cable class
This commit is contained in:
parent
afbda34111
commit
4cdb4622ab
@ -203,6 +203,248 @@ class SignatureFunction(object):
|
|||||||
return 2 * sum(before_arg) + cnt[arg]
|
return 2 * sum(before_arg) + cnt[arg]
|
||||||
|
|
||||||
|
|
||||||
|
class TorusCable(object):
|
||||||
|
def __init__(self, knot_formula=None, k_vector=None, q_vector=None):
|
||||||
|
# q_i = 2 * k_i + 1
|
||||||
|
if knot_formula is None:
|
||||||
|
knot_formula = config.knot_formula
|
||||||
|
|
||||||
|
if k_vector is None:
|
||||||
|
if q_vector is None:
|
||||||
|
# TBD docstring
|
||||||
|
print("Please give a list of k (k_vector) or q values (q_vector).")
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
k_vector = [(q - 1)/2 for q in q_vector]
|
||||||
|
# elif q_vector is None:
|
||||||
|
# q_vector = [2 * k + 1 for k in k_vector]
|
||||||
|
# self.knot_sum = eval(knot_formula)
|
||||||
|
self.knot_formula = knot_formula
|
||||||
|
self.k_vector = k_vector
|
||||||
|
self.q_vector = q_vector
|
||||||
|
k = k_vector
|
||||||
|
self.knot_description = get_knot_descrption(*self.knot_sum)
|
||||||
|
self.sigma_function = None
|
||||||
|
|
||||||
|
def is_sigma_for_vector_class_big(self, theta_vector):
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def __get_sigma_function(self):
|
||||||
|
print("settinf the function ")
|
||||||
|
k_1, k_2, k_3, k_4 = [abs(k) for k in self.k_vector]
|
||||||
|
q_4 = 2 * k_4 + 1
|
||||||
|
ksi = 1/q_4
|
||||||
|
sigma_q_1 = get_untwisted_signature_function(k_1)
|
||||||
|
sigma_q_2 = get_untwisted_signature_function(k_2)
|
||||||
|
sigma_q_3 = get_untwisted_signature_function(k_3)
|
||||||
|
|
||||||
|
def sigma_function(theta_vector):
|
||||||
|
# "untwisted" part (Levine-Tristram signatures)
|
||||||
|
a_1, a_2, a_3, a_4 = theta_vector
|
||||||
|
untwisted_part = 2 * (sigma_q_2(ksi * a_1) -
|
||||||
|
sigma_q_2(ksi * a_2) +
|
||||||
|
sigma_q_3(ksi * a_3) -
|
||||||
|
sigma_q_3(ksi * a_4) +
|
||||||
|
sigma_q_1(ksi * a_1 * 2) -
|
||||||
|
sigma_q_1(ksi * a_4 * 2))
|
||||||
|
|
||||||
|
# "twisted" part
|
||||||
|
tp = [0, 0, 0, 0]
|
||||||
|
for i, a in enumerate(theta_vector):
|
||||||
|
if a:
|
||||||
|
tp[i] = -q_4 + 2 * a - 2 * (a^2/q_4)
|
||||||
|
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
||||||
|
sigma_v = untwisted_part + twisted_part
|
||||||
|
return sigma_v
|
||||||
|
return sigma_function
|
||||||
|
|
||||||
|
def calculate_sigma(self, theta_vector):
|
||||||
|
if self.sigma_function is None:
|
||||||
|
self.sigma_function = self.__get_sigma_function()
|
||||||
|
return self.__calculate_sigma(theta_vector)
|
||||||
|
|
||||||
|
def __calculate_sigma(self, theta_vector):
|
||||||
|
return self.sigma_function(theta_vector)
|
||||||
|
|
||||||
|
# searching for sigma > 5 + #(v_i != 0)
|
||||||
|
|
||||||
|
def eval_cable_for_large_sigma(k_vector=None, knot_formula=None,
|
||||||
|
print_results=True, verbose=None,
|
||||||
|
q_vector=None):
|
||||||
|
cable = TorusCable(knot_formula=knot_formula, k_vector=k_vector,
|
||||||
|
q_vector=q_vector)
|
||||||
|
# k is a k_vector
|
||||||
|
k = cable.k_vector
|
||||||
|
knot_description = cable.knot_description
|
||||||
|
print("\n" * 5)
|
||||||
|
print(knot_description)
|
||||||
|
k_1, k_2, k_3, k_4 = [abs(i) for i in k]
|
||||||
|
q_4 = 2 * k_4 + 1
|
||||||
|
ksi = 1/q_4
|
||||||
|
|
||||||
|
if verbose:
|
||||||
|
print("\n\n")
|
||||||
|
print(100 * "*")
|
||||||
|
print("Searching for a large signature values for the cable sum: ")
|
||||||
|
print(knot_description)
|
||||||
|
|
||||||
|
large_sigma_for_all_v_combinations = True
|
||||||
|
bad_vectors = []
|
||||||
|
good_vectors = []
|
||||||
|
|
||||||
|
# iteration over all possible character combinations
|
||||||
|
# T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
||||||
|
# # T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
||||||
|
last_theta = 1
|
||||||
|
large_sigma_for_last_theta_non_zero = True
|
||||||
|
for vector in it.product(range(q_4), range(q_4), range(q_4)):
|
||||||
|
v_theta = list(vector)
|
||||||
|
v_theta.append(last_theta)
|
||||||
|
|
||||||
|
a_1, a_2, a_3 = list(vector)
|
||||||
|
a_4 = last_theta
|
||||||
|
assert [a_1, a_2, a_3, a_4] == v_theta
|
||||||
|
if a_1 == a_2 == a_3:
|
||||||
|
if a_3 == 0:
|
||||||
|
print("\na_1 == a_2 == a_3 == 0")
|
||||||
|
continue
|
||||||
|
elif a_3 == a_4:
|
||||||
|
print("\nall a_i == a != 0")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if (a_1^2 - a_2^2 + a_3^2 - a_4^2) % q_4:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# print("\t\t\tMultiplication of the vector " + str(v_theta))
|
||||||
|
large_sigma_for_this_vector = False
|
||||||
|
for shift in range(1, q_4):
|
||||||
|
# print("shift = " + str(shift) + ", q_4 = " + str(q_4))
|
||||||
|
shifted_theta = [(shift * a) % q_4 for a in
|
||||||
|
[a_1, a_2, a_3, a_4]]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
sigma_v = cable.calculate_sigma(shifted_theta)
|
||||||
|
|
||||||
|
if abs(sigma_v) > 5 + np.count_nonzero(shifted_theta):
|
||||||
|
large_sigma_for_this_vector = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if large_sigma_for_this_vector:
|
||||||
|
good_vectors.append(v_theta)
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
bad_vectors.append(v_theta)
|
||||||
|
large_sigma_for_last_theta_non_zero = False
|
||||||
|
|
||||||
|
print("\ngood_vectors")
|
||||||
|
print(len(good_vectors))
|
||||||
|
print("\nbad_vectors")
|
||||||
|
print(len(bad_vectors))
|
||||||
|
print(bad_vectors)
|
||||||
|
bad_vectors = []
|
||||||
|
good_vectors = []
|
||||||
|
|
||||||
|
large_sigma_for_last_theta_zero = True
|
||||||
|
for vector in it.product(range(q_4), range(q_4)):
|
||||||
|
v_theta = list(vector)
|
||||||
|
v_theta.append(1)
|
||||||
|
v_theta.append(0)
|
||||||
|
a_1, a_2 = vector
|
||||||
|
a_3 = 1
|
||||||
|
a_4 = 0
|
||||||
|
assert [a_1, a_2, a_3, a_4] == v_theta
|
||||||
|
|
||||||
|
if (a_1^2 - a_2^2 + a_3^2 - a_4^2) % q_4:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# print("\t\t\tMultiplication of the vector " + str(v_theta))
|
||||||
|
large_sigma_for_this_vector = False
|
||||||
|
for shift in range(1, q_4):
|
||||||
|
# print("shift = " + str(shift) + ", q_4 = " + str(q_4))
|
||||||
|
shifted_theta = [(shift * a) % q_4 for a in
|
||||||
|
[a_1, a_2, a_3, a_4]]
|
||||||
|
|
||||||
|
sigma_v = cable.calculate_sigma(shifted_theta)
|
||||||
|
|
||||||
|
|
||||||
|
if abs(sigma_v) > 5 + np.count_nonzero(shifted_theta):
|
||||||
|
large_sigma_for_this_vector = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if large_sigma_for_this_vector:
|
||||||
|
good_vectors.append(v_theta)
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
bad_vectors.append(v_theta)
|
||||||
|
large_sigma_for_last_theta_zero = False
|
||||||
|
# break
|
||||||
|
|
||||||
|
print("\ngood_vectors")
|
||||||
|
print(len(good_vectors))
|
||||||
|
print("\nbad_vectors")
|
||||||
|
print(len(bad_vectors))
|
||||||
|
print(bad_vectors)
|
||||||
|
bad_vectors = []
|
||||||
|
good_vectors = []
|
||||||
|
|
||||||
|
print("\n\nNic nie ma")
|
||||||
|
for vector in range(q_4):
|
||||||
|
v_theta = [vector]
|
||||||
|
v_theta.append(1)
|
||||||
|
v_theta.append(0)
|
||||||
|
v_theta.append(last_theta)
|
||||||
|
a_1 = vector
|
||||||
|
a_2 = 1
|
||||||
|
a_3 = 0
|
||||||
|
a_4 = last_theta
|
||||||
|
assert [a_1, a_2, a_3, a_4] == v_theta
|
||||||
|
if a_1 == a_2 == a_3:
|
||||||
|
if a_3 == 0:
|
||||||
|
print("\na_1 == a_2 == a_3 == 0")
|
||||||
|
continue
|
||||||
|
elif a_3 == a_4:
|
||||||
|
print("\nall a_i == a != 0")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if (a_1^2 - a_2^2 + a_3^2 - a_4^2) % q_4:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# print("\t\t\tMultiplication of the vector " + str(v_theta))
|
||||||
|
large_sigma_for_this_vector = False
|
||||||
|
for shift in range(1, q_4):
|
||||||
|
# print("shift = " + str(shift) + ", q_4 = " + str(q_4))
|
||||||
|
shifted_theta = [(shift * a) % q_4 for a in
|
||||||
|
[a_1, a_2, a_3, a_4]]
|
||||||
|
|
||||||
|
sigma_v = cable.calculate_sigma(shifted_theta)
|
||||||
|
if abs(sigma_v) > 5 + np.count_nonzero(shifted_theta):
|
||||||
|
large_sigma_for_this_vector = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if large_sigma_for_this_vector:
|
||||||
|
good_vectors.append(v_theta)
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
bad_vectors.append(v_theta)
|
||||||
|
large_sigma_for_last_theta_zero = False
|
||||||
|
# break
|
||||||
|
|
||||||
|
|
||||||
|
if large_sigma_for_last_theta_non_zero and large_sigma_for_last_theta_zero:
|
||||||
|
print(100 * "\n\nHURA HURA")
|
||||||
|
print(knot_description)
|
||||||
|
|
||||||
|
print("\ngood_vectors")
|
||||||
|
print(len(good_vectors))
|
||||||
|
print("\nbad_vectors")
|
||||||
|
print(len(bad_vectors))
|
||||||
|
print(bad_vectors)
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def main(arg):
|
def main(arg):
|
||||||
if arg[1]:
|
if arg[1]:
|
||||||
limit = int(arg[1])
|
limit = int(arg[1])
|
||||||
@ -234,7 +476,7 @@ def search_for_large_signature_value(knot_formula=None,
|
|||||||
|
|
||||||
# iterate over q-vector
|
# iterate over q-vector
|
||||||
for c in combinations:
|
for c in combinations:
|
||||||
k = [(P.unrank(i) - 1)/2 for i in c]
|
k = [(P.unrank(i + 2) - 1)/2 for i in c]
|
||||||
if config.only_slice_candidates:
|
if config.only_slice_candidates:
|
||||||
if not (k[3] > 4 * k[2] and
|
if not (k[3] > 4 * k[2] and
|
||||||
k[2] > 4 * k[1] and
|
k[2] > 4 * k[1] and
|
||||||
@ -250,266 +492,6 @@ def search_for_large_signature_value(knot_formula=None,
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
# searching for sigma > 5 + #(v_i != 0)
|
|
||||||
def eval_cable_for_large_sigma(k_vector=None,
|
|
||||||
knot_formula=None,
|
|
||||||
print_results=True,
|
|
||||||
verbose=None,
|
|
||||||
q_vector=None):
|
|
||||||
if knot_formula is None:
|
|
||||||
knot_formula = config.knot_formula
|
|
||||||
if verbose is None:
|
|
||||||
verbose = config.verbose
|
|
||||||
if k_vector is None:
|
|
||||||
if q_vector is None:
|
|
||||||
# TBD docstring
|
|
||||||
print("Please give a list of k (k_vector) or q values (q_vector).")
|
|
||||||
return None
|
|
||||||
else:
|
|
||||||
k_vector = [(i - 1)/2 for i in q_vector]
|
|
||||||
k = k_vector
|
|
||||||
knot_sum = eval(knot_formula)
|
|
||||||
|
|
||||||
if len(knot_sum) != 4:
|
|
||||||
print("Wrong number of cable direct summands!")
|
|
||||||
return None
|
|
||||||
knot_description = get_knot_descrption(*knot_sum)
|
|
||||||
|
|
||||||
return _eval_cable_for_large_sigma(k_vector, knot_description,
|
|
||||||
print_results, verbose)
|
|
||||||
|
|
||||||
|
|
||||||
def _eval_cable_for_large_sigma(k, knot_description, print_results, verbose):
|
|
||||||
# k is a k_vector
|
|
||||||
print("\n" * 5)
|
|
||||||
print(knot_description)
|
|
||||||
k_1, k_2, k_3, k_4 = [abs(i) for i in k]
|
|
||||||
q_4 = 2 * k_4 + 1
|
|
||||||
ksi = 1/q_4
|
|
||||||
|
|
||||||
if verbose:
|
|
||||||
print("\n\n")
|
|
||||||
print(100 * "*")
|
|
||||||
print("Searching for a large signature values for the cable sum: ")
|
|
||||||
print(knot_description)
|
|
||||||
|
|
||||||
|
|
||||||
large_sigma_for_all_v_combinations = True
|
|
||||||
bad_vectors = []
|
|
||||||
good_vectors = []
|
|
||||||
# iteration over all possible character combinations
|
|
||||||
# T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
|
||||||
# # T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
|
||||||
|
|
||||||
sigma_q_1 = get_untwisted_signature_function(k_1)
|
|
||||||
sigma_q_2 = get_untwisted_signature_function(k_2)
|
|
||||||
sigma_q_3 = get_untwisted_signature_function(k_3)
|
|
||||||
|
|
||||||
# large_sigma_for_last_theta_non_zero = True
|
|
||||||
#!!!!!!!!!!!!!!!!
|
|
||||||
# consider a_4 non-zero and zero
|
|
||||||
last_theta = 1
|
|
||||||
large_sigma_for_last_theta_non_zero = True
|
|
||||||
for vector in it.product(3 * [range(q_4)]):
|
|
||||||
v_theta = list(vector)
|
|
||||||
v_theta.append(last_theta)
|
|
||||||
a_1, a_2, a_3 = vector
|
|
||||||
a_4 = last_theta
|
|
||||||
assert [a_1, a_2, a_3, a_4] == v_theta
|
|
||||||
if a_1 == a_2 == a_3:
|
|
||||||
if a_3 == 0:
|
|
||||||
print("\na_1 == a_2 == a_3 == 0")
|
|
||||||
continue
|
|
||||||
elif a_3 == a_4:
|
|
||||||
print("\nall a_i == a != 0")
|
|
||||||
continue
|
|
||||||
|
|
||||||
if (a_1^2 - a_2^2 + a_3^2 - a_4^2) % q_4:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# print("\t\t\tMultiplication of the vector " + str(v_theta))
|
|
||||||
large_sigma_for_this_vector = False
|
|
||||||
for shift in range(1, q_4):
|
|
||||||
# print("shift = " + str(shift) + ", q_4 = " + str(q_4))
|
|
||||||
shifted_theta = [(shift * a) % q_4 for a in
|
|
||||||
[a_1, a_2, a_3, a_4]]
|
|
||||||
|
|
||||||
|
|
||||||
# "untwisted" part (Levine-Tristram signatures)
|
|
||||||
a_1, a_2, a_3, a_4 = shifted_theta
|
|
||||||
untwisted_part = 2 * (sigma_q_2(ksi * a_1) -
|
|
||||||
sigma_q_2(ksi * a_2) +
|
|
||||||
sigma_q_3(ksi * a_3) -
|
|
||||||
sigma_q_3(ksi * a_4) +
|
|
||||||
sigma_q_1(ksi * a_1 * 2) -
|
|
||||||
sigma_q_1(ksi * a_4 * 2))
|
|
||||||
|
|
||||||
# "twisted" part
|
|
||||||
tp = [0, 0, 0, 0]
|
|
||||||
for i, a in enumerate(shifted_theta):
|
|
||||||
if a:
|
|
||||||
tp[i] = -q_4 + 2 * a - 2 * (a^2/q_4)
|
|
||||||
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
|
||||||
# assert twisted_part == int(twisted_part)
|
|
||||||
|
|
||||||
sigma_v = untwisted_part + twisted_part
|
|
||||||
# print(knot_description + "\t" + str(shifted_theta) +\
|
|
||||||
# "\t" + str(sigma_v))
|
|
||||||
# + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
|
||||||
|
|
||||||
if abs(sigma_v) > 5 + np.count_nonzero(shifted_theta):
|
|
||||||
large_sigma_for_this_vector = True
|
|
||||||
|
|
||||||
if large_sigma_for_this_vector:
|
|
||||||
good_vectors.append(shifted_theta)
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
bad_vectors.append(shifted_theta)
|
|
||||||
large_sigma_for_last_theta_non_zero = False
|
|
||||||
|
|
||||||
last_theta = 0
|
|
||||||
large_sigma_for_last_theta_zero = True
|
|
||||||
for vector in it.product(3 * [range(q_4)]):
|
|
||||||
v_theta = list(vector)
|
|
||||||
v_theta.append(last_theta)
|
|
||||||
a_1, a_2, a_3 = vector
|
|
||||||
a_4 = last_theta
|
|
||||||
assert [a_1, a_2, a_3, a_4] == v_theta
|
|
||||||
if a_1 == a_2 == a_3:
|
|
||||||
if a_3 == 0:
|
|
||||||
print("\na_1 == a_2 == a_3 == 0")
|
|
||||||
continue
|
|
||||||
elif a_3 == a_4:
|
|
||||||
print("\nall a_i == a != 0")
|
|
||||||
continue
|
|
||||||
|
|
||||||
if (a_1^2 - a_2^2 + a_3^2 - a_4^2) % q_4:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# print("\t\t\tMultiplication of the vector " + str(v_theta))
|
|
||||||
large_sigma_for_this_vector = False
|
|
||||||
for shift in range(1, q_4):
|
|
||||||
# print("shift = " + str(shift) + ", q_4 = " + str(q_4))
|
|
||||||
shifted_theta = [(shift * a) % q_4 for a in
|
|
||||||
[a_1, a_2, a_3, a_4]]
|
|
||||||
|
|
||||||
|
|
||||||
# "untwisted" part (Levine-Tristram signatures)
|
|
||||||
a_1, a_2, a_3, a_4 = shifted_theta
|
|
||||||
untwisted_part = 2 * (sigma_q_2(ksi * a_1) -
|
|
||||||
sigma_q_2(ksi * a_2) +
|
|
||||||
sigma_q_3(ksi * a_3) -
|
|
||||||
sigma_q_3(ksi * a_4) +
|
|
||||||
sigma_q_1(ksi * a_1 * 2) -
|
|
||||||
sigma_q_1(ksi * a_4 * 2))
|
|
||||||
|
|
||||||
# "twisted" part
|
|
||||||
tp = [0, 0, 0, 0]
|
|
||||||
for i, a in enumerate(shifted_theta):
|
|
||||||
if a:
|
|
||||||
tp[i] = -q_4 + 2 * a - 2 * (a^2/q_4)
|
|
||||||
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
|
||||||
# assert twisted_part == int(twisted_part)
|
|
||||||
|
|
||||||
sigma_v = untwisted_part + twisted_part
|
|
||||||
# print(knot_description + "\t" + str(shifted_theta) +\
|
|
||||||
# "\t" + str(sigma_v))
|
|
||||||
# + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
|
||||||
|
|
||||||
if abs(sigma_v) > 5 + np.count_nonzero(shifted_theta):
|
|
||||||
large_sigma_for_this_vector = True
|
|
||||||
# break
|
|
||||||
# else:
|
|
||||||
# pass
|
|
||||||
# print(knot_description + "\t" + \
|
|
||||||
# str(shifted_theta) +\
|
|
||||||
# "\t" + str(sigma_v))
|
|
||||||
|
|
||||||
|
|
||||||
if large_sigma_for_this_vector:
|
|
||||||
good_vectors.append(shifted_theta)
|
|
||||||
pass
|
|
||||||
# print("large_sigma_for_this_vector\n\n\n\n")
|
|
||||||
# print("\n\nHURA HURA")
|
|
||||||
else:
|
|
||||||
# print(shifted_theta)
|
|
||||||
# if a_3 == a_4:
|
|
||||||
# print(sigma_q_1(ksi * a_4 * 2))
|
|
||||||
bad_vectors.append(shifted_theta)
|
|
||||||
large_sigma_for_last_theta_zero = False
|
|
||||||
# break
|
|
||||||
|
|
||||||
if large_sigma_for_last_theta_non_zero and large_sigma_for_last_theta_zero:
|
|
||||||
print(100 * "\n\nHURA HURA")
|
|
||||||
print(knot_description)
|
|
||||||
|
|
||||||
# # if config.print_calculations_for_large_sigma:
|
|
||||||
# # print("*" * 100)
|
|
||||||
# # print("\n\nLarge signature value\n")
|
|
||||||
# # print(knot_description)
|
|
||||||
# # print("\nv_theta: ", end="")
|
|
||||||
# # print(v_theta)
|
|
||||||
# # print("k values: ", end="")
|
|
||||||
# # print(str(k_1) + " " + str(k_2) + " " + \
|
|
||||||
# # str(k_3) + " " + str(k_4))
|
|
||||||
# # print(condition)
|
|
||||||
# # print("non zero value in v_theta: " + \
|
|
||||||
# # str(np.count_nonzero(v_theta)))
|
|
||||||
# # print("sigma_v: " + str(sigma_v))
|
|
||||||
# # print("\ntwisted_part: ", end="")
|
|
||||||
# # print(twisted_part)
|
|
||||||
# # print("untwisted_part: ", end="")
|
|
||||||
# # print(untwisted_part)
|
|
||||||
# # print("\n\nCALCULATIONS")
|
|
||||||
# # print("*" * 100)
|
|
||||||
# # sults_LT(v_theta, knot_description,
|
|
||||||
# # ksi, untwisted_part,
|
|
||||||
# # k, sigma_q_1, sigma_q_2, sigma_q_3)
|
|
||||||
# # sults_sigma(v_theta, knot_description, tp, q_4)
|
|
||||||
# # print("*" * 100 + "\n" * 5)
|
|
||||||
# # else:
|
|
||||||
# # print(knot_description + "\t" + str(v_theta) +\
|
|
||||||
# # "\t" + str(sigma_v) + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
|
||||||
# # # if config.stop_after_firts_large_sigma:
|
|
||||||
# # # break
|
|
||||||
# # # sigma is small
|
|
||||||
# # else:
|
|
||||||
# # if config.print_calculations_for_small_sigma:
|
|
||||||
# # print("\n" * 5 + "*" * 100)
|
|
||||||
# # print("\nSmall signature value\n")
|
|
||||||
# # print(knot_description)
|
|
||||||
# # print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
|
||||||
# # k, sigma_q_1, sigma_q_2, sigma_q_3)
|
|
||||||
# # print_results_sigma(v_theta, knot_description, tp, q_4)
|
|
||||||
# # print("*" * 100 + "\n" * 5)
|
|
||||||
# # large_sigma_for_all_v_combinations = False
|
|
||||||
# #
|
|
||||||
# # if not config.print_calculations_for_small_sigma:
|
|
||||||
# # print(knot_description + "\t" + str(v_theta) +\
|
|
||||||
# # "\t" + str(sigma_v) + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
|
||||||
# #
|
|
||||||
# #
|
|
||||||
# # # print("ojojojoj")
|
|
||||||
# # # break
|
|
||||||
#
|
|
||||||
# if large_sigma_for_all_v_combinations:
|
|
||||||
# print("\n\n\nHura hura")
|
|
||||||
# good_knots.append((knot_description, v_theta))
|
|
||||||
#
|
|
||||||
# # else:
|
|
||||||
# # print "\n\tSmall signature value"
|
|
||||||
# # print knot_description
|
|
||||||
# # print "v_theta: " + str(v_theta)
|
|
||||||
# # print condition
|
|
||||||
# # print "non zero value in v_theta: " + str(np.count_nonzero(v_theta))
|
|
||||||
# # print "signature at 1/2: " + str(y)
|
|
||||||
print("\ngood_vectors")
|
|
||||||
print(good_vectors)
|
|
||||||
print("\nbad_vectors")
|
|
||||||
print(bad_vectors)
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
def print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
||||||
k, sigma_q_1, sigma_q_2, sigma_q_3):
|
k, sigma_q_1, sigma_q_2, sigma_q_3):
|
||||||
a_1, a_2, a_3, a_4 = v_theta
|
a_1, a_2, a_3, a_4 = v_theta
|
||||||
|
Loading…
Reference in New Issue
Block a user