#!/usr/bin/python # TBD: read about Factory Method, variable in docstring, sage documentation import os import sys import itertools as it import re # if not os.path.isfile('cable_signature.py'): # os.system('sage --preparse cable_signature.sage') # os.system('mv cable_signature.sage.py cable_signature.py') # from cable_signature import SignatureFunction, TorusCable, SIGNATURE, SIGMA class Config(object): def __init__(self): self.f_results = os.path.join(os.getcwd(), "results.out") # knot_formula is a schema for knots which signature function # will be calculated self.knot_formula = "[[k[0], k[1], k[3]], " + \ "[-k[1], -k[3]], " + \ "[k[2], k[3]], " + \ "[-k[0], -k[2], -k[3]]]" # self.knot_formula = "[[k[0], k[1], k[4]], [-k[1], -k[3]], \ # [k[2], k[3]], [-k[0], -k[2], -k[4]]]" # # # self.knot_formula = "[[k[3]], [-k[3]], \ # [k[3]], [-k[3]] ]" # self.knot_formula = "[[k[3], k[2], k[0]], [-k[2], -k[0]], \ # [k[1], k[0]], [-k[3], -k[1], -k[0]]]" # self.knot_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \ # [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]" # self.knot_formula = "[[k[0], k[1], k[2]], [k[3]],\ # [-k[0], -k[1], -k[3]], [-k[2]]]" self.limit = 3 # in rch for large sigma, for 1. checked knot q_1 = 3 + start_shift self.start_shift = 0 self.verbose = True # self.verbose = False self.print_results = True # self.print_results = False self.print_calculations_for_large_sigma = True self.print_calculations_for_large_sigma = False # is the ratio restriction for values in q_vector taken into account self.only_slice_candidates = True self.only_slice_candidates = False # range for a_i, v = [a_1, a_2, a_3, a_4], for sigma calculations # upper bound supposed to be ub = k + 1 def get_list_of_ranges(self, ub): list_of_ranges = [ # all characters a_1, a_2, a_3, a_4 != 0 it.product(range(1, ub), range(1, ub), range(1, ub), range(1, 2)), # a_1 == 0, a_2, a_3, a_4 != 0 it.product(range(1), range(1, ub), range(1, ub), range(1, 2)), # a_2 == 0, a_1, a_3, a_4 != 0 it.product(range(1, ub), range(1), range(1, ub), range(1, 2)), # a_3 == 0, a_1, a_2, a_4 != 0 it.product(range(1, ub), range(1, ub), range(1), range(1, 2)), # a_4 == 0, a_1, a_2, a_3 != 0 it.product(range(1, ub), range(1, ub), range(1, 2), range(1)), # a_1 == 0, a_2 == 0, a_3, a_4 != 0 it.product(range(1), range(1), range(1, ub), range(1, 2)), # a_1 == 0, a_3 == 0, a_2, a_4 != 0 it.product(range(1), range(1, ub), range(1), range(1, 2)), # a_1 == 0, a_4 == 0, a_3, a_2 != 0 it.product(range(1), range(1, ub), range(1, 2), range(1)), # a_2 == 0, a_3 == 0, a_1, a_4 != 0 it.product(range(1, ub), range(1), range(1), range(1, 2)), # a_2 == 0, a_4 == 0, a_1, a_3 != 0 it.product(range(1, ub), range(1), range(1, 2), range(1)), # a_3 == 0, a_4 == 0, a_1, a_2 != 0 it.product(range(1, ub), range(1, 2), range(1), range(1)), ] return list_of_ranges def main(arg): try: limit = int(arg[1]) except IndexError: limit = None search_for_large_signature_value(limit=limit) knots_with_large_sigma = search_for_large_sigma_value(limit=limit) # search_for_null_signature_value(limit=limit) def set_parameters(knot_formula, limit, verbose, print_results): if limit is None: limit = config.limit if knot_formula is None: knot_formula = config.knot_formula if verbose is None: verbose = config.verbose if print_results is None: print_results = config.print_results return knot_formula, limit, verbose, print_results # searching for sigma > 5 + #(v_i != 0) over given knot schema def search_for_large_sigma_value(knot_formula=None, limit=None, verbose=None, print_results=None): knot_formula, limit, verbose, print_results = \ set_parameters(knot_formula, limit, verbose, print_results) k_vector_size = extract_max(knot_formula) + 1 limit = max(limit, k_vector_size) # number of k_i (q_i) variables to substitute combinations = it.combinations(range(1, limit + 1), k_vector_size) P = Primes() good_knots = [] # iterate over q-vector for c in combinations: q = [P.unrank(i + config.start_shift) for i in c] if config.only_slice_candidates: ratio = q[3] > 4 * q[2] and q[2] > 4 * q[1] and q[1] > 4 * q[0] if not ratio: if verbose: print("Ratio-condition does not hold") continue cable = TorusCable(knot_formula=knot_formula, q_vector=q) list_of_ranges = config.get_list_of_ranges(cable.q_vector[-1]) if cable.eval_cable_for_large_values(list_of_ranges, SIGMA, verbose=verbose, print_results=print_results): good_knots.append(cable.knot_description) return good_knots # searching for signature == 0 def search_for_null_signature_value(knot_formula=None, limit=None, verbose=None, print_results=None): knot_formula, limit, verbose, print_results = \ set_parameters(knot_formula, limit, verbose, print_results) k_vector_size = extract_max(knot_formula) + 1 limit = max(limit, k_vector_size) combinations = it.combinations_with_replacement(range(1, limit + 1), k_vector_size) with open(config.f_results, 'w') as f_results: for k in combinations: if config.only_slice_candidates and k_vector_size == 5: k = get_shifted_combination(k) cable = TorusCable(knot_formula, k_vector=k) if is_trivial_combination(cable.knot_sum): print(cable.knot_sum) continue result = cable.eval_cable_for_null_signature(verbose=verbose, print_results=print_results) if result is not None: null_comb, all_comb = result line = (str(k) + ", " + str(null_comb) + ", " + str(all_comb) + "\n") f_results.write(line) def check_one_cable(cable, sigma_or_sign=None, verbose=None, print_results=None): if sigma_or_sign is None: sigma_or_sign = SIGNATURE if verbose is None: verbos = config.verbose if print_results is None: print_results = config.print_results list_of_ranges = config.get_list_of_ranges(cable.q_vector[-1]) return cable.eval_cable_for_large_values(list_of_ranges, sigma_or_sign, verbose=verbose, print_results=print_results) # searching for signature > 5 + #(v_i != 0) over given knot schema def search_for_large_signature_value(knot_formula=None, limit=None, verbose=None, print_results=None): knot_formula, limit, verbose, print_results = \ set_parameters(knot_formula, limit, verbose, print_results) k_vector_size = extract_max(knot_formula) + 1 combinations = it.combinations(range(1, limit + 1), k_vector_size) P = Primes() good_knots = [] # iterate over q-vector for c in combinations: q = [P.unrank(i + config.start_shift) for i in c] if config.only_slice_candidates: ratio = q[3] > 4 * q[2] and q[2] > 4 * q[1] and q[1] > 4 * q[0] if not ratio: if verbose: print("Ratio-condition does not hold") continue cable = TorusCable(knot_formula=knot_formula, q_vector=q) list_of_ranges = config.get_list_of_ranges(cable.q_vector[-1]) if cable.eval_cable_for_large_values(list_of_ranges, SIGNATURE, verbose=verbose, print_results=print_results): good_knots.append(cable.knot_description) return good_knots def get_shifted_combination(combination): # for now applicable only for schama # "[[k[0], k[1], k[2]], [k[3], k[4]], # [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]" # shift the combination so that the knot can be a candidate for slice combination = [combination[0], 4 * combination[0] + combination[1], 4 * (4 * combination[0] + combination[1]) + combination[2], 4 * combination[0] + combination[3], 4 * (4 * combination[0] + combination[3]) + combination[4]] return combination def extract_max(string): numbers = re.findall(r'\d+', string) numbers = map(int, numbers) return max(numbers) def is_trivial_combination(knot_sum): # for now is applicable only for schema that are sums of 4 cables if len(knot_sum) == 4: oposit_to_first = [-k for k in knot_sum[0]] if oposit_to_first in knot_sum: return True return False search_for_null_signature_value.__doc__ = \ """ This function calculates signature functions for knots constracted accordinga a schema for a cable sum. The schema is given as an argument or defined in the class Config. Results of calculations will be writen to a file and the stdout. limit is the upper bound for the first value in k_vector, i.e k[0] value in a cable sum, where q_0 = 2 * k[0] + 1. (the number of knots that will be constracted depends on limit value). For each knot/cable sum the function eval_cable_for_null_signature is called. eval_cable_for_null_signature calculetes the number of all possible thetas (characters) and the number of combinations for which signature function equeles zero. In case the first number is larger than squere of the second, eval_cable_for_null_signature returns None (i.e. the knot can not be slice). Data for knots that are candidates for slice knots are saved to a file. """ main.__doc__ = \ """ This function is run if the script was called from the terminal. It calls another function, search_for_null_signature_value, to calculate signature functions for a schema of a cable sum defined in the class Config. Optionaly a parameter (a limit for k_0 value) can be given. Thought to be run for time consuming calculations. """ extract_max.__doc__ = \ """ Return: maximum of absolute values of numbers from given string Examples: sage: extract_max("([1, 3], [2], [-1, -2], [-10])") 10 sage: extract_max("3, 55, ewewe, -42, 3300, 50") 3300 """ if __name__ == '__main__': global config config = Config() if '__file__' in globals(): # skiped in interactive mode as __file__ is not defined main(sys.argv) """ This script calculates signature functions for knots (cable sums). The script can be run as a sage script from the terminal or used in interactive mode. A knot (cable sum) is encoded as a list where each element (also a list) corresponds to a cable knot, e.g. a list [[1, 3], [2], [-1, -2], [-3]] encodes T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7). To calculate the number of characters for which signature function vanish use the function eval_cable_for_null_signature as shown below. sage: eval_cable_for_null_signature([[1, 3], [2], [-1, -2], [-3]]) T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7) Zero cases: 1 All cases: 1225 Zero theta combinations: (0, 0, 0, 0) sage: The numbers given to the function eval_cable_for_null_signature are k-values for each component/cable in a direct sum. To calculate signature function for a knot and a theta value, use function get_signature_as_function_of_theta (see help/docstring for details). About notation: Cables that we work with follow a schema: T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) # # T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4) In knot_formula each k[i] is related with some q_i value, where q_i = 2*k[i] + 1. So we can work in the following steps: 1) choose a schema/formula by changing the value of knot_formula 2) set each q_i all or choose range in which q_i should varry 3) choose vector v / theata vector. """