig:pushCycle}
}
\end{figure}
\noindent
Let $Y = \Sigma(K)$. Then:
\begin{align*}
H_1(Y, \mathbb{Z}) \times H_1(Y, \mathbb{Z}) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}
\\
(a,b) &\mapsto a A^{-1} b^{T},\qquad
A = V + V^T.
\end{align*}
????????????????????????????
\begin{align*}
H_1(Y, \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}\\
A \longrightarrow BAC^T \quad \text{Smith normal form}
\end{align*}
???????????????????????\\
In general
%no lecture at 29.04
\section{\hfill\DTMdate{2019-05-20}}
Let $M$ be compact, oriented, connected four-dimensional manifold. If ${H_1(M, \mathbb{Z}) = 0}$ then there exists a
bilinear form - the intersection form on $M$:
\begin{center}
\begin{tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style = {draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
H_2(M, \mathbb{Z})&
\times & H_2(M, \mathbb{Z})
\longrightarrow &
\mathbb{Z}
\\
\ar[u,isomorphic] \mathbb{Z}^n && &\\
\end{tikzcd}
\end{center}
\noindent
Let us consider a specific case: $M$ has a boundary $Y = \partial M$.
Betti number $b_1(Y) = 0$, $H_1(Y, \mathbb{Z})$ is finite.
Then the intersection form can be degenerated in the sense that:
\begin{align*}
H_2(M, \mathbb{Z})
\times H_2(M, \mathbb{Z})
&\longrightarrow
\mathbb{Z} \quad&
H_2(M, \mathbb{Z}) &\longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\
(a, b) &\mapsto \mathbb{Z} \quad&
a &\mapsto (a, \_) H_2(M, \mathbb{Z})
\end{align*}
has coker precisely $H_1(Y, \mathbb{Z})$.
\\???????????????\\
Let $K \subset S^3$ be a knot, \\
$X = S^3 \setminus K$ - a knot complement, \\
$\widetilde{X} \xrightarrow{\enspace \rho \enspace} X$ - an infinite cyclic cover (universal abelian cover).
\begin{align*}
\pi_1(X) \longrightarrow \quot{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = H_1(X, \mathbb{Z} ) \cong \mathbb{Z}
\end{align*}
$C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$ module. \\
$H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}])$ - Alexander module, \\
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}
\end{align*}
\begin{fact}
\begin{align*}
&H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong
\quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n}\;, \\
&\text{where $V$ is a Seifert matrix.}
\end{align*}
\end{fact}
\begin{fact}
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
(\alpha, \beta) &\mapsto \alpha^{-1}(t -1)(tV - V^T)^{-1}\beta
\end{align*}
\end{fact}
\noindent
Note that $\mathbb{Z}$ is not PID. Therefore we don't have primer decomposition of this moduli. We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition.
\begin{align*}
&\xi \in S^1 \setminus \{ \pm 1\}
\quad
p_{\xi} =
(t - \xi)(t - \xi^{-1}) t^{-1}
\\
&\xi \in \mathbb{R} \setminus \{ \pm 1\}
\quad
q_{\xi} = (t - \xi)(t - \xi^{-1}) t^{-1}
\\
&
\xi \notin \mathbb{R} \cup S^1 \quad
q_{\xi} = (t - \xi)(t - \overbar{\xi})(t - \xi^{-1})(t - \overbar{\xi}^{-1}) t^{-2}\\
&
\Lambda = \mathbb{R}[t, t^{-1}]\\
&\text{Then: } H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}}
( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi}
\oplus
\bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}}
(\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi}&
\end{align*}
We can make this composition orthogonal with respect to the Blanchfield paring.
\vspace{0.5cm}\\
Historical remark:
\begin{itemize}
\item John Milnor, \textit{On isometries of inner product spaces}, 1969,
\item Walter Neumann, \textit{Invariants of plane curve singularities}
%in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva
, 1983,
\item András Némethi, \textit{The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities}, 1995,
%Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41
\item Maciej Borodzik, Stefan Friedl
\textit{The unknotting number and classical invariants II}, 2014.
\end{itemize}
\vspace{0.5cm}
Let $p = p_{\xi}$, $k\geq 0$.
\begin{align*}
\quot{\Lambda}{p^k \Lambda} \times
\quot{\Lambda}{p^k \Lambda} &\longrightarrow \quot{\mathbb{Q}(t)}{\Lambda}\\
(1, 1) &\mapsto \kappa\\
\text{Now: } (p^k \cdot 1, 1) &\mapsto 0\\
p^k \kappa = 0 &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\text{therfore } p^k \kappa &\in \Lambda\\
\text{we have } (1, 1) &\mapsto \frac{h}{p^k}\\
\end{align*}
$h$ is not uniquely defined: $h \rightarrow h + g p^k$ doesn't affect paring. \\
Let $h = p^k \kappa$.
\begin{example}
\begin{align*}
\phi_0 ((1, 1))=\frac{+1}{p}\\
\phi_1 ((1, 1)) = \frac{-1}{p}
\end{align*}
$\phi_0$ and $\phi_1$ are not isomorphic.
\end{example}
\begin{proof}
Let $\Phi:
\quot{\Lambda}{p^k \Lambda} \longrightarrow
\quot{\Lambda}{p^k \Lambda}$
be an isomorphism. \\
Let: $\Phi(1) = g \in \lambda$
\begin{align*}
\quot{\Lambda}{p^k \Lambda}
\xrightarrow{\enspace \Phi \enspace}&
\quot{\Lambda}{p^k \Lambda}\\
\phi_0((1, 1)) = \frac{1}{p^k} \qquad&\qquad
\phi_1((g, g)) = \frac{1}{p^k} \quad \text{($\Phi$ is an isometry).}
\end{align*}
Suppose for the paring $\phi_1((g, g))=\frac{1}{p^k}$ we have $\phi_1((1, 1)) = \frac{-1}{p^k}$. Then:
\begin{align*}
\frac{-g\overbar{g}}{p^k} = \frac{1}{p^k} &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\frac{-g\overbar{g}}{p^k} - \frac{1}{p^k} &\in \Lambda \\
-g\overbar{g} &\equiv 1\pmod{p} \text{ in } \Lambda\\
-g\overbar{g} - 1 &= p^k \omega \text{ for some } \omega \in \Lambda\\
\text{evalueting at $\xi$: }\\
\overbrace{-g(\xi)g(\xi^{-1})}^{>0} - 1 = 0 \quad \contradiction
\end{align*}
\end{proof}
????????????????????\\
\begin{align*}
g &= \sum{g_i t^i}\\
\overbar{g} &= \sum{g_i t^{-i}}\\
\overbar{g}(\xi) &= \sum g_i \xi^i \quad \xi \in S^1\\
\overbar{g}(\xi) &=\overbar{g(\xi)}
\end{align*}
Suppose $g = (t - \xi)^{\alpha} g^{\prime}$. Then $(t - \xi)^{k - \alpha}$ goes to $0$ in $\quot{\Lambda}{p^k \Lambda}$.
\begin{theorem}
Every sesquilinear non-degenerate pairing
\begin{align*}
\quot{\Lambda}{p^k} \times \quot{\Lambda}{p}
\longleftrightarrow \frac{h}{p^k}
\end{align*}
is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number).
\end{theorem}
\begin{proof}
There are two steps of the proof:
\begin{enumerate}
\item
Reduce to the case when $h$ has a constant sign on $S^1$.
\item
Prove in the case, when $h$ has a constant sign on $S^1$.
\end{enumerate}
\begin{lemma}
If $P$ is a symmetric polynomial such that $P(\eta)\geq 0$ for all $\eta \in S^1$, then $P$ can be written as a product $P = g \overbar{g}$ for some polynomial $g$.
\end{lemma}
\begin{proof}[Sketch of proof]
Induction over $\deg P$.\\
Let $\zeta \notin S^1$ be a root of $P$, $P \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that polynomial $P$ is divisible by
$(t - \zeta)$, $(t - \overbar{\zeta})$, $(t^{-1} - \zeta)$ and $(t^{-1} - \overbar{\zeta})$.
Therefore:
\begin{align*}
&P^{\prime} = \frac{P}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\
&P^{\prime} = g^{\prime}\overbar{g}
\end{align*}
We set $g = g^{\prime}(t - \zeta)(t - \overbar{\zeta})$ and
$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \mid P$ (at least - otherwise it would change sign). Therefore:
\begin{align*}
&P^{\prime} = \frac{P}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\
&g = (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}
\end{align*}
The map $(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k}$ is isometric whenever $g$ is coprime with $P$.
\end{proof}
\begin{lemma}\label{L:coprime polynomials}
Suppose $A$ and $B$ are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either $A(z) > 0$ or $B(z) > 0$. Then there exist
symmetric polynomials $P$, $Q$ such that
$P(z), Q(z) > 0$ for $z \in S^1$ and $PA + QB \equiv 1$.
\end{lemma}
\begin{proof}[Idea of proof]
For any $z$ find an interval $(a_z, b_z)$ such that if $P(z) \in (a_z, b_z)$ and $P(z)A(z) + Q(z)B(z) = 1$, then $Q(z) > 0$, $x(z) = \frac{az + bz}{i}$ is a continues function on $S^1$ approximating $z$ by a polynomial .
\\??????????????????????????\\
\begin{flalign*}
(1, 1) \mapsto \frac{h}{p^k} \mapsto \frac{g\overbar{g}h}{p^k}&\\
g\overbar{g} h + p^k\omega = 1&
\end{flalign*}
Apply Lemma \ref{L:coprime polynomials} for $A=h$, $B=p^{2k}$. Then, if the assumptions are satisfied,
\begin{align*}
Ph + Qp^{2k} = 1\\
p>0 \Rightarrow p = g \overbar{g}\\
p = (t - \xi)(t - \overbar{\xi})t^{-1}\\
\text{so } p \geq 0 \text{ on } S^1\\
p(t) = 0 \Leftrightarrow
t = \xi or t = \overbar{\xi}\\
h(\xi) > 0\\
h(\overbar{\xi})>0\\
g\overbar{g}h + Qp^{2k} = 1\\
g\overbar{g}h \equiv 1 \mod{p^{2k}}\\
g\overbar{g} \equiv 1 \mod{p^k}
\end{align*}
???????????????????????????????\\
If $P$ has no roots on $S^1$ then $B(z) > 0$ for all $z$, so the assumptions of Lemma \ref{L:coprime polynomials} are satisfied no matter what $A$ is.
\end{proof}
?????????????????\\
\begin{align*}
(\quot{\Lambda}{p_{\xi}^k} \times
\quot{\Lambda}{p_{\xi}^k}) &\longrightarrow
\frac{\epsilon}{p_{\xi}^k}, \quad \xi \in S^1 \setminus\{\pm 1\}\\
(\quot{\Lambda}{q_{\xi}^k} \times
\quot{\Lambda}{q_{\xi}^k}) &\longrightarrow
\frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\
\end{align*}
??????????????????? 1 ?? epsilon?\\
\begin{theorem}(Matumoto, Borodzik-Conway-Politarczyk)
Let $K$ be a knot,
\begin{align*}
&H_1(\widetilde{X}, \Lambda) \times
H_1(\widetilde{X}, \Lambda)
= \bigoplus_{\substack{k, \xi, \epsilon\\ \xi in S^1}}
(\quot{\Lambda}{p_{\xi}^k}, \epsilon)^{n_k, \xi, \epsilon} \oplus \bigoplus_{k, \eta}
(\quot{\Lambda}{p_{\xi}^k})^{m_k}
\end{align*}
\begin{align*}
\text{Let } \delta_{\sigma}(\xi) = \lim_{\varepsilon \rightarrow 0^{+}}
\sigma(e^{2\pi i \varepsilon} \xi)
- \sigma(e^{-2\pi i \varepsilon} \xi),\\
\text{then }
\sigma_j(\xi) = \sigma(\xi) - \frac{1}{2} \lim_{\varepsilon \rightarrow 0}
\sigma(e^{2\pi i \varepsilon}\xi)
+ \sigma(e^{-2 \pi i \varepsilon}\xi)
\end{align*}
The jump at $\xi$ is equal to
$2 \sum\limits_{k_i \text{ odd}} \epsilon_i$. The peak of the signature function is equal to $\sum\limits_{k_i \text{even}} \epsilon_i$.
%$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$
\end{theorem}
\end{proof}
\section{\hfill\DTMdate{2019-05-27}}
....
\begin{definition}
A square hermitian matrix $A$ of size $n$.
\end{definition}
field of fractions
\section{\hfill\DTMdate{2019-06-03}}
\begin{theorem}
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
\[
u(K) \geq g_4(K)
\]
\begin{proof}
Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points.
\\
\noindent
Remove from $\Delta$ the two self intersecting and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$ .
\end{proof}
???????????????????\\
\begin{example}
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
\end{example}
%ref Structure in the classical knot concordance group
%Tim D. Cochran, Kent E. Orr, Peter Teichner
%Journal-ref: Comment. Math. Helv. 79 (2004) 105-123
\subsection*{Surgery}
%Rolfsen, geometric group theory, Diffeomorpphism of a torus, Mapping class group
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^3$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \pt]}$ and ${\beta=[\pt \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
Consider an induced map on homology group:
\begin{align*}
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
\phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\
\phi_* &=
\begin{pmatrix}
p & q\\
r & s
\end{pmatrix}
\end{align*}
As $\phi_*$ is diffeomorphis, it must be invertible over $\mathbb{Z}$. Then for a direction preserving diffeomorphism we have $\det \phi_* = 1$. Therefore $\phi_* \in \Sl(2, \mathbb{Z})$.
\end{theorem}
\vspace{10cm}
\begin{theorem}
Every such a matrix can be realized as a torus.
\end{theorem}
\begin{proof}
\begin{enumerate}[label={(\Roman*)}]
\item
Geometric reason
\begin{align*}
\phi_t:
S^1 \times S^1 &\longrightarrow S^1 \times S^1 \\
S^1 \times \pt &\longrightarrow \pt \times S^1 \\
\pt \times S^1 &\longrightarrow S^1 \times \pt \\
(x, y) & \mapsto (-y, x)
\end{align*}
\item
\end{enumerate}
\end{proof}
\section{balagan}
\noindent
\noindent
\section{\hfill\DTMdate{2019-05-06}}
\begin{definition}
Let $X$ be a knot complement.
Then $H_1(X, \mathbb{Z}) \cong \mathbb{Z}$ and there exists an epimorphism
$\pi_1(X) \overset{\phi}\twoheadrightarrow \mathbb{Z}$.\\
The infinite cyclic cover of a knot complement $X$ is the cover associated with the epimorphism $\phi$.
\[
\widetilde{X} \longtwoheadrightarrow X
\]
\end{definition}
%Rolfsen, bachalor thesis of Kamila
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{1\textwidth}{!}{\input{images/covering.pdf_tex}}
\caption{Infinite cyclic cover of a knot complement.}
\label{fig:covering}
}
\end{figure}
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.8\textwidth}{!}{\input{images/knot_complement.pdf_tex}}
\caption{A knot complement.}
\label{fig:complement}
}
\end{figure}
\noindent
Formal sums $\sum \phi_i(t) a_i + \sum \phi_j(t)\alpha_j$ \\
finitely generated as a $\mathbb{Z}[t, t^{-1}]$ module.
\\
Let $v_{ij} = \Lk(a_i, a_j^+)$. Then
$V = \{ v_ij\}_{i, j = 1}^n$ is the Seifert matrix associated to the surface $\Sigma$ and the basis $a_1, \dots, a_n$. Therefore $a_k^+ = \sum_{j} v_{jk} \alpha_j$. Then
$\Lk(a_i, a_k^+)= \Lk(a_k^+, a_i) = \sum_j v_{jk} \Lk(\alpha_j, a_i) = v_{ik}$.
We also notice that $\Lk(a_i, a_j^-) = \Lk(a_i^+, a_j)= v_{ij}$ and
$a_j^- = \sum_k v_{kj} t^{-1} \alpha_j$.
\\
\noindent
The homology of $\widetilde{X}$ is generated by $a_1, \dots, a_n$ and relations.
\begin{definition}
The Nakanishi index of a knot is the minimal number of generators of $H_1(\widetilde{X})$.
\end{definition}
%see Maciej page
\noindent
Remark about notation: sometimes one writes $H_1(X; \mathbb{Z}[t, t^{-1}])$ (what is also notation for twisted homology) instead of $H_1(\widetilde{X})$.
\\
?????????????????????
\\
\noindent
$\Sigma_?(K) \rightarrow S^3$ ?????\\
$H_1(\Sigma_?(K), \mathbb{Z}) = h$\\
$H \times H \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}$\\
...\\
Let now $H = H_1(\widetilde{X})$. Can we define a paring? \\
Let $c, d \in H(\widetilde{X})$ (see Figure \ref{fig:covering_pairing}), $\Delta$ an Alexander polynomial. We know that $\Delta c = 0 \in H_1(\widetilde{X})$ (Alexander polynomial annihilates all possible elements). Let consider a surface $F$ such that $\partial F = c$. Now consider intersection points $F \cdot d$. This points can exist in any $N_k$ or $S_k$.
\[
\frac{1}{\Delta} \sum_{j\in \mathbb{Z} t^{-j}}(F \cdot t^j d) \in \quot{\mathbb{Q}[t, t^{-1}]}{\mathbb{Z}[t, t^{-1}]}
\]
\\
?????????????\\
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{1\textwidth}{!}{\input{images/covering_pairing.pdf_tex}}
\caption{$c, d \in H_1(\widetilde{X})$.}
\label{fig:covering_pairing}
}
\end{figure}
\begin{definition}
The $\mathbb{Z}[t, t^{-1}]$ module $H_1(\widetilde{X})$ is called the Alexander module of knot $K$.
\end{definition}
\noindent
Let $R$ be a PID, $M$ a finitely generated $R$ module. Let us consider
\[
R^k \overset{A} \longrightarrow R^n \longtwoheadrightarrow M,
\]
where $A$ is a $k \times n$ matrix, assume $k\ge n$. The order of $M$ is the $\gcd$ of all determinants of the $n \times n$ minors of $A$. If $k = n$ then $\ord M = \det A$.
\begin{theorem}
Order of $M$ doesn't depend on $A$.
\end{theorem}
\noindent
For knots the order of the Alexander module is the Alexander polynomial.
\begin{theorem}
\[
\forall x \in M: (\ord M) x = 0.
\]
\end{theorem}
\noindent
$M$ is well defined up to a unit in $R$.
\subsection*{Blanchfield pairing}
\section{balagan}
\begin{theorem}
Let $H_p$ be a $p$ - torsion part of $H$. There exists an orthogonal decomposition of $H_p$:
\[
H_p = H_{p, 1} \oplus \dots \oplus H_{p, r_p}.
\]
$H_{p, i}$ is a cyclic module:
\[
H_{p, i} = \quot{\mathbb{Z}[t, t^{-1}]}{p^{k_i} \mathbb{Z} [t, t^{-1}]}
\]
\end{theorem}
\noindent
The proof is the same as over $\mathbb{Z}$.
\noindent
%Add NotePrintSaveCiteYour opinionEmailShare
%Saveliev, Nikolai
%Lectures on the Topology of 3-Manifolds
%An Introduction to the Casson Invariant
\end{document}