# Copyright (c) 2018: Maria Marchwicka, Wojciech Politarczyk. # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see import sys import os import numpy as np import warnings class MySettings(object): def __init__(self): self.f_pd_knot_11_15 = os.path.join(os.getcwd(), "knots_11_15.txt") self.f_knot_up_to_10 = os.path.join(os.getcwd(), "knots_3_10.txt") self.f_homfly_lm_in = os.path.join(os.getcwd(), "homflypt.input") self.f_results_out = os.path.join(os.getcwd(), "results.out") self.periods = [3, 5, 7, 9, 11] self.set_to_check = self.get_set() # check only knots from defined set self.only_chosen = True self.only_chosen = False self.print_results = False self.print_results = True # HOMFLYPT polynomials from file self.input_file_with_homflypt = True # self.input_file_with_homflypt = False if self.input_file_with_homflypt: if not os.path.isfile(self.f_homfly_lm_in): warnings.warn("No input file with HOMFLYPT polynomials") self.input_file_with_homflypt = False def get_set(self): set_to_check = set() return set_to_check class PeriodicityTester(object): def __init__(self, name, pd_code, A=None, f_homfly_in=None): self.results = [] ''' To results for each period q a list in following form will be appended: [q, murasugi, naik_1, naik_2, borodzik, przytycki] Crierion is set to be: -1 if it is not applicable (details in check_naik_2, check_przytycki, 1 if criterion doesn't exclude periodic, 0 if criterion excludes periodicity. murasugi, naik_1, naik_2 or borodzik is also set to be: 2 if alexander_polynomial == 1. 0 if previous criterion in the list is 0. ''' self.name = name self.pd_code = pd_code self.smith = None self.reset_results() if pd_code is not None: self.K = Link(pd_code) self.seifert = self.K.seifert_matrix() else: self.seifert = A # delta := Alexander polynomial delta = (self.seifert.transpose() - t * self.seifert).determinant() self.delta = delta.shift(-delta.exponents()[0]) self.delta_factors = self.set_delta_factors() self.przytycki_tester = self.get_przytycki_tester(f_homfly_in) def reset_results(self): self.murasugi = 0 self.naik_1 = 0 self.naik_2 = 0 self.borodzik = 0 self.przytycki = 0 self.murasugi_fulfilling = set() self.naik_1_fulfilling = [] self.naik_2_fulfilling = [] def set_smith(self): symetric_from_seifert = self.seifert + self.seifert.transpose() assert symetric_from_seifert.determinant() != 0, \ "The determinant of A + A^T is zero." self.smith = symetric_from_seifert.smith_form() D, U, V = self.smith self.diagonal = D.diagonal() self.maximum_in_diagonal = max(self.diagonal) C = U.inverse() E_inverse = V self.C_tran_E_inv_D_inv = C.transpose() * E_inverse * D.inverse() self.matrix_C = C self.matrix_E_inverse = E_inverse def get_przytycki_tester(self, f_homfly_in): if self.pd_code is not None: try: return PrzytyckiTester(self.K, self.name, f_homfly_in) except ImportError as e: pass return None def get_C_tran_E_inv_D_inv(self): if self.smith is None: self.set_smith() return self.C_tran_E_inv_D_inv def get_maximum_in_diagonal(self): if self.smith is None: self.set_smith() return self.maximum_in_diagonal def set_delta_factors(self): # find all delta (alexander polynomial) factors lst_of_factors = [[f[0]] * f[1] for f in self.delta.factor()] # flattening a list lst_of_factors = [el for sublist in lst_of_factors for el in sublist] delta_candidates = set() for s in get_subsets(lst_of_factors): d = t^0 for el in s: d *= el delta_candidates.add(d) return delta_candidates def check_criteria_for_period(self, q): self.reset_results() self.przytycki = self.check_przytycki(q) if self.delta == 1: self.murasugi = 2 self.naik_1 = 2 self.naik_2 = 2 self.borodzik = 2 return 2 self.murasugi = self.check_murasugi(q) self.naik_1 = self.check_naik_1(q) self.naik_2 = self.check_naik_2(q) self.borodzik = self.check_borodzik(q) return self.borodzik * self.przytycki def check_murasugi(self, q): ''' Select these delta factors and natural number r such that: delta = delta_prime^q * (1 + t^1 + ... + t^(r-1))^(q-1) mod q where "delta_prime" is a delta factor. ''' quotient_delta = self.delta.change_ring(GF(q)) # Underlying polynomial of quotient_delta: quotient_delta = quotient_delta.polynomial_construction()[0] delta_degree = quotient_delta.degree() for candidate in self.delta_factors: quotient_candidate = candidate.change_ring(GF(q)) power_candidate = quotient_candidate^q power_candidate = power_candidate.polynomial_construction()[0] # (r - 1) - possible t-polynomial degree r = (delta_degree - power_candidate.degree()) / (q - 1) + 1 if r < 1 or not r.is_integer(): continue t_polynomial = get_t_polynomial(q, r) right_side = t_polynomial * power_candidate if quotient_delta != right_side and -quotient_delta != right_side: continue self.murasugi_fulfilling.add((candidate, r)) return int(bool(self.murasugi_fulfilling)) def check_naik_1_candidate(self, delta_prime, delta_evaluated, q): t_delta = delta_evaluated / delta_prime(-1) t_delta_dict = {f[0]: f[1] for f in factor(t_delta)} t_delta_factors = [f for f in t_delta_dict.keys() if f != 2 and gcd(q, f) == 1] for f in t_delta_factors: f_q = naik_number_dict.setdefault((f, q), get_naik_number(f, q)) if not (t_delta_dict[f] / (2 * f_q)).is_integer(): return None return t_delta_factors def check_naik_1(self, q): ''' For each delta' find a set P of prime numbers p such that: gcd(p, q) == 1, p != 2 and p| t_delta, t_delta = delta(-1)/delta'(-1). Check if all p factors of t_delta has multiplicity divisible by 2*[p|q]. If it holds for at least one delta' candidate, set naik_1 = True. ''' delta_evaluated = self.delta(-1) for delta_prime, _ in self.murasugi_fulfilling: t_delta_factors = self.check_naik_1_candidate(delta_prime, delta_evaluated, q) if t_delta_factors is not None: self.naik_1_fulfilling.append((delta_prime, t_delta_factors)) return int(bool(self.naik_1_fulfilling)) def check_naik_2_candidate(self, q, p_list): delta_prime_bases = [] maximum_in_diagonal = self.get_maximum_in_diagonal() for p in p_list: p_q = naik_number_dict[(p, q)] bases_for_p_torsion = [] factor_power = p # find all p^k torsion parts while (maximum_in_diagonal / factor_power).is_integer(): basis_for_p_k_part = [] for el in self.diagonal: to_be_append = el / factor_power is_int = (to_be_append / p).is_integer() if to_be_append.is_integer() and not is_int: basis_for_p_k_part.append(to_be_append) else: basis_for_p_k_part.append(0) len_non_zero = sum(x != 0 for x in basis_for_p_k_part) # check if dimension is multiple of 2 * naik_number if not (len_non_zero / (2 * p_q)).is_integer(): return None factor_power *= p bases_for_p_torsion.append(basis_for_p_k_part) delta_prime_bases.append((p, bases_for_p_torsion)) return delta_prime_bases def check_naik_2(self, q): ''' For each delta' consider a set P of primes p such that: gcd(p, q) == 1, p != 2, p| delta(-1)/delta'(-1) (self.naik_1_fulfilling) and p is not a factor of delta'(-1). Check if dimension of p^k torsion part is divisible by 2*[p|q] for all k and all p from P. If it holds for at least one delta' candidate, we set naik_2 to be True. In particular naik_2 is set to be -1 if the criterion passes, but only in cases where P is an empty set. ''' for delta_prime, p_list in self.naik_1_fulfilling: delta_prime_factors = set([d[0] for d in factor(delta_prime(-1))]) p_list = [p for p in p_list if p not in delta_prime_factors] if not p_list: self.naik_2 = -1 self.borodzik = -1 continue delta_prime_bases = self.check_naik_2_candidate(q, p_list) if delta_prime_bases is not None: self.naik_2_fulfilling.append((delta_prime, delta_prime_bases)) if self.naik_2_fulfilling: return 1 return self.naik_2 def check_borodzik(self, q): ''' Consider all delta' that meet criterion Naik 2. For all p from a set P (defined as in check_naik_2) and all k consider p^k torsion part. For each p^k torsion check if eta == epsilon_1 * epsilon_2 (see check_borodzik_candidate()). If it holds for at least one delta' candidate, set borodzik to be True. In particular borodzik is set to be -1 if the criterion passes, but only in cases where P is an empty set. ''' for delta_prime, delta_prime_bases in self.naik_2_fulfilling: borodzik_pass = True for p, bases_for_p in delta_prime_bases: # if len(bases_for_p) > 1: # print "HURA" # more than one p^k part - not found yet if not self.check_borodzik_candidate(q, p, bases_for_p): borodzik_pass = False break if borodzik_pass: return 1 return self.borodzik def check_borodzik_candidate(self, q, p, bases): ''' For each p^k torsion check if eta == epsilon_1 * epsilon_2. If determinant of corsesponding matrix P is square modulo p, then: episilon_1 = 1, else: episilon_1 = -1. If p == 3 mod(4) and a rank of p^k torsion part n == 2 mod(4), then: epsilon_2 = -1, else: epsilon_2 = 1. eta = naik_sign ^ d, where d = n / (2 * [p, q]). If p^([p, q]) % q == 1, then: naik_sign = 1, else: naik_sign = -1. ''' for k, p_k_basis in enumerate(bases): X = np.diagflat(p_k_basis) # columns that up to zero (element in diagonal is zero): zero_columns = np.nonzero(X.sum(axis=0) == 0) X = np.delete(X, zero_columns, axis=1) n = X.shape[1] X = matrix(X) P = p^(k + 1) * X.transpose() * self.get_C_tran_E_inv_D_inv() * X P_det = P.determinant() if P_det % p == 0: raise ValueError("P determinant is 0 modulo p.") if p % 4 == 3 and n % 4 == 2: # epsilon_1 epsilon = -1 else: epsilon = 1 if not mod(P_det, p).is_square(): epsilon *= -1 # epsilon = epsilon_1 * epsilon_2 p_q = naik_number_dict[(p, q)] d = n / (2 * p_q) # sign(p_q) - whether rest is -1 or 1 if sign(p_q)^d != epsilon: return False return True def check_przytycki(self, q): if self.przytycki_tester is not None and q in prime_numbers: try: return self.przytycki_tester.check_congruence(q) except (AttributeError, OverflowError) as e: pass return -1 def save_results(self, f_out): for result in self.results: line_to_write = self.name + "," + ",".join(map(str, result)) f_out.writelines(line_to_write + "\n") def print_results(self): print "\n" + "#" * 15 + " " + str(self.name) + " " + "#" * 15 for result in self.results: q = result[0] print self.print_przytycki_result(q, result[5]) if result[1] == 2: print "Alexander polynomial is 1" continue if not result[1]: print "\t\tMurasugi: fail, q = " + str(q) continue print "Murasugi: pass, q = " + str(q) if not result[2]: print "\t\tNaik 1: fail, q = " + str(q) continue print "Naik 1: pass, q = " + str(q) if not result[3]: print "\t\tNaik 2: fail, q = " + str(q) continue if result[3] == -1: print "Naik 2: not applicable, q = " + str(q) continue print "Naik 2: pass, q = " + str(q) if not result[4]: print ("\t\tBorodzik: fail, q = " + str(q)) continue if result[4] == -1: print ("Borodzik: not applicable, q = " + str(q)) continue print ("Borodzik: pass, q = " + str(q)) def print_przytycki_result(self, q, result): if not result: print "\t\tPrzytycki: fail, q = " + str(q) elif result == -1: print "Przytycki: not applicable, q = " + str(q) else: print "Przytycki: pass, q = " + str(q) class PrzytyckiTester(object): def __init__(self, K, name, f_homfly_in=None): homflypt = self.get_homflypt_polynomial(K, name, f_homfly_in) homfly_difference = homflypt(a, -z) - homflypt(a^-1, -z) self.homfly_difference = z * homfly_difference self.homflypt_polynomial = homflypt def get_homflypt_polynomial(self, K, name, f_homfly_in=None): if f_homfly_in is not None: try: current_name, homflypt = f_homfly_in.readline().split(',') while current_name != name: current_name, homflypt = f_homfly_in.readline().split(',') homflypt = sage_eval(homflypt, locals={'a': a, 'z': z}) return homflypt except (AttributeError, ValueError) as e: pass return K.homfly_polynomial('a', 'z', 'lm') def check_congruence(self, q): for i in range(q + 1): z_coefficient = self.homfly_difference.coefficient(z^(i+1)) ideal = (a + a^-1)^(q - i) # for i == q will be 1 coefficient_modulo_ideal = z_coefficient.quo_rem(ideal)[1] coefficient_modulo_q = coefficient_modulo_ideal.change_ring(GF(q)) if coefficient_modulo_q != 0: return 0 return 1 def check_criteria(name, pd_code, f_homfly_in=None): tester = PeriodicityTester(name, pd_code, None, f_homfly_in) for i, q in enumerate(settings.periods): tester.check_criteria_for_period(q) tester.results.append([q, tester.murasugi, tester.naik_1, tester.naik_2, tester.borodzik, tester.przytycki]) if settings.print_results: tester.print_results() return tester def get_naik_number(p, q): ''' Calculate the smallest integer i such that p^i == +/-1 mod q. Signum of i shows whether rest is -1 or 1 ''' if gcd(q, p) > 1: return 0 p_power = p for i in xrange(1, sys.maxint): pq = p_power % q if pq == 1: return i if pq == q - 1: return -i p_power *= p def get_t_polynomial(q, r): # for check_murasugi(), r coresponds to l in paper t_polynomial = sum([t^i for i in range(r)]) t_polynomial = t_polynomial.change_ring(GF(q)) t_polynomial ^= (q - 1) return t_polynomial def get_subsets(myset): return reduce(lambda z, x: z + [y + [x] for y in z], myset, [[]]) def parse_pd_code(pd_code_from_file): set = '0987654321[],' pd_code = ''.join([c for c in pd_code_from_file if c in set]) return eval(pd_code) def parse_knot_name(name): data = name[5: -2].split(',') name = data[0].strip() + data[1].strip().lower()[:1] + data[2].strip() return name def check_11_to_15(f_out, f_homfly_out=None, f_homfly_in=None): with open(settings.f_pd_knot_11_15, 'r') as f: line = f.readline() while line: name = parse_knot_name(line) pd_code = parse_pd_code(f.readline()) line = f.readline() tester = check_criteria(name, pd_code, f_homfly_in) if tester is None: continue tester.save_results(f_out) def check_up_to_10(f_out, f_homfly_in=None): with open(settings.f_knot_up_to_10, 'r') as f: line = f.readline() while line: line = line.split(" = ") name = str(line[0])[5:] pd_code = parse_pd_code(str(line[1])) line = f.readline() tester = check_criteria(name, pd_code, f_homfly_in) if tester is None: continue tester.save_results(f_out) def test_all(f_out, f_homfly_in=None): check_up_to_10(f_out, f_homfly_in) if f_out is not None: f_out.flush() check_11_to_15(f_out, f_homfly_in) if __name__ == '__main__': settings = MySettings() S. = LaurentPolynomialRing(ZZ) R. = LaurentPolynomialRing(ZZ) prime_numbers = Primes() naik_number_dict = {} if settings.input_file_with_homflypt: with open(settings.f_results_out, 'w') as f_out,\ open(settings.f_homfly_lm_in, 'r') as f_homfly_in: test_all(f_out, f_homfly_in) else: with open(settings.f_results_out, 'w') as f_out: test_all(f_out)