periodicity_of_links/periodicity.sage
2019-01-11 13:33:06 +01:00

547 lines
19 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2018: Maria Marchwicka, Wojciech Politarczyk.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>
import sys
import os
import numpy as np
import warnings
class MySettings(object):
def __init__(self):
self.f_pd_knot_11_15 = os.path.join(os.getcwd(), "knots_11_15.txt")
self.f_knot_up_to_10 = os.path.join(os.getcwd(), "knots_3_10.txt")
self.f_homfly_lm_in = os.path.join(os.getcwd(), "homflypt.input")
self.f_results_out = os.path.join(os.getcwd(), "results.out")
self.periods = [3, 5, 7, 9, 11]
self.set_to_check = self.get_set()
# check only knots from defined set
self.only_chosen = True
self.only_chosen = False
self.print_results = False
self.print_results = True
# HOMFLYPT polynomials from file
self.input_file_with_homflypt = True
# self.input_file_with_homflypt = False
if self.input_file_with_homflypt:
if not os.path.isfile(self.f_homfly_lm_in):
warnings.warn("No input file with HOMFLYPT polynomials")
self.input_file_with_homflypt = False
def get_set(self):
set_to_check = set()
return set_to_check
class PeriodicityTester(object):
def __init__(self, name, pd_code, A=None, f_homfly_in=None):
self.results = []
'''
To results for each period q a list in following form will be appended:
[q, murasugi, naik_1, naik_2, borodzik, przytycki]
Crierion is set to be:
-1 if it is not applicable (details in check_naik_2, check_przytycki,
1 if criterion doesn't exclude periodic,
0 if criterion excludes periodicity.
murasugi, naik_1, naik_2 or borodzik is also set to be:
2 if alexander_polynomial == 1.
0 if previous criterion in the list is 0.
'''
self.name = name
self.pd_code = pd_code
self.smith = None
self.reset_results()
if pd_code is not None:
self.K = Link(pd_code)
self.seifert = self.K.seifert_matrix()
else:
self.seifert = A
# delta := Alexander polynomial
delta = (self.seifert.transpose() - t * self.seifert).determinant()
self.delta = delta.shift(-delta.exponents()[0])
self.delta_factors = self.set_delta_factors()
self.przytycki_tester = self.get_przytycki_tester(f_homfly_in)
def reset_results(self):
self.murasugi = 0
self.naik_1 = 0
self.naik_2 = 0
self.borodzik = 0
self.przytycki = 0
self.murasugi_fulfilling = set()
self.naik_1_fulfilling = []
self.naik_2_fulfilling = []
def set_smith(self):
symetric_from_seifert = self.seifert + self.seifert.transpose()
assert symetric_from_seifert.determinant() != 0, \
"The determinant of A + A^T is zero."
self.smith = symetric_from_seifert.smith_form()
D, U, V = self.smith
self.diagonal = D.diagonal()
self.maximum_in_diagonal = max(self.diagonal)
C = U.inverse()
E_inverse = V
self.C_tran_E_inv_D_inv = C.transpose() * E_inverse * D.inverse()
self.matrix_C = C
self.matrix_E_inverse = E_inverse
def get_przytycki_tester(self, f_homfly_in):
if self.pd_code is not None:
try:
return PrzytyckiTester(self.K, self.name, f_homfly_in)
except ImportError as e:
pass
return None
def get_C_tran_E_inv_D_inv(self):
if self.smith is None:
self.set_smith()
return self.C_tran_E_inv_D_inv
def get_maximum_in_diagonal(self):
if self.smith is None:
self.set_smith()
return self.maximum_in_diagonal
def set_delta_factors(self):
# find all delta (alexander polynomial) factors
lst_of_factors = [[f[0]] * f[1] for f in self.delta.factor()]
# flattening a list
lst_of_factors = [el for sublist in lst_of_factors for el in sublist]
delta_candidates = set()
for s in get_subsets(lst_of_factors):
d = t^0
for el in s:
d *= el
delta_candidates.add(d)
return delta_candidates
def check_criteria_for_period(self, q):
self.reset_results()
self.przytycki = self.check_przytycki(q)
if self.delta == 1:
self.murasugi = 2
self.naik_1 = 2
self.naik_2 = 2
self.borodzik = 2
return 2
self.murasugi = self.check_murasugi(q)
self.naik_1 = self.check_naik_1(q)
self.naik_2 = self.check_naik_2(q)
self.borodzik = self.check_borodzik(q)
return self.borodzik * self.przytycki
def check_murasugi(self, q):
'''
Select these delta factors and natural number r such that:
delta = delta_prime^q * (1 + t^1 + ... + t^(r-1))^(q-1) mod q
where "delta_prime" is a delta factor.
'''
quotient_delta = self.delta.change_ring(GF(q))
# Underlying polynomial of quotient_delta:
quotient_delta = quotient_delta.polynomial_construction()[0]
delta_degree = quotient_delta.degree()
for candidate in self.delta_factors:
quotient_candidate = candidate.change_ring(GF(q))
power_candidate = quotient_candidate^q
power_candidate = power_candidate.polynomial_construction()[0]
# (r - 1) - possible t-polynomial degree
r = (delta_degree - power_candidate.degree()) / (q - 1) + 1
if r < 1 or not r.is_integer():
continue
t_polynomial = get_t_polynomial(q, r)
right_side = t_polynomial * power_candidate
if quotient_delta != right_side and -quotient_delta != right_side:
continue
self.murasugi_fulfilling.add((candidate, r))
return int(bool(self.murasugi_fulfilling))
def check_naik_1_candidate(self, delta_prime, delta_evaluated, q):
t_delta = delta_evaluated / delta_prime(-1)
t_delta_dict = {f[0]: f[1] for f in factor(t_delta)}
t_delta_factors = [f for f in t_delta_dict.keys()
if f != 2 and gcd(q, f) == 1]
for f in t_delta_factors:
f_q = naik_number_dict.setdefault((f, q), get_naik_number(f, q))
if not (t_delta_dict[f] / (2 * f_q)).is_integer():
return None
return t_delta_factors
def check_naik_1(self, q):
'''
For each delta' find a set P of prime numbers p such that:
gcd(p, q) == 1, p != 2 and p| t_delta, t_delta = delta(-1)/delta'(-1).
Check if all p factors of t_delta has multiplicity divisible by 2*[p|q].
If it holds for at least one delta' candidate, set naik_1 = True.
'''
delta_evaluated = self.delta(-1)
for delta_prime, _ in self.murasugi_fulfilling:
t_delta_factors = self.check_naik_1_candidate(delta_prime,
delta_evaluated, q)
if t_delta_factors is not None:
self.naik_1_fulfilling.append((delta_prime, t_delta_factors))
return int(bool(self.naik_1_fulfilling))
def check_naik_2_candidate(self, q, p_list):
delta_prime_bases = []
maximum_in_diagonal = self.get_maximum_in_diagonal()
for p in p_list:
p_q = naik_number_dict[(p, q)]
bases_for_p_torsion = []
factor_power = p
# find all p^k torsion parts
while (maximum_in_diagonal / factor_power).is_integer():
basis_for_p_k_part = []
for el in self.diagonal:
to_be_append = el / factor_power
is_int = (to_be_append / p).is_integer()
if to_be_append.is_integer() and not is_int:
basis_for_p_k_part.append(to_be_append)
else:
basis_for_p_k_part.append(0)
len_non_zero = sum(x != 0 for x in basis_for_p_k_part)
# check if dimension is multiple of 2 * naik_number
if not (len_non_zero / (2 * p_q)).is_integer():
return None
factor_power *= p
bases_for_p_torsion.append(basis_for_p_k_part)
delta_prime_bases.append((p, bases_for_p_torsion))
return delta_prime_bases
def check_naik_2(self, q):
'''
For each delta' consider a set P of primes p such that: gcd(p, q) == 1,
p != 2, p| delta(-1)/delta'(-1) (self.naik_1_fulfilling) and p is not
a factor of delta'(-1). Check if dimension of p^k torsion part
is divisible by 2*[p|q] for all k and all p from P.
If it holds for at least one delta' candidate, we set naik_2 to be True.
In particular naik_2 is set to be -1 if the criterion passes,
but only in cases where P is an empty set.
'''
for delta_prime, p_list in self.naik_1_fulfilling:
delta_prime_factors = set([d[0] for d in factor(delta_prime(-1))])
p_list = [p for p in p_list if p not in delta_prime_factors]
if not p_list:
self.naik_2 = -1
self.borodzik = -1
continue
delta_prime_bases = self.check_naik_2_candidate(q, p_list)
if delta_prime_bases is not None:
self.naik_2_fulfilling.append((delta_prime,
delta_prime_bases))
if self.naik_2_fulfilling:
return 1
return self.naik_2
def check_borodzik(self, q):
'''
Consider all delta' that meet criterion Naik 2.
For all p from a set P (defined as in check_naik_2)
and all k consider p^k torsion part.
For each p^k torsion check if eta == epsilon_1 * epsilon_2
(see check_borodzik_candidate()).
If it holds for at least one delta' candidate, set borodzik to be True.
In particular borodzik is set to be -1 if the criterion passes,
but only in cases where P is an empty set.
'''
for delta_prime, delta_prime_bases in self.naik_2_fulfilling:
borodzik_pass = True
for p, bases_for_p in delta_prime_bases:
# if len(bases_for_p) > 1:
# print "HURA" # more than one p^k part - not found yet
if not self.check_borodzik_candidate(q, p, bases_for_p):
borodzik_pass = False
break
if borodzik_pass:
return 1
return self.borodzik
def check_borodzik_candidate(self, q, p, bases):
'''
For each p^k torsion check if eta == epsilon_1 * epsilon_2.
If determinant of corsesponding matrix P is square modulo p, then:
episilon_1 = 1, else: episilon_1 = -1.
If p == 3 mod(4) and a rank of p^k torsion part n == 2 mod(4), then:
epsilon_2 = -1, else: epsilon_2 = 1.
eta = naik_sign ^ d, where d = n / (2 * [p, q]).
If p^([p, q]) % q == 1, then: naik_sign = 1, else: naik_sign = -1.
'''
for k, p_k_basis in enumerate(bases):
X = np.diagflat(p_k_basis)
# columns that up to zero (element in diagonal is zero):
zero_columns = np.nonzero(X.sum(axis=0) == 0)
X = np.delete(X, zero_columns, axis=1)
n = X.shape[1]
X = matrix(X)
P = p^(k + 1) * X.transpose() * self.get_C_tran_E_inv_D_inv() * X
P_det = P.determinant()
if P_det % p == 0:
raise ValueError("P determinant is 0 modulo p.")
if p % 4 == 3 and n % 4 == 2: # epsilon_1
epsilon = -1
else:
epsilon = 1
if not mod(P_det, p).is_square():
epsilon *= -1 # epsilon = epsilon_1 * epsilon_2
p_q = naik_number_dict[(p, q)]
d = n / (2 * p_q)
# sign(p_q) - whether rest is -1 or 1
if sign(p_q)^d != epsilon:
return False
return True
def check_przytycki(self, q):
if self.przytycki_tester is not None and q in prime_numbers:
try:
return self.przytycki_tester.check_congruence(q)
except (AttributeError, OverflowError) as e:
pass
return -1
def save_results(self, f_out):
for result in self.results:
line_to_write = self.name + "," + ",".join(map(str, result))
f_out.writelines(line_to_write + "\n")
def print_results(self):
print "\n" + "#" * 15 + " " + str(self.name) + " " + "#" * 15
for result in self.results:
q = result[0]
print
self.print_przytycki_result(q, result[5])
if result[1] == 2:
print "Alexander polynomial is 1"
continue
if not result[1]:
print "\t\tMurasugi: fail, q = " + str(q)
continue
print "Murasugi: pass, q = " + str(q)
if not result[2]:
print "\t\tNaik 1: fail, q = " + str(q)
continue
print "Naik 1: pass, q = " + str(q)
if not result[3]:
print "\t\tNaik 2: fail, q = " + str(q)
continue
if result[3] == -1:
print "Naik 2: not applicable, q = " + str(q)
continue
print "Naik 2: pass, q = " + str(q)
if not result[4]:
print ("\t\tBorodzik: fail, q = " + str(q))
continue
if result[4] == -1:
print ("Borodzik: not applicable, q = " + str(q))
continue
print ("Borodzik: pass, q = " + str(q))
def print_przytycki_result(self, q, result):
if not result:
print "\t\tPrzytycki: fail, q = " + str(q)
elif result == -1:
print "Przytycki: not applicable, q = " + str(q)
else:
print "Przytycki: pass, q = " + str(q)
class PrzytyckiTester(object):
def __init__(self, K, name, f_homfly_in=None):
homflypt = self.get_homflypt_polynomial(K, name, f_homfly_in)
homfly_difference = homflypt(a, -z) - homflypt(a^-1, -z)
self.homfly_difference = z * homfly_difference
self.homflypt_polynomial = homflypt
def get_homflypt_polynomial(self, K, name, f_homfly_in=None):
if f_homfly_in is not None:
try:
current_name, homflypt = f_homfly_in.readline().split(',')
while current_name != name:
current_name, homflypt = f_homfly_in.readline().split(',')
homflypt = sage_eval(homflypt, locals={'a': a, 'z': z})
return homflypt
except (AttributeError, ValueError) as e:
pass
return K.homfly_polynomial('a', 'z', 'lm')
def check_congruence(self, q):
for i in range(q + 1):
z_coefficient = self.homfly_difference.coefficient(z^(i+1))
ideal = (a + a^-1)^(q - i) # for i == q will be 1
coefficient_modulo_ideal = z_coefficient.quo_rem(ideal)[1]
coefficient_modulo_q = coefficient_modulo_ideal.change_ring(GF(q))
if coefficient_modulo_q != 0:
return 0
return 1
def check_criteria(name, pd_code, f_homfly_in=None):
tester = PeriodicityTester(name, pd_code, None, f_homfly_in)
for i, q in enumerate(settings.periods):
tester.check_criteria_for_period(q)
tester.results.append([q, tester.murasugi, tester.naik_1,
tester.naik_2, tester.borodzik,
tester.przytycki])
if settings.print_results:
tester.print_results()
return tester
def get_naik_number(p, q):
'''
Calculate the smallest integer i such that p^i == +/-1 mod q.
Signum of i shows whether rest is -1 or 1
'''
if gcd(q, p) > 1:
return 0
p_power = p
for i in xrange(1, sys.maxint):
pq = p_power % q
if pq == 1:
return i
if pq == q - 1:
return -i
p_power *= p
def get_t_polynomial(q, r): # for check_murasugi(), r coresponds to l in paper
t_polynomial = sum([t^i for i in range(r)])
t_polynomial = t_polynomial.change_ring(GF(q))
t_polynomial ^= (q - 1)
return t_polynomial
def get_subsets(myset):
return reduce(lambda z, x: z + [y + [x] for y in z], myset, [[]])
def parse_pd_code(pd_code_from_file):
set = '0987654321[],'
pd_code = ''.join([c for c in pd_code_from_file if c in set])
return eval(pd_code)
def parse_knot_name(name):
data = name[5: -2].split(',')
name = data[0].strip() + data[1].strip().lower()[:1] + data[2].strip()
return name
def check_11_to_15(f_out, f_homfly_out=None, f_homfly_in=None):
with open(settings.f_pd_knot_11_15, 'r') as f:
line = f.readline()
while line:
name = parse_knot_name(line)
pd_code = parse_pd_code(f.readline())
line = f.readline()
tester = check_criteria(name, pd_code, f_homfly_in)
if tester is None:
continue
tester.save_results(f_out)
def check_up_to_10(f_out, f_homfly_in=None):
with open(settings.f_knot_up_to_10, 'r') as f:
line = f.readline()
while line:
line = line.split(" = ")
name = str(line[0])[5:]
pd_code = parse_pd_code(str(line[1]))
line = f.readline()
tester = check_criteria(name, pd_code, f_homfly_in)
if tester is None:
continue
tester.save_results(f_out)
def test_all(f_out, f_homfly_in=None):
check_up_to_10(f_out, f_homfly_in)
if f_out is not None:
f_out.flush()
check_11_to_15(f_out, f_homfly_in)
if __name__ == '__main__':
settings = MySettings()
S.<a, z> = LaurentPolynomialRing(ZZ)
R.<t> = LaurentPolynomialRing(ZZ)
prime_numbers = Primes()
naik_number_dict = {}
if settings.input_file_with_homflypt:
with open(settings.f_results_out, 'w') as f_out,\
open(settings.f_homfly_lm_in, 'r') as f_homfly_in:
test_all(f_out, f_homfly_in)
else:
with open(settings.f_results_out, 'w') as f_out:
test_all(f_out)