Version v0 for Maciej and Wojtek. Functions to print calculations for sigma_v. Printing results in 3 columns.
This commit is contained in:
parent
f9c9f5dd1d
commit
c7c16ab4c0
@ -3,48 +3,6 @@
|
|||||||
# TBD: read about Factory Method, variable in docstring, sage documentation
|
# TBD: read about Factory Method, variable in docstring, sage documentation
|
||||||
# move settings to sep file
|
# move settings to sep file
|
||||||
|
|
||||||
"""
|
|
||||||
This script calculates signature functions for knots (cable sums).
|
|
||||||
|
|
||||||
The script can be run as a sage script from the terminal
|
|
||||||
or used in interactive mode.
|
|
||||||
|
|
||||||
A knot (cable sum) is encoded as a list where each element (also a list)
|
|
||||||
corresponds to a cable knot, e.g. a list
|
|
||||||
[[1, 3], [2], [-1, -2], [-3]] encodes
|
|
||||||
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7).
|
|
||||||
|
|
||||||
To calculate the number of characters for which signature function vanish use
|
|
||||||
the function eval_cable_for_null_signature as shown below.
|
|
||||||
|
|
||||||
sage: eval_cable_for_null_signature([[1, 3], [2], [-1, -2], [-3]])
|
|
||||||
|
|
||||||
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
|
|
||||||
Zero cases: 1
|
|
||||||
All cases: 1225
|
|
||||||
Zero theta combinations:
|
|
||||||
(0, 0, 0, 0)
|
|
||||||
|
|
||||||
sage:
|
|
||||||
|
|
||||||
The numbers given to the function eval_cable_for_null_signature are k-values for each
|
|
||||||
component/cable in a direct sum.
|
|
||||||
|
|
||||||
To calculate signature function for a knot and a theta value, use function
|
|
||||||
get_signature_as_theta_function (see help/docstring for details).
|
|
||||||
|
|
||||||
About notation:
|
|
||||||
Cables that we work with follow a schema:
|
|
||||||
T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
|
||||||
# T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
|
||||||
In knot_formula each k[i] is related with some q_i value, where
|
|
||||||
q_i = 2*k[i] + 1.
|
|
||||||
So we can work in the following steps:
|
|
||||||
1) choose a schema/formula by changing the value of knot_formula
|
|
||||||
2) set each q_i all or choose range in which q_i should varry
|
|
||||||
3) choose vector v / theata vector.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
@ -54,24 +12,18 @@ import itertools as it
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import re
|
import re
|
||||||
import doc_signature
|
|
||||||
|
|
||||||
|
|
||||||
class Config(object):
|
class Config(object):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.f_results = os.path.join(os.getcwd(), "results.out")
|
self.f_results = os.path.join(os.getcwd(), "results.out")
|
||||||
|
|
||||||
# is the ratio restriction for values in k_vector taken into account
|
|
||||||
# False flag is usefull to make quick script tests
|
|
||||||
self.only_slice_candidates = True
|
|
||||||
self.only_slice_candidates = False
|
|
||||||
|
|
||||||
# knot_formula is a schema for knots which signature function
|
# knot_formula is a schema for knots which signature function
|
||||||
# will be calculated
|
# will be calculated
|
||||||
self.knot_formula = "[[k[0], k[1], k[3]], [-k[1], -k[3]], \
|
self.knot_formula = "[[k[0], k[1], k[3]], [-k[1], -k[3]], \
|
||||||
[k[2], k[3]], [-k[0], -k[2], -k[3]]]"
|
[k[2], k[3]], [-k[0], -k[2], -k[3]]]"
|
||||||
|
|
||||||
|
|
||||||
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \
|
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \
|
||||||
# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
|
# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
|
||||||
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3]],\
|
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3]],\
|
||||||
@ -79,7 +31,23 @@ class Config(object):
|
|||||||
self.limit = 3
|
self.limit = 3
|
||||||
|
|
||||||
self.verbose = True
|
self.verbose = True
|
||||||
# self.verbose = False
|
self.verbose = False
|
||||||
|
|
||||||
|
self.print_calculations_for_small_signature = True
|
||||||
|
# self.print_calculations_for_small_signature = False
|
||||||
|
|
||||||
|
|
||||||
|
self.print_calculations_for_large_signature = True
|
||||||
|
# self.print_calculations_for_large_signature = False
|
||||||
|
|
||||||
|
|
||||||
|
# is the ratio restriction for values in k_vector taken into account
|
||||||
|
# False flag is usefull to make quick script tests
|
||||||
|
self.only_slice_candidates = True
|
||||||
|
self.only_slice_candidates = False
|
||||||
|
|
||||||
|
self.stop_after_firts_large_signature = True
|
||||||
|
self.stop_after_firts_large_signature = False
|
||||||
|
|
||||||
|
|
||||||
class SignatureFunction(object):
|
class SignatureFunction(object):
|
||||||
@ -93,21 +61,24 @@ class SignatureFunction(object):
|
|||||||
and value encodes the value of the jump. Remember that we treat
|
and value encodes the value of the jump. Remember that we treat
|
||||||
signature functions as defined on the interval [0,1).
|
signature functions as defined on the interval [0,1).
|
||||||
"""
|
"""
|
||||||
def __init__(self, values=[]):
|
def __init__(self, values=[], counter=collections.Counter()):
|
||||||
# set values of signature jumps
|
# set values of signature jumps
|
||||||
self.signature_jumps = collections.defaultdict(int)
|
self.signature_jumps = collections.defaultdict(int, counter)
|
||||||
self.ttsignature_jumps = collections.Counter()
|
self.counter_signature_jumps = counter
|
||||||
|
if not counter:
|
||||||
for jump_arg, jump in values:
|
for jump_arg, jump in values:
|
||||||
assert 0 <= jump_arg < 1, \
|
assert 0 <= jump_arg < 1, \
|
||||||
"Signature function is defined on the interval [0, 1)."
|
"Signature function is defined on the interval [0, 1)."
|
||||||
self.signature_jumps[jump_arg] = jump
|
self.signature_jumps[jump_arg] = jump
|
||||||
|
self.counter_signature_jumps = collections.Counter(self.signature_jumps)
|
||||||
|
|
||||||
def sum_of_absolute_values(self):
|
def sum_of_absolute_values(self):
|
||||||
return sum([abs(i) for i in self.signature_jumps.values()])
|
return sum([abs(i) for i in self.signature_jumps.values()])
|
||||||
|
|
||||||
def is_zero_everywhere(self):
|
def is_zero_everywhere(self):
|
||||||
return not any(self.signature_jumps.values())
|
result = not any(self.signature_jumps.values())
|
||||||
|
assert result == (not any(self.counter_signature_jumps.values()))
|
||||||
|
return result
|
||||||
|
|
||||||
def double_cover(self):
|
def double_cover(self):
|
||||||
# to read values for t^2
|
# to read values for t^2
|
||||||
@ -125,8 +96,6 @@ class SignatureFunction(object):
|
|||||||
new_data.append((2 * jump_arg, jump))
|
new_data.append((2 * jump_arg, jump))
|
||||||
return SignatureFunction(new_data)
|
return SignatureFunction(new_data)
|
||||||
|
|
||||||
def get_signture_jump(self, t):
|
|
||||||
return self.signature_jumps.get(t, 0)
|
|
||||||
|
|
||||||
def minus_square_root(self):
|
def minus_square_root(self):
|
||||||
# to read values for t^(1/2)
|
# to read values for t^(1/2)
|
||||||
@ -151,16 +120,11 @@ class SignatureFunction(object):
|
|||||||
new_data = []
|
new_data = []
|
||||||
for jump_arg, jump in self.signature_jumps.items():
|
for jump_arg, jump in self.signature_jumps.items():
|
||||||
new_data.append((jump_arg, -jump))
|
new_data.append((jump_arg, -jump))
|
||||||
|
sf = SignatureFunction(new_data)
|
||||||
return SignatureFunction(new_data)
|
return SignatureFunction(new_data)
|
||||||
|
|
||||||
# TBD short
|
# TBD short
|
||||||
def __add__(self, other):
|
def __add__(self, other):
|
||||||
print "\n" * 3
|
|
||||||
print "other"
|
|
||||||
print other.signature_jumps
|
|
||||||
print "self"
|
|
||||||
print self.signature_jumps
|
|
||||||
new_signature_function = SignatureFunction()
|
|
||||||
new_data = collections.defaultdict(int)
|
new_data = collections.defaultdict(int)
|
||||||
for jump_arg, jump in other.signature_jumps.items():
|
for jump_arg, jump in other.signature_jumps.items():
|
||||||
new_data[jump_arg] = jump + self.signature_jumps.get(jump_arg, 0)
|
new_data[jump_arg] = jump + self.signature_jumps.get(jump_arg, 0)
|
||||||
@ -168,28 +132,12 @@ class SignatureFunction(object):
|
|||||||
if jump_arg not in new_data.keys():
|
if jump_arg not in new_data.keys():
|
||||||
new_data[jump_arg] = self.signature_jumps[jump_arg]
|
new_data[jump_arg] = self.signature_jumps[jump_arg]
|
||||||
|
|
||||||
tnew_signature_function = SignatureFunction()
|
counter = collections.Counter()
|
||||||
tnew_data = collections.defaultdict(int)
|
counter.update(self.counter_signature_jumps)
|
||||||
self.ttsignature_jumps = collections.Counter(self.signature_jumps)
|
counter.update(other.counter_signature_jumps)
|
||||||
other.ttsignature_jumps = collections.Counter(other.signature_jumps)
|
assert collections.defaultdict(int, counter) == new_data
|
||||||
for jump_arg, jump in other.ttsignature_jumps.items():
|
return SignatureFunction(counter=counter)
|
||||||
tnew_data[jump_arg] = jump + self.ttsignature_jumps.get(jump_arg, 0)
|
|
||||||
for jump_arg, jump in self.ttsignature_jumps.items():
|
|
||||||
if jump_arg not in tnew_data.keys():
|
|
||||||
tnew_data[jump_arg] = self.ttsignature_jumps[jump_arg]
|
|
||||||
tt = other.ttsignature_jumps + self.ttsignature_jumps
|
|
||||||
# tt = dict(tt)
|
|
||||||
tt = collections.defaultdict(int, tt)
|
|
||||||
print "\n" * 3
|
|
||||||
print "tt"
|
|
||||||
print tt
|
|
||||||
print "new_data"
|
|
||||||
print new_data
|
|
||||||
|
|
||||||
assert new_data == tnew_data
|
|
||||||
new_signature_function.signature_jumps = new_data
|
|
||||||
|
|
||||||
return new_signature_function
|
|
||||||
|
|
||||||
def __sub__(self, other):
|
def __sub__(self, other):
|
||||||
return self + other.__neg__()
|
return self + other.__neg__()
|
||||||
@ -198,6 +146,11 @@ class SignatureFunction(object):
|
|||||||
return ''.join([str(jump_arg) + ": " + str(jump) + "\n"
|
return ''.join([str(jump_arg) + ": " + str(jump) + "\n"
|
||||||
for jump_arg, jump in sorted(self.signature_jumps.items())])
|
for jump_arg, jump in sorted(self.signature_jumps.items())])
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
result = ''.join([str(jump_arg) + ": " + str(jump) + ", "
|
||||||
|
for jump_arg, jump in sorted(self.signature_jumps.items())])
|
||||||
|
return result[:-2] + "."
|
||||||
|
|
||||||
def __call__(self, arg):
|
def __call__(self, arg):
|
||||||
# Compute the value of the signature function at the point arg.
|
# Compute the value of the signature function at the point arg.
|
||||||
# This requires summing all signature jumps that occur before arg.
|
# This requires summing all signature jumps that occur before arg.
|
||||||
@ -208,22 +161,19 @@ class SignatureFunction(object):
|
|||||||
val += 2 * jump
|
val += 2 * jump
|
||||||
elif jump_arg == arg:
|
elif jump_arg == arg:
|
||||||
val += jump
|
val += jump
|
||||||
a = self.sum_of_absolute_values()
|
|
||||||
b = self.is_zero_everywhere()
|
|
||||||
assert (a and not b) or (not a and b)
|
|
||||||
return val
|
return val
|
||||||
|
|
||||||
|
|
||||||
def main(arg):
|
def main(arg):
|
||||||
try:
|
try:
|
||||||
new_limit = int(arg[1])
|
new_limit = int(arg[1])
|
||||||
except:
|
except IndexError:
|
||||||
new_limit = None
|
new_limit = None
|
||||||
search_for_large_signature_value(limit=new_limit)
|
search_for_large_signature_value(limit=new_limit)
|
||||||
# search_for_null_signature_value(limit=new_limit)
|
# search_for_null_signature_value(limit=new_limit)
|
||||||
|
|
||||||
|
|
||||||
# searching for signture > 5 + #(v_i != 0)
|
# searching for signture > 5 + #(v_i != 0) over given knot schema
|
||||||
def search_for_large_signature_value(knot_formula=None,
|
def search_for_large_signature_value(knot_formula=None,
|
||||||
limit=None,
|
limit=None,
|
||||||
verbose=None):
|
verbose=None):
|
||||||
@ -234,39 +184,51 @@ def search_for_large_signature_value(knot_formula=None,
|
|||||||
if verbose is None:
|
if verbose is None:
|
||||||
vebose = config.verbose
|
vebose = config.verbose
|
||||||
|
|
||||||
|
# number of k_i (q_i) variables to substitute
|
||||||
k_vector_size = extract_max(knot_formula) + 1
|
k_vector_size = extract_max(knot_formula) + 1
|
||||||
|
|
||||||
limit = max(limit, k_vector_size)
|
limit = max(limit, k_vector_size)
|
||||||
combinations = it.combinations(range(1, limit + 1), k_vector_size)
|
combinations = it.combinations(range(1, limit + 1), k_vector_size)
|
||||||
P = Primes()
|
P = Primes()
|
||||||
|
|
||||||
with open(config.f_results, 'w') as f_results:
|
# with open(config.f_results, 'w') as f_results:
|
||||||
for c in combinations:
|
for c in combinations:
|
||||||
k = [(P.unrank(i) - 1)/2 for i in c]
|
k = [(P.unrank(i) - 1)/2 for i in c]
|
||||||
knot_sum = eval(knot_formula)
|
|
||||||
if config.only_slice_candidates:
|
if config.only_slice_candidates:
|
||||||
if not (k[3] > 4 * k[2] and
|
if not (k[3] > 4 * k[2] and
|
||||||
k[2] > 4 * k[1] and
|
k[2] > 4 * k[1] and
|
||||||
k[1] > 4 * k[0]):
|
k[1] > 4 * k[0]):
|
||||||
print "niu niu"
|
if verbose:
|
||||||
|
print "Ratio-condition does not hold"
|
||||||
continue
|
continue
|
||||||
result = eval_cable_for_large_signature(knot_sum,
|
result = eval_cable_for_large_signature(k_vector=k,
|
||||||
|
knot_formula=knot_formula,
|
||||||
print_results=False)
|
print_results=False)
|
||||||
# if result is not None:
|
|
||||||
# knot_description, large_comb, all_comb = result
|
|
||||||
# line = (str(k) + ", " + str(all_comb) + ", " +
|
|
||||||
# str(all_comb) + "\n")
|
|
||||||
# f_results.write(line)
|
|
||||||
|
|
||||||
# searching for signture > 5 + #(v_i != 0)
|
# searching for signture > 5 + #(v_i != 0)
|
||||||
def eval_cable_for_large_signature(knot_sum,
|
def eval_cable_for_large_signature(k_vector=None,
|
||||||
|
knot_formula=None,
|
||||||
print_results=True,
|
print_results=True,
|
||||||
verbose=None):
|
verbose=None,
|
||||||
|
q_vector=None):
|
||||||
knot_description = get_knot_descrption(*knot_sum)
|
if knot_formula is None:
|
||||||
|
knot_formula = config.knot_formula
|
||||||
|
|
||||||
if verbose is None:
|
if verbose is None:
|
||||||
verbose = config.verbose
|
verbose = config.verbose
|
||||||
|
if k_vector is None:
|
||||||
|
if q_vector is None:
|
||||||
|
# TBD docstring
|
||||||
|
print "Please give a list of k (k_vector) or q values (q_vector)."
|
||||||
|
|
||||||
|
k = k_vector
|
||||||
|
knot_sum = eval(knot_formula)
|
||||||
|
knot_description = get_knot_descrption(*knot_sum)
|
||||||
|
|
||||||
|
k_1, k_2, k_3, k_4 = [abs(i) for i in k]
|
||||||
|
q_4 = 2 * k_4 + 1
|
||||||
|
ksi = 1/q_4
|
||||||
|
|
||||||
if verbose:
|
if verbose:
|
||||||
print "\n\n"
|
print "\n\n"
|
||||||
@ -274,52 +236,32 @@ def eval_cable_for_large_signature(knot_sum,
|
|||||||
print "Searching for a large signature values for the cable sum: "
|
print "Searching for a large signature values for the cable sum: "
|
||||||
print knot_description
|
print knot_description
|
||||||
|
|
||||||
|
|
||||||
if len(knot_sum) != 4:
|
if len(knot_sum) != 4:
|
||||||
print "Wrong number of cable direct summands!"
|
print "Wrong number of cable direct summands!"
|
||||||
return None
|
return None
|
||||||
|
|
||||||
f = get_signature_as_theta_function(*knot_sum, verbose=False)
|
# iteration over all possible character combinations
|
||||||
# g = get_signature_as_theta_function_test(*knot_sum, verbose=False)
|
|
||||||
|
|
||||||
|
|
||||||
# large_value_combinations = 0
|
|
||||||
# good_thetas_list = []
|
|
||||||
|
|
||||||
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
|
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
|
||||||
|
|
||||||
q = 2 * abs(knot_sum[-1][-1]) + 1
|
|
||||||
q_4 = q
|
|
||||||
|
|
||||||
for v_theta in it.product(*ranges_list):
|
for v_theta in it.product(*ranges_list):
|
||||||
theta_squers = [i^2 for i in v_theta]
|
theta_squers = [i^2 for i in v_theta]
|
||||||
condition = "(" + str(theta_squers[0]) + " - " + str(theta_squers[1]) \
|
condition = "(" + str(theta_squers[0]) \
|
||||||
+ " + " + str(theta_squers[1]) + " - " + \
|
+ " - " + str(theta_squers[1]) \
|
||||||
str(theta_squers[3]) + ") % " + str(q_4)
|
+ " + " + str(theta_squers[2]) \
|
||||||
if verbose:
|
+ " - " + str(theta_squers[3]) \
|
||||||
print "\nChecking for characters: " + str(v_theta)
|
+ ") % " + str(q_4)
|
||||||
|
# if verbose:
|
||||||
|
# print "\nChecking for characters: " + str(v_theta)
|
||||||
if (theta_squers[0] - theta_squers[1] +
|
if (theta_squers[0] - theta_squers[1] +
|
||||||
theta_squers[2] - theta_squers[3]) % q:
|
theta_squers[2] - theta_squers[3]) % q_4:
|
||||||
if verbose:
|
if verbose:
|
||||||
print "Condition not satisfied: " + str(condition) + " != 0."
|
print "The condition is not satisfied: " + \
|
||||||
|
str(condition) + " != 0."
|
||||||
continue
|
continue
|
||||||
|
|
||||||
y = f(*v_theta)(1/2)
|
# T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
||||||
|
# # T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
||||||
|
|
||||||
|
# "untwisted" part (Levine-Tristram signatures)
|
||||||
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# twisted_part = 0
|
|
||||||
# old_twisted_part = 0
|
|
||||||
# # T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
|
||||||
# # # T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
|
||||||
k_1, k_2, k_4 = [abs(i) for i in knot_sum[0]]
|
|
||||||
k_3 = abs(knot_sum[2][1])
|
|
||||||
q_4 = 2 * k_4 + 1
|
|
||||||
ksi = 1/q_4
|
|
||||||
print "k values: "
|
|
||||||
print str(k_1) + " " + str(k_2) + " " + str(k_3) + " " + str(k_4)
|
|
||||||
sigma_q_1 = get_untwisted_signature_function(k_1)
|
sigma_q_1 = get_untwisted_signature_function(k_1)
|
||||||
sigma_q_2 = get_untwisted_signature_function(k_2)
|
sigma_q_2 = get_untwisted_signature_function(k_2)
|
||||||
sigma_q_3 = get_untwisted_signature_function(k_3)
|
sigma_q_3 = get_untwisted_signature_function(k_3)
|
||||||
@ -331,53 +273,183 @@ def eval_cable_for_large_signature(knot_sum,
|
|||||||
sigma_q_3(mod_one(ksi * a_4)) -
|
sigma_q_3(mod_one(ksi * a_4)) -
|
||||||
sigma_q_1(mod_one(ksi * a_4 * 2)))
|
sigma_q_1(mod_one(ksi * a_4 * 2)))
|
||||||
|
|
||||||
# tp = [0, 0, 0, 0]
|
# "twisted" part
|
||||||
# for i, a in enumerate(thetas):
|
tp = [0, 0, 0, 0]
|
||||||
# if a:
|
for i, a in enumerate(v_theta):
|
||||||
# tp[i] = -q_4 + 2 * a - (2 * a^2)/q_4
|
if a:
|
||||||
# print "petla"
|
tp[i] = -q_4 + 2 * a - 2 * (a^2/q_4)
|
||||||
# print i
|
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
||||||
# print tp[i]
|
assert twisted_part == int(twisted_part)
|
||||||
# print 5 * "\n"
|
|
||||||
# print tp
|
|
||||||
# new_twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
|
||||||
# print new_twisted_part
|
|
||||||
#
|
|
||||||
# for i, knot in enumerate(arg):
|
|
||||||
# try:
|
|
||||||
# dssf = get_signature_summand_as_theta_function_test(*knot)(thetas[i])
|
|
||||||
# sf += dssf
|
|
||||||
# # in case wrong theata value was given
|
|
||||||
# except ValueError as e:
|
|
||||||
# print "ValueError: " + str(e.args[0]) +\
|
|
||||||
# " Please change " + str(i + 1) + ". parameter."
|
|
||||||
# return None
|
|
||||||
# print "\nold_twisted_part"
|
|
||||||
# print old_twisted_part
|
|
||||||
# print "twisted_part: "
|
|
||||||
# print new_twisted_part
|
|
||||||
# print "untwisted_part: "
|
|
||||||
# print untwisted_part
|
|
||||||
# print "\n\n\n\n" + 50 * "*" + "\nsum " + str(untwisted_part + new_twisted_part)
|
|
||||||
#
|
|
||||||
#
|
|
||||||
#
|
|
||||||
|
|
||||||
# j = g(*v_theta)(1/2)
|
# y = f(*v_theta)(1/2)
|
||||||
# assert y == j
|
sigma_v = untwisted_part + twisted_part
|
||||||
|
if abs(sigma_v) > 5 + np.count_nonzero(v_theta):
|
||||||
if abs(y) > 5 + np.count_nonzero(v_theta):
|
if config.print_calculations_for_large_signature:
|
||||||
print "\n\tLarge signature value"
|
print "*" * 100
|
||||||
else:
|
print "\n\nLarge signature value\n"
|
||||||
print "\n\tSmall signature value"
|
|
||||||
print knot_description
|
print knot_description
|
||||||
print "v_theta: " + str(v_theta)
|
print "\nv_theta: ",
|
||||||
|
print v_theta
|
||||||
|
print "k values: ",
|
||||||
|
print str(k_1) + " " + str(k_2) + " " + \
|
||||||
|
str(k_3) + " " + str(k_4)
|
||||||
print condition
|
print condition
|
||||||
print "non zero value in v_theta: " + str(np.count_nonzero(v_theta))
|
print "non zero value in v_theta: " + \
|
||||||
print "signature at 1/2: " + str(y)
|
str(np.count_nonzero(v_theta))
|
||||||
|
print "sigma_v: " + str(sigma_v)
|
||||||
|
print "\ntwisted_part: ",
|
||||||
|
print twisted_part
|
||||||
|
print "untwisted_part: ",
|
||||||
|
print untwisted_part
|
||||||
|
print "\n\nCALCULATIONS"
|
||||||
|
print "*" * 100
|
||||||
|
print_results_LT(v_theta, knot_description,
|
||||||
|
ksi, untwisted_part,
|
||||||
|
k, sigma_q_1, sigma_q_2, sigma_q_3)
|
||||||
|
print_results_sigma(v_theta, knot_description, tp, q_4)
|
||||||
|
print "*" * 100 + "\n" * 5
|
||||||
|
else:
|
||||||
|
print knot_description + "\t" + str(v_theta) +\
|
||||||
|
"\t" + str(sigma_v)
|
||||||
|
if config.stop_after_firts_large_signature:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
if config.print_calculations_for_small_signature:
|
||||||
|
print "\n" * 5 + "*" * 100
|
||||||
|
print "\nSmall signature value\n"
|
||||||
|
print knot_description
|
||||||
|
print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
||||||
|
k, sigma_q_1, sigma_q_2, sigma_q_3)
|
||||||
|
print_results_sigma(v_theta, knot_description, tp, q_4)
|
||||||
|
print "*" * 100 + "\n" * 5
|
||||||
|
|
||||||
|
|
||||||
|
# else:
|
||||||
|
# print "\n\tSmall signature value"
|
||||||
|
# print knot_description
|
||||||
|
# print "v_theta: " + str(v_theta)
|
||||||
|
# print condition
|
||||||
|
# print "non zero value in v_theta: " + str(np.count_nonzero(v_theta))
|
||||||
|
# print "signature at 1/2: " + str(y)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def print_results_LT(v_theta, knot_description, ksi, untwisted_part,
|
||||||
|
k, sigma_q_1, sigma_q_2, sigma_q_3):
|
||||||
|
a_1, a_2, a_3, a_4 = v_theta
|
||||||
|
k_1, k_2, k_3, k_4 = [abs(i) for i in k]
|
||||||
|
print "\n\nLevine-Tristram signatures for the cable sum: "
|
||||||
|
print knot_description
|
||||||
|
print "and characters:\n" + str(v_theta) + ","
|
||||||
|
print "ksi = " + str(ksi)
|
||||||
|
print "\n\n2 * (sigma_q_2(ksi * a_1) + " + \
|
||||||
|
"sigma_q_1(ksi * a_1 * 2) - " +\
|
||||||
|
"sigma_q_2(ksi * a_2) + " +\
|
||||||
|
"sigma_q_3(ksi * a_3) - " +\
|
||||||
|
"sigma_q_3(ksi * a_4) - " +\
|
||||||
|
"sigma_q_1(ksi * a_4 * 2))" +\
|
||||||
|
\
|
||||||
|
" = \n\n2 * (sigma_q_2(" + \
|
||||||
|
str(ksi) + " * " + str(a_1) + \
|
||||||
|
") + sigma_q_1(" + \
|
||||||
|
str(ksi) + " * " + str(a_1) + " * 2" + \
|
||||||
|
") - sigma_q_2(" + \
|
||||||
|
str(ksi) + " * " + str(a_2) + \
|
||||||
|
") + sigma_q_3(" + \
|
||||||
|
str(ksi) + " * " + str(a_3) + \
|
||||||
|
") - sigma_q_3(" + \
|
||||||
|
str(ksi) + " * " + str(a_4) + \
|
||||||
|
") - sigma_q_1(" + \
|
||||||
|
str(ksi) + " * " + str(a_4) + " * 2)) " + \
|
||||||
|
\
|
||||||
|
" = \n\n2 * (sigma_q_2(" + \
|
||||||
|
str(mod_one(ksi * a_1)) + \
|
||||||
|
") + sigma_q_1(" + \
|
||||||
|
str(mod_one(ksi * a_1 * 2)) + \
|
||||||
|
") - sigma_q_2(" + \
|
||||||
|
str(mod_one(ksi * a_2)) + \
|
||||||
|
") + sigma_q_3(" + \
|
||||||
|
str(mod_one(ksi * a_3)) + \
|
||||||
|
") - sigma_q_3(" + \
|
||||||
|
str(mod_one(ksi * a_4)) + \
|
||||||
|
") - sigma_q_1(" + \
|
||||||
|
str(mod_one(ksi * a_4 * 2)) + \
|
||||||
|
\
|
||||||
|
") = \n\n2 * ((" + \
|
||||||
|
str(sigma_q_2(mod_one(ksi * a_1))) + \
|
||||||
|
") + (" + \
|
||||||
|
str(sigma_q_1(mod_one(ksi * a_1 * 2))) + \
|
||||||
|
") - (" + \
|
||||||
|
str(sigma_q_2(mod_one(ksi * a_2))) + \
|
||||||
|
") + (" + \
|
||||||
|
str(sigma_q_3(mod_one(ksi * a_3))) + \
|
||||||
|
") - (" + \
|
||||||
|
str(sigma_q_3(mod_one(ksi * a_4))) + \
|
||||||
|
") - (" + \
|
||||||
|
str(sigma_q_1(mod_one(ksi * a_4 * 2))) + ")) = " + \
|
||||||
|
"\n\n2 * (" + \
|
||||||
|
str(sigma_q_2(mod_one(ksi * a_1)) +
|
||||||
|
sigma_q_1(mod_one(ksi * a_1 * 2)) -
|
||||||
|
sigma_q_2(mod_one(ksi * a_2)) +
|
||||||
|
sigma_q_3(mod_one(ksi * a_3)) -
|
||||||
|
sigma_q_3(mod_one(ksi * a_4)) -
|
||||||
|
sigma_q_1(mod_one(ksi * a_4 * 2))) + \
|
||||||
|
") = " + str(untwisted_part)
|
||||||
|
print "\nSignatures:"
|
||||||
|
print "\nq_1 = " + str(2 * k_1 + 1) + ": " + repr(sigma_q_1)
|
||||||
|
print "\nq_2 = " + str(2 * k_2 + 1) + ": " + repr(sigma_q_2)
|
||||||
|
print "\nq_3 = " + str(2 * k_3 + 1) + ": " + repr(sigma_q_3)
|
||||||
|
|
||||||
|
|
||||||
|
def print_results_sigma(v_theta, knot_description, tp, q_4):
|
||||||
|
a_1, a_2, a_3, a_4 = v_theta
|
||||||
|
|
||||||
|
print "\n\nSigma values for the cable sum: "
|
||||||
|
print knot_description
|
||||||
|
print "and characters: " + str(v_theta)
|
||||||
|
print "\nsigma(T_{2, q_4}, ksi_a) = " + \
|
||||||
|
"-q + (2 * a * (q_4 - a)/q_4) " +\
|
||||||
|
"= -q + 2 * a - 2 * a^2/q_4 if a != 0,\n\t\t\t" +\
|
||||||
|
" = 0 if a == 0."
|
||||||
|
print "\nsigma(T_{2, q_4}, chi_a_1) = ",
|
||||||
|
if a_1:
|
||||||
|
print "- (" + str(q_4) + ") + 2 * " + str(a_1) + " + " +\
|
||||||
|
"- 2 * " + str(a_1^2) + "/" + str(q_4) + \
|
||||||
|
" = " + str(tp[0])
|
||||||
|
else:
|
||||||
|
print "0"
|
||||||
|
print "\nsigma(T_{2, q_4}, chi_a_2) = ",
|
||||||
|
if a_2:
|
||||||
|
print "- (" + str(q_4) + ") + 2 * " + str(a_2) + " + " +\
|
||||||
|
"- 2 * " + str(a_2^2) + "/" + str(q_4) + \
|
||||||
|
" = " + str(tp[1])
|
||||||
|
else:
|
||||||
|
print "0",
|
||||||
|
print "\nsigma(T_{2, q_4}, chi_a_3) = ",
|
||||||
|
if a_3:
|
||||||
|
print "- (" + str(q_4) + ") + 2 * " + str(a_3) + " + " +\
|
||||||
|
"- 2 * " + str(a_3^2) + "/" + str(q_4) + \
|
||||||
|
" = " + str(tp[2])
|
||||||
|
else:
|
||||||
|
print "0",
|
||||||
|
print "\nsigma(T_{2, q_4}, chi_a_4) = ",
|
||||||
|
if a_4:
|
||||||
|
print "- (" + str(q_4) + ") + 2 * " + str(a_4) + " + " +\
|
||||||
|
"- 2 * " + str(a_4^2) + "/" + str(q_4) + \
|
||||||
|
" = " + str(tp[3])
|
||||||
|
else:
|
||||||
|
print "0"
|
||||||
|
|
||||||
|
print "\n\nsigma(T_{2, q_4}, chi_a_1) " + \
|
||||||
|
"- sigma(T_{2, q_4}, chi_a_2) " + \
|
||||||
|
"+ sigma(T_{2, q_4}, chi_a_3) " + \
|
||||||
|
"- sigma(T_{2, q_4}, chi_a_4) =\n" + \
|
||||||
|
"sigma(T_{2, q_4}, " + str(a_1) + \
|
||||||
|
") - sigma(T_{2, q_4}, " + str(a_2) + \
|
||||||
|
") + sigma(T_{2, q_4}, " + str(a_3) + \
|
||||||
|
") - sigma(T_{2, q_4}, " + str(a_4) + ") = " + \
|
||||||
|
str(tp[0] - tp[1] + tp[2] - tp[3])
|
||||||
|
|
||||||
# searching for signature == 0
|
# searching for signature == 0
|
||||||
def search_for_null_signature_value(knot_formula=None, limit=None):
|
def search_for_null_signature_value(knot_formula=None, limit=None):
|
||||||
if limit is None:
|
if limit is None:
|
||||||
@ -390,18 +462,15 @@ def search_for_null_signature_value(knot_formula=None, limit=None):
|
|||||||
k_vector_size)
|
k_vector_size)
|
||||||
|
|
||||||
with open(config.f_results, 'w') as f_results:
|
with open(config.f_results, 'w') as f_results:
|
||||||
|
|
||||||
for k in combinations:
|
for k in combinations:
|
||||||
# print
|
|
||||||
# print k
|
|
||||||
# TBD: maybe the following condition or the function
|
|
||||||
# get_shifted_combination should be redefined to a dynamic version
|
|
||||||
if config.only_slice_candidates and k_vector_size == 5:
|
if config.only_slice_candidates and k_vector_size == 5:
|
||||||
k = get_shifted_combination(k)
|
k = get_shifted_combination(k)
|
||||||
# print k
|
|
||||||
knot_sum = eval(knot_formula)
|
knot_sum = eval(knot_formula)
|
||||||
|
|
||||||
if is_trivial_combination(knot_sum):
|
if is_trivial_combination(knot_sum):
|
||||||
|
print knot_sum
|
||||||
continue
|
continue
|
||||||
|
|
||||||
result = eval_cable_for_null_signature(knot_sum)
|
result = eval_cable_for_null_signature(knot_sum)
|
||||||
if result is not None:
|
if result is not None:
|
||||||
knot_description, null_comb, all_comb = result
|
knot_description, null_comb, all_comb = result
|
||||||
@ -426,7 +495,7 @@ def eval_cable_for_null_signature(knot_sum, print_results=False, verbose=None):
|
|||||||
print
|
print
|
||||||
print knot_description
|
print knot_description
|
||||||
for v_theta in it.product(*ranges_list):
|
for v_theta in it.product(*ranges_list):
|
||||||
if f(*v_theta, verbose=False).sum_of_absolute_values() == 0:
|
if f(*v_theta, verbose=False).is_zero_everywhere():
|
||||||
zero_theta_combinations.append(v_theta)
|
zero_theta_combinations.append(v_theta)
|
||||||
m = len([theta for theta in v_theta if theta != 0])
|
m = len([theta for theta in v_theta if theta != 0])
|
||||||
null_combinations += 2^m
|
null_combinations += 2^m
|
||||||
@ -497,52 +566,6 @@ def get_blanchfield_for_pattern(k_n, theta):
|
|||||||
results.append((1 - e * ksi, 1 * sgn(k_n)))
|
results.append((1 - e * ksi, 1 * sgn(k_n)))
|
||||||
return SignatureFunction(results)
|
return SignatureFunction(results)
|
||||||
|
|
||||||
def get_signature_summand_as_theta_function_test(*arg):
|
|
||||||
|
|
||||||
sf = SignatureFunction([(0, 0)])
|
|
||||||
|
|
||||||
def get_signture_function_test(theta):
|
|
||||||
# untwisted part
|
|
||||||
k_n = abs(arg[-1])
|
|
||||||
cable_signature = sf
|
|
||||||
# print k_0, k_1, k_2, k_3
|
|
||||||
|
|
||||||
for i, k in enumerate(arg[:-1][::-1]):
|
|
||||||
ksi = 1/(2 * k_n + 1)
|
|
||||||
power = 2^i
|
|
||||||
a = get_untwisted_signature_function(k)
|
|
||||||
shift = theta * ksi * power
|
|
||||||
b = a >> shift
|
|
||||||
c = a << shift
|
|
||||||
for _ in range(i):
|
|
||||||
b = b.double_cover()
|
|
||||||
c = c.double_cover()
|
|
||||||
cable_signature += b + c
|
|
||||||
|
|
||||||
if theta > k_n:
|
|
||||||
msg = "k for the pattern in the cable is " + str(arg[-1]) + \
|
|
||||||
". Parameter theta should not be larger than abs(k)."
|
|
||||||
raise ValueError(msg)
|
|
||||||
|
|
||||||
# twisted part
|
|
||||||
tp = get_blanchfield_for_pattern(arg[-1], theta)
|
|
||||||
cable_signature += tp
|
|
||||||
print "\ncs: "
|
|
||||||
print cable_signature(1/2)
|
|
||||||
tp_at = tp(1/2)
|
|
||||||
print "tp: "
|
|
||||||
print tp_at
|
|
||||||
|
|
||||||
return cable_signature
|
|
||||||
|
|
||||||
get_signture_function_test.__doc__ = get_signture_function_docsting
|
|
||||||
return get_signture_function_test
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_signature_summand_as_theta_function(*arg):
|
def get_signature_summand_as_theta_function(*arg):
|
||||||
def get_signture_function(theta):
|
def get_signture_function(theta):
|
||||||
# TBD: another formula (for t^2) description
|
# TBD: another formula (for t^2) description
|
||||||
@ -568,14 +591,16 @@ def get_signature_summand_as_theta_function(*arg):
|
|||||||
b = b.double_cover()
|
b = b.double_cover()
|
||||||
c = c.double_cover()
|
c = c.double_cover()
|
||||||
cable_signature += b + c
|
cable_signature += b + c
|
||||||
|
test = b - c
|
||||||
|
test2 = -c + b
|
||||||
|
assert test == test
|
||||||
return cable_signature
|
return cable_signature
|
||||||
get_signture_function.__doc__ = get_signture_function_docsting
|
get_signture_function.__doc__ = get_signture_function_docsting
|
||||||
return get_signture_function
|
return get_signture_function
|
||||||
|
|
||||||
|
|
||||||
def get_untwisted_signature_function(j):
|
def get_untwisted_signature_function(j):
|
||||||
"""This function returns the signature function of the T_{2,2k+1}
|
# return the signature function of the T_{2,2k+1} torus knot
|
||||||
torus knot."""
|
|
||||||
k = abs(j)
|
k = abs(j)
|
||||||
w = ([((2 * a + 1)/(4 * k + 2), -1 * sgn(j)) for a in range(k)] +
|
w = ([((2 * a + 1)/(4 * k + 2), -1 * sgn(j)) for a in range(k)] +
|
||||||
[((2 * a + 1)/(4 * k + 2), 1 * sgn(j))
|
[((2 * a + 1)/(4 * k + 2), 1 * sgn(j))
|
||||||
@ -583,95 +608,6 @@ def get_untwisted_signature_function(j):
|
|||||||
return SignatureFunction(w)
|
return SignatureFunction(w)
|
||||||
|
|
||||||
|
|
||||||
def get_signature_as_theta_function_test(*arg, **key_args):
|
|
||||||
if 'verbose' in key_args:
|
|
||||||
verbose_default = key_args['verbose']
|
|
||||||
else:
|
|
||||||
verbose_default = config.verbose
|
|
||||||
sf0 = SignatureFunction([(0, 0)])
|
|
||||||
sf0_test = SignatureFunction([(0, 0)])
|
|
||||||
|
|
||||||
|
|
||||||
def signature_as_theta_function_test(*thetas, **kwargs):
|
|
||||||
verbose = verbose_default
|
|
||||||
if 'verbose' in kwargs:
|
|
||||||
verbose = kwargs['verbose']
|
|
||||||
la = len(arg)
|
|
||||||
lt = len(thetas)
|
|
||||||
sf = sf0
|
|
||||||
sf_test = sf0_test
|
|
||||||
|
|
||||||
# call with no arguments
|
|
||||||
if lt == 0:
|
|
||||||
return signature_as_theta_function_test(*(la * [0]))
|
|
||||||
|
|
||||||
if lt != la:
|
|
||||||
msg = "This function takes exactly " + str(la) + \
|
|
||||||
" arguments or no argument at all (" + str(lt) + " given)."
|
|
||||||
raise TypeError(msg)
|
|
||||||
|
|
||||||
# for each cable in cable sum apply theta
|
|
||||||
twisted_part = 0
|
|
||||||
old_twisted_part = 0
|
|
||||||
# T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
|
||||||
# # T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
|
||||||
k_1, k_2, k_4 = [abs(i) for i in arg[0]]
|
|
||||||
k_3 = abs(arg[2][0])
|
|
||||||
ksi = 1/(2 * k_4 + 1)
|
|
||||||
print arg[0]
|
|
||||||
print str(k_1) + " " + str(k_2) + " " + str(k_3) + " " + str(k_4)
|
|
||||||
sigma_q_1 = get_untwisted_signature_function(k_1)
|
|
||||||
sigma_q_2 = get_untwisted_signature_function(k_2)
|
|
||||||
sigma_q_3 = get_untwisted_signature_function(k_3)
|
|
||||||
a_1, a_2, a_3, a_4 = thetas
|
|
||||||
untwisted_part = 2 * (sigma_q_2(ksi * a_1) +
|
|
||||||
sigma_q_1(ksi * a_1 * 2) -
|
|
||||||
sigma_q_2(ksi * a_2) +
|
|
||||||
sigma_q_3(ksi * a_3) -
|
|
||||||
sigma_q_3(ksi * a_4) -
|
|
||||||
sigma_q_1(ksi * a_4 * 2))
|
|
||||||
q_4 = 2 * k_4 + 1
|
|
||||||
tp = [0, 0, 0, 0]
|
|
||||||
for i, a in enumerate(thetas):
|
|
||||||
if a:
|
|
||||||
tp[i] = -q_4 + 2 * a - (2 * a^2)/q_4
|
|
||||||
print "petla"
|
|
||||||
print i
|
|
||||||
print tp[i]
|
|
||||||
print 5 * "\n"
|
|
||||||
print tp
|
|
||||||
new_twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
|
|
||||||
print new_twisted_part
|
|
||||||
|
|
||||||
for i, knot in enumerate(arg):
|
|
||||||
try:
|
|
||||||
dssf = get_signature_summand_as_theta_function_test(*knot)(thetas[i])
|
|
||||||
sf += dssf
|
|
||||||
# in case wrong theata value was given
|
|
||||||
except ValueError as e:
|
|
||||||
print "ValueError: " + str(e.args[0]) +\
|
|
||||||
" Please change " + str(i + 1) + ". parameter."
|
|
||||||
return None
|
|
||||||
print "\nold_twisted_part"
|
|
||||||
print old_twisted_part
|
|
||||||
print "twisted_part: "
|
|
||||||
print new_twisted_part
|
|
||||||
print "untwisted_part: "
|
|
||||||
print untwisted_part
|
|
||||||
print "\n\n\n\n" + 50 * "*" + "\nsum " + str(untwisted_part + new_twisted_part)
|
|
||||||
print "old sum at 1/2: "
|
|
||||||
print sf(1/2)
|
|
||||||
|
|
||||||
if verbose:
|
|
||||||
print
|
|
||||||
print str(thetas)
|
|
||||||
print sf
|
|
||||||
return sf
|
|
||||||
signature_as_theta_function_test.__doc__ = signature_as_theta_function_docstring
|
|
||||||
return signature_as_theta_function_test
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_signature_as_theta_function(*arg, **key_args):
|
def get_signature_as_theta_function(*arg, **key_args):
|
||||||
if 'verbose' in key_args:
|
if 'verbose' in key_args:
|
||||||
verbose_default = key_args['verbose']
|
verbose_default = key_args['verbose']
|
||||||
@ -741,6 +677,7 @@ def get_knot_descrption(*arg):
|
|||||||
description = description[:-2] + ") # "
|
description = description[:-2] + ") # "
|
||||||
return description[:-3]
|
return description[:-3]
|
||||||
|
|
||||||
|
|
||||||
get_blanchfield_for_pattern.__doc__ = \
|
get_blanchfield_for_pattern.__doc__ = \
|
||||||
"""
|
"""
|
||||||
Arguments:
|
Arguments:
|
||||||
@ -947,3 +884,45 @@ if __name__ == '__main__':
|
|||||||
if '__file__' in globals():
|
if '__file__' in globals():
|
||||||
# skiped in interactive mode as __file__ is not defined
|
# skiped in interactive mode as __file__ is not defined
|
||||||
main(sys.argv)
|
main(sys.argv)
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script calculates signature functions for knots (cable sums).
|
||||||
|
|
||||||
|
The script can be run as a sage script from the terminal
|
||||||
|
or used in interactive mode.
|
||||||
|
|
||||||
|
A knot (cable sum) is encoded as a list where each element (also a list)
|
||||||
|
corresponds to a cable knot, e.g. a list
|
||||||
|
[[1, 3], [2], [-1, -2], [-3]] encodes
|
||||||
|
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7).
|
||||||
|
|
||||||
|
To calculate the number of characters for which signature function vanish use
|
||||||
|
the function eval_cable_for_null_signature as shown below.
|
||||||
|
|
||||||
|
sage: eval_cable_for_null_signature([[1, 3], [2], [-1, -2], [-3]])
|
||||||
|
|
||||||
|
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
|
||||||
|
Zero cases: 1
|
||||||
|
All cases: 1225
|
||||||
|
Zero theta combinations:
|
||||||
|
(0, 0, 0, 0)
|
||||||
|
|
||||||
|
sage:
|
||||||
|
|
||||||
|
The numbers given to the function eval_cable_for_null_signature are k-values for each
|
||||||
|
component/cable in a direct sum.
|
||||||
|
|
||||||
|
To calculate signature function for a knot and a theta value, use function
|
||||||
|
get_signature_as_theta_function (see help/docstring for details).
|
||||||
|
|
||||||
|
About notation:
|
||||||
|
Cables that we work with follow a schema:
|
||||||
|
T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
|
||||||
|
# T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
|
||||||
|
In knot_formula each k[i] is related with some q_i value, where
|
||||||
|
q_i = 2*k[i] + 1.
|
||||||
|
So we can work in the following steps:
|
||||||
|
1) choose a schema/formula by changing the value of knot_formula
|
||||||
|
2) set each q_i all or choose range in which q_i should varry
|
||||||
|
3) choose vector v / theata vector.
|
||||||
|
"""
|
||||||
|
Loading…
Reference in New Issue
Block a user