two cases and to loops for last theta
This commit is contained in:
parent
949344193c
commit
afbda34111
@ -7,7 +7,7 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
|
|
||||||
import collections
|
import collections
|
||||||
import inspect
|
# import inspect
|
||||||
import itertools as it
|
import itertools as it
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import re
|
import re
|
||||||
@ -32,34 +32,23 @@ class Config(object):
|
|||||||
self.verbose = True
|
self.verbose = True
|
||||||
self.verbose = False
|
self.verbose = False
|
||||||
|
|
||||||
self.print_calculations_for_small_signature = True
|
self.print_calculations_for_small_sigma = True
|
||||||
self.print_calculations_for_small_signature = False
|
self.print_calculations_for_small_sigma = False
|
||||||
|
|
||||||
|
|
||||||
self.print_calculations_for_large_signature = True
|
|
||||||
self.print_calculations_for_large_signature = False
|
|
||||||
|
|
||||||
|
self.print_calculations_for_large_sigma = True
|
||||||
|
self.print_calculations_for_large_sigma = False
|
||||||
|
|
||||||
# is the ratio restriction for values in k_vector taken into account
|
# is the ratio restriction for values in k_vector taken into account
|
||||||
# False flag is usefull to make quick script tests
|
# False flag is usefull to make quick script tests
|
||||||
self.only_slice_candidates = True
|
self.only_slice_candidates = True
|
||||||
self.only_slice_candidates = False
|
self.only_slice_candidates = False
|
||||||
|
|
||||||
self.stop_after_firts_large_signature = True
|
self.stop_after_firts_large_sigma = True
|
||||||
self.stop_after_firts_large_signature = False
|
self.stop_after_firts_large_sigma = False
|
||||||
|
|
||||||
|
|
||||||
class SignatureFunction(object):
|
class SignatureFunction(object):
|
||||||
"""
|
|
||||||
This simple class encodes twisted and untwisted signature functions
|
|
||||||
of knots. Since the signature function is entirely encoded by its signature
|
|
||||||
jump, the class stores only information about signature jumps
|
|
||||||
in a dictionary self.signature_jumps.
|
|
||||||
The dictionary stores data of the signature jump as a key/values pair,
|
|
||||||
where the key is the argument at which the functions jumps
|
|
||||||
and value encodes the value of the jump. Remember that we treat
|
|
||||||
signature functions as defined on the interval [0,1).
|
|
||||||
"""
|
|
||||||
def __init__(self, values=None, counter=None):
|
def __init__(self, values=None, counter=None):
|
||||||
# set values of signature jumps
|
# set values of signature jumps
|
||||||
if counter is None:
|
if counter is None:
|
||||||
@ -74,29 +63,20 @@ class SignatureFunction(object):
|
|||||||
self.signature_jumps = collections.defaultdict(int, counter)
|
self.signature_jumps = collections.defaultdict(int, counter)
|
||||||
|
|
||||||
def sum_of_absolute_values(self):
|
def sum_of_absolute_values(self):
|
||||||
result = sum([abs(i) for i in self.signature_jumps.values()])
|
|
||||||
test = sum([abs(i) for i in self.cnt_signature_jumps.values()])
|
|
||||||
assert test == result
|
|
||||||
return sum([abs(i) for i in self.cnt_signature_jumps.values()])
|
return sum([abs(i) for i in self.cnt_signature_jumps.values()])
|
||||||
|
|
||||||
def is_zero_everywhere(self):
|
def is_zero_everywhere(self):
|
||||||
result = not any(self.signature_jumps.values())
|
return not any(self.signature_jumps.values())
|
||||||
assert result == (not any(self.cnt_signature_jumps.values()))
|
|
||||||
if self.sum_of_absolute_values():
|
|
||||||
assert result == False
|
|
||||||
else:
|
|
||||||
assert result == True
|
|
||||||
return result
|
|
||||||
|
|
||||||
def double_cover(self):
|
def double_cover(self):
|
||||||
# to read values for t^2
|
# to read values for t^2
|
||||||
new_data = []
|
new_data = []
|
||||||
for jump_arg, jump in self.signature_jumps.items():
|
for jump_arg, jump in self.cnt_signature_jumps.items():
|
||||||
new_data.append((jump_arg/2, jump))
|
new_data.append((jump_arg/2, jump))
|
||||||
new_data.append((1/2 + jump_arg/2, jump))
|
new_data.append((1/2 + jump_arg/2, jump))
|
||||||
|
|
||||||
t_data = []
|
t_data = []
|
||||||
for jump_arg, jump in self.cnt_signature_jumps.items():
|
for jump_arg, jump in self.signature_jumps.items():
|
||||||
t_data.append((jump_arg/2, jump))
|
t_data.append((jump_arg/2, jump))
|
||||||
t_data.append((1/2 + jump_arg/2, jump))
|
t_data.append((1/2 + jump_arg/2, jump))
|
||||||
|
|
||||||
@ -138,12 +118,7 @@ class SignatureFunction(object):
|
|||||||
a = SignatureFunction(values=t_data)
|
a = SignatureFunction(values=t_data)
|
||||||
sf = SignatureFunction(values=new_data)
|
sf = SignatureFunction(values=new_data)
|
||||||
sf2 = SignatureFunction(counter=counter)
|
sf2 = SignatureFunction(counter=counter)
|
||||||
print(new_data)
|
|
||||||
print(counter.items())
|
|
||||||
assert a == sf
|
assert a == sf
|
||||||
print("repr")
|
|
||||||
print(repr(sf2))
|
|
||||||
print(repr(a))
|
|
||||||
assert a == sf2
|
assert a == sf2
|
||||||
return sf
|
return sf
|
||||||
|
|
||||||
@ -165,10 +140,6 @@ class SignatureFunction(object):
|
|||||||
|
|
||||||
def __neg__(self):
|
def __neg__(self):
|
||||||
new_data = []
|
new_data = []
|
||||||
print("neg")
|
|
||||||
print("start values sign and cnt")
|
|
||||||
print(self.signature_jumps.items())
|
|
||||||
print(self.cnt_signature_jumps.items())
|
|
||||||
for jump_arg, jump in self.signature_jumps.items():
|
for jump_arg, jump in self.signature_jumps.items():
|
||||||
new_data.append((jump_arg, -jump))
|
new_data.append((jump_arg, -jump))
|
||||||
a = SignatureFunction(values=new_data)
|
a = SignatureFunction(values=new_data)
|
||||||
@ -229,31 +200,19 @@ class SignatureFunction(object):
|
|||||||
arg = mod_one(arg)
|
arg = mod_one(arg)
|
||||||
cnt = self.cnt_signature_jumps
|
cnt = self.cnt_signature_jumps
|
||||||
before_arg = [jump for jump_arg, jump in cnt.items() if jump_arg < arg]
|
before_arg = [jump for jump_arg, jump in cnt.items() if jump_arg < arg]
|
||||||
result = 2 * sum(before_arg) + cnt[arg]
|
return 2 * sum(before_arg) + cnt[arg]
|
||||||
|
|
||||||
# TBD to delete
|
|
||||||
val = 0
|
|
||||||
for jump_arg, jump in self.signature_jumps.items():
|
|
||||||
if jump_arg < arg:
|
|
||||||
val += 2 * jump
|
|
||||||
elif jump_arg == arg:
|
|
||||||
val += jump
|
|
||||||
assert result == val
|
|
||||||
# end of to delete
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
def main(arg):
|
def main(arg):
|
||||||
try:
|
if arg[1]:
|
||||||
new_limit = int(arg[1])
|
limit = int(arg[1])
|
||||||
except IndexError:
|
else:
|
||||||
new_limit = None
|
limit = None
|
||||||
search_for_large_signature_value(limit=new_limit)
|
search_for_large_signature_value(limit=limit)
|
||||||
# search_for_null_signature_value(limit=new_limit)
|
# search_for_null_signature_value(limit=limit)
|
||||||
|
|
||||||
|
|
||||||
# searching for signture > 5 + #(v_i != 0) over given knot schema
|
# searching for sigma > 5 + #(v_i != 0) over given knot schema
|
||||||
def search_for_large_signature_value(knot_formula=None,
|
def search_for_large_signature_value(knot_formula=None,
|
||||||
limit=None,
|
limit=None,
|
||||||
verbose=None):
|
verbose=None):
|
||||||
@ -272,6 +231,8 @@ def search_for_large_signature_value(knot_formula=None,
|
|||||||
P = Primes()
|
P = Primes()
|
||||||
good_knots = []
|
good_knots = []
|
||||||
# with open(config.f_results, 'w') as f_results:
|
# with open(config.f_results, 'w') as f_results:
|
||||||
|
|
||||||
|
# iterate over q-vector
|
||||||
for c in combinations:
|
for c in combinations:
|
||||||
k = [(P.unrank(i) - 1)/2 for i in c]
|
k = [(P.unrank(i) - 1)/2 for i in c]
|
||||||
if config.only_slice_candidates:
|
if config.only_slice_candidates:
|
||||||
@ -281,7 +242,7 @@ def search_for_large_signature_value(knot_formula=None,
|
|||||||
if verbose:
|
if verbose:
|
||||||
print("Ratio-condition does not hold")
|
print("Ratio-condition does not hold")
|
||||||
continue
|
continue
|
||||||
result = eval_cable_for_large_signature(k_vector=k,
|
result = eval_cable_for_large_sigma(k_vector=k,
|
||||||
knot_formula=knot_formula,
|
knot_formula=knot_formula,
|
||||||
print_results=False)
|
print_results=False)
|
||||||
good_knots.append(result)
|
good_knots.append(result)
|
||||||
@ -289,8 +250,8 @@ def search_for_large_signature_value(knot_formula=None,
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
# searching for signture > 5 + #(v_i != 0)
|
# searching for sigma > 5 + #(v_i != 0)
|
||||||
def eval_cable_for_large_signature(k_vector=None,
|
def eval_cable_for_large_sigma(k_vector=None,
|
||||||
knot_formula=None,
|
knot_formula=None,
|
||||||
print_results=True,
|
print_results=True,
|
||||||
verbose=None,
|
verbose=None,
|
||||||
@ -306,11 +267,22 @@ def eval_cable_for_large_signature(k_vector=None,
|
|||||||
return None
|
return None
|
||||||
else:
|
else:
|
||||||
k_vector = [(i - 1)/2 for i in q_vector]
|
k_vector = [(i - 1)/2 for i in q_vector]
|
||||||
|
|
||||||
k = k_vector
|
k = k_vector
|
||||||
knot_sum = eval(knot_formula)
|
knot_sum = eval(knot_formula)
|
||||||
|
|
||||||
|
if len(knot_sum) != 4:
|
||||||
|
print("Wrong number of cable direct summands!")
|
||||||
|
return None
|
||||||
knot_description = get_knot_descrption(*knot_sum)
|
knot_description = get_knot_descrption(*knot_sum)
|
||||||
|
|
||||||
|
return _eval_cable_for_large_sigma(k_vector, knot_description,
|
||||||
|
print_results, verbose)
|
||||||
|
|
||||||
|
|
||||||
|
def _eval_cable_for_large_sigma(k, knot_description, print_results, verbose):
|
||||||
|
# k is a k_vector
|
||||||
|
print("\n" * 5)
|
||||||
|
print(knot_description)
|
||||||
k_1, k_2, k_3, k_4 = [abs(i) for i in k]
|
k_1, k_2, k_3, k_4 = [abs(i) for i in k]
|
||||||
q_4 = 2 * k_4 + 1
|
q_4 = 2 * k_4 + 1
|
||||||
ksi = 1/q_4
|
ksi = 1/q_4
|
||||||
@ -321,120 +293,221 @@ def eval_cable_for_large_signature(k_vector=None,
|
|||||||
print("Searching for a large signature values for the cable sum: ")
|
print("Searching for a large signature values for the cable sum: ")
|
||||||
print(knot_description)
|
print(knot_description)
|
||||||
|
|
||||||
if len(knot_sum) != 4:
|
|
||||||
print("Wrong number of cable direct summands!")
|
|
||||||
return None
|
|
||||||
|
|
||||||
large_sigma_for_all_v_comninations = True
|
large_sigma_for_all_v_combinations = True
|
||||||
good_knots = [("nic")]
|
bad_vectors = []
|
||||||
|
good_vectors = []
|
||||||
# iteration over all possible character combinations
|
# iteration over all possible character combinations
|
||||||
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
|
|
||||||
for v_theta in it.product(*ranges_list):
|
|
||||||
theta_squers = [i^2 for i in v_theta]
|
|
||||||
condition = "(" + str(theta_squers[0]) \
|
|
||||||
+ " - " + str(theta_squers[1]) \
|
|
||||||
+ " + " + str(theta_squers[2]) \
|
|
||||||
+ " - " + str(theta_squers[3]) \
|
|
||||||
+ ") % " + str(q_4)
|
|
||||||
# if verbose:
|
|
||||||
# print "\nChecking for characters: " + str(v_theta)
|
|
||||||
if (theta_squers[0] - theta_squers[1] +
|
|
||||||
theta_squers[2] - theta_squers[3]) % q_4:
|
|
||||||
if verbose:
|
|
||||||
print("The condition is not satisfied: " + \
|
|
||||||
str(condition) + " != 0.")
|
|
||||||
continue
|
|
||||||
if v_theta[0] == v_theta[1] == v_theta[2] == v_theta[3] == 0:
|
|
||||||
print("\nSkip")
|
|
||||||
continue
|
|
||||||
if v_theta[0] == v_theta[1] == v_theta[2] == v_theta[3]:
|
|
||||||
print("\nall v == a")
|
|
||||||
|
|
||||||
|
|
||||||
# T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
# T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
||||||
# # T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
# # T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
||||||
|
|
||||||
# "untwisted" part (Levine-Tristram signatures)
|
|
||||||
sigma_q_1 = get_untwisted_signature_function(k_1)
|
sigma_q_1 = get_untwisted_signature_function(k_1)
|
||||||
sigma_q_2 = get_untwisted_signature_function(k_2)
|
sigma_q_2 = get_untwisted_signature_function(k_2)
|
||||||
sigma_q_3 = get_untwisted_signature_function(k_3)
|
sigma_q_3 = get_untwisted_signature_function(k_3)
|
||||||
a_1, a_2, a_3, a_4 = v_theta
|
|
||||||
untwisted_part = 2 * (sigma_q_2(ksi * a_1) +
|
# large_sigma_for_last_theta_non_zero = True
|
||||||
sigma_q_1(ksi * a_1 * 2) -
|
#!!!!!!!!!!!!!!!!
|
||||||
|
# consider a_4 non-zero and zero
|
||||||
|
last_theta = 1
|
||||||
|
large_sigma_for_last_theta_non_zero = True
|
||||||
|
for vector in it.product(3 * [range(q_4)]):
|
||||||
|
v_theta = list(vector)
|
||||||
|
v_theta.append(last_theta)
|
||||||
|
a_1, a_2, a_3 = vector
|
||||||
|
a_4 = last_theta
|
||||||
|
assert [a_1, a_2, a_3, a_4] == v_theta
|
||||||
|
if a_1 == a_2 == a_3:
|
||||||
|
if a_3 == 0:
|
||||||
|
print("\na_1 == a_2 == a_3 == 0")
|
||||||
|
continue
|
||||||
|
elif a_3 == a_4:
|
||||||
|
print("\nall a_i == a != 0")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if (a_1^2 - a_2^2 + a_3^2 - a_4^2) % q_4:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# print("\t\t\tMultiplication of the vector " + str(v_theta))
|
||||||
|
large_sigma_for_this_vector = False
|
||||||
|
for shift in range(1, q_4):
|
||||||
|
# print("shift = " + str(shift) + ", q_4 = " + str(q_4))
|
||||||
|
shifted_theta = [(shift * a) % q_4 for a in
|
||||||
|
[a_1, a_2, a_3, a_4]]
|
||||||
|
|
||||||
|
|
||||||
|
# "untwisted" part (Levine-Tristram signatures)
|
||||||
|
a_1, a_2, a_3, a_4 = shifted_theta
|
||||||
|
untwisted_part = 2 * (sigma_q_2(ksi * a_1) -
|
||||||
sigma_q_2(ksi * a_2) +
|
sigma_q_2(ksi * a_2) +
|
||||||
sigma_q_3(ksi * a_3) -
|
sigma_q_3(ksi * a_3) -
|
||||||
sigma_q_3(ksi * a_4) -
|
sigma_q_3(ksi * a_4) +
|
||||||
|
sigma_q_1(ksi * a_1 * 2) -
|
||||||
sigma_q_1(ksi * a_4 * 2))
|
sigma_q_1(ksi * a_4 * 2))
|
||||||
|
|
||||||
# "twisted" part
|
# "twisted" part
|
||||||
tp = [0, 0, 0, 0]
|
tp = [0, 0, 0, 0]
|
||||||
for i, a in enumerate(v_theta):
|
for i, a in enumerate(shifted_theta):
|
||||||
if a:
|
if a:
|
||||||
tp[i] = -q_4 + 2 * a - 2 * (a^2/q_4)
|
tp[i] = -q_4 + 2 * a - 2 * (a^2/q_4)
|
||||||
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
||||||
assert twisted_part == int(twisted_part)
|
# assert twisted_part == int(twisted_part)
|
||||||
|
|
||||||
sigma_v = untwisted_part + twisted_part
|
sigma_v = untwisted_part + twisted_part
|
||||||
if abs(sigma_v) > 5 + np.count_nonzero(v_theta):
|
# print(knot_description + "\t" + str(shifted_theta) +\
|
||||||
if config.print_calculations_for_large_signature:
|
# "\t" + str(sigma_v))
|
||||||
print("*" * 100)
|
# + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
||||||
print("\n\nLarge signature value\n")
|
|
||||||
print(knot_description)
|
if abs(sigma_v) > 5 + np.count_nonzero(shifted_theta):
|
||||||
print("\nv_theta: ", end="")
|
large_sigma_for_this_vector = True
|
||||||
print(v_theta)
|
|
||||||
print("k values: ", end="")
|
if large_sigma_for_this_vector:
|
||||||
print(str(k_1) + " " + str(k_2) + " " + \
|
good_vectors.append(shifted_theta)
|
||||||
str(k_3) + " " + str(k_4))
|
pass
|
||||||
print(condition)
|
|
||||||
print("non zero value in v_theta: " + \
|
|
||||||
str(np.count_nonzero(v_theta)))
|
|
||||||
print("sigma_v: " + str(sigma_v))
|
|
||||||
print("\ntwisted_part: ", end="")
|
|
||||||
print(twisted_part)
|
|
||||||
print("untwisted_part: ", end="")
|
|
||||||
print(untwisted_part)
|
|
||||||
print("\n\nCALCULATIONS")
|
|
||||||
print("*" * 100)
|
|
||||||
print_results_LT(v_theta, knot_description,
|
|
||||||
ksi, untwisted_part,
|
|
||||||
k, sigma_q_1, sigma_q_2, sigma_q_3)
|
|
||||||
print_results_sigma(v_theta, knot_description, tp, q_4)
|
|
||||||
print("*" * 100 + "\n" * 5)
|
|
||||||
else:
|
else:
|
||||||
print(knot_description + "\t" + str(v_theta) +\
|
bad_vectors.append(shifted_theta)
|
||||||
"\t" + str(sigma_v) + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
large_sigma_for_last_theta_non_zero = False
|
||||||
if config.stop_after_firts_large_signature:
|
|
||||||
break
|
last_theta = 0
|
||||||
else:
|
large_sigma_for_last_theta_zero = True
|
||||||
if config.print_calculations_for_small_signature:
|
for vector in it.product(3 * [range(q_4)]):
|
||||||
print("\n" * 5 + "*" * 100)
|
v_theta = list(vector)
|
||||||
print("\nSmall signature value\n")
|
v_theta.append(last_theta)
|
||||||
print(knot_description)
|
a_1, a_2, a_3 = vector
|
||||||
print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
a_4 = last_theta
|
||||||
k, sigma_q_1, sigma_q_2, sigma_q_3)
|
assert [a_1, a_2, a_3, a_4] == v_theta
|
||||||
print_results_sigma(v_theta, knot_description, tp, q_4)
|
if a_1 == a_2 == a_3:
|
||||||
print("*" * 100 + "\n" * 5)
|
if a_3 == 0:
|
||||||
else:
|
print("\na_1 == a_2 == a_3 == 0")
|
||||||
print(knot_description + "\t" + str(v_theta) +\
|
continue
|
||||||
"\t" + str(sigma_v) + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
elif a_3 == a_4:
|
||||||
|
print("\nall a_i == a != 0")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if (a_1^2 - a_2^2 + a_3^2 - a_4^2) % q_4:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# print("\t\t\tMultiplication of the vector " + str(v_theta))
|
||||||
|
large_sigma_for_this_vector = False
|
||||||
|
for shift in range(1, q_4):
|
||||||
|
# print("shift = " + str(shift) + ", q_4 = " + str(q_4))
|
||||||
|
shifted_theta = [(shift * a) % q_4 for a in
|
||||||
|
[a_1, a_2, a_3, a_4]]
|
||||||
|
|
||||||
|
|
||||||
large_sigma_for_all_v_comninations = False
|
# "untwisted" part (Levine-Tristram signatures)
|
||||||
print("ojojojoj")
|
a_1, a_2, a_3, a_4 = shifted_theta
|
||||||
break
|
untwisted_part = 2 * (sigma_q_2(ksi * a_1) -
|
||||||
|
sigma_q_2(ksi * a_2) +
|
||||||
|
sigma_q_3(ksi * a_3) -
|
||||||
|
sigma_q_3(ksi * a_4) +
|
||||||
|
sigma_q_1(ksi * a_1 * 2) -
|
||||||
|
sigma_q_1(ksi * a_4 * 2))
|
||||||
|
|
||||||
if large_sigma_for_all_v_comninations:
|
# "twisted" part
|
||||||
print("\n\n\nHura hura")
|
tp = [0, 0, 0, 0]
|
||||||
good_knots.append((knot_description, v_theta))
|
for i, a in enumerate(shifted_theta):
|
||||||
|
if a:
|
||||||
|
tp[i] = -q_4 + 2 * a - 2 * (a^2/q_4)
|
||||||
|
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
||||||
|
# assert twisted_part == int(twisted_part)
|
||||||
|
|
||||||
|
sigma_v = untwisted_part + twisted_part
|
||||||
|
# print(knot_description + "\t" + str(shifted_theta) +\
|
||||||
|
# "\t" + str(sigma_v))
|
||||||
|
# + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
||||||
|
|
||||||
|
if abs(sigma_v) > 5 + np.count_nonzero(shifted_theta):
|
||||||
|
large_sigma_for_this_vector = True
|
||||||
|
# break
|
||||||
# else:
|
# else:
|
||||||
# print "\n\tSmall signature value"
|
# pass
|
||||||
# print knot_description
|
# print(knot_description + "\t" + \
|
||||||
# print "v_theta: " + str(v_theta)
|
# str(shifted_theta) +\
|
||||||
# print condition
|
# "\t" + str(sigma_v))
|
||||||
# print "non zero value in v_theta: " + str(np.count_nonzero(v_theta))
|
|
||||||
# print "signature at 1/2: " + str(y)
|
|
||||||
return good_knots
|
if large_sigma_for_this_vector:
|
||||||
|
good_vectors.append(shifted_theta)
|
||||||
|
pass
|
||||||
|
# print("large_sigma_for_this_vector\n\n\n\n")
|
||||||
|
# print("\n\nHURA HURA")
|
||||||
|
else:
|
||||||
|
# print(shifted_theta)
|
||||||
|
# if a_3 == a_4:
|
||||||
|
# print(sigma_q_1(ksi * a_4 * 2))
|
||||||
|
bad_vectors.append(shifted_theta)
|
||||||
|
large_sigma_for_last_theta_zero = False
|
||||||
|
# break
|
||||||
|
|
||||||
|
if large_sigma_for_last_theta_non_zero and large_sigma_for_last_theta_zero:
|
||||||
|
print(100 * "\n\nHURA HURA")
|
||||||
|
print(knot_description)
|
||||||
|
|
||||||
|
# # if config.print_calculations_for_large_sigma:
|
||||||
|
# # print("*" * 100)
|
||||||
|
# # print("\n\nLarge signature value\n")
|
||||||
|
# # print(knot_description)
|
||||||
|
# # print("\nv_theta: ", end="")
|
||||||
|
# # print(v_theta)
|
||||||
|
# # print("k values: ", end="")
|
||||||
|
# # print(str(k_1) + " " + str(k_2) + " " + \
|
||||||
|
# # str(k_3) + " " + str(k_4))
|
||||||
|
# # print(condition)
|
||||||
|
# # print("non zero value in v_theta: " + \
|
||||||
|
# # str(np.count_nonzero(v_theta)))
|
||||||
|
# # print("sigma_v: " + str(sigma_v))
|
||||||
|
# # print("\ntwisted_part: ", end="")
|
||||||
|
# # print(twisted_part)
|
||||||
|
# # print("untwisted_part: ", end="")
|
||||||
|
# # print(untwisted_part)
|
||||||
|
# # print("\n\nCALCULATIONS")
|
||||||
|
# # print("*" * 100)
|
||||||
|
# # sults_LT(v_theta, knot_description,
|
||||||
|
# # ksi, untwisted_part,
|
||||||
|
# # k, sigma_q_1, sigma_q_2, sigma_q_3)
|
||||||
|
# # sults_sigma(v_theta, knot_description, tp, q_4)
|
||||||
|
# # print("*" * 100 + "\n" * 5)
|
||||||
|
# # else:
|
||||||
|
# # print(knot_description + "\t" + str(v_theta) +\
|
||||||
|
# # "\t" + str(sigma_v) + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
||||||
|
# # # if config.stop_after_firts_large_sigma:
|
||||||
|
# # # break
|
||||||
|
# # # sigma is small
|
||||||
|
# # else:
|
||||||
|
# # if config.print_calculations_for_small_sigma:
|
||||||
|
# # print("\n" * 5 + "*" * 100)
|
||||||
|
# # print("\nSmall signature value\n")
|
||||||
|
# # print(knot_description)
|
||||||
|
# # print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
||||||
|
# # k, sigma_q_1, sigma_q_2, sigma_q_3)
|
||||||
|
# # print_results_sigma(v_theta, knot_description, tp, q_4)
|
||||||
|
# # print("*" * 100 + "\n" * 5)
|
||||||
|
# # large_sigma_for_all_v_combinations = False
|
||||||
|
# #
|
||||||
|
# # if not config.print_calculations_for_small_sigma:
|
||||||
|
# # print(knot_description + "\t" + str(v_theta) +\
|
||||||
|
# # "\t" + str(sigma_v) + "\t" + str(2 * sigma_q_1(2 * ksi * a_4)))
|
||||||
|
# #
|
||||||
|
# #
|
||||||
|
# # # print("ojojojoj")
|
||||||
|
# # # break
|
||||||
|
#
|
||||||
|
# if large_sigma_for_all_v_combinations:
|
||||||
|
# print("\n\n\nHura hura")
|
||||||
|
# good_knots.append((knot_description, v_theta))
|
||||||
|
#
|
||||||
|
# # else:
|
||||||
|
# # print "\n\tSmall signature value"
|
||||||
|
# # print knot_description
|
||||||
|
# # print "v_theta: " + str(v_theta)
|
||||||
|
# # print condition
|
||||||
|
# # print "non zero value in v_theta: " + str(np.count_nonzero(v_theta))
|
||||||
|
# # print "signature at 1/2: " + str(y)
|
||||||
|
print("\ngood_vectors")
|
||||||
|
print(good_vectors)
|
||||||
|
print("\nbad_vectors")
|
||||||
|
print(bad_vectors)
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
def print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
def print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
||||||
@ -947,7 +1020,17 @@ get_signature_summand_as_theta_function.__doc__ = \
|
|||||||
a function that returns SignatureFunction for this single cable
|
a function that returns SignatureFunction for this single cable
|
||||||
and a theta given as an argument
|
and a theta given as an argument
|
||||||
"""
|
"""
|
||||||
|
SignatureFunction.__doc__ = \
|
||||||
|
"""
|
||||||
|
This simple class encodes twisted and untwisted signature functions
|
||||||
|
of knots. Since the signature function is entirely encoded by its signature
|
||||||
|
jump, the class stores only information about signature jumps
|
||||||
|
in a dictionary self.signature_jumps.
|
||||||
|
The dictionary stores data of the signature jump as a key/values pair,
|
||||||
|
where the key is the argument at which the functions jumps
|
||||||
|
and value encodes the value of the jump. Remember that we treat
|
||||||
|
signature functions as defined on the interval [0,1).
|
||||||
|
"""
|
||||||
get_signture_function_docsting = \
|
get_signture_function_docsting = \
|
||||||
"""
|
"""
|
||||||
This function returns SignatureFunction for previously defined single
|
This function returns SignatureFunction for previously defined single
|
||||||
|
Loading…
Reference in New Issue
Block a user