#!/usr/bin/env sage -python from collections import Counter import matplotlib.pyplot as plt import inspect from PIL import Image from pathlib import Path import warnings # 9.11 (9.8) # 9.15 (9.9) JUPYTER = 'ipykernel' IPy_TERMINAL = 'IPython' def get_ipython_info(): if JUPYTER in sys.modules: return JUPYTER elif IPy_TERMINAL in sys.modules: return IPy_TERMINAL return False global ipython_info ipython_info = get_ipython_info() class SignatureFunction: def __init__(self, values=None, counter=None, plot_title=''): # counter of signature jumps if counter is None: counter = Counter() values = values or [] for k, v in values: counter[k] += v counter = Counter({k : v for k, v in counter.items() if v != 0}) if any(k >= 1 for k in counter.keys()): msg = "Signature function is defined on the interval [0, 1)." raise ValueError(msg) counter[0] += 0 counter[1] += 0 self.jumps_counter = counter self.plot_title = plot_title def __rshift__(self, shift): # A shift of the signature functions corresponds to the rotation. counter = Counter({mod_one(k + shift) : v \ for k, v in self.jumps_counter.items()}) return SignatureFunction(counter=counter) def __lshift__(self, shift): return self.__rshift__(-shift) def __neg__(self): counter = Counter() counter.subtract(self.jumps_counter) return SignatureFunction(counter=counter) def __add__(self, other): counter = copy(self.jumps_counter) counter.update(other.jumps_counter) if self.plot_title and other.plot_title: title = self.plot_title + " + " + other.plot_title else: title = self.plot_title or other.plot_title return SignatureFunction(counter=counter, plot_title=title) def __sub__(self, other): counter = copy(self.jumps_counter) counter.subtract(other.jumps_counter) return SignatureFunction(counter=counter) def __eq__(self, other): return self.jumps_counter == other.jumps_counter def __str__(self): result = ''.join([str(jump_arg) + ": " + str(jump) + "\n" for jump_arg, jump in sorted(self.jumps_counter.items())]) return result def __repr__(self): result = ''.join([str(jump_arg) + ": " + str(jump) + ", " for jump_arg, jump in sorted(self.jumps_counter.items())]) return result[:-2] + "." def __call__(self, arg): # return the value of the signature function at the point arg, i.e. # sum of all signature jumps that occur before arg items = self.jumps_counter.items() result = [jump for jump_arg, jump in items if jump_arg < mod_one(arg)] return 2 * sum(result) + self.jumps_counter[arg] def double_cover(self): # to read values for t^2 items = self.jumps_counter.items() counter = Counter({(1 + k) / 2 : v for k, v in items}) counter.update(Counter({k / 2 : v for k, v in items})) return SignatureFunction(counter=counter) def square_root(self): # to read values for t^(1/2) counter = Counter() for jump_arg, jump in self.jumps_counter.items(): if jump_arg < 1/2: counter[2 * jump_arg] = jump return SignatureFunction(counter=counter) def minus_square_root(self): # to read values for t^(1/2) items = self.jumps_counter.items() counter = Counter({mod_one(2 * k) : v for k, v in items if k >= 1/2}) return SignatureFunction(counter=counter) def is_zero_everywhere(self): return not any(self.jumps_counter.values()) def extremum(self, limit=math.inf): max_point = (0, 0) current = 0 items = sorted(self.jumps_counter.items()) for arg, jump in items: current += 2 * jump assert current == self(arg) + jump if abs(current) > abs(max_point[1]): max_point = (arg, current) if abs(current) > limit: break return max_point def total_sign_jump(self): # Total signature jump is the sum of all jumps. return sum([j[1] for j in sorted(self.jumps_counter.items())]) def plot(self, *args, **kargs): SignaturePloter.plot(self, *args, **kargs) class SignaturePloter: @classmethod def plot_many(cls, *sf_list, save_path=None, title='', cols=None): axes_num = len(sf_list) if axes_num > 36: sf_list = sf_list[36] axes_num = 36 msg = "To many functions for the plot were given. " msg += "Only 36 can be plotted " warnings.warn(msg) # print war, set val in conf cols = cols or ceil(sqrt(axes_num)) rows = ceil(axes_num/cols) fig, axes_matrix = plt.subplots(rows, cols, sharex='col', sharey='row', gridspec_kw={'hspace': 0, 'wspace': 0}, # sharey=True, # sharex=True, ) for i, sf in enumerate(sf_list): col = i % cols row = (i - col)/cols sf.plot(subplot=True, ax=axes_matrix[row][col], title=sf.plot_title) fig.suptitle(title) plt.tight_layout() cls.show_and_save(save_path) @classmethod def plot_sum_of_two(cls, sf1, sf2, save_path=None, title=''): sf = sf1 + sf2 fig, axes_matrix = plt.subplots(2, 2, sharey=True, figsize=(10,5)) sf1.plot(subplot=True, ax=axes_matrix[0][1]) sf2.plot(subplot=True, ax=axes_matrix[1][0], color='red', linestyle='dotted') sf.plot(subplot=True, ax=axes_matrix[0][0], color='black') sf1.plot(subplot=True, ax=axes_matrix[1][1], alpha=0.3) sf2.plot(subplot=True, ax=axes_matrix[1][1], color='red', alpha=0.3, linestyle='dotted') sf.plot(subplot=True, ax=axes_matrix[1][1], color='black', alpha=0.7,) fig.suptitle(title) plt.tight_layout() cls.show_and_save(save_path) @classmethod def plot(cls, sf, subplot=False, ax=None, save_path=None, title="", alpha=1, color='blue', linestyle='solid', ylabel=''): if ax is None: fig, ax = plt.subplots(1, 1) keys = sorted(sf.jumps_counter.keys()) y = [sf(k) + sf.jumps_counter[k] for k in keys] xmax = keys[1:] xmin = keys[:-1] ax.set(ylabel=ylabel) ax.set(title=title) ax.hlines(y, xmin, xmax, color=color, linestyle=linestyle, alpha=alpha) if subplot: return ax cls.show_and_save(save_path) @staticmethod def show_and_save(save_path): if save_path is not None: save_path = Path(save_path) save_path = save_path.with_suffix('.png') plt.savefig(save_path) if ipython_info == JUPYTER: plt.show() elif True: # save_path is None: plt.savefig('tmp.png') plt.close() image = Image.open('tmp.png') image.show() # msg = "For interactive shell set save_path." # warnings.warn(msg) @staticmethod def step_function_data(sf): # Transform the signature jump data to a format understandable # by the plot function. result = [(k, sf.sf(k) + sf.jumps_counter[k]) for k in sorted(sf.jumps_counter.keys())] return result @staticmethod def tikz_plot(sf, save_as): plt_sin = plot(sin(x), (x, 0, 2*pi)) # plt_sin.show() plt_sin.save("MyPic.pdf") return # Draw the graph of the signature and transform it into TiKz. # header of the LaTeX file head = inspect.cleandoc( r""" \documentclass{standalone} \usepackage{tikz} \usetikzlibrary{calc} \begin{document} \begin{tikzpicture} """) body = \ r""" %A piecewise linear function is drawn over the interval. \draw (5,0) -- (6,-4); %The axes are drawn. \draw[latex-latex] ($(0,{-4*(2/5)}) +(0pt,-12.5pt)$) -- ($(0,{4*(2/5)}) +(0pt,12.5pt)$) node[above right]{$y$}; \draw[latex-latex] ($({-4*(2/5)},0) +(-12.5pt,0pt)$) -- ($({12*(2/5)},0) +(12.5pt,0pt)$) node[below right]{$x$}; """ tail = \ r""" \end{tikzpicture} \end{document} """ tikzpicture = re.sub(r' +', ' ', ''.join([head, body, tail])) tikzpicture = re.sub(r'\n ', '\n', tikzpicture) with open("tmp.tex", "w") as f: f.write(tikzpicture) data = self.step_function_data() with open(save_as, "w") as f: head = \ r""" \documentclass[tikz]{{standalone}} %\usepackage{{tikz}} \usetikzlibrary{{datavisualization}} \usetikzlibrary{{datavisualization.formats.functions}} %\usetikzlibrary{{calc}} \begin{{document}} \begin{{tikzpicture}} \datavisualization[scientific axes, visualize as smooth line, x axis={{ticks={{none,major={{at={{, {arg0} " as \\( {val0} \\ %] """.format(arg0=str(N(data[0][0] ,digits=4)), val0=str(data[0][0])) f.write(head) # f.write(", " + str(N(data[0][0],digits=4)) + " as \\(" + \ # str(data[0][0]) + "\\)") for jump_arg, jump in data[1:3]: f.write(", " + str(N(jump_arg,digits=4)) + " as \\(" + str(jump_arg) + "\\)") f.write("}}}}\n") f.write(" ]\n") f.write("data [format=function]{\n") f.write("var x : interval [0:1];\n") f.write("func y = \\value x;\n") f.write("};\n") # close LaTeX enviroments tail = \ r""" %}; \end{tikzpicture} \end{document} """ f.write(tail) def mod_one(n): return n - floor(n) SignatureFunction.__doc__ = \ """ This simple class encodes twisted and untwisted signature functions of knots. Since the signature function is entirely encoded by its signature jump, the class stores only information about signature jumps in a dictionary self.jumps_counter. The dictionary stores data of the signature jump as a key/values pair, where the key is the argument at which the functions jumps and value encodes the value of the jump. Remember that we treat signature functions as defined on the interval [0,1). """ mod_one.__doc__ = \ """ Argument: a number Return: the fractional part of the argument Examples: sage: mod_one(9 + 3/4) 3/4 sage: mod_one(-9 + 3/4) 3/4 sage: mod_one(-3/4) 1/4 """