Delet some methods from TorusCable - there are rewritDelete some methods from TorusCable. There are already rewritten as functions in main.sage file: check_all_thetas and is_big_in_ranges for checking if all theta combinations give big signatures.

This commit is contained in:
Maria Marchwicka 2020-10-14 19:07:50 +02:00
parent c64382b5c7
commit f12976180e

View File

@ -101,7 +101,6 @@ class SignatureFunction(object):
if v != 0})
return self.cnt_signature_jumps == other.cnt_signature_jumps
def __str__(self):
result = ''.join([str(jump_arg) + ": " + str(jump) + "\n"
for jump_arg, jump in sorted(self.cnt_signature_jumps.items())
@ -195,7 +194,6 @@ class TorusCable(object):
self._sigma_function = None
self._signature_as_function_of_theta = None
# SIGMA & SIGNATURE
@property
def sigma_function(self):
@ -210,7 +208,7 @@ class TorusCable(object):
self.get_signature_as_function_of_theta()
return self._signature_as_function_of_theta
# KNOT ENCODING
# knot encoding
@property
def knot_formula(self):
return self._knot_formula
@ -218,10 +216,12 @@ class TorusCable(object):
# def knot_formula(self, knot_formula):
# self._knot_formula = knot_formula
# knot encoding
@property
def knot_description(self):
return self._knot_description
# knot encoding
@property
def knot_sum(self):
return self._knot_sum
@ -275,7 +275,6 @@ class TorusCable(object):
def q_vector(self, new_q_vector):
self.k_vector = [(q - 1)/2 for q in new_q_vector]
def add_with_shift(self, other):
# print("*" * 100)
# print("BEFORE")
@ -354,8 +353,6 @@ class TorusCable(object):
# print(self.q_vector)
return cable
@staticmethod
def extract_max(string):
numbers = re.findall(r'\d+', string)
@ -507,7 +504,6 @@ class TorusCable(object):
signature_as_function_of_theta_docstring
return signature_as_function_of_theta
def get_summand_signature_as_theta_function(self, *knot_as_k_values):
def get_summand_signture_function(theta):
# TBD: another formula (for t^2) description
@ -543,75 +539,6 @@ class TorusCable(object):
get_summand_signture_function_docsting
return get_summand_signture_function
def get_number_of_combinations_of_theta(self):
number_of_combinations = 1
for knot in self.knot_sum:
number_of_combinations *= (2 * abs(knot[-1]) + 1)
return number_of_combinations
# searching for signature == 0
def check_for_null_theta_combinations(self, verbose=False):
list_of_good_vectors= []
number_of_null_comb = 0
f = self.signature_as_function_of_theta
range_list = [range(abs(knot[-1]) + 1) for knot in self.knot_sum]
for theta_vector in it.product(*range_list):
if f(*theta_vector).is_zero_everywhere():
list_of_good_vectors.append(theta_vector)
m = len([theta for theta in theta_vector if theta != 0])
number_of_null_comb += 2^m
return number_of_null_comb, list_of_good_vectors
# searching for signature or sigma > 5 + #(v_i != 0)
def check_all_combinations_in_ranges(self, list_of_ranges,
sigma_or_sign,
print_results=False):
all_combinations_pass = True
all_bad_vectors = []
number_of_all_good_v = 0
for i, range_product in enumerate(list_of_ranges):
good_v, bad_v = self.check_combinations_in_range(range_product,
sigma_or_sign)
number_of_all_good_v += len(good_v)
all_bad_vectors = list(it.chain(all_bad_vectors, bad_v))
if bad_v:
all_combinations_pass = False
# if print_results:
# print("good : bad:\t " + str(len(good_v)) +\
# " : " + str(len(bad_v)))
# if i in [0, 4,]:
# print()
# if bad_v:
# print(bad_v)
if print_results:
print("good : bad:\t " + str(number_of_all_good_v) +\
" : " + str(len(all_bad_vectors)))
return all_combinations_pass
# searching for signature or sigma > 5 + #(v_i != 0)
def check_combinations_in_range(self, range_product, sigma_or_sign):
bad_vectors = []
good_vectors = []
last_q = self.q_vector[-1]
for vector in range_product:
a_1, a_2, a_3, a_4 = vector
if (a_1^2 - a_2^2 + a_3^2 - a_4^2) % last_q:
continue
# if all(a in [1, last_q - 1] for a in vector):
# pass
# else:
# continue
if self.is_value_for_vector_class_big(vector, sigma_or_sign):
good_vectors.append(vector)
else:
# print(vector)
bad_vectors.append(vector)
return good_vectors, bad_vectors
def is_metaboliser(self, theta):
i = 1
sum = 0
@ -643,8 +570,25 @@ class TorusCable(object):
# bad_vectors.append(vector)
# return good_vectors, bad_vectors
# searching for signature == 0
def get_number_of_combinations_of_theta(self):
number_of_combinations = 1
for knot in self.knot_sum:
number_of_combinations *= (2 * abs(knot[-1]) + 1)
return number_of_combinations
# searching for signature == 0
def check_for_null_theta_combinations(self, verbose=False):
list_of_good_vectors= []
number_of_null_comb = 0
f = self.signature_as_function_of_theta
range_list = [range(abs(knot[-1]) + 1) for knot in self.knot_sum]
for theta_vector in it.product(*range_list):
if f(*theta_vector).is_zero_everywhere():
list_of_good_vectors.append(theta_vector)
m = len([theta for theta in theta_vector if theta != 0])
number_of_null_comb += 2^m
return number_of_null_comb, list_of_good_vectors
# searching for signature == 0
def eval_cable_for_null_signature(self, print_results=False, verbose=False):
@ -666,51 +610,6 @@ class TorusCable(object):
return number_of_null_comb, number_of_all_comb
return None
# check sigma or signature function value
# for all v = s * [a_1, a_2, a_3, a_4] for s in [1, last_q - 1]
def is_value_for_vector_class_big(self, theta_vector, sigma_or_sign):
[a_1, a_2, a_3, a_4] = theta_vector
k_4 = self.knot_sum[-1][-1]
q_4 = 2 * k_4 + 1
max_sigma = 0
if sigma_or_sign == SIGNATURE:
f = self.signature_as_function_of_theta
else:
f = self.sigma_function
# print(theta_vector, end="\t")
for shift in range(1, k_4 + 1):
shifted_theta = [(shift * a) % q_4 for a in
[a_1, a_2, a_3, a_4]]
if sigma_or_sign == SIGNATURE:
sf = f(shifted_theta)
sig_v = sf.extremum()
else:
sig_v = f(shifted_theta)
print(sig_v, end=" ")
if abs(sig_v) > abs(max_sigma):
max_sig = sig_v
if abs(sig_v) > 5 + np.count_nonzero(shifted_theta):
# print("\tok " + str(sigma_v))
return True
# print("\tbad class " + str(max_sigma))
return False
# searching for sigma > 5 + #(v_i != 0)
def eval_cable_for_large_values(self, list_of_ranges,
sigma_or_sign,
print_results=False,
verbose=False):
if print_results:
print(self.knot_description) # , end="\t\t\t")
if self.check_all_combinations_in_ranges(list_of_ranges,
sigma_or_sign,
print_results=print_results):
return True
return False
##############################################################################
# sigma function
@ -750,8 +649,6 @@ class TorusCable(object):
return sigma_v
return sigma_function
def print_results_LT(self, theta_vector, untwisted_part):
knot_description = self.knot_description
k_1, k_2, k_3, k_4 = [abs(k) for k in self.k_vector]
@ -873,33 +770,6 @@ class TorusCable(object):
") - sigma(T_{2, q_4}, " + str(a_4) + ") = " + \
str(tp[0] - tp[1] + tp[2] - tp[3]))
# def __tmp_print_all_sigma_for_vector_class(self, theta_vector):
# print("\n")
# print(self.knot_description)
# print("vector = " + str(theta_vector))
# [a_1, a_2, a_3, a_4] = theta_vector
# last_q = self.q_vector[-1]
# for shift in range(1, last_q):
# shifted_theta = [(shift * a) % last_q for a in
# [a_1, a_2, a_3, a_4]]
# print(str(shifted_theta) + "\t\t" + \
# str(self.__sigma_function(shifted_theta)))
# print("\n")
#
# def __tmp_get_max_sigma_for_vector_class(self, theta_vector):
# max_sigma = (theta_vector, 0)
# [a_1, a_2, a_3, a_4] = theta_vector
# last_q = self.q_vector[-1]
# for shift in range(1, last_q):
# shifted_theta = [(shift * a) % last_q for a in
# [a_1, a_2, a_3, a_4]]
# sigma = self.__sigma_function(shifted_theta)
# if abs(sigma) > abs(max_sigma[1]):
# max_sigma = (shifted_theta, sigma)
# return max_sigma[1]
#
def mod_one(n):
return n - floor(n)