Switch to Python 3. Dictionary is replaced by counter almost everywhere. Tests to each rpelacement.
This commit is contained in:
parent
c7c16ab4c0
commit
9b68822357
@ -9,7 +9,6 @@ import sys
|
||||
import collections
|
||||
import inspect
|
||||
import itertools as it
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import re
|
||||
|
||||
@ -34,17 +33,17 @@ class Config(object):
|
||||
self.verbose = False
|
||||
|
||||
self.print_calculations_for_small_signature = True
|
||||
# self.print_calculations_for_small_signature = False
|
||||
self.print_calculations_for_small_signature = False
|
||||
|
||||
|
||||
self.print_calculations_for_large_signature = True
|
||||
# self.print_calculations_for_large_signature = False
|
||||
self.print_calculations_for_large_signature = False
|
||||
|
||||
|
||||
# is the ratio restriction for values in k_vector taken into account
|
||||
# False flag is usefull to make quick script tests
|
||||
self.only_slice_candidates = True
|
||||
self.only_slice_candidates = False
|
||||
# self.only_slice_candidates = False
|
||||
|
||||
self.stop_after_firts_large_signature = True
|
||||
self.stop_after_firts_large_signature = False
|
||||
@ -64,29 +63,45 @@ class SignatureFunction(object):
|
||||
def __init__(self, values=[], counter=collections.Counter()):
|
||||
# set values of signature jumps
|
||||
self.signature_jumps = collections.defaultdict(int, counter)
|
||||
self.counter_signature_jumps = counter
|
||||
self.cnt_signature_jumps = counter
|
||||
if not counter:
|
||||
for jump_arg, jump in values:
|
||||
assert 0 <= jump_arg < 1, \
|
||||
"Signature function is defined on the interval [0, 1)."
|
||||
self.signature_jumps[jump_arg] = jump
|
||||
self.counter_signature_jumps = collections.Counter(self.signature_jumps)
|
||||
self.cnt_signature_jumps = collections.Counter(self.signature_jumps)
|
||||
|
||||
def sum_of_absolute_values(self):
|
||||
return sum([abs(i) for i in self.signature_jumps.values()])
|
||||
result = sum([abs(i) for i in self.signature_jumps.values()])
|
||||
test = sum([abs(i) for i in self.cnt_signature_jumps.values()])
|
||||
assert test == result
|
||||
return result
|
||||
|
||||
def is_zero_everywhere(self):
|
||||
result = not any(self.signature_jumps.values())
|
||||
assert result == (not any(self.counter_signature_jumps.values()))
|
||||
assert result == (not any(self.cnt_signature_jumps.values()))
|
||||
if self.sum_of_absolute_values():
|
||||
assert result == False
|
||||
else:
|
||||
assert result == True
|
||||
return result
|
||||
|
||||
def double_cover(self):
|
||||
# to read values for t^2
|
||||
new_data = []
|
||||
for jump_arg, jump in self.signature_jumps.items():
|
||||
new_data.append((mod_one(jump_arg/2), jump))
|
||||
new_data.append((mod_one(1/2 + jump_arg/2), jump))
|
||||
return SignatureFunction(new_data)
|
||||
new_data.append((jump_arg/2, jump))
|
||||
new_data.append((1/2 + jump_arg/2, jump))
|
||||
|
||||
t_data = []
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
t_data.append((jump_arg/2, jump))
|
||||
t_data.append((1/2 + jump_arg/2, jump))
|
||||
|
||||
sf = SignatureFunction(t_data)
|
||||
a = SignatureFunction(new_data)
|
||||
assert a == sf
|
||||
return sf
|
||||
|
||||
def square_root(self):
|
||||
# to read values for t^(1/2)
|
||||
@ -94,34 +109,58 @@ class SignatureFunction(object):
|
||||
for jump_arg, jump in self.signature_jumps.items():
|
||||
if jump_arg < 1/2:
|
||||
new_data.append((2 * jump_arg, jump))
|
||||
return SignatureFunction(new_data)
|
||||
|
||||
t_data = []
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
if jump_arg < 1/2:
|
||||
t_data.append((2 * jump_arg, jump))
|
||||
|
||||
sf = SignatureFunction(t_data)
|
||||
a = SignatureFunction(new_data)
|
||||
assert a == sf
|
||||
return sf
|
||||
|
||||
def minus_square_root(self):
|
||||
# to read values for t^(1/2)
|
||||
new_data = []
|
||||
for jump_arg, jump in self.signature_jumps.items():
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
if jump_arg >= 1/2:
|
||||
new_data.append((mod_one(2 * jump_arg), jump))
|
||||
return SignatureFunction(new_data)
|
||||
t_data = []
|
||||
for jump_arg, jump in self.signature_jumps.items():
|
||||
if jump_arg >= 1/2:
|
||||
t_data.append((mod_one(2 * jump_arg), jump))
|
||||
a = SignatureFunction(t_data)
|
||||
sf = SignatureFunction(new_data)
|
||||
assert a == sf
|
||||
return sf
|
||||
|
||||
def __lshift__(self, shift):
|
||||
# A shift of the signature functions corresponds to the rotation.
|
||||
return self.__rshift__(-shift)
|
||||
|
||||
def __rshift__(self, shift):
|
||||
new_data = []
|
||||
t_data = []
|
||||
for jump_arg, jump in self.signature_jumps.items():
|
||||
t_data.append((mod_one(jump_arg + shift), jump))
|
||||
new_data = []
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
new_data.append((mod_one(jump_arg + shift), jump))
|
||||
return SignatureFunction(new_data)
|
||||
sf = SignatureFunction(new_data)
|
||||
a = SignatureFunction(t_data)
|
||||
assert a == sf
|
||||
return sf
|
||||
|
||||
def __neg__(self):
|
||||
# we can perform arithmetic operations on signature functions.
|
||||
new_data = []
|
||||
for jump_arg, jump in self.signature_jumps.items():
|
||||
new_data.append((jump_arg, -jump))
|
||||
sf = SignatureFunction(new_data)
|
||||
return SignatureFunction(new_data)
|
||||
a = SignatureFunction(new_data)
|
||||
counter = collections.Counter()
|
||||
counter.subtract(self.cnt_signature_jumps)
|
||||
sf = SignatureFunction(counter=counter)
|
||||
assert a == sf
|
||||
return sf
|
||||
|
||||
# TBD short
|
||||
def __add__(self, other):
|
||||
@ -132,15 +171,21 @@ class SignatureFunction(object):
|
||||
if jump_arg not in new_data.keys():
|
||||
new_data[jump_arg] = self.signature_jumps[jump_arg]
|
||||
|
||||
counter = collections.Counter()
|
||||
counter.update(self.counter_signature_jumps)
|
||||
counter.update(other.counter_signature_jumps)
|
||||
counter = copy(self.cnt_signature_jumps)
|
||||
counter.update(other.cnt_signature_jumps)
|
||||
assert collections.defaultdict(int, counter) == new_data
|
||||
return SignatureFunction(counter=counter)
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.cnt_signature_jumps == other.cnt_signature_jumps
|
||||
|
||||
def __sub__(self, other):
|
||||
return self + other.__neg__()
|
||||
a = self + other.__neg__()
|
||||
counter = copy(self.cnt_signature_jumps)
|
||||
counter.subtract(other.cnt_signature_jumps)
|
||||
sf = SignatureFunction(counter=counter)
|
||||
assert a == sf
|
||||
return sf
|
||||
|
||||
def __str__(self):
|
||||
return ''.join([str(jump_arg) + ": " + str(jump) + "\n"
|
||||
@ -154,13 +199,21 @@ class SignatureFunction(object):
|
||||
def __call__(self, arg):
|
||||
# Compute the value of the signature function at the point arg.
|
||||
# This requires summing all signature jumps that occur before arg.
|
||||
assert 0 <= arg and arg < 1
|
||||
arg = mod_one(arg)
|
||||
val = 0
|
||||
for jump_arg, jump in self.signature_jumps.items():
|
||||
if jump_arg < arg:
|
||||
val += 2 * jump
|
||||
elif jump_arg == arg:
|
||||
val += jump
|
||||
result = 0
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
if jump_arg < arg:
|
||||
result += 2 * jump
|
||||
elif jump_arg == arg:
|
||||
result += jump
|
||||
|
||||
assert val == result
|
||||
return val
|
||||
|
||||
|
||||
@ -199,7 +252,7 @@ def search_for_large_signature_value(knot_formula=None,
|
||||
k[2] > 4 * k[1] and
|
||||
k[1] > 4 * k[0]):
|
||||
if verbose:
|
||||
print "Ratio-condition does not hold"
|
||||
print("Ratio-condition does not hold")
|
||||
continue
|
||||
result = eval_cable_for_large_signature(k_vector=k,
|
||||
knot_formula=knot_formula,
|
||||
@ -220,7 +273,7 @@ def eval_cable_for_large_signature(k_vector=None,
|
||||
if k_vector is None:
|
||||
if q_vector is None:
|
||||
# TBD docstring
|
||||
print "Please give a list of k (k_vector) or q values (q_vector)."
|
||||
print("Please give a list of k (k_vector) or q values (q_vector).")
|
||||
|
||||
k = k_vector
|
||||
knot_sum = eval(knot_formula)
|
||||
@ -231,15 +284,17 @@ def eval_cable_for_large_signature(k_vector=None,
|
||||
ksi = 1/q_4
|
||||
|
||||
if verbose:
|
||||
print "\n\n"
|
||||
print 100 * "*"
|
||||
print "Searching for a large signature values for the cable sum: "
|
||||
print knot_description
|
||||
print("\n\n")
|
||||
print(100 * "*")
|
||||
print("Searching for a large signature values for the cable sum: ")
|
||||
print(knot_description)
|
||||
|
||||
if len(knot_sum) != 4:
|
||||
print "Wrong number of cable direct summands!"
|
||||
print("Wrong number of cable direct summands!")
|
||||
return None
|
||||
|
||||
large_sigma_for_all_v_comninations = True
|
||||
good_knots = [("nic")]
|
||||
# iteration over all possible character combinations
|
||||
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
|
||||
for v_theta in it.product(*ranges_list):
|
||||
@ -254,9 +309,15 @@ def eval_cable_for_large_signature(k_vector=None,
|
||||
if (theta_squers[0] - theta_squers[1] +
|
||||
theta_squers[2] - theta_squers[3]) % q_4:
|
||||
if verbose:
|
||||
print "The condition is not satisfied: " + \
|
||||
str(condition) + " != 0."
|
||||
print("The condition is not satisfied: " + \
|
||||
str(condition) + " != 0.")
|
||||
continue
|
||||
if v_theta[0] == v_theta[1] == v_theta[2] == v_theta[3] == 0:
|
||||
print("\nSkip")
|
||||
continue
|
||||
if v_theta[0] == v_theta[1] == v_theta[2] == v_theta[3]:
|
||||
print("\nall v == a")
|
||||
|
||||
|
||||
# T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
||||
# # T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
||||
@ -266,12 +327,12 @@ def eval_cable_for_large_signature(k_vector=None,
|
||||
sigma_q_2 = get_untwisted_signature_function(k_2)
|
||||
sigma_q_3 = get_untwisted_signature_function(k_3)
|
||||
a_1, a_2, a_3, a_4 = v_theta
|
||||
untwisted_part = 2 * (sigma_q_2(mod_one(ksi * a_1)) +
|
||||
sigma_q_1(mod_one(ksi * a_1 * 2)) -
|
||||
sigma_q_2(mod_one(ksi * a_2)) +
|
||||
sigma_q_3(mod_one(ksi * a_3)) -
|
||||
sigma_q_3(mod_one(ksi * a_4)) -
|
||||
sigma_q_1(mod_one(ksi * a_4 * 2)))
|
||||
untwisted_part = 2 * (sigma_q_2(ksi * a_1) +
|
||||
sigma_q_1(ksi * a_1 * 2) -
|
||||
sigma_q_2(ksi * a_2) +
|
||||
sigma_q_3(ksi * a_3) -
|
||||
sigma_q_3(ksi * a_4) -
|
||||
sigma_q_1(ksi * a_4 * 2))
|
||||
|
||||
# "twisted" part
|
||||
tp = [0, 0, 0, 0]
|
||||
@ -281,48 +342,57 @@ def eval_cable_for_large_signature(k_vector=None,
|
||||
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
||||
assert twisted_part == int(twisted_part)
|
||||
|
||||
# y = f(*v_theta)(1/2)
|
||||
sigma_v = untwisted_part + twisted_part
|
||||
if abs(sigma_v) > 5 + np.count_nonzero(v_theta):
|
||||
if config.print_calculations_for_large_signature:
|
||||
print "*" * 100
|
||||
print "\n\nLarge signature value\n"
|
||||
print knot_description
|
||||
print "\nv_theta: ",
|
||||
print v_theta
|
||||
print "k values: ",
|
||||
print str(k_1) + " " + str(k_2) + " " + \
|
||||
str(k_3) + " " + str(k_4)
|
||||
print condition
|
||||
print "non zero value in v_theta: " + \
|
||||
str(np.count_nonzero(v_theta))
|
||||
print "sigma_v: " + str(sigma_v)
|
||||
print "\ntwisted_part: ",
|
||||
print twisted_part
|
||||
print "untwisted_part: ",
|
||||
print untwisted_part
|
||||
print "\n\nCALCULATIONS"
|
||||
print "*" * 100
|
||||
print("*" * 100)
|
||||
print("\n\nLarge signature value\n")
|
||||
print(knot_description)
|
||||
print("\nv_theta: ", end="")
|
||||
print(v_theta)
|
||||
print("k values: ", end="")
|
||||
print(str(k_1) + " " + str(k_2) + " " + \
|
||||
str(k_3) + " " + str(k_4))
|
||||
print(condition)
|
||||
print("non zero value in v_theta: " + \
|
||||
str(np.count_nonzero(v_theta)))
|
||||
print("sigma_v: " + str(sigma_v))
|
||||
print("\ntwisted_part: ", end="")
|
||||
print(twisted_part)
|
||||
print("untwisted_part: ", end="")
|
||||
print(untwisted_part)
|
||||
print("\n\nCALCULATIONS")
|
||||
print("*" * 100)
|
||||
print_results_LT(v_theta, knot_description,
|
||||
ksi, untwisted_part,
|
||||
k, sigma_q_1, sigma_q_2, sigma_q_3)
|
||||
print_results_sigma(v_theta, knot_description, tp, q_4)
|
||||
print "*" * 100 + "\n" * 5
|
||||
print("*" * 100 + "\n" * 5)
|
||||
else:
|
||||
print knot_description + "\t" + str(v_theta) +\
|
||||
"\t" + str(sigma_v)
|
||||
print(knot_description + "\t" + str(v_theta) +\
|
||||
"\t" + str(sigma_v))
|
||||
if config.stop_after_firts_large_signature:
|
||||
break
|
||||
else:
|
||||
if config.print_calculations_for_small_signature:
|
||||
print "\n" * 5 + "*" * 100
|
||||
print "\nSmall signature value\n"
|
||||
print knot_description
|
||||
print("\n" * 5 + "*" * 100)
|
||||
print("\nSmall signature value\n")
|
||||
print(knot_description)
|
||||
print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
||||
k, sigma_q_1, sigma_q_2, sigma_q_3)
|
||||
print_results_sigma(v_theta, knot_description, tp, q_4)
|
||||
print "*" * 100 + "\n" * 5
|
||||
print("*" * 100 + "\n" * 5)
|
||||
else:
|
||||
print(knot_description + "\t" + str(v_theta) +\
|
||||
"\t" + str(sigma_v))
|
||||
|
||||
large_sigma_for_all_v_comninations = False
|
||||
print("ojojojoj")
|
||||
break
|
||||
|
||||
if large_sigma_for_all_v_comninations:
|
||||
print("\n\n\nHura hura")
|
||||
good_knots.append((knot_description, v_theta))
|
||||
|
||||
# else:
|
||||
# print "\n\tSmall signature value"
|
||||
@ -331,18 +401,18 @@ def eval_cable_for_large_signature(k_vector=None,
|
||||
# print condition
|
||||
# print "non zero value in v_theta: " + str(np.count_nonzero(v_theta))
|
||||
# print "signature at 1/2: " + str(y)
|
||||
return None
|
||||
return good_knots
|
||||
|
||||
|
||||
def print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
||||
k, sigma_q_1, sigma_q_2, sigma_q_3):
|
||||
a_1, a_2, a_3, a_4 = v_theta
|
||||
k_1, k_2, k_3, k_4 = [abs(i) for i in k]
|
||||
print "\n\nLevine-Tristram signatures for the cable sum: "
|
||||
print knot_description
|
||||
print "and characters:\n" + str(v_theta) + ","
|
||||
print "ksi = " + str(ksi)
|
||||
print "\n\n2 * (sigma_q_2(ksi * a_1) + " + \
|
||||
print("\n\nLevine-Tristram signatures for the cable sum: ")
|
||||
print(knot_description)
|
||||
print("and characters:\n" + str(v_theta) + ",")
|
||||
print("ksi = " + str(ksi))
|
||||
print("\n\n2 * (sigma_q_2(ksi * a_1) + " + \
|
||||
"sigma_q_1(ksi * a_1 * 2) - " +\
|
||||
"sigma_q_2(ksi * a_2) + " +\
|
||||
"sigma_q_3(ksi * a_3) - " +\
|
||||
@ -376,71 +446,71 @@ def print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
||||
str(mod_one(ksi * a_4 * 2)) + \
|
||||
\
|
||||
") = \n\n2 * ((" + \
|
||||
str(sigma_q_2(mod_one(ksi * a_1))) + \
|
||||
str(sigma_q_2(ksi * a_1)) + \
|
||||
") + (" + \
|
||||
str(sigma_q_1(mod_one(ksi * a_1 * 2))) + \
|
||||
str(sigma_q_1(ksi * a_1 * 2)) + \
|
||||
") - (" + \
|
||||
str(sigma_q_2(mod_one(ksi * a_2))) + \
|
||||
str(sigma_q_2(ksi * a_2)) + \
|
||||
") + (" + \
|
||||
str(sigma_q_3(mod_one(ksi * a_3))) + \
|
||||
str(sigma_q_3(ksi * a_3)) + \
|
||||
") - (" + \
|
||||
str(sigma_q_3(mod_one(ksi * a_4))) + \
|
||||
str(sigma_q_3(ksi * a_4)) + \
|
||||
") - (" + \
|
||||
str(sigma_q_1(mod_one(ksi * a_4 * 2))) + ")) = " + \
|
||||
str(sigma_q_1(ksi * a_4 * 2)) + ")) = " + \
|
||||
"\n\n2 * (" + \
|
||||
str(sigma_q_2(mod_one(ksi * a_1)) +
|
||||
sigma_q_1(mod_one(ksi * a_1 * 2)) -
|
||||
sigma_q_2(mod_one(ksi * a_2)) +
|
||||
sigma_q_3(mod_one(ksi * a_3)) -
|
||||
sigma_q_3(mod_one(ksi * a_4)) -
|
||||
sigma_q_1(mod_one(ksi * a_4 * 2))) + \
|
||||
") = " + str(untwisted_part)
|
||||
print "\nSignatures:"
|
||||
print "\nq_1 = " + str(2 * k_1 + 1) + ": " + repr(sigma_q_1)
|
||||
print "\nq_2 = " + str(2 * k_2 + 1) + ": " + repr(sigma_q_2)
|
||||
print "\nq_3 = " + str(2 * k_3 + 1) + ": " + repr(sigma_q_3)
|
||||
str(sigma_q_2(ksi * a_1) +
|
||||
sigma_q_1(ksi * a_1 * 2) -
|
||||
sigma_q_2(ksi * a_2) +
|
||||
sigma_q_3(ksi * a_3) -
|
||||
sigma_q_3(ksi * a_4) -
|
||||
sigma_q_1(ksi * a_4 * 2)) + \
|
||||
") = " + str(untwisted_part))
|
||||
print("\nSignatures:")
|
||||
print("\nq_1 = " + str(2 * k_1 + 1) + ": " + repr(sigma_q_1))
|
||||
print("\nq_2 = " + str(2 * k_2 + 1) + ": " + repr(sigma_q_2))
|
||||
print("\nq_3 = " + str(2 * k_3 + 1) + ": " + repr(sigma_q_3))
|
||||
|
||||
|
||||
def print_results_sigma(v_theta, knot_description, tp, q_4):
|
||||
a_1, a_2, a_3, a_4 = v_theta
|
||||
|
||||
print "\n\nSigma values for the cable sum: "
|
||||
print knot_description
|
||||
print "and characters: " + str(v_theta)
|
||||
print "\nsigma(T_{2, q_4}, ksi_a) = " + \
|
||||
print("\n\nSigma values for the cable sum: ")
|
||||
print(knot_description)
|
||||
print("and characters: " + str(v_theta))
|
||||
print("\nsigma(T_{2, q_4}, ksi_a) = " + \
|
||||
"-q + (2 * a * (q_4 - a)/q_4) " +\
|
||||
"= -q + 2 * a - 2 * a^2/q_4 if a != 0,\n\t\t\t" +\
|
||||
" = 0 if a == 0."
|
||||
print "\nsigma(T_{2, q_4}, chi_a_1) = ",
|
||||
" = 0 if a == 0.")
|
||||
print("\nsigma(T_{2, q_4}, chi_a_1) = ", end="")
|
||||
if a_1:
|
||||
print "- (" + str(q_4) + ") + 2 * " + str(a_1) + " + " +\
|
||||
print("- (" + str(q_4) + ") + 2 * " + str(a_1) + " + " +\
|
||||
"- 2 * " + str(a_1^2) + "/" + str(q_4) + \
|
||||
" = " + str(tp[0])
|
||||
" = " + str(tp[0]))
|
||||
else:
|
||||
print "0"
|
||||
print "\nsigma(T_{2, q_4}, chi_a_2) = ",
|
||||
print("0")
|
||||
print("\nsigma(T_{2, q_4}, chi_a_2) = ", end ="")
|
||||
if a_2:
|
||||
print "- (" + str(q_4) + ") + 2 * " + str(a_2) + " + " +\
|
||||
print("- (" + str(q_4) + ") + 2 * " + str(a_2) + " + " +\
|
||||
"- 2 * " + str(a_2^2) + "/" + str(q_4) + \
|
||||
" = " + str(tp[1])
|
||||
" = " + str(tp[1]))
|
||||
else:
|
||||
print "0",
|
||||
print "\nsigma(T_{2, q_4}, chi_a_3) = ",
|
||||
print("0", end="")
|
||||
print("\nsigma(T_{2, q_4}, chi_a_3) = ", end="")
|
||||
if a_3:
|
||||
print "- (" + str(q_4) + ") + 2 * " + str(a_3) + " + " +\
|
||||
print("- (" + str(q_4) + ") + 2 * " + str(a_3) + " + " +\
|
||||
"- 2 * " + str(a_3^2) + "/" + str(q_4) + \
|
||||
" = " + str(tp[2])
|
||||
" = " + str(tp[2]))
|
||||
else:
|
||||
print "0",
|
||||
print "\nsigma(T_{2, q_4}, chi_a_4) = ",
|
||||
print("0", end="")
|
||||
print("\nsigma(T_{2, q_4}, chi_a_4) = ", end="")
|
||||
if a_4:
|
||||
print "- (" + str(q_4) + ") + 2 * " + str(a_4) + " + " +\
|
||||
print("- (" + str(q_4) + ") + 2 * " + str(a_4) + " + " +\
|
||||
"- 2 * " + str(a_4^2) + "/" + str(q_4) + \
|
||||
" = " + str(tp[3])
|
||||
" = " + str(tp[3]))
|
||||
else:
|
||||
print "0"
|
||||
print("0")
|
||||
|
||||
print "\n\nsigma(T_{2, q_4}, chi_a_1) " + \
|
||||
print("\n\nsigma(T_{2, q_4}, chi_a_1) " + \
|
||||
"- sigma(T_{2, q_4}, chi_a_2) " + \
|
||||
"+ sigma(T_{2, q_4}, chi_a_3) " + \
|
||||
"- sigma(T_{2, q_4}, chi_a_4) =\n" + \
|
||||
@ -448,7 +518,7 @@ def print_results_sigma(v_theta, knot_description, tp, q_4):
|
||||
") - sigma(T_{2, q_4}, " + str(a_2) + \
|
||||
") + sigma(T_{2, q_4}, " + str(a_3) + \
|
||||
") - sigma(T_{2, q_4}, " + str(a_4) + ") = " + \
|
||||
str(tp[0] - tp[1] + tp[2] - tp[3])
|
||||
str(tp[0] - tp[1] + tp[2] - tp[3]))
|
||||
|
||||
# searching for signature == 0
|
||||
def search_for_null_signature_value(knot_formula=None, limit=None):
|
||||
@ -468,7 +538,7 @@ def search_for_null_signature_value(knot_formula=None, limit=None):
|
||||
k = get_shifted_combination(k)
|
||||
knot_sum = eval(knot_formula)
|
||||
if is_trivial_combination(knot_sum):
|
||||
print knot_sum
|
||||
print(knot_sum)
|
||||
continue
|
||||
|
||||
result = eval_cable_for_null_signature(knot_sum)
|
||||
@ -492,8 +562,8 @@ def eval_cable_for_null_signature(knot_sum, print_results=False, verbose=None):
|
||||
|
||||
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
|
||||
if verbose:
|
||||
print
|
||||
print knot_description
|
||||
print()
|
||||
print(knot_description)
|
||||
for v_theta in it.product(*ranges_list):
|
||||
if f(*v_theta, verbose=False).is_zero_everywhere():
|
||||
zero_theta_combinations.append(v_theta)
|
||||
@ -503,14 +573,14 @@ def eval_cable_for_null_signature(knot_sum, print_results=False, verbose=None):
|
||||
# assert sum(v_theta) != 0
|
||||
|
||||
if print_results:
|
||||
print
|
||||
print knot_description
|
||||
print "Zero cases: " + str(null_combinations)
|
||||
print "All cases: " + str(all_combinations)
|
||||
print()
|
||||
print(knot_description)
|
||||
print("Zero cases: " + str(null_combinations))
|
||||
print("All cases: " + str(all_combinations))
|
||||
if zero_theta_combinations:
|
||||
print "Zero theta combinations: "
|
||||
print("Zero theta combinations: ")
|
||||
for el in zero_theta_combinations:
|
||||
print el
|
||||
print(el)
|
||||
if null_combinations^2 >= all_combinations:
|
||||
return knot_description, null_combinations, all_combinations
|
||||
return None
|
||||
@ -553,12 +623,12 @@ def get_blanchfield_for_pattern(k_n, theta):
|
||||
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
||||
|
||||
# lambda_even
|
||||
# print "normal"
|
||||
# print("normal")
|
||||
for e in range(1, theta):
|
||||
if (theta + e) % 2 == 0:
|
||||
results.append((e * ksi, 1 * sgn(k_n)))
|
||||
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
||||
# print "reversed"
|
||||
# print("reversed")
|
||||
for e in range(theta + 1, k + 1):
|
||||
if (theta + e) % 2 != 0:
|
||||
continue
|
||||
@ -637,13 +707,13 @@ def get_signature_as_theta_function(*arg, **key_args):
|
||||
sf += get_signature_summand_as_theta_function(*knot)(thetas[i])
|
||||
# in case wrong theata value was given
|
||||
except ValueError as e:
|
||||
print "ValueError: " + str(e.args[0]) +\
|
||||
" Please change " + str(i + 1) + ". parameter."
|
||||
print("ValueError: " + str(e.args[0]) +\
|
||||
" Please change " + str(i + 1) + ". parameter.")
|
||||
return None
|
||||
if verbose:
|
||||
print
|
||||
print str(thetas)
|
||||
print sf
|
||||
print()
|
||||
print(str(thetas))
|
||||
print(sf)
|
||||
return sf
|
||||
signature_as_theta_function.__doc__ = signature_as_theta_function_docstring
|
||||
return signature_as_theta_function
|
||||
@ -799,7 +869,7 @@ get_signature_as_theta_function.__doc__ = \
|
||||
sage: signature_function_generator = get_signature_as_theta_function(
|
||||
[1, 3], [2], [-1, -2], [-3])
|
||||
sage: sf = signature_function_generator(2, 1, 2, 2)
|
||||
sage: print sf
|
||||
sage: print(sf)
|
||||
0: 0
|
||||
5/42: 1
|
||||
1/7: 0
|
||||
@ -819,8 +889,8 @@ get_signature_as_theta_function.__doc__ = \
|
||||
37/42: -1
|
||||
|
||||
Or like below.
|
||||
sage: print get_signature_as_theta_function([1, 3], [2], [-1, -2], [-3]
|
||||
)(2, 1, 2, 2)
|
||||
sage: print(get_signature_as_theta_function([1, 3], [2], [-1, -2], [-3]
|
||||
)(2, 1, 2, 2))
|
||||
0: 0
|
||||
1/7: 0
|
||||
1/6: 0
|
||||
|
Loading…
Reference in New Issue
Block a user