functions searching for large signature values

This commit is contained in:
Maria Marchwicka 2020-07-21 04:50:16 +02:00
parent 2477c79297
commit 90322e0d19
1 changed files with 491 additions and 305 deletions

View File

@ -1,37 +1,6 @@
#!/usr/bin/python
# TBD: read about Factory Method, variable in docstring, sage documentation
def calculate_form(x, y, q4):
x1, x2, x3, x4 = x
y1, y2, y3, y4 = y
form = (x1 * y1 - x2 * y2 + x3 * y3 - x4 * y4) % q_4
# TBD change for ring modulo q_4
return form
def check_condition(v, q4):
if calculate_form(v, v, q4):
return False
return True
def find_v(q4):
results = []
for i in range(q4):
for j in range(q4):
for k in range(q4):
for m in range(q4):
if check_condition([i, j, k, m], q_4):
results.add(v)
return results
def check_inequality(q, v):
a1, a2, a3, a4 = v
q1, q2, q3, q4 = q
pattern = [q1, q2, q4],[-q2, -q4],[q3, q4],[-q1, -q3, -q4]
signature_function_generator = get_function_of_theta_for_sum(pattern)
signature_function_for_sum = signature_function_generator(a1, a2, a3, a4)
# sigma_v = sigma(q4, a1) - s(a2) + s(a3) - s(a4)
"""
This script calculates signature functions for knots (cable sums).
@ -45,9 +14,9 @@ corresponds to a cable knot, e.g. a list
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7).
To calculate the number of characters for which signature function vanish use
the function eval_cable_for_thetas as shown below.
the function eval_cable_for_null_signature as shown below.
sage: eval_cable_for_thetas([[1, 3], [2], [-1, -2], [-3]])
sage: eval_cable_for_null_signature([[1, 3], [2], [-1, -2], [-3]])
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
Zero cases: 1
@ -57,12 +26,24 @@ Zero theta combinations:
sage:
The numbers given to the function eval_cable_for_thetas are k-values for each
The numbers given to the function eval_cable_for_null_signature are k-values for each
component/cable in a direct sum.
To calculate signature function for a knot and a theta value, use function
get_function_of_theta_for_sum (see help/docstring for details).
About notation:
Cables that we work with follow a schema:
T(2, q_0; 2, q_1; 2, q_3) # -T(2, q_1; 2, q_3) #
# T(2, q_2; 2, q_3) # -T(2, q_0; 2, q_2; 2, q_3)
In knot_formula each k[i] is related with some q_i value, where
q_i = 2*k[i] + 1.
So we can work in the following steps:
1) choose a schema/formula by changing the value of knot_formula
2) set each q_i all or choose range in which q_i should varry
3) choose vector v / theata vector.
"""
import os
@ -72,6 +53,7 @@ import collections
import inspect
import itertools as it
import pandas as pd
import numpy as np
import re
@ -81,30 +63,23 @@ class MySettings(object):
# is the ratio restriction for values in k_vector taken into account
# False flag is usefull to make quick script tests
self.only_slice_candidates = True
# self.only_slice_candidates = False
# self.only_slice_candidates = True
self.only_slice_candidates = False
# knot_sum_formula is a schema for knots which signature function
# knot_formula is a schema for knots which signature function
# will be calculated
self.knot_sum_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \
[-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
"""
About notation:
Cables that we work with follow a schema:
T(2, q_0; 2, q_1; 2, q_2) # T(2, q_1; 2, q_2) #
# -T(2, q_3; 2, q_2) # -T(2, q_0; 2, q_3; 2, q_2)
In knot_sum_formula each k[i] is related with some q_i value, where
q_i = 2*k[i] + 1.
So we can work in the following steps:
1) choose a schema/formula by changing the value of knot_sum_formula
2) set each q_i all or choose range in which q_i should varry
3) choose vector v / theata vector.
self.knot_formula = "[[k[0], k[1], k[3]], [-k[1], -k[3]], \
[k[2], k[3]], [-k[0], -k[2], -k[3]]]"
"""
# self.knot_sum_formula = "[[k[0], k[1], k[2]], [k[3]],\
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \
# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3]],\
# [-k[0], -k[1], -k[3]], [-k[2]]]"
self.default_limit = 3
self.verbose = True
class SignatureFunction(object):
"""
@ -190,72 +165,200 @@ class SignatureFunction(object):
def __str__(self):
return ''.join([str(jump_arg) + ": " + str(jump) + "\n"
for jump_arg, jump in sorted(self.data.items())])
def value(self, arg):
# Compute the value of the signature function at the point arg.
# This requires summing all signature jumps that occur before arg.
assert 0 <= arg and arg < 1
val = 0
for jump_arg, jump in self.data.items():
if jump_arg < arg:
val += 2 * jump
elif jump_arg == arg:
val += jump
return val
def main(arg):
"""
This function is run if the script was called from the terminal.
It calls another function, perform_calculations,
to calculate signature functions for a schema
of a cable sum defined in the class MySettings.
Optionaly a parameter (a limit for k_0 value) can be given.
Thought to be run for time consuming calculations.
"""
try:
new_limit = int(arg[1])
except:
new_limit = None
perform_calculations(limit=new_limit)
search_for_large_signature_value(limit=new_limit)
# search_for_null_signature_value(limit=new_limit)
def perform_calculations(knot_sum_formula=None, limit=None):
"""
This function calculates signature functions for knots constracted
accordinga a schema for a cable sum. The schema is given as an argument
or defined in the class MySettings.
Results of calculations will be writen to a file and the stdout.
limit is the upper bound for the first value in k_vector,
i.e k[0] value in a cable sum, where q_0 = 2 * k[0] + 1.
(the number of knots that will be constracted depends on limit value).
For each knot/cable sum the function eval_cable_for_thetas is called.
eval_cable_for_thetas calculetes the number of all possible thetas
(characters) and the number of combinations for which signature function
equeles zero. In case the first number is larger than squere of the second,
eval_cable_for_thetas returns None (i.e. the knot can not be slice).
Data for knots that are candidates for slice knots are saved to a file.
"""
settings = MySettings()
def search_for_large_signature_value(knot_formula=None,
limit=None, verbose=None):
if limit is None:
limit = settings.default_limit
if knot_sum_formula is None:
knot_sum_formula = settings.knot_sum_formula
limit = config.default_limit
if knot_formula is None:
knot_formula = config.knot_formula
if verbose is None:
vebose = config.verbose
k_vector_size = extract_max(knot_sum_formula) + 1
combinations = it.combinations_with_replacement(range(1, limit + 1),
k_vector_size)
with open(settings.f_results, 'w') as f_results:
k_vector_size = extract_max(knot_formula) + 1
limit = max(limit, k_vector_size)
print limit
combinations = it.combinations(range(1, limit + 1), k_vector_size)
for k in combinations:
print
print k
# P = Primes()
# sage: P.unrank(0)
# 2
# sage: P.unrank(5)
# 13
# sage: P.unrank(42)
return None
with open(config.f_results, 'w') as f_results:
for k in combinations:
# print
# print k
if verbose:
print
print k
# TBD: maybe the following condition or the function
# get_shifted_combination should be redefined to a dynamic version
if settings.only_slice_candidates and k_vector_size == 5:
if config.only_slice_candidates and k_vector_size == 5:
k = get_shifted_combination(k)
# print k
knot_sum = eval(knot_sum_formula)
knot_sum = eval(knot_formula)
print "knot_sum"
print knot_sum
if is_trivial_combination(knot_sum):
if verbose:
print "\nTrivial combination" + str(knot_sum)
continue
result = eval_cable_for_thetas(knot_sum, print_results=False)
result = eval_cable_for_large_signature(knot_sum,
print_results=False)
if result is not None:
knot_description, null_comb, all_comb = result
line = (str(k) + ", " + str(null_comb) + ", " +
str(all_comb) + "\n")
f_results.write(line)
def eval_cable_for_large_signature(knot_sum, print_results=True, verbose=None):
if verbose is None:
verbose = config.verbose
if verbose:
print "\neval_cable_for_large_signature"
if len(knot_sum) != 4:
print "Wrong number of cable direct summands!"
return None
q = 2 * abs(knot_sum[-1][-1]) + 1
print "q is " + str(q)
f = get_function_of_theta_for_sum(*knot_sum, verbose=False)
knot_description = get_knot_descrption(*knot_sum)
all_combinations = get_number_of_combinations(*knot_sum)
null_combinations = 0
zero_theta_combinations = []
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
if verbose:
print "eval_cable_for_large_signature - knot_description: "
print knot_description
for v_theta in it.product(*ranges_list):
y = f(*v_theta).value(1/2)
print y
if abs(y) > 5 + np.count_nonzero(v_theta):
print "hura hura"
# == 0:
# zero_theta_combinations.append(v_theta)
# m = len([theta for theta in v_theta if theta != 0])
# null_combinations += 2^m
# else:
# assert sum(v_theta) != 0
if print_results:
print
print knot_description
print "Zero cases: " + str(null_combinations)
print "All cases: " + str(all_combinations)
if zero_theta_combinations:
print "Zero theta combinations: "
for el in zero_theta_combinations:
print el
if null_combinations^2 >= all_combinations:
return knot_description, null_combinations, all_combinations
return None
def search_for_null_signature_value(knot_formula=None, limit=None):
if limit is None:
limit = config.default_limit
if knot_formula is None:
knot_formula = config.knot_formula
k_vector_size = extract_max(knot_formula) + 1
combinations = it.combinations_with_replacement(range(1, limit + 1),
k_vector_size)
with open(config.f_results, 'w') as f_results:
for k in combinations:
# print
# print k
# TBD: maybe the following condition or the function
# get_shifted_combination should be redefined to a dynamic version
if confi.only_slice_candidates and k_vector_size == 5:
k = get_shifted_combination(k)
# print k
knot_sum = eval(knot_formula)
if is_trivial_combination(knot_sum):
continue
result = search_for_thetas(knot_sum, print_results=False)
if result is not None:
knot_description, null_comb, all_comb = result
line = (str(k) + ", " + str(null_comb) + ", " +
str(all_comb) + "\n")
f_results.write(line)
def search_for_thetas(knot_sum, print_results=False, verbose=None):
if verbose is None:
vebose = confi.verbose
if verbose:
print "search_for_thetas"
f = get_function_of_theta_for_sum(*knot_sum)
knot_description = get_knot_descrption(*knot_sum)
all_combinations = get_number_of_combinations(*knot_sum)
large_value_combinations = 0
good_theta_list = []
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
if verbose:
print "knot_description:"
print knot_description
for v_theta in it.product(*ranges_list):
if (v_theta[0]^2 - v_theta[1]^2 + v_theta[2]^2 - v_theta[3]^2) % q:
print "ojojoj"
print (v_theta[0]^2 - v_theta[1]^2 + v_theta[2]^2 - v_theta[3]^2) % q
continue
print f(*v_theta).value(-1)
if f(*v_theta).value(-1):
print "Hip hip hura"
good_theta_list.append(v_theta)
m = len([theta for theta in v_theta if theta != 0])
large_value_combinations += 2^m
else:
print "smuteczek"
# else:
# assert sum(v_theta) != 0
if print_results:
print
print knot_description
print "Zero cases: " + str(null_combinations)
print "All cases: " + str(all_combinations)
if zero_theta_combinations:
print "Zero theta combinations: "
for el in zero_theta_combinations:
print el
if null_combinations^2 >= all_combinations:
return knot_description, null_combinations, all_combinations
return None
def is_trivial_combination(knot_sum):
# for now is applicable only for schema that are sums of 4 cables
@ -279,19 +382,6 @@ def get_shifted_combination(combination):
def get_blanchfield_for_pattern(k_n, theta):
"""
Arguments:
k_n: a number s.t. q_n = 2 * k_n + 1, where
T(2, q_n) is a pattern knot for a single cable from a cable sum
theta: twist/character for the cable (value form v vector)
Return:
SignatureFunction created for twisted signature function
for a given cable and theta/character
Based on:
Proposition 9.8. in Twisted Blanchfield Pairing
(https://arxiv.org/pdf/1809.08791.pdf)
"""
if theta == 0:
a = get_untwisted_signature_function(k_n)
return a.square_root() + a.minus_square_root()
@ -322,28 +412,7 @@ def get_blanchfield_for_pattern(k_n, theta):
def get_cable_signature_as_theta_function(*arg):
"""
Argument:
n integers that encode a single cable, i.e.
values of q_i for T(2,q_0; 2,q_1; ... 2, q_n)
Return:
a function that returns SignatureFunction for this single cable
and a theta given as an argument
"""
def get_signture_function(theta):
"""
This function returns SignatureFunction for previously defined single
cable T_(2, q) and a theta given as an argument.
The cable was defined by calling function
get_cable_signature_as_theta_function(*arg)
with the cable description as an argument.
It is an implementaion of the formula:
Bl_theta(K'_(2, d)) =
Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t)
+ Bl(K')(ksi_l^theta * t)
"""
# TBD: another formula (for t^2) description
k_n = abs(arg[-1])
@ -368,6 +437,7 @@ def get_cable_signature_as_theta_function(*arg):
c = c.double_cover()
cable_signature += b + c
return cable_signature
get_signture_function.__doc__ = get_signture_function_docsting
return get_signture_function
@ -381,7 +451,232 @@ def get_untwisted_signature_function(j):
return SignatureFunction(w)
def get_function_of_theta_for_sum(*arg):
def get_function_of_theta_for_sum(*arg, **key_args):
if 'verbose' in key_args:
verbose_default = key_args['verbose']
else:
verbose_default = confi.verbose
def signature_function_for_sum(*thetas, **kwargs):
verbose = verbose_default
if 'verbose' in kwargs:
verbose = kwargs['verbose']
la = len(arg)
lt = len(thetas)
# call with no arguments
if lt == 0:
return signature_function_for_sum(*(la * [0]))
if lt != la:
msg = "This function takes exactly " + str(la) + \
" arguments or no argument at all (" + str(lt) + " given)."
raise TypeError(msg)
sf = SignatureFunction([(0, 0)])
# for each cable in cable sum apply theta
for i, knot in enumerate(arg):
try:
sf += (get_cable_signature_as_theta_function(*knot))(thetas[i])
# in case wrong theata value was given
except ValueError as e:
print "ValueError: " + str(e.args[0]) +\
" Please change " + str(i + 1) + ". parameter."
return None
if verbose:
print
print str(thetas)
print sf
return sf
signature_function_for_sum.__doc__ = signature_function_for_sum_docstring
return signature_function_for_sum
def eval_cable_for_null_signature(knot_sum, print_results=True, verbose=None):
# search for zero combinations
if verbose is None:
vebose = confi.verbose
f = get_function_of_theta_for_sum(*knot_sum, verbose=False)
knot_description = get_knot_descrption(*knot_sum)
all_combinations = get_number_of_combinations(*knot_sum)
null_combinations = 0
zero_theta_combinations = []
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
if verbose:
print
print knot_description
for v_theta in it.product(*ranges_list):
if f(*v_theta, verbose=False).sum_of_absolute_values() == 0:
zero_theta_combinations.append(v_theta)
m = len([theta for theta in v_theta if theta != 0])
null_combinations += 2^m
# else:
# assert sum(v_theta) != 0
if print_results:
print
print knot_description
print "Zero cases: " + str(null_combinations)
print "All cases: " + str(all_combinations)
if zero_theta_combinations:
print "Zero theta combinations: "
for el in zero_theta_combinations:
print el
if null_combinations^2 >= all_combinations:
return knot_description, null_combinations, all_combinations
return None
def check_squares(a, k):
print
p = 2 * k + 1
k_0 = (p^2 - 1)/2
knot_sum = [[a, k], [k_0], [-a, -k_0], [-k]]
print get_knot_descrption(*knot_sum)
if a * 4 >= p or is_trivial_combination(knot_sum):
if a * 4 >= p:
print str(knot_sum)
print "a * 4 >= p"
else:
print "Trivial " + str(knot_sum)
return None
eval_cable_for_null_signature(knot_sum)
def get_number_of_combinations(*arg):
number_of_combinations = 1
for knot in arg:
number_of_combinations *= (2 * abs(knot[-1]) + 1)
return number_of_combinations
def extract_max(string):
numbers = re.findall('\d+', string)
numbers = map(int, numbers)
return max(numbers)
def mod_one(n):
return n - floor(n)
def get_knot_descrption(*arg):
description = ""
for knot in arg:
if knot[0] < 0:
description += "-"
description += "T("
for k in knot:
description += "2, " + str(2 * abs(k) + 1) + "; "
description = description[:-2] + ") # "
return description[:-3]
get_blanchfield_for_pattern.__doc__ = \
"""
Arguments:
k_n: a number s.t. q_n = 2 * k_n + 1, where
T(2, q_n) is a pattern knot for a single cable from a cable sum
theta: twist/character for the cable (value form v vector)
Return:
SignatureFunction created for twisted signature function
for a given cable and theta/character
Based on:
Proposition 9.8. in Twisted Blanchfield Pairing
(https://arxiv.org/pdf/1809.08791.pdf)
"""
get_number_of_combinations.__doc__ = \
"""
Arguments:
arbitrary number of lists of numbers, each list encodes a single cable
Return:
number of possible theta values combinations that could be applied
for a given cable sum,
i.e. the product of q_j for j = {1,.. n},
where n is a number of direct components in the cable sum,
and q_j is the last q parameter for the component (a single cable)
"""
get_knot_descrption.__doc__ = \
"""
Arguments:
arbitrary number of lists of numbers, each list encodes a single cable.
Examples:
sage: get_knot_descrption([1, 3], [2], [-1, -2], [-3])
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
"""
mod_one.__doc__ = \
"""
Argument:
a number
Return:
the fractional part of the argument
Examples:
sage: mod_one(9 + 3/4)
3/4
sage: mod_one(-9 + 3/4)
3/4
sage: mod_one(-3/4)
1/4
"""
search_for_null_signature_value.__doc__ = \
"""
This function calculates signature functions for knots constracted
accordinga a schema for a cable sum. The schema is given as an argument
or defined in the class MySettings.
Results of calculations will be writen to a file and the stdout.
limit is the upper bound for the first value in k_vector,
i.e k[0] value in a cable sum, where q_0 = 2 * k[0] + 1.
(the number of knots that will be constracted depends on limit value).
For each knot/cable sum the function eval_cable_for_null_signature is called.
eval_cable_for_null_signature calculetes the number of all possible thetas
(characters) and the number of combinations for which signature function
equeles zero. In case the first number is larger than squere of the second,
eval_cable_for_null_signature returns None (i.e. the knot can not be slice).
Data for knots that are candidates for slice knots are saved to a file.
"""
extract_max.__doc__ = \
"""
Return:
maximum of absolute values of numbers from given string
Examples:
sage: extract_max("([1, 3], [2], [-1, -2], [-10])")
10
sage: extract_max("3, 55, ewewe, -42, 3300, 50")
3300
"""
eval_cable_for_null_signature.__doc__ = \
"""
This function calculates all possible twisted signature functions for
a knot that is given as an argument. The knot should be encoded as a list
of its direct component. Each component schould be presented as a list
of integers. This integers correspond to the k - values in each component/
cable. If a component is a mirror image of a cable the minus sign should
be written before each number for this component. For example:
eval_cable_for_null_signature([[1, 8], [2], [-2, -8], [-2]])
eval_cable_for_null_signature([[1, 2], [-1, -2]])
sage: eval_cable_for_null_signature([[1, 3], [2], [-1, -2], [-3]])
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
Zero cases: 1
All cases: 1225
Zero theta combinations:
(0, 0, 0, 0)
sage:
The numbers given to the function eval_cable_for_null_signature are k-values for each
component/cable in a direct sum.
"""
get_function_of_theta_for_sum.__doc__ = \
"""
Function intended to construct signature function for a connected
sum of multiple cables with varying theta parameter values.
@ -435,193 +730,84 @@ def get_function_of_theta_for_sum(*arg):
6/7: 0
"""
def signature_function_for_sum(*thetas, **kwargs):
"""
Arguments:
Returns object of SignatureFunction class for a previously defined
connected sum of len(arg) cables.
Acept len(arg) arguments: for each cable one theta parameter.
If call with no arguments, all theta parameters are set to be 0.
"""
if 'verbose' in kwargs:
verbose = kwargs['verbose']
else:
verbose = False
la = len(arg)
lt = len(thetas)
# call with no arguments
if lt == 0:
return signature_function_for_sum(*(la * [0]))
if lt != la:
msg = "This function takes exactly " + str(la) + \
" arguments or no argument at all (" + str(lt) + " given)."
raise TypeError(msg)
sf = SignatureFunction([(0, 0)])
# for each cable in cable sum apply theta
for i, knot in enumerate(arg):
try:
sf += (get_cable_signature_as_theta_function(*knot))(thetas[i])
# in case wrong theata value was given
except ValueError as e:
print "ValueError: " + str(e.args[0]) +\
" Please change " + str(i + 1) + ". parameter."
return None
if verbose:
print
print str(*thetas)
print sf
return sf
return signature_function_for_sum
def eval_cable_for_thetas(knot_sum, print_results=True, verbose=False):
"""
This function calculates all possible twisted signature functions for
a knot that is given as an argument. The knot should be encoded as a list
of its direct component. Each component schould be presented as a list
of integers. This integers correspond to the k - values in each component/
cable. If a component is a mirror image of a cable the minus sign should
be written before each number for this component. For example:
eval_cable_for_thetas([[1, 8], [2], [-2, -8], [-2]])
eval_cable_for_thetas([[1, 2], [-1, -2]])
sage: eval_cable_for_thetas([[1, 3], [2], [-1, -2], [-3]])
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
Zero cases: 1
All cases: 1225
Zero theta combinations:
(0, 0, 0, 0)
sage:
The numbers given to the function eval_cable_for_thetas are k-values for each
component/cable in a direct sum.
"""
f = get_function_of_theta_for_sum(*knot_sum)
knot_description = get_knot_descrption(*knot_sum)
all_combinations = get_number_of_combinations(*knot_sum)
null_combinations = 0
zero_theta_combinations = []
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
if verbose:
print
print knot_description
for v_theta in it.product(*ranges_list):
if f(*v_theta, verbose=verbose).sum_of_absolute_values() == 0:
zero_theta_combinations.append(v_theta)
m = len([theta for theta in v_theta if theta != 0])
null_combinations += 2^m
# else:
# assert sum(v_theta) != 0
if print_results:
print
print knot_description
print "Zero cases: " + str(null_combinations)
print "All cases: " + str(all_combinations)
if zero_theta_combinations:
print "Zero theta combinations: "
for el in zero_theta_combinations:
print el
if null_combinations^2 >= all_combinations:
return knot_description, null_combinations, all_combinations
return None
def check_squares(a, k):
print
p = 2 * k + 1
k_0 = (p^2 - 1)/2
knot_sum = [[a, k], [k_0], [-a, -k_0], [-k]]
print get_knot_descrption(*knot_sum)
if a * 4 >= p or is_trivial_combination(knot_sum):
if a * 4 >= p:
print str(knot_sum)
print "a * 4 >= p"
else:
print "Trivial " + str(knot_sum)
return None
eval_cable_for_thetas(knot_sum)
def get_number_of_combinations(*arg):
"""
Arguments:
arbitrary number of lists of numbers, each list encodes a single cable
Return:
number of possible theta values combinations that could be applied
for a given cable sum,
i.e. the product of q_j for j = {1,.. n},
where n is a number of direct components in the cable sum,
and q_j is the last q parameter for the component (a single cable)
"""
number_of_combinations = 1
for knot in arg:
number_of_combinations *= (2 * abs(knot[-1]) + 1)
return number_of_combinations
def extract_max(string):
"""
Return:
maximum of absolute values of numbers from given string
Examples:
sage: extract_max("([1, 3], [2], [-1, -2], [-10])")
10
sage: extract_max("3, 55, ewewe, -42, 3300, 50")
3300
"""
numbers = re.findall('\d+', string)
numbers = map(int, numbers)
return max(numbers)
def mod_one(n):
get_cable_signature_as_theta_function.__doc__ = \
"""
Argument:
a number
n integers that encode a single cable, i.e.
values of q_i for T(2,q_0; 2,q_1; ... 2, q_n)
Return:
the fractional part of the argument
Examples:
sage: mod_one(9 + 3/4)
3/4
sage: mod_one(-9 + 3/4)
3/4
sage: mod_one(-3/4)
1/4
a function that returns SignatureFunction for this single cable
and a theta given as an argument
"""
return n - floor(n)
get_signture_function_docsting = \
"""
This function returns SignatureFunction for previously defined single
cable T_(2, q) and a theta given as an argument.
The cable was defined by calling function
get_cable_signature_as_theta_function(*arg)
with the cable description as an argument.
It is an implementaion of the formula:
Bl_theta(K'_(2, d)) =
Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t)
+ Bl(K')(ksi_l^theta * t)
"""
def get_knot_descrption(*arg):
signature_function_for_sum_docstring = \
"""
Arguments:
arbitrary number of lists of numbers, each list encodes a single cable.
Examples:
sage: get_knot_descrption([1, 3], [2], [-1, -2], [-3])
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
Returns object of SignatureFunction class for a previously defined
connected sum of len(arg) cables.
Acept len(arg) arguments: for each cable one theta parameter.
If call with no arguments, all theta parameters are set to be 0.
"""
description = ""
for knot in arg:
if knot[0] < 0:
description += "-"
description += "T("
for k in knot:
description += "2, " + str(2 * abs(k) + 1) + "; "
description = description[:-2] + ") # "
return description[:-3]
main.__doc__ = \
"""
This function is run if the script was called from the terminal.
It calls another function, search_for_null_signature_value,
to calculate signature functions for a schema
of a cable sum defined in the class MySettings.
Optionaly a parameter (a limit for k_0 value) can be given.
Thought to be run for time consuming calculations.
"""
config = MySettings()
if __name__ == '__main__' and '__file__' in globals():
# not called in interactive mode as __file__ is not defined
main(sys.argv)
# def calculate_form(x, y, q4):
# x1, x2, x3, x4 = x
# y1, y2, y3, y4 = y
# form = (x1 * y1 - x2 * y2 + x3 * y3 - x4 * y4) % q_4
# # TBD change for ring modulo q_4
# return form
#
# def check_condition(v, q4):
# if calculate_form(v, v, q4):
# return False
# return True
#
# def find_v(q4):
# results = []
# for i in range(q4):
# for j in range(q4):
# for k in range(q4):
# for m in range(q4):
# if check_condition([i, j, k, m], q_4):
# results.add(v)
# return results
#
# def check_inequality(q, v):
# a1, a2, a3, a4 = v
# q1, q2, q3, q4 = q
# pattern = [q1, q2, q4],[-q2, -q4],[q3, q4],[-q1, -q3, -q4]
# signature_function_generator = get_function_of_theta_for_sum(pattern)
# signature_function_for_sum = signature_function_generator(a1, a2, a3, a4)
#
# # sigma_v = sigma(q4, a1) - s(a2) + s(a3) - s(a4)
#
#