#!/usr/bin/python import numpy as np import itertools as it from typing import Iterable from collections import Counter from sage.arith.functions import LCM_list import warnings import re import matplotlib.pyplot as plt import inspect from PIL import Image from pathlib import Path # 9.11 (9.8) # 9.15 (9.9) class SignatureFunction(): def __init__(self, values=None, counter=None): # counter of signature jumps if counter is None: counter = Counter() if values is None: values = [] for k, v in values: counter[k] += v counter = Counter({k : v for k, v in counter.items() if v != 0}) if any(k >= 1 for k in counter.keys()): msg = "Signature function is defined on the interval [0, 1)." raise ValueError(msg) counter[0] += 0 counter[1] += 0 self.jumps_counter = counter def __rshift__(self, shift): # A shift of the signature functions corresponds to the rotation. counter = Counter({mod_one(k + shift) : v \ for k, v in self.jumps_counter.items()}) return SignatureFunction(counter=counter) def __lshift__(self, shift): return self.__rshift__(-shift) def __neg__(self): counter = Counter() counter.subtract(self.jumps_counter) return SignatureFunction(counter=counter) def __add__(self, other): counter = copy(self.jumps_counter) counter.update(other.jumps_counter) return SignatureFunction(counter=counter) def __sub__(self, other): counter = copy(self.jumps_counter) counter.subtract(other.jumps_counter) return SignatureFunction(counter=counter) def __eq__(self, other): return self.jumps_counter == other.jumps_counter def __str__(self): result = ''.join([str(jump_arg) + ": " + str(jump) + "\n" for jump_arg, jump in sorted(self.jumps_counter.items())]) return result def __repr__(self): result = ''.join([str(jump_arg) + ": " + str(jump) + ", " for jump_arg, jump in sorted(self.jumps_counter.items())]) return result[:-2] + "." def __call__(self, arg): # return the value of the signature function at the point arg, i.e. # sum of all signature jumps that occur before arg items = self.jumps_counter.items() result = [jump for jump_arg, jump in items if jump_arg < mod_one(arg)] return 2 * sum(result) + self.jumps_counter[arg] def is_zero_everywhere(self): return not any(self.jumps_counter.values()) def double_cover(self): # to read values for t^2 items = self.jumps_counter.items() counter = Counter({(1 + k) / 2 : v for k, v in items}) counter.update(Counter({k / 2 : v for k, v in items})) return SignatureFunction(counter=counter) def square_root(self): # to read values for t^(1/2) counter = Counter() for jump_arg, jump in self.jumps_counter.items(): if jump_arg < 1/2: counter[2 * jump_arg] = jump return SignatureFunction(counter=counter) def minus_square_root(self): # to read values for t^(1/2) items = self.jumps_counter.items() counter = Counter({mod_one(2 * k) : v for k, v in items if k >= 1/2}) return SignatureFunction(counter=counter) def extremum(self, limit=None): max = 0 current = 0 items = sorted(self.jumps_counter.items()) for arg, jump in items: current += 2 * jump assert current == self(arg) + jump if abs(current) > abs(max): max = current if limit is not None: if abs(max) > limit: break return max def total_sign_jump(self): # Total signature jump is the sum of all jumps. return sum([j[1] for j in sorted(self.jumps_counter.items())]) def plot_four(self, sf1, sf2, sf3, save_path=None, title=''): fig, axes_matrix = plt.subplots(2, 2, sharey=True, figsize=(10,5)) sf0 = self sf.plot(subplot=True, ax=axes_matrix[0][1]) sf1.plot(subplot=True, ax=axes_matrix[1][0], color='red', linestyle='dotted') sf2.plot(subplot=True, ax=axes_matrix[0][0], color='black') sf3.plot(subplot=True, ax=axes_matrix[1][1], alpha=0.3) fig.suptitle(title) plt.tight_layout() save_path = save_path or os.path.join(os.getcwd(),"tmp.png") save_path = Path(save_path) save_path = save_path.with_suffix('.png') plt.savefig(save_path) plt.close() image = Image.open(save_path) image.show() pass def plot_sum_with_other(self, other, save_path=None, title=''): tp = self up = other sf = tp + up fig, axes_matrix = plt.subplots(2, 2, sharey=True, figsize=(10,5)) tp.plot(subplot=True, ax=axes_matrix[0][1]) up.plot(subplot=True, ax=axes_matrix[1][0], color='red', linestyle='dotted') sf.plot(subplot=True, ax=axes_matrix[0][0], color='black') tp.plot(subplot=True, ax=axes_matrix[1][1], alpha=0.3) up.plot(subplot=True, ax=axes_matrix[1][1], color='red', alpha=0.3, linestyle='dotted') sf.plot(subplot=True, ax=axes_matrix[1][1], color='black', alpha=0.7,) fig.suptitle(title) plt.tight_layout() save_path = save_path or os.path.join(os.getcwd(),"tmp.png") save_path = Path(save_path) save_path = save_path.with_suffix('.png') # print(save_as) plt.savefig(save_path) plt.close() image = Image.open(save_path) image.show() pass def plot(self, subplot=False, ax=None, save_as='sf', title="", alpha=1, color='blue', linestyle='solid', ylabel=''): if ax is None: fig, ax = plt.subplots(1, 1) keys = sorted(self.jumps_counter.keys()) y = [self(k) + self.jumps_counter[k] for k in keys] xmax = keys[1:] xmin = keys[:-1] ax.set(ylabel=ylabel) ax.set(title=title) ax.hlines(y, xmin, xmax, color=color, linestyle=linestyle, alpha=alpha) if subplot: return ax save_as += ".png" plt.savefig(save_as) plt.close() image = Image.open(save_as) image.show() def step_function_data(self): # Transform the signature jump data to a format understandable # by the plot function. result = [(k, self.sf(k) + self.jumps_counter[k]) for k in sorted(self.jumps_counter.keys())] return result def tikz_plot(self, save_as): plt_sin = plot(sin(x), (x, 0, 2*pi)) # plt_sin.show() plt_sin.save("MyPic.pdf") return # Draw the graph of the signature and transform it into TiKz. # header of the LaTeX file head = inspect.cleandoc( r""" \documentclass{standalone} \usepackage{tikz} \usetikzlibrary{calc} \begin{document} \begin{tikzpicture} """) body = \ r""" %A piecewise linear function is drawn over the interval. \draw (5,0) -- (6,-4); %The axes are drawn. \draw[latex-latex] ($(0,{-4*(2/5)}) +(0pt,-12.5pt)$) -- ($(0,{4*(2/5)}) +(0pt,12.5pt)$) node[above right]{$y$}; \draw[latex-latex] ($({-4*(2/5)},0) +(-12.5pt,0pt)$) -- ($({12*(2/5)},0) +(12.5pt,0pt)$) node[below right]{$x$}; """ tail = \ r""" \end{tikzpicture} \end{document} """ tikzpicture = re.sub(r' +', ' ', ''.join([head, body, tail])) tikzpicture = re.sub(r'\n ', '\n', tikzpicture) with open("tmp.tex", "w") as f: f.write(tikzpicture) data = self.step_function_data() with open(save_as, "w") as f: head = \ r""" \documentclass[tikz]{{standalone}} %\usepackage{{tikz}} \usetikzlibrary{{datavisualization}} \usetikzlibrary{{datavisualization.formats.functions}} %\usetikzlibrary{{calc}} \begin{{document}} \begin{{tikzpicture}} \datavisualization[scientific axes, visualize as smooth line, x axis={{ticks={{none,major={{at={{, {arg0} " as \\( {val0} \\ %] """.format(arg0=str(N(data[0][0] ,digits=4)), val0=str(data[0][0])) f.write(head) # f.write(", " + str(N(data[0][0],digits=4)) + " as \\(" + \ # str(data[0][0]) + "\\)") for jump_arg, jump in data[1:3]: f.write(", " + str(N(jump_arg,digits=4)) + " as \\(" + str(jump_arg) + "\\)") f.write("}}}}\n") f.write(" ]\n") f.write("data [format=function]{\n") f.write("var x : interval [0:1];\n") f.write("func y = \\value x;\n") f.write("};\n") # close LaTeX enviroments tail = \ r""" %}; \end{tikzpicture} \end{document} """ f.write(tail) def mod_one(n): return n - floor(n) SignatureFunction.__doc__ = \ """ This simple class encodes twisted and untwisted signature functions of knots. Since the signature function is entirely encoded by its signature jump, the class stores only information about signature jumps in a dictionary self.jumps_counter. The dictionary stores data of the signature jump as a key/values pair, where the key is the argument at which the functions jumps and value encodes the value of the jump. Remember that we treat signature functions as defined on the interval [0,1). """ mod_one.__doc__ = \ """ Argument: a number Return: the fractional part of the argument Examples: sage: mod_one(9 + 3/4) 3/4 sage: mod_one(-9 + 3/4) 3/4 sage: mod_one(-3/4) 1/4 """