lectures_on_knot_theory/lec_20_05.tex

261 lines
9.9 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

% I don't have this first fragent in my notes
Let $M$ be compact, oriented, connected four-dimensional manifold. If ${H_1(M, \mathbb{Z}) = 0}$ then there exists a
bilinear form - the intersection form on $M$:
\begin{center}
\begin{tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style = {draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
H_2(M, \mathbb{Z})&
\times & H_2(M, \mathbb{Z})
\longrightarrow &
\mathbb{Z}
\\
\ar[u,isomorphic] \mathbb{Z}^n && &\\
\end{tikzcd}
\end{center}
\noindent
Let us consider a specific case: $M$ has a boundary $Y = \partial M$.
Betti number $b_1(Y) = 0$, $H_1(Y, \mathbb{Z})$ is finite.
Then the intersection form can be degenerated in the sense that:
\begin{align*}
H_2(M, \mathbb{Z})
\times H_2(M, \mathbb{Z})
&\longrightarrow
\mathbb{Z} \quad&
H_2(M, \mathbb{Z}) &\longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\
(a, b) &\mapsto \mathbb{Z} \quad&
a &\mapsto (a, \_) \in H_2(M, \mathbb{Z})
\end{align*}
has coker precisely $H_1(Y, \mathbb{Z})$.
\\???????????????\\
% Here my notes begin:
Let $K \subset S^3$ be a knot, $X = S^3 \setminus K$ a knot complement and
$\widetilde{X} \xrightarrow{\enspace \rho \enspace} X$ an infinite cyclic cover (universal abelian cover).
%By Hurewicz theorem we know that:
%\begin{align*}
%\pi_1(X) \longrightarrow \quot{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = H_1(X, \mathbb{Z} ) \cong \mathbb{Z}
%\end{align*}
\noindent
$C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$ module. \\
Let $H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}])$ be the Alexander module of the knot $K$ with an intersection form:
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}
\end{align*}
\begin{lemma}
\begin{align*}
&H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong
\quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n}\;, \\
&\text{where $V$ is a Seifert matrix.}
\end{align*}
\end{lemma}
\begin{lemma}
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
(\alpha, \beta) \quad &\mapsto \alpha^{-1}{(t -1)(tV - V^T)}^{-1}\beta
\end{align*}
\end{lemma}
\noindent
Note that $\mathbb{Z}[t, t^{-1}]$ is not PID.
Therefore we don't have primary decomposition of this module.
We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition, but we can
\begin{align*}
\xi \in S^1 \setminus \{ \pm 1\}
&\quad
p_{\xi} =
(t - \xi)(t - \xi^{-1}) t^{-1}
\\
\xi \in \mathbb{R} \setminus \{ \pm 1\}
&\quad
q_{\xi} = (t - \xi)(t - \xi^{-1}) t^{-1}
\\
\xi \notin \mathbb{R} \cup S^1
&\quad
q_{\xi} = (t - \xi)(t - \overbar{\xi})(t - \xi^{-1})
(t - \overbar{\xi}^{-1}) t^{-2}
\end{align*}
Let $\Lambda = \mathbb{R}[t, t^{-1}]$. Then:
\begin{align*}
H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}}
( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi}
\oplus
\bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}}
(\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi}&
\end{align*}
We can make this composition orthogonal with respect to the Blanchfield paring.
\vspace{0.5cm}\\
Historical remark:
\begin{itemize}
\item John Milnor, \textit{On isometries of inner product spaces}, 1969,
\item Walter Neumann, \textit{Invariants of plane curve singularities}
%in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva
, 1983,
\item András Némethi, \textit{The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities}, 1995,
%Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41
\item Maciej Borodzik, Stefan Friedl
\textit{The unknotting number and classical invariants II}, 2014.
\end{itemize}
\vspace{0.5cm}
Let $p = p_{\xi}$, $k\geq 0$.
\begin{align*}
\quot{\Lambda}{p^k \Lambda} \times
\quot{\Lambda}{p^k \Lambda} &\longrightarrow \quot{\mathbb{Q}(t)}{\Lambda}\\
(1, 1) &\mapsto \kappa\\
\text{Now: } (p^k \cdot 1, 1) &\mapsto 0\\
p^k \kappa = 0 &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\text{therfore } p^k \kappa &\in \Lambda\\
\text{we have } (1, 1) &\mapsto \frac{h}{p^k}\\
\end{align*}
$h$ is not uniquely defined: $h \rightarrow h + g p^k$ doesn't affect paring. \\
Let $h = p^k \kappa$.
\begin{example}
\begin{align*}
\phi_0 ((1, 1))=\frac{+1}{p}\\
\phi_1 ((1, 1)) = \frac{-1}{p}
\end{align*}
$\phi_0$ and $\phi_1$ are not isomorphic.
\end{example}
\begin{proof}
Let $\Phi:
\quot{\Lambda}{p^k \Lambda} \longrightarrow
\quot{\Lambda}{p^k \Lambda}$
be an isomorphism. \\
Let: $\Phi(1) = g \in \lambda$
\begin{align*}
\quot{\Lambda}{p^k \Lambda}
\xrightarrow{\enspace \Phi \enspace}&
\quot{\Lambda}{p^k \Lambda}\\
\phi_0((1, 1)) = \frac{1}{p^k} \qquad&\qquad
\phi_1((g, g)) = \frac{1}{p^k} \quad \text{($\Phi$ is an isometry).}
\end{align*}
Suppose for the paring $\phi_1((g, g))=\frac{1}{p^k}$ we have $\phi_1((1, 1)) = \frac{-1}{p^k}$. Then:
\begin{align*}
\frac{-g\overbar{g}}{p^k} = \frac{1}{p^k} &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\frac{-g\overbar{g}}{p^k} - \frac{1}{p^k} &\in \Lambda \\
-g\overbar{g} &\equiv 1\pmod{p} \text{ in } \Lambda\\
-g\overbar{g} - 1 &= p^k \omega \text{ for some } \omega \in \Lambda\\
\text{evalueting at $\xi$: }\\
\overbrace{-g(\xi)g(\xi^{-1})}^{>0} - 1 = 0 \quad \contradiction
\end{align*}
\end{proof}
????????????????????\\
\begin{align*}
g &= \sum{g_i t^i}\\
\overbar{g} &= \sum{g_i t^{-i}}\\
\overbar{g}(\xi) &= \sum g_i \xi^i \quad \xi \in S^1\\
\overbar{g}(\xi) &=\overbar{g(\xi)}
\end{align*}
Suppose $g = (t - \xi)^{\alpha} g^{\prime}$. Then $(t - \xi)^{k - \alpha}$ goes to $0$ in $\quot{\Lambda}{p^k \Lambda}$.
\begin{theorem}
Every sesquilinear non-degenerate pairing
\begin{align*}
\quot{\Lambda}{p^k} \times \quot{\Lambda}{p}
\longrightarrow \frac{h}{p^k}
\end{align*}
is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number).
\end{theorem}
\begin{proof}
There are two steps of the proof:
\begin{enumerate}
\item
Reduce to the case when $h$ has a constant sign on $S^1$.
\item
Prove in the case, when $h$ has a constant sign on $S^1$.
\end{enumerate}
\begin{lemma}
If $P$ is a symmetric polynomial such that $P(\eta)\geq 0$ for all $\eta \in S^1$, then $P$ can be written as a product $P = g \overbar{g}$ for some polynomial $g$.
\end{lemma}
\begin{proof}[Sketch of proof]:
Induction over $\deg P$.\\
Let $\zeta \notin S^1$ be a root of $P$, $P \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that polynomial $P$ is divisible by
$(t - \zeta)$, $(t - \overbar{\zeta})$, $(t^{-1} - \zeta)$ and $(t^{-1} - \overbar{\zeta})$.
Therefore:
\begin{align*}
&P^{\prime} = \frac{P}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\
&P^{\prime} = g^{\prime}\overbar{g}
\end{align*}
We set $g = g^{\prime}(t - \zeta)(t - \overbar{\zeta})$ and
$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \vert P$ (at least - otherwise it would change sign). Therefore:
\begin{align*}
&P^{\prime} = \frac{P}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\
&g = (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}
\end{align*}
The map $(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k}$ is isometric whenever $g$ is coprime with $P$.
\end{proof}
\begin{lemma}\label{L:coprime polynomials}
Suppose $A$ and $B$ are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either $A(z) > 0$ or $B(z) > 0$. Then there exist
symmetric polynomials $P$, $Q$ such that
$P(z), Q(z) > 0$ for $z \in S^1$ and $PA + QB \equiv 1$.
\end{lemma}
\begin{proof}[Idea of proof]
For any $z$ find an interval $(a_z, b_z)$ such that if $P(z) \in (a_z, b_z)$ and $P(z)A(z) + Q(z)B(z) = 1$, then $Q(z) > 0$, $x(z) = \frac{az + bz}{i}$ is a continues function on $S^1$ approximating $z$ by a polynomial .
\\??????????????????????????\\
\begin{flalign*}
(1, 1) \mapsto \frac{h}{p^k} \mapsto \frac{g\overbar{g}h}{p^k}&\\
g\overbar{g} h + p^k\omega = 1&
\end{flalign*}
Apply Lemma \ref{L:coprime polynomials} for $A=h$, $B=p^{2k}$. Then, if the assumptions are satisfied,
\begin{align*}
Ph + Qp^{2k} = 1\\
p>0 \Rightarrow p = g \overbar{g}\\
p = (t - \xi)(t - \overbar{\xi})t^{-1}\\
\text{so } p \geq 0 \text{ on } S^1\\
p(t) = 0 \Leftrightarrow
t = \xi or t = \overbar{\xi}\\
h(\xi) > 0\\
h(\overbar{\xi})>0\\
g\overbar{g}h + Qp^{2k} = 1\\
g\overbar{g}h \equiv 1 \mod{p^{2k}}\\
g\overbar{g} \equiv 1 \mod{p^k}
\end{align*}
???????????????????????????????\\
If $P$ has no roots on $S^1$ then $B(z) > 0$ for all $z$, so the assumptions of Lemma \ref{L:coprime polynomials} are satisfied no matter what $A$ is.
\end{proof}
?????????????????\\
\begin{align*}
\quot{\Lambda}{p_{\xi}^k} \times
\quot{\Lambda}{p_{\xi}^k} &\longrightarrow
\frac{\epsilon}{p_{\xi}^k}, \quad \xi \in S^1 \setminus\{\pm 1\}\\
\quot{\Lambda}{q_{\xi}^k} \times
\quot{\Lambda}{q_{\xi}^k} &\longrightarrow
\frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\
\end{align*}
??????????????????? 1 ?? epsilon?\\
\begin{theorem}[Matumoto, Borodzik-Conway-Politarczyk]
Let $K$ be a knot,
\begin{align*}
H_1(\widetilde{X}, \Lambda) \times
H_1(\widetilde{X}, \Lambda)
= \bigoplus_{\substack{k, \xi, \epsilon\\ \xi \in S^1}}
(\quot{\Lambda}{p_{\xi}^k}, \epsilon)^{n_k, \xi, \epsilon} \oplus \bigoplus_{k, \eta}
(\quot{\Lambda}{p_{\xi}^k})^{m_k} \text{ and} \\
\delta_{\sigma}(\xi) = \lim_{\varepsilon \rightarrow 0^{+}}
\sigma(e^{2\pi i \varepsilon} \xi)
- \sigma(e^{-2\pi i \varepsilon} \xi),\\
\text{then }
\sigma_j(\xi) = \sigma(\xi) - \frac{1}{2} \lim_{\varepsilon \rightarrow 0}
\sigma(e^{2\pi i \varepsilon}\xi)
+ \sigma(e^{-2 \pi i \varepsilon}\xi)
\end{align*}
The jump at $\xi$ is equal to
$2\sum\limits_{k_i \odd} \epsilon_i$.\\
The peak of the signature function is equal to ${\sum\limits_{k_i \even}}{\epsilon_i}$.
\\
?????????????????
\\
$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$
% Livingston Pacific Jurnal of M. 2012
\end{theorem}
\end{proof}