correction in Murasugi's criterion
This commit is contained in:
parent
61e0669b3d
commit
737a556b8b
@ -36,7 +36,9 @@ class MySettings(object):
|
||||
self.f_results_out = os.path.join(os.getcwd(), "results.out")
|
||||
self.f_old_results = os.path.join(os.getcwd(), "old_results.input")
|
||||
|
||||
self.periods = [3, 5, 7, 9, 11]
|
||||
self.periods = [9]
|
||||
|
||||
# self.periods = [3, 5, 7, 9, 11]
|
||||
self.set_to_check = self.get_set()
|
||||
|
||||
# check only knots from defined set
|
||||
@ -44,7 +46,7 @@ class MySettings(object):
|
||||
self.only_chosen = False
|
||||
|
||||
self.debugging = True
|
||||
self.debugging = False
|
||||
# self.debugging = False
|
||||
|
||||
# only if debugging
|
||||
self.print_matrices = True
|
||||
@ -70,7 +72,7 @@ class MySettings(object):
|
||||
# self.input_file_with_homflypt = False
|
||||
|
||||
self.check_old_results = True
|
||||
self.check_old_results = False
|
||||
# self.check_old_results = False
|
||||
|
||||
if self.input_file_with_homflypt:
|
||||
if not os.path.isfile(self.f_homfly_lm_in):
|
||||
@ -83,7 +85,7 @@ class MySettings(object):
|
||||
periodic_burde = set(["3_1", "5_1", "7_1", "8_19", "9_1",
|
||||
"9_35", "9_40", "9_41", "9_47", "9_49",
|
||||
"10_3", "10_123", "10_124"])
|
||||
# set_to_check |= periodic_burde
|
||||
set_to_check |= periodic_burde
|
||||
|
||||
# knots that fail Borodzik criterion
|
||||
self.fails_dict = {
|
||||
@ -353,7 +355,7 @@ class MySettings(object):
|
||||
}
|
||||
set_to_check |= set(self.success_dict.keys())
|
||||
|
||||
# knots that are known to be periodic
|
||||
# knots that are known to be (not) periodic
|
||||
self.periods_dict = {
|
||||
"3_1": [3],
|
||||
"5_1": [5],
|
||||
@ -392,7 +394,7 @@ class MySettings(object):
|
||||
"15a40549": [-5],
|
||||
"15a53966": [-5]
|
||||
}
|
||||
# set_to_check |= set(self.periods_dict.keys())
|
||||
set_to_check |= set(self.periods_dict.keys())
|
||||
|
||||
# knots that have Alexander polynomial = 1
|
||||
self.alexander_1 = set(["11n34",
|
||||
@ -596,9 +598,11 @@ class MySettings(object):
|
||||
"15n163337",
|
||||
"15n165398",
|
||||
])
|
||||
# set_to_check |= self.alexander_1
|
||||
set_to_check |= self.alexander_1
|
||||
|
||||
set_to_check = set(["10_123"])
|
||||
set_to_check |= set(["10_123"])
|
||||
set_to_check |= set(["15n166130"])
|
||||
set_to_check = set(self.fails_dict.keys())
|
||||
|
||||
return set_to_check
|
||||
|
||||
@ -723,16 +727,17 @@ class PeriodicityTester(object):
|
||||
def check_murasugi(self, q):
|
||||
'''
|
||||
Select these delta factors and natural number r such that:
|
||||
delta = delta_prime^q * (1 + t^1 + ... + t^(r-1))^(q-1) mod q
|
||||
delta = delta_prime^q * (1 + t^1 + ... + t^(r-1))^(q-1) mod q_factor
|
||||
where "delta_prime" is a delta factor.
|
||||
'''
|
||||
quotient_delta = self.delta.change_ring(GF(q))
|
||||
q_factor = factor(q)[0][0]
|
||||
quotient_delta = self.delta.change_ring(GF(q_factor))
|
||||
# Underlying polynomial of quotient_delta:
|
||||
quotient_delta = quotient_delta.polynomial_construction()[0]
|
||||
delta_degree = quotient_delta.degree()
|
||||
|
||||
for candidate in self.delta_factors:
|
||||
quotient_candidate = candidate.change_ring(GF(q))
|
||||
quotient_candidate = candidate.change_ring(GF(q_factor))
|
||||
power_candidate = quotient_candidate^q
|
||||
power_candidate = power_candidate.polynomial_construction()[0]
|
||||
# (r - 1) - possible t-polynomial degree
|
||||
@ -754,18 +759,19 @@ class PeriodicityTester(object):
|
||||
t_delta_factors = [f for f in t_delta_dict.keys()
|
||||
if f != 2 and gcd(q, f) == 1]
|
||||
for f in t_delta_factors:
|
||||
f_q = naik_number_dict.setdefault((f, q), get_naik_number(f, q))
|
||||
if not (t_delta_dict[f] / (2 * f_q)).is_integer():
|
||||
q_f = naik_number_dict.setdefault((q, f), get_naik_number(q, f))
|
||||
if not (t_delta_dict[f] / (2 * q_f)).is_integer():
|
||||
return None
|
||||
return t_delta_factors
|
||||
|
||||
def check_naik_1(self, q):
|
||||
'''
|
||||
For each delta' find a set P of prime numbers p such that:
|
||||
gcd(p, q) == 1, p != 2 and p| t_delta, t_delta = delta(-1)/delta'(-1).
|
||||
Check if all p factors of t_delta has multiplicity divisible by 2*[p|q].
|
||||
gcd(q, p) == 1, p != 2 and p| t_delta, t_delta = delta(-1)/delta'(-1).
|
||||
Check if all p factors of t_delta has multiplicity divisible by 2*[q|p].
|
||||
If it holds for at least one delta' candidate, set naik_1 = True.
|
||||
'''
|
||||
# Proposition 2.7.
|
||||
delta_evaluated = self.delta(-1)
|
||||
|
||||
for delta_prime, _ in self.murasugi_fulfilling:
|
||||
@ -780,7 +786,7 @@ class PeriodicityTester(object):
|
||||
delta_prime_bases = []
|
||||
maximum_in_diagonal = self.get_maximum_in_diagonal()
|
||||
for p in p_list:
|
||||
p_q = naik_number_dict[(p, q)]
|
||||
q_p = naik_number_dict[(q, p)]
|
||||
bases_for_p_torsion = []
|
||||
factor_power = p
|
||||
# find all p^k torsion parts
|
||||
@ -795,7 +801,7 @@ class PeriodicityTester(object):
|
||||
basis_for_p_k_part.append(0)
|
||||
len_non_zero = sum(x != 0 for x in basis_for_p_k_part)
|
||||
# check if dimension is multiple of 2 * naik_number
|
||||
if not (len_non_zero / (2 * p_q)).is_integer():
|
||||
if not (len_non_zero / (2 * q_p)).is_integer():
|
||||
return None
|
||||
factor_power *= p
|
||||
bases_for_p_torsion.append(basis_for_p_k_part)
|
||||
@ -812,6 +818,7 @@ class PeriodicityTester(object):
|
||||
In particular naik_2 is set to be -1 if the criterion passes,
|
||||
but only in cases where P is an empty set.
|
||||
'''
|
||||
# Proposition 2.8.
|
||||
for delta_prime, p_list in self.naik_1_fulfilling:
|
||||
delta_prime_factors = set([d[0] for d in factor(delta_prime(-1))])
|
||||
p_list = [p for p in p_list if p not in delta_prime_factors]
|
||||
@ -883,10 +890,10 @@ class PeriodicityTester(object):
|
||||
if not mod(P_det, p).is_square():
|
||||
epsilon *= -1 # epsilon = epsilon_1 * epsilon_2
|
||||
|
||||
p_q = naik_number_dict[(p, q)]
|
||||
d = n / (2 * p_q)
|
||||
# sign(p_q) - whether rest is -1 or 1
|
||||
if sign(p_q)^d != epsilon:
|
||||
q_p = naik_number_dict[(q, p)]
|
||||
d = n / (2 * q_p)
|
||||
# sign(q_p) - whether rest is -1 or 1
|
||||
if sign(q_p)^d != epsilon:
|
||||
return False
|
||||
return True
|
||||
|
||||
@ -1070,7 +1077,7 @@ class PeriodicityTester(object):
|
||||
if not p_list:
|
||||
print "List of factors was empty."
|
||||
for p in p_list:
|
||||
g = abs(naik_number_dict[(p, q)])
|
||||
g = abs(naik_number_dict[(q, p)])
|
||||
print "factor of del/del'(-1): " + str(p)
|
||||
print "Naik number: " + str(g)
|
||||
print "2 * Naik number:\t" + str(2 * g)
|
||||
@ -1117,7 +1124,7 @@ class PeriodicityTester(object):
|
||||
|
||||
for p, bases_for_p in delta_prime_bases:
|
||||
print "\nfactor p for delta prime:\t\t\t" + str(p)
|
||||
g = abs(naik_number_dict[(p, q)])
|
||||
g = abs(naik_number_dict[(q, p)])
|
||||
print "Naik number:\t\t" + str(g)
|
||||
print "2 * Naik number:\t" + str(2 * g)
|
||||
test_naik_number = p^g % q
|
||||
@ -1210,11 +1217,11 @@ class PeriodicityTester(object):
|
||||
|
||||
# epsilon and eta
|
||||
print "epsilon = epsilon_1 * epsilon_2 = " + str(epsilon_1 * epsilon_2)
|
||||
p_q = naik_number_dict[(p, q)]
|
||||
d = n / (2 * abs(p_q))
|
||||
print "\nnaik_sign = " + str(sign(p_q))
|
||||
print "eta = naik_sign^d = " + str(sign(p_q)^d)
|
||||
if sign(p_q)^d == epsilon_1 * epsilon_2:
|
||||
q_p = naik_number_dict[(q, p)]
|
||||
d = n / (2 * abs(q_p))
|
||||
print "\nnaik_sign = " + str(sign(q_p))
|
||||
print "eta = naik_sign^d = " + str(sign(q_p)^d)
|
||||
if sign(q_p)^d == epsilon_1 * epsilon_2:
|
||||
print "eta == epsilon\n"
|
||||
else:
|
||||
print "eta != epsilon\n"
|
||||
@ -1306,9 +1313,9 @@ def check_criteria(name, pd_code, f_homfly_in=None):
|
||||
return tester
|
||||
|
||||
|
||||
def get_naik_number(p, q):
|
||||
def get_naik_number(q, p):
|
||||
'''
|
||||
Calculate the smallest integer i such that p^i == +/-1 mod q.
|
||||
Calculate the smallest integer i = [q, p] such that p^i == +/-1 mod q.
|
||||
Signum of i shows whether rest is -1 or 1
|
||||
'''
|
||||
if gcd(q, p) > 1:
|
||||
@ -1389,10 +1396,28 @@ if __name__ == '__main__':
|
||||
R.<t> = LaurentPolynomialRing(ZZ)
|
||||
prime_numbers = Primes()
|
||||
naik_number_dict = {}
|
||||
if not os.path.isfile(settings.f_old_results):
|
||||
f = open(settings.f_old_results, 'w+')
|
||||
|
||||
if not os.path.isfile(settings.f_old_results) \
|
||||
or not settings.check_old_results:
|
||||
settings.check_old_results = False
|
||||
f.close()
|
||||
if settings.save_homfly and settings.input_file_with_homflypt:
|
||||
with open(settings.f_results_out, 'w') as f_out,\
|
||||
open(settings.f_homfly_lm_out, 'w') as f_homfly_out,\
|
||||
open(settings.f_homfly_lm_in, 'r') as f_homfly_in:
|
||||
test_all(f_out, f_homfly_out, f_homfly_in)
|
||||
elif settings.save_homfly:
|
||||
with open(settings.f_results_out, 'w') as f_out,\
|
||||
open(settings.f_homfly_lm_out, 'w') as f_homfly_out:
|
||||
test_all(f_out, f_homfly_out)
|
||||
elif settings.input_file_with_homflypt:
|
||||
with open(settings.f_results_out, 'w') as f_out,\
|
||||
open(settings.f_homfly_lm_in, 'r') as f_homfly_in:
|
||||
test_all(f_out, None, f_homfly_in)
|
||||
else:
|
||||
with open(settings.f_results_out, 'w') as f_out:
|
||||
test_all(f_out)
|
||||
sys.exit()
|
||||
|
||||
with open(settings.f_old_results, 'r') as f_old_results:
|
||||
if settings.save_homfly and settings.input_file_with_homflypt:
|
||||
with open(settings.f_results_out, 'w') as f_out,\
|
||||
|
Loading…
Reference in New Issue
Block a user