counting for special cases
This commit is contained in:
parent
7b3f3f8a23
commit
259764e414
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python
|
||||
import collections
|
||||
import sys
|
||||
|
||||
|
||||
def mod_one(n):
|
||||
@ -29,9 +30,9 @@ class av_signature_function(object):
|
||||
for jump_arg, jump in values:
|
||||
assert 0 <= jump_arg < 1, \
|
||||
"Signature function is defined on the interval [0, 1)."
|
||||
################################### what for += ???
|
||||
self.data[jump_arg] = jump
|
||||
|
||||
|
||||
def value(self, arg):
|
||||
# Compute the value of the signature function at the point arg.
|
||||
# This requires summing all signature jumps that occur before arg.
|
||||
@ -45,7 +46,6 @@ class av_signature_function(object):
|
||||
val += jump
|
||||
return val
|
||||
|
||||
############## what for - it is == 0
|
||||
def total_sign_jump(self):
|
||||
# Total signature jump is the sum of all jumps.
|
||||
a = sum([j[1] for j in self.to_list()])
|
||||
@ -54,6 +54,23 @@ class av_signature_function(object):
|
||||
assert a == b
|
||||
return sum(self.data.values())
|
||||
|
||||
def total_absolute_sign_jump(self):
|
||||
# Total signature jump is the sum of all jumps.
|
||||
a = sum([abs(j[1]) for j in self.to_list()])
|
||||
# b = sum(self.data.values())
|
||||
# print b
|
||||
# assert a == b
|
||||
return a
|
||||
|
||||
|
||||
def double_cover(self):
|
||||
new_data = []
|
||||
for jump_arg, jump in self.data.items():
|
||||
new_data.append((mod_one(jump_arg/2), jump))
|
||||
new_data.append((mod_one(1/2 + jump_arg/2), jump))
|
||||
return av_signature_function(new_data)
|
||||
|
||||
|
||||
def to_list(self):
|
||||
# Return signature jumps formated as a list
|
||||
return sorted(self.data.items(), key=lambda x: x[0])
|
||||
@ -115,22 +132,177 @@ class av_signature_function(object):
|
||||
return self
|
||||
|
||||
def __add__(self, other):
|
||||
new_one = av_signature_function()
|
||||
new_data = collections.defaultdict(int)
|
||||
for jump_arg, jump in other.data.items():
|
||||
self.data[jump_arg] += jump
|
||||
return self
|
||||
new_data[jump_arg] = jump + self.data.get(jump_arg, 0)
|
||||
try:
|
||||
int(jump_arg)
|
||||
except:
|
||||
print jump_arg
|
||||
for jump_arg, jump in self.data.items():
|
||||
if jump_arg not in new_data.keys():
|
||||
new_data[jump_arg] = self.data[jump_arg]
|
||||
|
||||
new_one.data = new_data
|
||||
return new_one
|
||||
|
||||
def __str__(self):
|
||||
return '\n'.join([str(jump_arg) + ": " + str(jump)
|
||||
for jump_arg, jump in self.data.items()])
|
||||
for jump_arg, jump in sorted(self.data.items())])
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
# 9.8
|
||||
# ksi = exp( (2 PI * i) / (2k + 1))
|
||||
# blanchfield = lambda_even + lambda_odd
|
||||
|
||||
def untw_signature(k):
|
||||
# Return the signature function of the T_{2,2k+1} torus knot.
|
||||
l = ([((2 * a + 1)/(4 * k + 2), -1) for a in range(k)] +
|
||||
[((2 * a + 1)/(4 * k + 2), 1) for a in range(k + 1, 2 * k + 1)])
|
||||
# print l
|
||||
# print type(l)
|
||||
return av_signature_function(l)
|
||||
def get_twisted_signature_function(k_n, theta):
|
||||
results = []
|
||||
k = abs(k_n)
|
||||
|
||||
ksi = 1/(2 * k + 1)
|
||||
# lambda_odd (theta + e) % 2 == 0:
|
||||
for e in range(1, k + 1):
|
||||
if (theta + e) % 2 != 0:
|
||||
results.append((e * ksi, 1 * sgn(k_n)))
|
||||
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
||||
# lambda_even
|
||||
# print "normal"
|
||||
for e in range(1, theta):
|
||||
if (theta + e) % 2 == 0:
|
||||
# print e * ksi, ": 1"
|
||||
# print 1 - e * ksi, ": -1 "
|
||||
results.append((e * ksi, 1 * sgn(k_n)))
|
||||
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
||||
|
||||
# print "reversed"
|
||||
for e in range(theta + 1, k + 1):
|
||||
if (theta + e) % 2 != 0:
|
||||
continue
|
||||
# print e * ksi, ": -1"
|
||||
# print 1 - e * ksi, ": 1 "
|
||||
results.append((e * ksi, -1 * sgn(k_n)))
|
||||
results.append((1 - e * ksi, 1 * sgn(k_n)))
|
||||
return av_signature_function(results)
|
||||
|
||||
def get_blanchfield(t, k):
|
||||
p = 2
|
||||
q = 2 * k + 1
|
||||
sigma_set = get_sigma_set(p, q)
|
||||
sigma = len(sigma_set) - 2 * len([z for z in sigma_set if t < z < 1 + t])
|
||||
return sigma
|
||||
|
||||
def get_sigma_set(p, q):
|
||||
sigma_set = set()
|
||||
for i in range(1, p):
|
||||
for j in range(1, q):
|
||||
sigma_set.add(j/q + i/p)
|
||||
return sigma_set
|
||||
|
||||
# Bl_theta(K'_(2, d) = Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t) + Bl(K')(ksi_l^theta * t)
|
||||
|
||||
def get_cable_signature_as_theta_function(*arg):
|
||||
if len(arg) < 2:
|
||||
print "It is not a cable"
|
||||
return None
|
||||
def signture_function(theta):
|
||||
if theta > abs(arg[-1]):
|
||||
print "k for pattern is " + str(arg[-1])
|
||||
print "theta shouldn't be larger than this"
|
||||
return None
|
||||
if theta == 0:
|
||||
cable_signature = get_untwisted_signutere_function(arg[-1])
|
||||
else:
|
||||
cable_signature = get_twisted_signature_function(arg[-1], theta)
|
||||
|
||||
for i, k_i in enumerate(arg[:-1][::-1]):
|
||||
k = abs(k_i)
|
||||
ksi = 1/(2 * k + 1)
|
||||
power = 2^i
|
||||
a = get_untwisted_signutere_function(k_i)
|
||||
shift = theta * ksi * power
|
||||
b = a >> shift
|
||||
c = a << shift
|
||||
for _ in range(i):
|
||||
b = b.double_cover()
|
||||
c = c.double_cover()
|
||||
b += c
|
||||
cable_signature += b
|
||||
return cable_signature
|
||||
return signture_function
|
||||
|
||||
|
||||
|
||||
def get_untwisted_signutere_function(*arg):
|
||||
signture_function = av_signature_function([(0, 0)])
|
||||
for k_i in arg:
|
||||
k = abs(k_i)
|
||||
# Return the signature function of the T_{2,2k+1} torus knot.
|
||||
l = ([((2 * a + 1)/(4 * k + 2), -1 * sgn(k_i)) for a in range(k)] +
|
||||
[((2 * a + 1)/(4 * k + 2), 1 * sgn(k_i)) for a in range(k + 1, 2 * k + 1)])
|
||||
signture_function += av_signature_function(l)
|
||||
return signture_function
|
||||
|
||||
def get_function_of_theta_for_sum(*arg):
|
||||
def signture_function_for_sum(*thetas):
|
||||
if len(thetas) != len(arg) - 1:
|
||||
print "For each cable one theta value should be given"
|
||||
return None
|
||||
signature_function = get_untwisted_signutere_function(*arg[0])
|
||||
for i, knot in enumerate(arg[1:]):
|
||||
signature_function += (get_cable_signature_as_theta_function(*knot))(thetas[i])
|
||||
return signature_function
|
||||
return signture_function_for_sum
|
||||
|
||||
|
||||
def tmp(limit=None):
|
||||
if limit is None:
|
||||
limit = 10
|
||||
for k_0 in range(1, limit):
|
||||
for k_1 in range(1, limit):
|
||||
for k_2 in range(1, limit):
|
||||
for k_3 in range(1, limit):
|
||||
F = get_function_of_theta_for_sum([k_3, -k_2], [-k_0, -k_1, -k_3], [k_0, k_1, k_2])
|
||||
for theta_0 in range(k_3 + 1):
|
||||
for theta_1 in range(k_2 + 1):
|
||||
f = F(theta_0, theta_1)
|
||||
if f.total_absolute_sign_jump() != 0 and theta_1 + theta_0 == 0:
|
||||
print 4 * "\n"
|
||||
print "OJOJOJOJJOOJJOJJ!!!!!!!!!!"
|
||||
print k_0, k_1, k_2, k_3
|
||||
print theta_0, theta_1
|
||||
|
||||
if f.total_absolute_sign_jump() == 0 and theta_1 + theta_0 != 0:
|
||||
# print "HURA"
|
||||
# print k_0, k_1, k_2, k_3
|
||||
# print theta_0, theta_1
|
||||
if k_2 != k_3 or theta_0 != theta_1:
|
||||
print 4 * "\n"
|
||||
print " SUPER!!!!!!!!!!"
|
||||
print k_0, k_1, k_2, k_3
|
||||
print theta_0, theta_1
|
||||
|
||||
for k_4 in range(1, limit):
|
||||
F = get_function_of_theta_for_sum([], [k_0, k_1, k_2], [k_3, k_4], [-k_0, -k_3, -k_4], [-k_1, -k_2])
|
||||
for theta_0 in range(k_2 + 1):
|
||||
for theta_1 in range(k_4 + 1):
|
||||
for theta_2 in range(k_4 + 1):
|
||||
for theta_3 in range(k_2 + 1):
|
||||
f = F(theta_0, theta_1, theta_2, theta_3)
|
||||
if f.total_absolute_sign_jump() != 0 and theta_1 + theta_0 + theta_3 + theta_2 == 0:
|
||||
print 4 * "\n"
|
||||
print "2 OJOJOJOJJOOJJOJJ!!!!!!!!!!"
|
||||
print k_0, k_1, k_2, k_3, k_4
|
||||
print theta_0, theta_1, theta_2, theta_3
|
||||
|
||||
if f.total_absolute_sign_jump() == 0 and theta_1 + theta_0 + theta_3 + theta_2 != 0:
|
||||
# print "HURA"
|
||||
# print k_0, k_1, k_2, k_3
|
||||
# print theta_0, theta_1
|
||||
if k_2 != k_3 or theta_0 != theta_1:
|
||||
print 4 * "\n"
|
||||
print "2 SUPER!!!!!!!!!!"
|
||||
print k_0, k_1, k_2, k_3, k_4
|
||||
print theta_0, theta_1, theta_2, theta_3
|
||||
|
Loading…
Reference in New Issue
Block a user