549 lines
19 KiB
Python
549 lines
19 KiB
Python
#!/usr/bin/python
|
|
|
|
# Copyright (c) 2018: Maria Marchwicka, Wojciech Politarczyk.
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>
|
|
|
|
|
|
import sys
|
|
import os
|
|
import numpy as np
|
|
import warnings
|
|
|
|
|
|
class MySettings(object):
|
|
|
|
def __init__(self):
|
|
|
|
self.f_pd_knot_11_15 = os.path.join(os.getcwd(), "knots_11_15.txt")
|
|
self.f_knot_up_to_10 = os.path.join(os.getcwd(), "knots_3_10.txt")
|
|
|
|
self.f_homfly_lm_in = os.path.join(os.getcwd(), "homflypt.input")
|
|
|
|
self.f_results_out = os.path.join(os.getcwd(), "results.out")
|
|
|
|
self.periods = [3, 5, 7, 9, 11]
|
|
|
|
|
|
self.print_results = False
|
|
self.print_results = True
|
|
|
|
# HOMFLYPT polynomials from file
|
|
self.input_file_with_homflypt = True
|
|
# self.input_file_with_homflypt = False
|
|
|
|
|
|
if self.input_file_with_homflypt:
|
|
if not os.path.isfile(self.f_homfly_lm_in):
|
|
warnings.warn("No input file with HOMFLYPT polynomials")
|
|
self.input_file_with_homflypt = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PeriodicityTester(object):
|
|
|
|
def __init__(self, name, pd_code, A=None, f_homfly_in=None):
|
|
|
|
'''
|
|
To results for each period q a list in following form will be appended:
|
|
[q, murasugi, naik_1, naik_2, borodzik, przytycki]
|
|
Crierion is set to be:
|
|
-1 if it is not applicable (details in check_naik_2, check_przytycki,
|
|
1 if criterion doesn't exclude periodic,
|
|
0 if criterion excludes periodicity.
|
|
murasugi, naik_1, naik_2 or borodzik is also set to be:
|
|
2 if alexander_polynomial == 1.
|
|
0 if previous criterion in the list is 0.
|
|
'''
|
|
|
|
self.results = []
|
|
self.name = name
|
|
self.pd_code = pd_code
|
|
|
|
self.smith = None
|
|
self.reset_results()
|
|
|
|
if pd_code is not None:
|
|
self.K = Link(pd_code)
|
|
self.seifert = self.K.seifert_matrix()
|
|
else:
|
|
self.seifert = A
|
|
# delta is the normalized Alexander polynomial
|
|
delta = (self.seifert.transpose() - t * self.seifert).determinant()
|
|
self.delta = delta.shift(-delta.exponents()[0])
|
|
self.delta_factors = self.set_delta_factors()
|
|
self.przytycki_tester = self.get_przytycki_tester(f_homfly_in)
|
|
|
|
def reset_results(self):
|
|
self.murasugi = 0
|
|
self.naik_1 = 0
|
|
self.naik_2 = 0
|
|
self.borodzik = 0
|
|
self.przytycki = 0
|
|
self.murasugi_fulfilling = set()
|
|
self.naik_1_fulfilling = []
|
|
self.naik_2_fulfilling = []
|
|
|
|
def set_smith(self):
|
|
symetric_from_seifert = self.seifert + self.seifert.transpose()
|
|
assert symetric_from_seifert.determinant() != 0, \
|
|
"The determinant of A + A^T is zero."
|
|
self.smith = symetric_from_seifert.smith_form()
|
|
D, U, V = self.smith
|
|
self.diagonal = D.diagonal()
|
|
self.maximum_in_diagonal = max(self.diagonal)
|
|
C = U.inverse()
|
|
E_inverse = V
|
|
self.C_tran_E_inv_D_inv = C.transpose() * E_inverse * D.inverse()
|
|
self.matrix_C = C
|
|
self.matrix_E_inverse = E_inverse
|
|
|
|
def get_przytycki_tester(self, f_homfly_in):
|
|
if self.pd_code is not None:
|
|
try:
|
|
return PrzytyckiTester(self.K, self.name, f_homfly_in)
|
|
except ImportError as e:
|
|
pass
|
|
return None
|
|
|
|
def get_C_tran_E_inv_D_inv(self):
|
|
if self.smith is None:
|
|
self.set_smith()
|
|
return self.C_tran_E_inv_D_inv
|
|
|
|
def get_maximum_in_diagonal(self):
|
|
if self.smith is None:
|
|
self.set_smith()
|
|
return self.maximum_in_diagonal
|
|
|
|
def set_delta_factors(self):
|
|
# find all delta (alexander polynomial) factors
|
|
if self.delta == 1:
|
|
return [1]
|
|
lst_of_factors = [[f[0]] * f[1] for f in self.delta.factor()]
|
|
# flattening a list
|
|
lst_of_factors = [el for sublist in lst_of_factors for el in sublist]
|
|
delta_candidates = set()
|
|
for s in get_subsets(lst_of_factors):
|
|
d = t^0
|
|
for el in s:
|
|
d *= el
|
|
delta_candidates.add(d)
|
|
return delta_candidates
|
|
|
|
def check_criteria_for_period(self, q):
|
|
|
|
self.reset_results()
|
|
self.przytycki = self.check_przytycki(q)
|
|
|
|
if self.delta == 1:
|
|
self.murasugi = 2
|
|
self.naik_1 = 2
|
|
self.naik_2 = 2
|
|
self.borodzik = 2
|
|
return 2
|
|
|
|
self.murasugi = self.check_murasugi(q)
|
|
self.naik_1 = self.check_naik_1(q)
|
|
self.naik_2 = self.check_naik_2(q)
|
|
self.borodzik = self.check_borodzik(q)
|
|
|
|
return self.borodzik * self.przytycki
|
|
|
|
def check_murasugi(self, q):
|
|
'''
|
|
Select these delta factors and natural number r such that:
|
|
delta = delta_prime^q * (1 + t^1 + ... + t^(r-1))^(q-1) mod q
|
|
where "delta_prime" is a delta factor.
|
|
'''
|
|
quotient_delta = self.delta.change_ring(GF(q))
|
|
# Underlying polynomial of quotient_delta:
|
|
quotient_delta = quotient_delta.polynomial_construction()[0]
|
|
delta_degree = quotient_delta.degree()
|
|
|
|
for candidate in self.delta_factors:
|
|
quotient_candidate = candidate.change_ring(GF(q))
|
|
power_candidate = quotient_candidate^q
|
|
power_candidate = power_candidate.polynomial_construction()[0]
|
|
# (r - 1) - possible t-polynomial degree
|
|
r = (delta_degree - power_candidate.degree()) / (q - 1) + 1
|
|
if r < 1 or not r.is_integer():
|
|
continue
|
|
t_polynomial = get_t_polynomial(q, r)
|
|
right_side = t_polynomial * power_candidate
|
|
if quotient_delta != right_side and -quotient_delta != right_side:
|
|
continue
|
|
self.murasugi_fulfilling.add((candidate, r))
|
|
|
|
return int(bool(self.murasugi_fulfilling))
|
|
|
|
def check_naik_1_candidate(self, delta_prime, delta_evaluated, q):
|
|
|
|
t_delta = delta_evaluated / delta_prime(-1)
|
|
t_delta_dict = {f[0]: f[1] for f in factor(t_delta)}
|
|
t_delta_factors = [f for f in t_delta_dict.keys()
|
|
if f != 2 and gcd(q, f) == 1]
|
|
for f in t_delta_factors:
|
|
q_f = naik_number_dict.setdefault((q, f), get_naik_number(q, f))
|
|
if not (t_delta_dict[f] / (2 * q_f)).is_integer():
|
|
return None
|
|
return t_delta_factors
|
|
|
|
def check_naik_1(self, q):
|
|
'''
|
|
For each delta' find a set P of prime numbers p such that:
|
|
gcd(p, q) == 1, p != 2 and p| t_delta, t_delta = delta(-1)/delta'(-1).
|
|
Check if all p factors of t_delta has multiplicity divisible by 2*[q|p].
|
|
If it holds for at least one delta' candidate, set naik_1 = True.
|
|
'''
|
|
delta_evaluated = self.delta(-1)
|
|
|
|
for delta_prime, _ in self.murasugi_fulfilling:
|
|
t_delta_factors = self.check_naik_1_candidate(delta_prime,
|
|
delta_evaluated, q)
|
|
if t_delta_factors is not None:
|
|
self.naik_1_fulfilling.append((delta_prime, t_delta_factors))
|
|
|
|
return int(bool(self.naik_1_fulfilling))
|
|
|
|
def check_naik_2_candidate(self, q, p_list):
|
|
delta_prime_bases = []
|
|
maximum_in_diagonal = self.get_maximum_in_diagonal()
|
|
for p in p_list:
|
|
q_p = naik_number_dict[(q, p)]
|
|
bases_for_p_torsion = []
|
|
factor_power = p
|
|
# find all p^k torsion parts
|
|
while (maximum_in_diagonal / factor_power).is_integer():
|
|
basis_for_p_k_part = []
|
|
for el in self.diagonal:
|
|
to_be_append = el / factor_power
|
|
is_int = (to_be_append / p).is_integer()
|
|
if to_be_append.is_integer() and not is_int:
|
|
basis_for_p_k_part.append(to_be_append)
|
|
else:
|
|
basis_for_p_k_part.append(0)
|
|
len_non_zero = sum(x != 0 for x in basis_for_p_k_part)
|
|
# check if dimension is multiple of 2 * naik_number
|
|
if not (len_non_zero / (2 * q_p)).is_integer():
|
|
return None
|
|
factor_power *= p
|
|
bases_for_p_torsion.append(basis_for_p_k_part)
|
|
delta_prime_bases.append((p, bases_for_p_torsion))
|
|
return delta_prime_bases
|
|
|
|
def check_naik_2(self, q):
|
|
'''
|
|
For each delta' consider a set P of primes p such that: gcd(p, q) == 1,
|
|
p != 2, p| delta(-1)/delta'(-1) (self.naik_1_fulfilling) and p is not
|
|
a factor of delta'(-1). Check if dimension of p^k torsion part
|
|
is divisible by 2*[p|q] for all k and all p from P.
|
|
If it holds for at least one delta' candidate, we set naik_2 to be True.
|
|
In particular naik_2 is set to be -1 if the criterion passes,
|
|
but only in cases where P is an empty set.
|
|
'''
|
|
# Proposition 2.8.
|
|
for delta_prime, p_list in self.naik_1_fulfilling:
|
|
delta_prime_factors = set([d[0] for d in factor(delta_prime(-1))])
|
|
p_list = [p for p in p_list if p not in delta_prime_factors]
|
|
|
|
if not p_list:
|
|
self.naik_2 = -1
|
|
self.borodzik = -1
|
|
continue
|
|
|
|
delta_prime_bases = self.check_naik_2_candidate(q, p_list)
|
|
if delta_prime_bases is not None:
|
|
self.naik_2_fulfilling.append((delta_prime,
|
|
delta_prime_bases))
|
|
if self.naik_2_fulfilling:
|
|
return 1
|
|
return self.naik_2
|
|
|
|
def check_borodzik(self, q):
|
|
'''
|
|
Consider all delta' that meet criterion Naik 2.
|
|
For all p from a set P (defined as in check_naik_2)
|
|
and all k consider p^k torsion part.
|
|
For each p^k torsion check if eta == epsilon_1 * epsilon_2
|
|
(see check_borodzik_candidate()).
|
|
If it holds for at least one delta' candidate, set borodzik to be True.
|
|
In particular borodzik is set to be -1 if the criterion passes,
|
|
but only in cases where P is an empty set.
|
|
'''
|
|
|
|
for delta_prime, delta_prime_bases in self.naik_2_fulfilling:
|
|
borodzik_pass = True
|
|
for p, bases_for_p in delta_prime_bases:
|
|
# if len(bases_for_p) > 1:
|
|
# print("HURA") # more than one p^k part - not found yet
|
|
if not self.check_borodzik_candidate(q, p, bases_for_p):
|
|
borodzik_pass = False
|
|
break
|
|
if borodzik_pass:
|
|
return 1
|
|
return self.borodzik
|
|
|
|
def check_borodzik_candidate(self, q, p, bases):
|
|
'''
|
|
For each p^k torsion check if eta == epsilon_1 * epsilon_2.
|
|
If determinant of corsesponding matrix P is square modulo p, then:
|
|
episilon_1 = 1, else: episilon_1 = -1.
|
|
If p == 3 mod(4) and a rank of p^k torsion part n == 2 mod(4), then:
|
|
epsilon_2 = -1, else: epsilon_2 = 1.
|
|
eta = naik_sign ^ d, where d = n / (2 * [q, p]).
|
|
If p^([q, p]) % q == 1, then: naik_sign = 1, else: naik_sign = -1.
|
|
'''
|
|
for k, p_k_basis in enumerate(bases):
|
|
X = np.diagflat(p_k_basis)
|
|
# columns that up to zero (element in diagonal is zero):
|
|
zero_columns = np.nonzero(X.sum(axis=0) == 0)
|
|
X = np.delete(X, zero_columns, axis=1)
|
|
n = X.shape[1]
|
|
X = matrix(X)
|
|
P = p^(k + 1) * X.transpose() * self.get_C_tran_E_inv_D_inv() * X
|
|
P_det = P.determinant()
|
|
if P_det % p == 0:
|
|
raise ValueError("P determinant is 0 modulo p.")
|
|
|
|
if p % 4 == 3 and n % 4 == 2: # epsilon_1
|
|
epsilon = -1
|
|
else:
|
|
epsilon = 1
|
|
|
|
if not mod(P_det, p).is_square():
|
|
epsilon *= -1 # epsilon = epsilon_1 * epsilon_2
|
|
|
|
q_p = naik_number_dict[(q, p)]
|
|
d = n / (2 * q_p)
|
|
# sign(q_p) - whether rest is -1 or 1
|
|
if sign(q_p)^d != epsilon:
|
|
return False
|
|
return True
|
|
|
|
def check_przytycki(self, q):
|
|
if self.przytycki_tester is not None and q in prime_numbers:
|
|
try:
|
|
return self.przytycki_tester.check_congruence(q)
|
|
except (AttributeError, OverflowError) as e:
|
|
pass
|
|
return -1
|
|
|
|
def save_results(self, f_out):
|
|
|
|
for result in self.results:
|
|
line_to_write = self.name + "," + ",".join(map(str, result))
|
|
f_out.writelines(line_to_write + "\n")
|
|
|
|
def print_results(self):
|
|
|
|
print("\n" + "#" * 15 + " " + str(self.name) + " " + "#" * 15)
|
|
|
|
for result in self.results:
|
|
|
|
q = result[0]
|
|
print()
|
|
self.print_przytycki_result(q, result[5])
|
|
|
|
if result[1] == 2:
|
|
print("Alexander polynomial is 1")
|
|
continue
|
|
|
|
if not result[1]:
|
|
print("\t\tMurasugi: fail, q = " + str(q))
|
|
continue
|
|
|
|
print("Murasugi: pass, q = " + str(q))
|
|
|
|
if not result[2]:
|
|
print("\t\tNaik 1: fail, q = " + str(q))
|
|
continue
|
|
|
|
print("Naik 1: pass, q = " + str(q))
|
|
|
|
if not result[3]:
|
|
print("\t\tNaik 2: fail, q = " + str(q))
|
|
continue
|
|
|
|
if result[3] == -1:
|
|
print("Naik 2: not applicable, q = " + str(q))
|
|
continue
|
|
|
|
print("Naik 2: pass, q = " + str(q))
|
|
|
|
if not result[4]:
|
|
print("\t\tBorodzik: fail, q = " + str(q))
|
|
continue
|
|
|
|
if result[4] == -1:
|
|
print("Borodzik: not applicable, q = " + str(q))
|
|
continue
|
|
|
|
print("Borodzik: pass, q = " + str(q))
|
|
|
|
def print_przytycki_result(self, q, result):
|
|
if not result:
|
|
print("\t\tPrzytycki: fail, q = " + str(q))
|
|
elif result == -1:
|
|
print("Przytycki: not applicable, q = " + str(q))
|
|
else:
|
|
print("Przytycki: pass, q = " + str(q))
|
|
|
|
|
|
class PrzytyckiTester(object):
|
|
|
|
def __init__(self, K, name, f_homfly_in=None):
|
|
homflypt = self.get_homflypt_polynomial(K, name, f_homfly_in)
|
|
homfly_difference = homflypt(a, -z) - homflypt(a^-1, -z)
|
|
self.homfly_difference = z * homfly_difference
|
|
self.homflypt_polynomial = homflypt
|
|
|
|
def get_homflypt_polynomial(self, K, name, f_homfly_in=None):
|
|
if f_homfly_in is not None:
|
|
try:
|
|
current_name, homflypt = f_homfly_in.readline().split(',')
|
|
while current_name != name:
|
|
current_name, homflypt = f_homfly_in.readline().split(',')
|
|
homflypt = sage_eval(homflypt, locals={'a': a, 'z': z})
|
|
return homflypt
|
|
except (AttributeError, ValueError) as e:
|
|
pass
|
|
return K.homfly_polynomial('a', 'z', 'lm')
|
|
|
|
def check_congruence(self, q):
|
|
for i in range(q + 1):
|
|
z_coefficient = self.homfly_difference.coefficient(z^(i+1))
|
|
ideal = (a + a^-1)^(q - i) # for i == q will be 1
|
|
coefficient_modulo_ideal = z_coefficient.quo_rem(ideal)[1]
|
|
coefficient_modulo_q = coefficient_modulo_ideal.change_ring(GF(q))
|
|
if coefficient_modulo_q != 0:
|
|
return 0
|
|
return 1
|
|
|
|
|
|
def check_criteria(name, pd_code, f_homfly_in=None):
|
|
|
|
|
|
tester = PeriodicityTester(name, pd_code, None, f_homfly_in)
|
|
|
|
for i, q in enumerate(settings.periods):
|
|
|
|
tester.check_criteria_for_period(q)
|
|
tester.results.append([q, tester.murasugi, tester.naik_1,
|
|
tester.naik_2, tester.borodzik,
|
|
tester.przytycki])
|
|
if settings.print_results:
|
|
tester.print_results()
|
|
|
|
return tester
|
|
|
|
|
|
|
|
def get_naik_number(q, p):
|
|
'''
|
|
Calculate the smallest integer i = [q, p] such that p^i == +/-1 mod q.
|
|
Signum of i shows whether rest is -1 or 1
|
|
'''
|
|
if gcd(q, p) > 1:
|
|
return 0
|
|
p_power = p
|
|
for i in range(1, sys.maxsize):
|
|
qp = p_power % q
|
|
if qp == 1:
|
|
return i
|
|
if qp == q - 1:
|
|
return -i
|
|
p_power *= p
|
|
|
|
|
|
def get_t_polynomial(q, r): # for check_murasugi(), r coresponds to l in paper
|
|
t_polynomial = sum([t^i for i in range(r)])
|
|
t_polynomial = t_polynomial.change_ring(GF(q))
|
|
t_polynomial ^= (q - 1)
|
|
return t_polynomial
|
|
|
|
|
|
def get_subsets(myset):
|
|
return reduce(lambda z, x: z + [y + [x] for y in z], myset, [[]])
|
|
|
|
|
|
def parse_pd_code(pd_code_from_file):
|
|
set = '0987654321[],'
|
|
pd_code = ''.join([c for c in pd_code_from_file if c in set])
|
|
return eval(pd_code)
|
|
|
|
|
|
def parse_knot_name(name):
|
|
data = name[5: -2].split(',')
|
|
name = data[0].strip() + data[1].strip().lower()[:1] + data[2].strip()
|
|
return name
|
|
|
|
|
|
def check_11_to_15(f_out, f_homfly_out=None, f_homfly_in=None):
|
|
with open(settings.f_pd_knot_11_15, 'r') as f:
|
|
line = f.readline()
|
|
while line:
|
|
name = parse_knot_name(line)
|
|
pd_code = parse_pd_code(f.readline())
|
|
line = f.readline()
|
|
tester = check_criteria(name, pd_code, f_homfly_in)
|
|
if tester is not None:
|
|
tester.save_results(f_out)
|
|
|
|
|
|
def check_up_to_10(f_out, f_homfly_in=None):
|
|
with open(settings.f_knot_up_to_10, 'r') as f:
|
|
line = f.readline()
|
|
while line:
|
|
line = line.split(" = ")
|
|
name = str(line[0])[5:]
|
|
pd_code = parse_pd_code(str(line[1]))
|
|
line = f.readline()
|
|
tester = check_criteria(name, pd_code, f_homfly_in)
|
|
if tester is not None:
|
|
tester.save_results(f_out)
|
|
|
|
|
|
def test_all(f_out, f_homfly_in=None):
|
|
check_up_to_10(f_out, f_homfly_in)
|
|
f_out.flush()
|
|
check_11_to_15(f_out, f_homfly_in)
|
|
|
|
def main():
|
|
if settings.input_file_with_homflypt:
|
|
with open(settings.f_results_out, 'w') as f_out,\
|
|
open(settings.f_homfly_lm_in, 'r') as f_homfly_in:
|
|
test_all(f_out, f_homfly_in)
|
|
else:
|
|
with open(settings.f_results_out, 'w') as f_out:
|
|
test_all(f_out)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
settings = MySettings()
|
|
S.<a, z> = LaurentPolynomialRing(ZZ)
|
|
R.<t> = LaurentPolynomialRing(ZZ)
|
|
prime_numbers = Primes()
|
|
naik_number_dict = {}
|
|
if '__file__' in globals():
|
|
main()
|
|
else:
|
|
S.<a, z> = LaurentPolynomialRing(ZZ)
|
|
R.<t> = LaurentPolynomialRing(ZZ)
|
|
prime_numbers = Primes()
|
|
naik_number_dict = {}
|