first lines for cab.update function
This commit is contained in:
parent
b729a4eeee
commit
acbf651697
@ -7,6 +7,8 @@ from typing import Iterable
|
||||
SIGNATURE = 0
|
||||
SIGMA = 1
|
||||
|
||||
# 9.11 (9.8)
|
||||
# 9.15 (9.9)
|
||||
|
||||
|
||||
class SignatureFunction(object):
|
||||
@ -21,40 +23,57 @@ class SignatureFunction(object):
|
||||
|
||||
msg = "Signature function is defined on the interval [0, 1)."
|
||||
assert all(k < 1 for k, v in values), msg
|
||||
|
||||
counter2 = collections.Counter({ k : v for k, v in values})
|
||||
for k, v in values:
|
||||
counter[k] += v
|
||||
assert counter2 == counter
|
||||
self.cnt_signature_jumps = counter
|
||||
self.tikz_plot("bum.tex")
|
||||
|
||||
def sum_of_absolute_values(self):
|
||||
return sum([abs(i) for i in self.cnt_signature_jumps.values()])
|
||||
|
||||
def is_zero_everywhere(self):
|
||||
return not any(self.cnt_signature_jumps.values())
|
||||
|
||||
def double_cover(self):
|
||||
# to read values for t^2
|
||||
items = self.cnt_signature_jumps.items()
|
||||
counter = collections.Counter({ (1 + k) / 2 : v for k, v in items})
|
||||
counter.update(collections.Counter({ k / 2 : v for k, v in items}))
|
||||
new_data = []
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
if jump != 0:
|
||||
new_data.append((jump_arg/2, jump))
|
||||
new_data.append((1/2 + jump_arg/2, jump))
|
||||
assert SignatureFunction(values=new_data) == SignatureFunction(counter=counter)
|
||||
return SignatureFunction(values=new_data)
|
||||
|
||||
def square_root(self):
|
||||
# to read values for t^(1/2)
|
||||
new_data = []
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
if jump_arg < 1/2 and jump != 0:
|
||||
if jump_arg < 1/2:
|
||||
new_data.append((2 * jump_arg, jump))
|
||||
|
||||
counter = collections.Counter()
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
if jump_arg < 1/2:
|
||||
counter[2 * jump_arg] = jump
|
||||
assert SignatureFunction(values=new_data) == SignatureFunction(counter=counter)
|
||||
|
||||
|
||||
return SignatureFunction(values=new_data)
|
||||
|
||||
def minus_square_root(self):
|
||||
# to read values for t^(1/2)
|
||||
items = self.cnt_signature_jumps.items()
|
||||
|
||||
counter = collections.Counter()
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
if jump_arg >= 1/2 and jump != 0:
|
||||
if jump_arg >= 1/2:
|
||||
counter[mod_one(2 * jump_arg)] = jump
|
||||
counter2 = collections.Counter({ mod_one(2 * k) : v for k, v in items if k >= 1/2 })
|
||||
assert counter2 == counter
|
||||
|
||||
return SignatureFunction(counter=counter)
|
||||
|
||||
def is_big(self):
|
||||
@ -63,12 +82,7 @@ class SignatureFunction(object):
|
||||
items = sorted(self.cnt_signature_jumps.items())
|
||||
for arg, jump in items:
|
||||
current += 2 * jump
|
||||
msg = "current = " + str(current) + ", jump = " + str(jump)
|
||||
msg += "\n" + str(self(arg))
|
||||
result = [jump for jump_arg, jump in self.cnt_signature_jumps.items() if jump_arg < mod_one(arg)]
|
||||
msg += "\nresult = " + str(sum(result))
|
||||
msg += "\narg = " + str(arg)
|
||||
assert current == self(arg) + jump, msg
|
||||
assert current == self(arg) + jump
|
||||
if abs(current) > abs(max):
|
||||
max = current
|
||||
# if abs(max) > 9:
|
||||
@ -81,6 +95,7 @@ class SignatureFunction(object):
|
||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||
new_data.append((mod_one(jump_arg + shift), jump))
|
||||
sf = SignatureFunction(values=new_data)
|
||||
|
||||
counter = collections.Counter({mod_one(k + shift) : v \
|
||||
for k,v in self.cnt_signature_jumps.items()})
|
||||
assert SignatureFunction(counter=counter) == \
|
||||
@ -128,18 +143,29 @@ class SignatureFunction(object):
|
||||
|
||||
def total_sign_jump(self):
|
||||
# Total signature jump is the sum of all jumps.
|
||||
result = sum([j[1] for j in self.to_list()])
|
||||
assert result == sum(v for _, v in self.cnt_signature_jumps.items())
|
||||
return sum([j[1] for j in self.to_list()])
|
||||
|
||||
def to_list(self):
|
||||
# Return signature jumps formated as a list
|
||||
assert sorted(self.cnt_signature_jumps.items(), key = lambda x: x[0]) == \
|
||||
sorted(self.cnt_signature_jumps.items())
|
||||
return sorted(self.cnt_signature_jumps.items(), key = lambda x: x[0])
|
||||
|
||||
def step_function_data(self):
|
||||
# Transform the signature jump data to a format understandable
|
||||
# by the plot function.
|
||||
l = self.to_list()
|
||||
assert l == sorted(self.cnt_signature_jumps.items())
|
||||
vals = ([(d[0], sum(2 * j[1] for j in l[:l.index(d)+1])) for d in l] +
|
||||
[(0,self.cnt_signature_jumps[0]), (1,self.total_sign_jump())])
|
||||
print("step_function_data")
|
||||
print(vals)
|
||||
counter = copy(self.cnt_signature_jumps)
|
||||
counter[0] = self.cnt_signature_jumps[0]
|
||||
counter[1] = self.total_sign_jump()
|
||||
print(sorted(counter.items()))
|
||||
return vals
|
||||
|
||||
def plot(self):
|
||||
@ -156,10 +182,12 @@ class SignatureFunction(object):
|
||||
output_file.write("\\begin{document}\n")
|
||||
output_file.write("\\begin{tikzpicture}\n")
|
||||
data = sorted(self.step_function_data())
|
||||
print("data")
|
||||
print(data)
|
||||
output_file.write(" \\datavisualization[scientific axes,visualize as smooth line,\n")
|
||||
output_file.write(" x axis={ticks={none,major={at={")
|
||||
output_file.write(", " + str(N(data[0][0],digits=4)) + " as \\(" + str(data[0][0]) + "\\)")
|
||||
for jump_arg,jump in data:
|
||||
for jump_arg, jump in data:
|
||||
output_file.write(", " + str(N(jump_arg,digits=4)) + " as \\(" + str(jump_arg) + "\\)")
|
||||
output_file.write("}}}}\n")
|
||||
output_file.write(" ]\n")
|
||||
@ -191,9 +219,28 @@ class TorusCable(object):
|
||||
self.q_vector = q_vector
|
||||
k = k_vector
|
||||
self.knot_sum = eval(knot_formula)
|
||||
self.knot_description = self.get_knot_descrption()
|
||||
self.knot_description = self.set_knot_descrption()
|
||||
self.__sigma_function = None
|
||||
# TBD property function
|
||||
self.signature_as_function_of_theta = None
|
||||
self.signature_as_function_of_theta = self.get_signature_as_function_of_theta()
|
||||
# self.signature_as_function_of_theta = None
|
||||
|
||||
def update(self, other):
|
||||
# TBD knot_formula etc.
|
||||
number_of_summands = len(self.knot_sum)
|
||||
self.knot_description += " # " + other.knot_description
|
||||
self.knot_formula = self.knot_formula[:-1] + ",\n" + \
|
||||
other.knot_formula[1:]
|
||||
print(self.knot_sum)
|
||||
self.knot_sum += other.knot_sum
|
||||
# self.signature_as_function_of_theta = \
|
||||
# self.get_signature_as_function_of_theta() + \
|
||||
# other.get_signature_as_function_of_theta()
|
||||
print(self.knot_description)
|
||||
print(self.knot_formula)
|
||||
print(self.knot_sum)
|
||||
|
||||
|
||||
def __get_sigma_function(self):
|
||||
k_1, k_2, k_3, k_4 = [abs(k) for k in self.k_vector]
|
||||
@ -273,12 +320,18 @@ class TorusCable(object):
|
||||
print("one vector " + str(thetas))
|
||||
print("max sf " + str(sf.is_big()))
|
||||
print()
|
||||
assert untwisted_part.is_zero_everywhere()
|
||||
# assert untwisted_part.is_zero_everywhere()
|
||||
|
||||
if verbose:
|
||||
print()
|
||||
print(str(thetas))
|
||||
print(sf)
|
||||
msg = "tota signature jump = " + str(sf.total_sign_jump())
|
||||
msg += "\nfunction\n" + str(sf)
|
||||
assert sf.total_sign_jump() == 0, msg
|
||||
|
||||
|
||||
|
||||
return sf
|
||||
signature_as_function_of_theta.__doc__ =\
|
||||
signature_as_function_of_theta_docstring
|
||||
@ -354,7 +407,7 @@ class TorusCable(object):
|
||||
return SignatureFunction(values=w)
|
||||
|
||||
|
||||
def get_knot_descrption(self):
|
||||
def set_knot_descrption(self):
|
||||
description = ""
|
||||
for knot in self.knot_sum:
|
||||
if knot[0] < 0:
|
||||
@ -728,12 +781,12 @@ TorusCable.get_number_of_combinations_of_theta.__doc__ = \
|
||||
and q_j is the last q parameter for the component (a single cable)
|
||||
"""
|
||||
|
||||
TorusCable.get_knot_descrption.__doc__ = \
|
||||
TorusCable.set_knot_descrption.__doc__ = \
|
||||
"""
|
||||
Arguments:
|
||||
arbitrary number of lists of numbers, each list encodes a single cable.
|
||||
Examples:
|
||||
sage: get_knot_descrption([1, 3], [2], [-1, -2], [-3])
|
||||
sage: set_knot_descrption([1, 3], [2], [-1, -2], [-3])
|
||||
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
|
||||
"""
|
||||
|
||||
|
@ -20,8 +20,16 @@ class Config(object):
|
||||
|
||||
# knot_formula is a schema for knots which signature function
|
||||
# will be calculated
|
||||
self.knot_formula = "[[k[0], k[1], k[3]], [-k[1], -k[3]], \
|
||||
[k[2], k[3]], [-k[0], -k[2], -k[3]]]"
|
||||
self.knot_formula = "[[k[0], k[1], k[3]], " + \
|
||||
"[-k[1], -k[3]], " + \
|
||||
"[k[2], k[3]], " + \
|
||||
"[-k[0], -k[2], -k[3]]]"
|
||||
|
||||
|
||||
# self.knot_formula = "[[k[0], k[1], k[4]], [-k[1], -k[3]], \
|
||||
# [k[2], k[3]], [-k[0], -k[2], -k[4]]]"
|
||||
#
|
||||
#
|
||||
|
||||
# self.knot_formula = "[[k[3]], [-k[3]], \
|
||||
# [k[3]], [-k[3]] ]"
|
||||
@ -42,10 +50,10 @@ class Config(object):
|
||||
self.start_shift = 0
|
||||
|
||||
self.verbose = True
|
||||
self.verbose = False
|
||||
# self.verbose = False
|
||||
|
||||
self.print_results = True
|
||||
self.print_results = False
|
||||
# self.print_results = False
|
||||
|
||||
self.print_calculations_for_large_sigma = True
|
||||
self.print_calculations_for_large_sigma = False
|
||||
@ -102,7 +110,7 @@ def set_parameters(knot_formula, limit, verbose, print_results):
|
||||
if knot_formula is None:
|
||||
knot_formula = config.knot_formula
|
||||
if verbose is None:
|
||||
vebose = config.verbose
|
||||
verbose = config.verbose
|
||||
if print_results is None:
|
||||
print_results = config.print_results
|
||||
return knot_formula, limit, verbose, print_results
|
||||
@ -127,9 +135,8 @@ def search_for_large_sigma_value(knot_formula=None, limit=None,
|
||||
for c in combinations:
|
||||
q = [P.unrank(i + config.start_shift) for i in c]
|
||||
if config.only_slice_candidates:
|
||||
if not (q[3] > 4 * q[2] and
|
||||
q[2] > 4 * q[1] and
|
||||
q[1] > 4 * q[0]):
|
||||
ratio = q[3] > 4 * q[2] and q[2] > 4 * q[1] and q[1] > 4 * q[0]
|
||||
if not ratio:
|
||||
if verbose:
|
||||
print("Ratio-condition does not hold")
|
||||
continue
|
||||
@ -143,9 +150,6 @@ def search_for_large_sigma_value(knot_formula=None, limit=None,
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# searching for signature == 0
|
||||
def search_for_null_signature_value(knot_formula=None, limit=None,
|
||||
verbose=None, print_results=None):
|
||||
@ -154,6 +158,8 @@ def search_for_null_signature_value(knot_formula=None, limit=None,
|
||||
set_parameters(knot_formula, limit, verbose, print_results)
|
||||
|
||||
k_vector_size = extract_max(knot_formula) + 1
|
||||
limit = max(limit, k_vector_size)
|
||||
|
||||
combinations = it.combinations_with_replacement(range(1, limit + 1),
|
||||
k_vector_size)
|
||||
with open(config.f_results, 'w') as f_results:
|
||||
@ -202,11 +208,9 @@ def search_for_large_signature_value(knot_formula=None, limit=None,
|
||||
# iterate over q-vector
|
||||
for c in combinations:
|
||||
q = [P.unrank(i + config.start_shift) for i in c]
|
||||
q[3] = 79
|
||||
if config.only_slice_candidates:
|
||||
if not (q[3] > 4 * q[2] and
|
||||
q[2] > 4 * q[1] and
|
||||
q[1] > 4 * q[0]):
|
||||
ratio = q[3] > 4 * q[2] and q[2] > 4 * q[1] and q[1] > 4 * q[0]
|
||||
if not ratio:
|
||||
if verbose:
|
||||
print("Ratio-condition does not hold")
|
||||
continue
|
||||
|
Loading…
Reference in New Issue
Block a user