docstings for few functions
This commit is contained in:
parent
e815de8846
commit
9b09a532a5
@ -1,13 +1,48 @@
|
||||
#!/usr/bin/python
|
||||
# TBD: remove part of the description to readme/example
|
||||
|
||||
def calculate_form(x, y, q4):
|
||||
x1, x2, x3, x4 = x
|
||||
y1, y2, y3, y4 = y
|
||||
form = (x1 * y1 - x2 * y2 + x3 * y3 - x4 * y4) % q_4
|
||||
# TBD change for ring modulo q_4
|
||||
return form
|
||||
|
||||
def check_condition(v, q4):
|
||||
form = calculate_form(v, v, q4)
|
||||
if form:
|
||||
return False
|
||||
return True
|
||||
|
||||
def find_v(q4):
|
||||
results = []
|
||||
for i in range(q4):
|
||||
for j in range(q4):
|
||||
for k in range(q4):
|
||||
for m in range(q4):
|
||||
if check_condition([i, j, k, m], q_4):
|
||||
results.add(v)
|
||||
return results
|
||||
|
||||
def check_inequality(q, v):
|
||||
a1, a2, a3, a4 = v
|
||||
q1, q2, q3, q4 = q
|
||||
pattern = [q1, q2, q4],[-q2, -q4],[q3, q4],[-q1, -q3, -q4]
|
||||
signature_function_generator = get_function_of_theta_for_sum(pattern)
|
||||
signature_function_for_sum = signature_function_generator(a1, a2, a3, a4)
|
||||
|
||||
# sigma_v = sigma(q4, a1) - s(a2) + s(a3) - s(a4)
|
||||
|
||||
|
||||
"""
|
||||
This script calculates signature functions for knots (cable sums).
|
||||
|
||||
The script can be run as a sage script from the terminal or used in interactive
|
||||
modeselfself.
|
||||
The script can be run as a sage script from the terminal
|
||||
or used in interactive mode.
|
||||
|
||||
A knot (cable sum) is encoded as a list where each element (also a list)
|
||||
corresponds to a cable knot.
|
||||
corresponds to a cable knot, e.g. a list
|
||||
[[1, 3], [2], [-1, -2], [-3]] encodes
|
||||
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7).
|
||||
|
||||
To calculate the number of characters for which signature function vanish use
|
||||
the function eval_cable_for_thetas as shown below.
|
||||
@ -26,48 +61,8 @@ sage:
|
||||
The numbers given to the function eval_cable_for_thetas are k-values for each
|
||||
component/cable in a direct sum.
|
||||
|
||||
|
||||
To calculate signature function for a knot and a theta value, use function
|
||||
get_function_of_theta_for_sum as follow:
|
||||
|
||||
sage: signature_function_generator = get_function_of_theta_for_sum([1, 3], [2], [-1, -2], [-3])
|
||||
sage: sf = signature_function_generator(2, 1, 2, 2)
|
||||
sage: print sf
|
||||
0: 0
|
||||
5/42: 1
|
||||
1/7: 0
|
||||
1/5: -1
|
||||
7/30: -1
|
||||
2/5: 1
|
||||
3/7: 0
|
||||
13/30: -1
|
||||
19/42: -1
|
||||
23/42: 1
|
||||
17/30: 1
|
||||
4/7: 0
|
||||
3/5: -1
|
||||
23/30: 1
|
||||
4/5: 1
|
||||
6/7: 0
|
||||
37/42: -1
|
||||
sage:
|
||||
|
||||
or like below:
|
||||
|
||||
sage: print get_function_of_theta_for_sum([1, 3], [2], [-1, -2], [-3])(2, 1, 2, 2)
|
||||
0: 0
|
||||
1/7: 0
|
||||
1/6: 0
|
||||
1/5: -1
|
||||
2/5: 1
|
||||
3/7: 0
|
||||
1/2: 0
|
||||
4/7: 0
|
||||
3/5: -1
|
||||
4/5: 1
|
||||
5/6: 0
|
||||
6/7: 0
|
||||
sage:
|
||||
get_function_of_theta_for_sum (see help/docstring for details).
|
||||
"""
|
||||
|
||||
import os
|
||||
@ -80,7 +75,6 @@ import pandas as pd
|
||||
import re
|
||||
|
||||
|
||||
|
||||
class MySettings(object):
|
||||
def __init__(self):
|
||||
self.f_results = os.path.join(os.getcwd(), "results.out")
|
||||
@ -94,6 +88,19 @@ class MySettings(object):
|
||||
# will be calculated
|
||||
self.knot_sum_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \
|
||||
[-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
|
||||
"""
|
||||
About notation:
|
||||
Cables that we work with follow a schema:
|
||||
T(2, q_0; 2, q_1; 2, q_2) # T(2, q_1; 2, q_2) #
|
||||
# -T(2, q_3; 2, q_2) # -T(2, q_0; 2, q_3; 2, q_2)
|
||||
In knot_sum_formula each k[i] is related with some q_i value, where
|
||||
q_i = 2*k[i] + 1.
|
||||
So we can work in the following steps:
|
||||
1) choose a schema/formula by changing the value of knot_sum_formula
|
||||
2) set each q_i all or choose range in which q_i should varry
|
||||
3) choose vector v / theata vector.
|
||||
|
||||
"""
|
||||
# self.knot_sum_formula = "[[k[0], k[1], k[2]], [k[3]],\
|
||||
# [-k[0], -k[1], -k[3]], [-k[2]]]"
|
||||
self.default_limit = 3
|
||||
@ -119,7 +126,6 @@ class SignatureFunction(object):
|
||||
"Signature function is defined on the interval [0, 1)."
|
||||
self.data[jump_arg] = jump
|
||||
|
||||
|
||||
def sum_of_absolute_values(self):
|
||||
return sum([abs(i) for i in self.data.values()])
|
||||
|
||||
@ -142,7 +148,6 @@ class SignatureFunction(object):
|
||||
def get_signture_jump(self, t):
|
||||
return self.data.get(t, 0)
|
||||
|
||||
|
||||
def minus_square_root(self):
|
||||
# to read values for t^(1/2)
|
||||
new_data = []
|
||||
@ -151,7 +156,6 @@ class SignatureFunction(object):
|
||||
new_data.append((mod_one(2 * jump_arg), jump))
|
||||
return SignatureFunction(new_data)
|
||||
|
||||
|
||||
def __lshift__(self, shift):
|
||||
# A shift of the signature functions corresponds to the rotation.
|
||||
return self.__rshift__(-shift)
|
||||
@ -187,19 +191,16 @@ class SignatureFunction(object):
|
||||
return ''.join([str(jump_arg) + ": " + str(jump) + "\n"
|
||||
for jump_arg, jump in sorted(self.data.items())])
|
||||
|
||||
def get_untwisted_signature():
|
||||
return 0
|
||||
|
||||
|
||||
def main(arg):
|
||||
"""
|
||||
This function is run if the script was called from the terminal.
|
||||
It calls another function to calculate signature functions for a schema
|
||||
It calls another function, perform_calculations,
|
||||
to calculate signature functions for a schema
|
||||
of a cable sum defined in the class MySettings.
|
||||
Optionaly a parameter (a limit for k_0 value) can be given.
|
||||
Thought to be run for time consuming calculations.
|
||||
"""
|
||||
|
||||
try:
|
||||
new_limit = int(arg[1])
|
||||
except:
|
||||
@ -212,10 +213,11 @@ def perform_calculations(knot_sum_formula=None, limit=None):
|
||||
This function calculates signature functions for knots constracted
|
||||
accordinga a schema for a cable sum. The schema is given as an argument
|
||||
or defined in the class MySettings.
|
||||
Results of calculations will be writen to a file and to the stdout.
|
||||
limit is the upper bound for the first value in k_vector, i.e first k value
|
||||
in a cable sum (the number of knots that will be constracted depends
|
||||
on limit value).
|
||||
Results of calculations will be writen to a file and the stdout.
|
||||
limit is the upper bound for the first value in k_vector,
|
||||
i.e k[0] value in a cable sum, where q_0 = 2 * k[0] + 1.
|
||||
|
||||
(the number of knots that will be constracted depends on limit value).
|
||||
For each knot/cable sum the function eval_cable_for_thetas is called.
|
||||
eval_cable_for_thetas calculetes the number of all possible thetas
|
||||
(characters) and the number of combinations for which signature function
|
||||
@ -313,14 +315,18 @@ def get_blanchfield_for_pattern(k_n, theta):
|
||||
|
||||
def get_cable_signature_as_theta_function(*arg):
|
||||
"""
|
||||
This function takes as an argument a single cable and returns another
|
||||
function that alow to calculate signature function for previously defined
|
||||
cable and a theta given as an argument.
|
||||
This function takes as an argument a single cable T_(2, q), i.e.
|
||||
arbitrary number of integers that encode the cable,
|
||||
and returns another function that alow to calculate signature function
|
||||
for this single cable and a theta given as an argument.
|
||||
"""
|
||||
def get_signture_function(theta):
|
||||
"""
|
||||
This function returns SignatureFunction for previously defined cable
|
||||
and a theta given as an argument.
|
||||
This function returns SignatureFunction for previously defined single
|
||||
cable T_(2, q) and a theta given as an argument.
|
||||
The cable was defined by calling function
|
||||
get_cable_signature_as_theta_function(*arg)
|
||||
with the cable description as an argument.
|
||||
It is an implementaion of the formula:
|
||||
Bl_theta(K'_(2, d)) =
|
||||
Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t)
|
||||
@ -362,7 +368,7 @@ def get_untwisted_signature_function(j):
|
||||
|
||||
def get_function_of_theta_for_sum(*arg):
|
||||
"""
|
||||
Function intended to calculate signature function for a connected
|
||||
Function intended to construct signature function for a connected
|
||||
sum of multiple cables with varying theta parameter values.
|
||||
Accept arbitrary number of arguments (depending on number of cables in
|
||||
connected sum).
|
||||
@ -371,6 +377,47 @@ def get_function_of_theta_for_sum(*arg):
|
||||
T(2, 2k_i + 1) and - the last one - k_n for a pattern knot T(2, 2k_n + 1).
|
||||
Returns a function that will take theta vector as an argument and return
|
||||
an object SignatureFunction.
|
||||
|
||||
To calculate signature function for a cable sum and a theta values vector,
|
||||
use as below.
|
||||
|
||||
sage: signature_function_generator = get_function_of_theta_for_sum(
|
||||
[1, 3], [2], [-1, -2], [-3])
|
||||
sage: sf = signature_function_generator(2, 1, 2, 2)
|
||||
sage: print sf
|
||||
0: 0
|
||||
5/42: 1
|
||||
1/7: 0
|
||||
1/5: -1
|
||||
7/30: -1
|
||||
2/5: 1
|
||||
3/7: 0
|
||||
13/30: -1
|
||||
19/42: -1
|
||||
23/42: 1
|
||||
17/30: 1
|
||||
4/7: 0
|
||||
3/5: -1
|
||||
23/30: 1
|
||||
4/5: 1
|
||||
6/7: 0
|
||||
37/42: -1
|
||||
|
||||
Or like below.
|
||||
sage: print get_function_of_theta_for_sum([1, 3], [2], [-1, -2], [-3]
|
||||
)(2, 1, 2, 2)
|
||||
0: 0
|
||||
1/7: 0
|
||||
1/6: 0
|
||||
1/5: -1
|
||||
2/5: 1
|
||||
3/7: 0
|
||||
1/2: 0
|
||||
4/7: 0
|
||||
3/5: -1
|
||||
4/5: 1
|
||||
5/6: 0
|
||||
6/7: 0
|
||||
"""
|
||||
|
||||
def signature_function_for_sum(*thetas, **kwargs):
|
||||
@ -387,16 +434,23 @@ def get_function_of_theta_for_sum(*arg):
|
||||
|
||||
la = len(arg)
|
||||
lt = len(thetas)
|
||||
|
||||
# call with no arguments
|
||||
if lt == 0:
|
||||
return signature_function_for_sum(*(la * [0]))
|
||||
|
||||
if lt != la:
|
||||
msg = "This function takes exactly " + str(la) + \
|
||||
" arguments or no argument at all (" + str(lt) + " given)."
|
||||
raise TypeError(msg)
|
||||
|
||||
sf = SignatureFunction([(0, 0)])
|
||||
|
||||
# for each cable in cable sum apply theta
|
||||
for i, knot in enumerate(arg):
|
||||
try:
|
||||
sf += (get_cable_signature_as_theta_function(*knot))(thetas[i])
|
||||
# in case wrong theata value was given
|
||||
except ValueError as e:
|
||||
print "ValueError: " + str(e.args[0]) +\
|
||||
" Please change " + str(i + 1) + ". parameter."
|
||||
@ -419,6 +473,20 @@ def eval_cable_for_thetas(knot_sum, print_results=True, verbose=False):
|
||||
be written before each number for this component. For example:
|
||||
eval_cable_for_thetas([[1, 8], [2], [-2, -8], [-2]])
|
||||
eval_cable_for_thetas([[1, 2], [-1, -2]])
|
||||
|
||||
sage: eval_cable_for_thetas([[1, 3], [2], [-1, -2], [-3]])
|
||||
|
||||
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
|
||||
Zero cases: 1
|
||||
All cases: 1225
|
||||
Zero theta combinations:
|
||||
(0, 0, 0, 0)
|
||||
|
||||
sage:
|
||||
The numbers given to the function eval_cable_for_thetas are k-values for each
|
||||
component/cable in a direct sum.
|
||||
|
||||
|
||||
"""
|
||||
f = get_function_of_theta_for_sum(*knot_sum)
|
||||
knot_description = get_knot_descrption(*knot_sum)
|
||||
@ -453,18 +521,6 @@ def eval_cable_for_thetas(knot_sum, print_results=True, verbose=False):
|
||||
return None
|
||||
|
||||
|
||||
def get_knot_descrption(*arg):
|
||||
description = ""
|
||||
for knot in arg:
|
||||
if knot[0] < 0:
|
||||
description += "-"
|
||||
description += "T("
|
||||
for k in knot:
|
||||
description += "2, " + str(2 * abs(k) + 1) + "; "
|
||||
description = description[:-2] + ") # "
|
||||
return description[:-3]
|
||||
|
||||
|
||||
def check_squares(a, k):
|
||||
print
|
||||
p = 2 * k + 1
|
||||
@ -483,6 +539,16 @@ def check_squares(a, k):
|
||||
|
||||
|
||||
def get_number_of_combinations(*arg):
|
||||
"""
|
||||
Arguments:
|
||||
arbitrary number of lists of numbers, each list encodes a single cable.
|
||||
Return:
|
||||
number of possible theta values combinations that could be applied
|
||||
for a given cable sum,
|
||||
i.e. the product of q_j for j = {1,.. n},
|
||||
where n is a number of direct components in the cable sum,
|
||||
and q_j is the last q parameter for the component (a single cable).
|
||||
"""
|
||||
number_of_combinations = 1
|
||||
for knot in arg:
|
||||
number_of_combinations *= (2 * abs(knot[-1]) + 1)
|
||||
@ -490,16 +556,56 @@ def get_number_of_combinations(*arg):
|
||||
|
||||
|
||||
def extract_max(string):
|
||||
"""This function returns maximal number from given string."""
|
||||
"""
|
||||
Return:
|
||||
maximum of absolute values of numbers from given string
|
||||
Examples:
|
||||
sage: extract_max("([1, 3], [2], [-1, -2], [-10])")
|
||||
10
|
||||
sage: extract_max("3, 55, ewewe, -42, 3300, 50")
|
||||
3300
|
||||
"""
|
||||
numbers = re.findall('\d+', string)
|
||||
numbers = map(int, numbers)
|
||||
return max(numbers)
|
||||
|
||||
|
||||
def mod_one(n):
|
||||
"""This function returns the fractional part of some number."""
|
||||
"""
|
||||
Argument:
|
||||
a number
|
||||
Return:
|
||||
the fractional part of a number
|
||||
Examples:
|
||||
sage: mod_one(9 + 3/4)
|
||||
3/4
|
||||
sage: mod_one(-9 + 3/4)
|
||||
3/4
|
||||
sage: mod_one(-3/4)
|
||||
1/4
|
||||
"""
|
||||
return n - floor(n)
|
||||
|
||||
|
||||
def get_knot_descrption(*arg):
|
||||
"""
|
||||
Arguments:
|
||||
arbitrary number of lists of numbers, each list encodes a single cable.
|
||||
Examples:
|
||||
sage: get_knot_descrption([1, 3], [2], [-1, -2], [-3])
|
||||
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
|
||||
"""
|
||||
description = ""
|
||||
for knot in arg:
|
||||
if knot[0] < 0:
|
||||
description += "-"
|
||||
description += "T("
|
||||
for k in knot:
|
||||
description += "2, " + str(2 * abs(k) + 1) + "; "
|
||||
description = description[:-2] + ") # "
|
||||
return description[:-3]
|
||||
|
||||
|
||||
if __name__ == '__main__' and '__file__' in globals():
|
||||
# not called in interactive mode as __file__ is not defined
|
||||
main(sys.argv)
|
||||
|
Loading…
Reference in New Issue
Block a user