cheking if number theta combinations that gives zeros signature function is a squere of all theta combinations
This commit is contained in:
parent
6ff1b83a17
commit
dabaa24999
@ -2,17 +2,39 @@
|
|||||||
|
|
||||||
import collections
|
import collections
|
||||||
import sys
|
import sys
|
||||||
|
import inspect
|
||||||
|
import pandas as pd
|
||||||
|
import itertools as it
|
||||||
|
|
||||||
|
|
||||||
def mod_one(n):
|
class MySettings(object):
|
||||||
"""This function returns the fractional part of some number."""
|
def __init__(self):
|
||||||
n -= int(n)
|
k = 0
|
||||||
if n < 0:
|
|
||||||
n += 1
|
def main(arg):
|
||||||
return n
|
my_settings = MySettings()
|
||||||
|
try:
|
||||||
|
tests(int(arg[1]))
|
||||||
|
except:
|
||||||
|
tests()
|
||||||
|
|
||||||
|
|
||||||
class av_signature_function(object):
|
|
||||||
|
def tests(limit=10):
|
||||||
|
for comb in it.combinations_with_replacement(range(1, limit + 1), 5):
|
||||||
|
knot_description, null_comb, all_comb = second_sum(*comb)
|
||||||
|
if null_comb^2 >= all_comb:
|
||||||
|
print "\n\nHURA!!"
|
||||||
|
print comb
|
||||||
|
print knot_description
|
||||||
|
print "Zero cases: " + str(null_comb)
|
||||||
|
print "All cases: " + str(all_comb)
|
||||||
|
# for comb in it.combinations_with_replacement(range(1, limit + 1), 4):
|
||||||
|
# print comb
|
||||||
|
# print first_sum(*comb)
|
||||||
|
|
||||||
|
|
||||||
|
class SignatureFunction(object):
|
||||||
"""
|
"""
|
||||||
This simple class encodes twisted and untwisted signature functions
|
This simple class encodes twisted and untwisted signature functions
|
||||||
of knots. Since the signature function is entirely encoded by its signature
|
of knots. Since the signature function is entirely encoded by its signature
|
||||||
@ -32,7 +54,6 @@ class av_signature_function(object):
|
|||||||
"Signature function is defined on the interval [0, 1)."
|
"Signature function is defined on the interval [0, 1)."
|
||||||
self.data[jump_arg] = jump
|
self.data[jump_arg] = jump
|
||||||
|
|
||||||
|
|
||||||
def value(self, arg):
|
def value(self, arg):
|
||||||
# Compute the value of the signature function at the point arg.
|
# Compute the value of the signature function at the point arg.
|
||||||
# This requires summing all signature jumps that occur before arg.
|
# This requires summing all signature jumps that occur before arg.
|
||||||
@ -46,15 +67,6 @@ class av_signature_function(object):
|
|||||||
val += jump
|
val += jump
|
||||||
return val
|
return val
|
||||||
|
|
||||||
def sum_of_values(self):
|
|
||||||
# Total signature jump is the sum of all jumps.
|
|
||||||
a = sum([j[1] for j in self.to_list()])
|
|
||||||
b = sum(self.data.values())
|
|
||||||
# print b
|
|
||||||
assert a == b
|
|
||||||
assert a == 0
|
|
||||||
return sum(self.data.values())
|
|
||||||
|
|
||||||
def sum_of_absolute_values(self):
|
def sum_of_absolute_values(self):
|
||||||
return sum([abs(i) for i in self.data.values()])
|
return sum([abs(i) for i in self.data.values()])
|
||||||
|
|
||||||
@ -63,49 +75,7 @@ class av_signature_function(object):
|
|||||||
for jump_arg, jump in self.data.items():
|
for jump_arg, jump in self.data.items():
|
||||||
new_data.append((mod_one(jump_arg/2), jump))
|
new_data.append((mod_one(jump_arg/2), jump))
|
||||||
new_data.append((mod_one(1/2 + jump_arg/2), jump))
|
new_data.append((mod_one(1/2 + jump_arg/2), jump))
|
||||||
return av_signature_function(new_data)
|
return SignatureFunction(new_data)
|
||||||
|
|
||||||
|
|
||||||
def to_list(self):
|
|
||||||
# Return signature jumps formated as a list
|
|
||||||
return sorted(self.data.items(), key=lambda x: x[0])
|
|
||||||
|
|
||||||
def step_function_data(self):
|
|
||||||
# Transform the signature jump data to a format understandable
|
|
||||||
# by the plot function.
|
|
||||||
l = self.to_list()
|
|
||||||
vals = ([(d[0], sum(2 * j[1] for j in l[:l.index(d)+1])) for d in l] +
|
|
||||||
[(0, self.data[0]), (1, self.sum_of_values())])
|
|
||||||
return vals
|
|
||||||
|
|
||||||
def plot(self):
|
|
||||||
# plot the signture function
|
|
||||||
plot_step_function(self.step_function_data())
|
|
||||||
|
|
||||||
def tikz_plot(self, file_name):
|
|
||||||
# Draw the graph of the signature and transform it into TiKz.
|
|
||||||
# header of the LaTeX file
|
|
||||||
output_file = open(file_name, "w")
|
|
||||||
output_file.write("\\documentclass[tikz]{standalone}\n")
|
|
||||||
output_file.write("\\usetikzlibrary{datavisualization,datavisualization.formats.functions}\n")
|
|
||||||
output_file.write("\\begin{document}\n")
|
|
||||||
output_file.write("\\begin{tikzpicture}\n")
|
|
||||||
data = sorted(self.step_function_data())
|
|
||||||
output_file.write(" \\datavisualization[scientific axes,visualize as smooth line,\n")
|
|
||||||
output_file.write(" x axis={ticks={none,major={at={")
|
|
||||||
output_file.write(", " + str(N(data[0][0], digits=4)) + " as \\(" + str(data[0][0]) + "\\)")
|
|
||||||
for jump_arg, jump in data[1:]:
|
|
||||||
output_file.write(", " + str(N(jump_arg, digits=4)) + " as \\(" + str(jump_arg) + "\\)")
|
|
||||||
output_file.write("}}}}\n")
|
|
||||||
output_file.write(" ]\n")
|
|
||||||
output_file.write("data [format=function]{\n")
|
|
||||||
output_file.write("var x : interval [0:1];\n")
|
|
||||||
output_file.write("func y = \\value x;\n")
|
|
||||||
output_file.write("};\n")
|
|
||||||
# close LaTeX enviroments
|
|
||||||
output_file.write("\\end{tikzpicture}\n")
|
|
||||||
output_file.write("\\end{document}\n")
|
|
||||||
output_file.close()
|
|
||||||
|
|
||||||
def __lshift__(self, shift):
|
def __lshift__(self, shift):
|
||||||
# Shift of the signature functions correspond to the rotations.
|
# Shift of the signature functions correspond to the rotations.
|
||||||
@ -115,48 +85,43 @@ class av_signature_function(object):
|
|||||||
new_data = []
|
new_data = []
|
||||||
for jump_arg, jump in self.data.items():
|
for jump_arg, jump in self.data.items():
|
||||||
new_data.append((mod_one(jump_arg + shift), jump))
|
new_data.append((mod_one(jump_arg + shift), jump))
|
||||||
return av_signature_function(new_data)
|
return SignatureFunction(new_data)
|
||||||
|
|
||||||
def __sub__(self, other):
|
def __sub__(self, other):
|
||||||
# we cn perform arithmetic operations on signature functions.
|
# we can perform arithmetic operations on signature functions.
|
||||||
return self + other.__neg__()
|
return self + other.__neg__()
|
||||||
|
|
||||||
def __neg__(self):
|
def __neg__(self):
|
||||||
for jump_arg in self.data.keys():
|
new_data = []
|
||||||
self.data[jump_arg] *= -1
|
for jump_arg, jump in self.data.items():
|
||||||
return self
|
new_data.append(jump_arg, -jump)
|
||||||
|
return SignatureFunction(new_data)
|
||||||
|
|
||||||
def __add__(self, other):
|
def __add__(self, other):
|
||||||
new_one = av_signature_function()
|
new_signature_function = SignatureFunction()
|
||||||
new_data = collections.defaultdict(int)
|
new_data = collections.defaultdict(int)
|
||||||
for jump_arg, jump in other.data.items():
|
for jump_arg, jump in other.data.items():
|
||||||
new_data[jump_arg] = jump + self.data.get(jump_arg, 0)
|
new_data[jump_arg] = jump + self.data.get(jump_arg, 0)
|
||||||
try:
|
|
||||||
int(jump_arg)
|
|
||||||
except:
|
|
||||||
print jump_arg
|
|
||||||
for jump_arg, jump in self.data.items():
|
for jump_arg, jump in self.data.items():
|
||||||
if jump_arg not in new_data.keys():
|
if jump_arg not in new_data.keys():
|
||||||
new_data[jump_arg] = self.data[jump_arg]
|
new_data[jump_arg] = self.data[jump_arg]
|
||||||
|
new_signature_function.data = new_data
|
||||||
new_one.data = new_data
|
return new_signature_function
|
||||||
return new_one
|
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return '\n'.join([str(jump_arg) + ": " + str(jump)
|
return '\n'.join([str(jump_arg) + ": " + str(jump)
|
||||||
for jump_arg, jump in sorted(self.data.items())])
|
for jump_arg, jump in sorted(self.data.items())])
|
||||||
|
|
||||||
def __repr__(self):
|
# def __repr__(self):
|
||||||
return self.__str__()
|
# return self.__str__()
|
||||||
|
|
||||||
# 9.8
|
|
||||||
# ksi = exp( (2 PI * i) / (2k + 1))
|
|
||||||
# blanchfield = lambda_even + lambda_odd
|
|
||||||
|
|
||||||
def get_twisted_signature_function(k_n, theta):
|
# Proposition 9.8.
|
||||||
|
def get_blanchfield_for_pattern(k_n, theta):
|
||||||
|
if theta == 0:
|
||||||
|
return get_untwisted_signature_function(k_n)
|
||||||
results = []
|
results = []
|
||||||
k = abs(k_n)
|
k = abs(k_n)
|
||||||
|
|
||||||
ksi = 1/(2 * k + 1)
|
ksi = 1/(2 * k + 1)
|
||||||
# lambda_odd (theta + e) % 2 == 0:
|
# lambda_odd (theta + e) % 2 == 0:
|
||||||
for e in range(1, k + 1):
|
for e in range(1, k + 1):
|
||||||
@ -175,40 +140,39 @@ def get_twisted_signature_function(k_n, theta):
|
|||||||
continue
|
continue
|
||||||
results.append((e * ksi, -1 * sgn(k_n)))
|
results.append((e * ksi, -1 * sgn(k_n)))
|
||||||
results.append((1 - e * ksi, 1 * sgn(k_n)))
|
results.append((1 - e * ksi, 1 * sgn(k_n)))
|
||||||
return av_signature_function(results)
|
return SignatureFunction(results)
|
||||||
|
|
||||||
def get_blanchfield(t, k):
|
#
|
||||||
p = 2
|
# def get_sigma(t, k):
|
||||||
q = 2 * k + 1
|
# p = 2
|
||||||
sigma_set = get_sigma_set(p, q)
|
# q = 2 * k + 1
|
||||||
sigma = len(sigma_set) - 2 * len([z for z in sigma_set if t < z < 1 + t])
|
# sigma_set = get_sigma_set(p, q)
|
||||||
return sigma
|
# sigma = len(sigma_set) - 2 * len([z for z in sigma_set if t < z < 1 + t])
|
||||||
|
# return sigma
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# def get_sigma_set(p, q):
|
||||||
|
# sigma_set = set()
|
||||||
|
# for i in range(1, p):
|
||||||
|
# for j in range(1, q):
|
||||||
|
# sigma_set.add(j/q + i/p)
|
||||||
|
# return sigma_set
|
||||||
|
|
||||||
def get_sigma_set(p, q):
|
|
||||||
sigma_set = set()
|
|
||||||
for i in range(1, p):
|
|
||||||
for j in range(1, q):
|
|
||||||
sigma_set.add(j/q + i/p)
|
|
||||||
return sigma_set
|
|
||||||
|
|
||||||
# Bl_theta(K'_(2, d) = Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t) + Bl(K')(ksi_l^theta * t)
|
|
||||||
|
|
||||||
|
# Bl_theta(K'_(2, d) =
|
||||||
|
# Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t)
|
||||||
|
# + Bl(K')(ksi_l^theta * t)
|
||||||
def get_cable_signature_as_theta_function(*arg):
|
def get_cable_signature_as_theta_function(*arg):
|
||||||
def signture_function(theta):
|
def signture_function(theta):
|
||||||
if theta > abs(arg[-1]):
|
if theta > abs(arg[-1]):
|
||||||
print "k for pattern is " + str(arg[-1])
|
print "k for pattern is " + str(arg[-1])
|
||||||
print "theta shouldn't be larger than this"
|
print "theta shouldn't be larger than this"
|
||||||
return None
|
return None
|
||||||
if theta == 0:
|
cable_signature = get_blanchfield_for_pattern(arg[-1], theta)
|
||||||
cable_signature = get_untwisted_signutere_function(arg[-1])
|
for i, k in enumerate(arg[:-1][::-1]):
|
||||||
else:
|
ksi = 1/(2 * abs(k) + 1)
|
||||||
cable_signature = get_twisted_signature_function(arg[-1], theta)
|
|
||||||
|
|
||||||
for i, k_i in enumerate(arg[:-1][::-1]):
|
|
||||||
k = abs(k_i)
|
|
||||||
ksi = 1/(2 * k + 1)
|
|
||||||
power = 2^i
|
power = 2^i
|
||||||
a = get_untwisted_signutere_function(k_i)
|
a = get_untwisted_signature_function(k)
|
||||||
shift = theta * ksi * power
|
shift = theta * ksi * power
|
||||||
b = a >> shift
|
b = a >> shift
|
||||||
c = a << shift
|
c = a << shift
|
||||||
@ -220,102 +184,125 @@ def get_cable_signature_as_theta_function(*arg):
|
|||||||
return cable_signature
|
return cable_signature
|
||||||
return signture_function
|
return signture_function
|
||||||
|
|
||||||
def get_untwisted_signutere_function(*arg):
|
|
||||||
signture_function = av_signature_function([(0, 0)])
|
def get_untwisted_signature_function(j):
|
||||||
for k_i in arg:
|
|
||||||
k = abs(k_i)
|
|
||||||
# Return the signature function of the T_{2,2k+1} torus knot.
|
# Return the signature function of the T_{2,2k+1} torus knot.
|
||||||
l = ([((2 * a + 1)/(4 * k + 2), -1 * sgn(k_i)) for a in range(k)] +
|
k = abs(j)
|
||||||
[((2 * a + 1)/(4 * k + 2), 1 * sgn(k_i)) for a in range(k + 1, 2 * k + 1)])
|
w = ([((2 * a + 1)/(4 * k + 2), -1 * sgn(j)) for a in range(k)] +
|
||||||
signture_function += av_signature_function(l)
|
[((2 * a + 1)/(4 * k + 2), 1 * sgn(j))
|
||||||
return signture_function
|
for a in range(k + 1, 2 * k + 1)])
|
||||||
|
return SignatureFunction(w)
|
||||||
|
|
||||||
|
|
||||||
def get_function_of_theta_for_sum(*arg):
|
def get_function_of_theta_for_sum(*arg):
|
||||||
def signture_function_for_sum(*thetas):
|
"""
|
||||||
if len(thetas) != len(arg) - 1:
|
Function intended to calculate signature function for a connected
|
||||||
print "For each cable one theta value should be given"
|
sum of multiple cables with varying theta parameter values.
|
||||||
return None
|
Accept arbitrary number of arguments (number of cables in connected sum).
|
||||||
signature_function = get_untwisted_signutere_function(*arg[0])
|
Each argument should be given as list of integer representing
|
||||||
for i, knot in enumerate(arg[1:]):
|
k - parameters for a cable: parameters k_i (i=1,.., n-1) for satelit knots
|
||||||
signature_function += (get_cable_signature_as_theta_function(*knot))(thetas[i])
|
T(2, 2k_i + 1) and - the last one - k_n for a pattern knot T(2, 2k_n + 1).
|
||||||
return signature_function
|
Returns a function described below.
|
||||||
return signture_function_for_sum
|
"""
|
||||||
|
def signature_function_for_sum(*thetas):
|
||||||
|
# Returns object of SignatureFunction class for a previously defined
|
||||||
|
# connercted sum of len(arg) cables.
|
||||||
|
# Accept len(arg) arguments: for each cable one theta parameter.
|
||||||
|
# If call with no arguments, all theta parameters are set to be 0.
|
||||||
|
la = len(arg)
|
||||||
|
lt = len(thetas)
|
||||||
|
if lt == 0:
|
||||||
|
return signature_function_for_sum(*(la * [0]))
|
||||||
|
if lt != la:
|
||||||
|
msg = "This function takes exactly " + str(la) + \
|
||||||
|
" arguments or no argument at all (" + str(lt) + " given)."
|
||||||
|
raise TypeError(msg)
|
||||||
|
sf = SignatureFunction([(0, 0)])
|
||||||
|
for i, knot in enumerate(arg):
|
||||||
|
sf += (get_cable_signature_as_theta_function(*knot))(thetas[i])
|
||||||
|
return sf
|
||||||
|
return signature_function_for_sum
|
||||||
|
|
||||||
def first_sum(k_0, k_1, k_2, k_3):
|
|
||||||
F = get_function_of_theta_for_sum([k_3, -k_2], [-k_0, -k_1, -k_3], [k_0, k_1, k_2])
|
|
||||||
for theta_0 in range(k_3 + 1):
|
|
||||||
for theta_1 in range(k_2 + 1):
|
|
||||||
f = F(theta_0, theta_1)
|
|
||||||
f.sum_of_values()
|
|
||||||
if f.sum_of_absolute_values() != 0 and theta_1 + theta_0 == 0:
|
|
||||||
print 4 * "\n"
|
|
||||||
print "OJOJOJOJJOOJJOJJ!!!!!!!!!!"
|
|
||||||
print k_0, k_1, k_2, k_3
|
|
||||||
print theta_0, theta_1
|
|
||||||
|
|
||||||
if f.sum_of_absolute_values() == 0 and theta_1 + theta_0 != 0:
|
def mod_one(n):
|
||||||
# print "HURA"
|
"""This function returns the fractional part of some number."""
|
||||||
# print k_0, k_1, k_2, k_3
|
return n - floor(n)
|
||||||
# print theta_0, theta_1
|
|
||||||
if k_2 != k_3 or theta_0 != theta_1:
|
|
||||||
print 4 * "\n"
|
|
||||||
print " SUPER!!!!!!!!!!"
|
|
||||||
print k_0, k_1, k_2, k_3
|
|
||||||
print theta_0, theta_1
|
|
||||||
|
|
||||||
def second_sum(k_0, k_1, k_2, k_3, k_4):
|
|
||||||
F = get_function_of_theta_for_sum([], [k_0, k_1, k_2], [k_3, k_4], [-k_0, -k_3, -k_4], [-k_1, -k_2])
|
|
||||||
for theta_0 in range(k_2 + 1):
|
|
||||||
for theta_1 in range(k_4 + 1):
|
|
||||||
for theta_2 in range(k_4 + 1):
|
|
||||||
for theta_3 in range(k_2 + 1):
|
|
||||||
f = F(theta_0, theta_1, theta_2, theta_3)
|
|
||||||
if f.sum_of_absolute_values() != 0 and theta_1 + theta_0 + theta_3 + theta_2 == 0:
|
|
||||||
print 4 * "\n"
|
|
||||||
print "2 OJOJOJOJJOOJJOJJ!!!!!!!!!!"
|
|
||||||
print k_0, k_1, k_2, k_3, k_4
|
|
||||||
print theta_0, theta_1, theta_2, theta_3
|
|
||||||
|
|
||||||
if f.sum_of_absolute_values() == 0 and theta_1 + theta_0 + theta_3 + theta_2 != 0:
|
# ###################### TEMPORARY TESTS #########
|
||||||
# print "HURA"
|
|
||||||
# print k_0, k_1, k_2, k_3
|
|
||||||
# print theta_0, theta_1
|
|
||||||
if k_2 != k_3 or theta_0 != theta_1:
|
|
||||||
print 4 * "\n"
|
|
||||||
print "2 SUPER!!!!!!!!!!"
|
|
||||||
print k_0, k_1, k_2, k_3, k_4
|
|
||||||
print theta_0, theta_1, theta_2, theta_3
|
|
||||||
|
|
||||||
def third_sum(k_0, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8):
|
# def first_sum(*arg):
|
||||||
F = get_function_of_theta_for_sum([], [k_0, k_1, k_2], [k_3, k_4], [-k_5, -k_6, -k_7], [-k_8, -k_8])
|
# k_0, k_1, k_2, k_3 = arg
|
||||||
for theta_0 in range(k_2 + 1):
|
# F = get_function_of_theta_for_sum([k_3], [-k_2],
|
||||||
for theta_1 in range(k_4 + 1):
|
# [-k_0, -k_1, -k_3],
|
||||||
for theta_2 in range(k_4 + 1):
|
# [k_0, k_1, k_2])
|
||||||
for theta_3 in range(k_2 + 1):
|
# all_combinations = (k_3 + 1) * (k_2 + 1) * (k_3 + 1) * (k_2 + 1)
|
||||||
f = F(theta_0, theta_1, theta_2, theta_3)
|
# null_combinations = 0
|
||||||
if f.sum_of_absolute_values() != 0 and theta_1 + theta_0 + theta_3 + theta_2 == 0:
|
# non_trivial_zeros = 0
|
||||||
print 4 * "\n"
|
# for v_theta in it.product(range(k_3 + 1), range(k_2 + 1),
|
||||||
print "3 OJOJOJOJJOOJJOJJ!!!!!!!!!!"
|
# range(k_3 + 1), range(k_2 + 1)):
|
||||||
print k_0, k_1, k_2, k_3, k_4
|
# f = F(*v_theta)
|
||||||
print theta_0, theta_1, theta_2, theta_3
|
# if f.sum_of_absolute_values() != 0 and sum(v_theta) == 0:
|
||||||
|
# print 4 * "\n" + "something wrong!!!!!!!!!!"
|
||||||
|
# print inspect.stack()[0][3]
|
||||||
|
# print arg
|
||||||
|
# print v_theta
|
||||||
|
#
|
||||||
|
# if f.sum_of_absolute_values() == 0:
|
||||||
|
# null_combinations += 1
|
||||||
|
# if sum(v_theta) != 0:
|
||||||
|
# if len(arg) == len(set(arg)) and len(set(v_theta)) > 1:
|
||||||
|
# non_trivial_zeros += 1
|
||||||
|
# # print "\nNontrivial zero"
|
||||||
|
# # print inspect.stack()[0][3]
|
||||||
|
# print arg
|
||||||
|
# print v_theta
|
||||||
|
# print
|
||||||
|
# return non_trivial_zeros, null_combinations, all_combinations
|
||||||
|
|
||||||
if f.sum_of_absolute_values() == 0 and theta_1 + theta_0 + theta_3 + theta_2 != 0:
|
|
||||||
# print "HURA"
|
|
||||||
# print k_0, k_1, k_2, k_3
|
|
||||||
# print theta_0, theta_1
|
|
||||||
if k_2 != k_3 or theta_0 != theta_1:
|
|
||||||
print 4 * "\n"
|
|
||||||
print "3 SUPER!!!!!!!!!!"
|
|
||||||
print k_0, k_1, k_2, k_3, k_4
|
|
||||||
print theta_0, theta_1, theta_2, theta_3
|
|
||||||
|
|
||||||
def tmp(limit=None):
|
def get_knot_descrption(*arg):
|
||||||
if limit is None:
|
description = ""
|
||||||
limit = 10
|
for knot in arg:
|
||||||
for k_0 in range(1, limit):
|
if knot[0] < 0:
|
||||||
for k_1 in range(1, limit):
|
description += "-"
|
||||||
for k_2 in range(1, limit):
|
description += "T("
|
||||||
for k_3 in range(1, limit):
|
for k in knot:
|
||||||
first_sum(k_0, k_1, k_2, k_3)
|
description += "2, " + str(abs(k)) + "; "
|
||||||
for k_4 in range(1, limit):
|
description = description[:-2]
|
||||||
second_sum(k_0, k_1, k_2, k_3, k_4)
|
description += ") # "
|
||||||
|
return description[:-3]
|
||||||
|
|
||||||
|
def get_number_of_combinations(*arg):
|
||||||
|
number_of_combinations = 1
|
||||||
|
for knot in arg:
|
||||||
|
number_of_combinations *= (2 * knot[-1] + 1)
|
||||||
|
return number_of_combinations
|
||||||
|
|
||||||
|
def second_sum(*arg):
|
||||||
|
k_0, k_1, k_2, k_3, k_4 = arg
|
||||||
|
knot_sum = [[k_0, k_1, k_2], [k_3, k_4], [-k_0, -k_3, -k_4], [-k_1, -k_2]]
|
||||||
|
F = get_function_of_theta_for_sum(*knot_sum)
|
||||||
|
knot_description = get_knot_descrption(*knot_sum)
|
||||||
|
all_combinations = get_number_of_combinations(*knot_sum)
|
||||||
|
null_combinations = 1
|
||||||
|
# non_trivial_zeros = 0
|
||||||
|
|
||||||
|
for v_theta in it.product(range(k_2 + 1), range(k_4 + 1),
|
||||||
|
range(k_4 + 1), range(k_2 + 1)):
|
||||||
|
f = F(*v_theta)
|
||||||
|
assert f.sum_of_absolute_values() == 0 or sum(v_theta) != 0
|
||||||
|
if f.sum_of_absolute_values() == 0 and sum(v_theta) != 0:
|
||||||
|
null_combinations += 2
|
||||||
|
# if len(arg) == len(set(arg)) and len(set(v_theta)) > 1:
|
||||||
|
# non_trivial_zeros += 1
|
||||||
|
# print "\nNontrivial zero"
|
||||||
|
# print inspect.stack()[0][3]
|
||||||
|
# print arg
|
||||||
|
# print v_theta
|
||||||
|
# print
|
||||||
|
return knot_description, null_combinations, all_combinations
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__' and '__file__' in globals():
|
||||||
|
main(sys.argv)
|
||||||
|
Loading…
Reference in New Issue
Block a user