372 lines
12 KiB
Python
372 lines
12 KiB
Python
#!/usr/bin/env sage -python
|
|
|
|
from collections import Counter
|
|
import matplotlib.pyplot as plt
|
|
import inspect
|
|
from PIL import Image
|
|
from pathlib import Path
|
|
import warnings
|
|
|
|
# 9.11 (9.8)
|
|
# 9.15 (9.9)
|
|
|
|
|
|
JUPYTER = 'ipykernel'
|
|
IPy_TERMINAL = 'IPython'
|
|
|
|
def get_ipython_info():
|
|
if JUPYTER in sys.modules:
|
|
return JUPYTER
|
|
elif IPy_TERMINAL in sys.modules:
|
|
return IPy_TERMINAL
|
|
return False
|
|
|
|
global ipython_info
|
|
ipython_info = get_ipython_info()
|
|
|
|
|
|
class SignatureFunction:
|
|
|
|
def __init__(self, values=None, counter=None, plot_title=''):
|
|
|
|
# counter of signature jumps
|
|
if counter is None:
|
|
counter = Counter()
|
|
values = values or []
|
|
for k, v in values:
|
|
counter[k] += v
|
|
|
|
counter = Counter({k : v for k, v in counter.items() if v != 0})
|
|
if any(k >= 1 for k in counter.keys()):
|
|
msg = "Signature function is defined on the interval [0, 1)."
|
|
raise ValueError(msg)
|
|
|
|
counter[0] += 0
|
|
counter[1] += 0
|
|
self.jumps_counter = counter
|
|
self.plot_title = plot_title
|
|
|
|
def __rshift__(self, shift):
|
|
# A shift of the signature functions corresponds to the rotation.
|
|
counter = Counter({mod_one(k + shift) : v \
|
|
for k, v in self.jumps_counter.items()})
|
|
return SignatureFunction(counter=counter)
|
|
|
|
def __lshift__(self, shift):
|
|
return self.__rshift__(-shift)
|
|
|
|
def __neg__(self):
|
|
counter = Counter()
|
|
counter.subtract(self.jumps_counter)
|
|
return SignatureFunction(counter=counter)
|
|
|
|
def __add__(self, other):
|
|
counter = copy(self.jumps_counter)
|
|
counter.update(other.jumps_counter)
|
|
if self.plot_title and other.plot_title:
|
|
title = self.plot_title + " + " + other.plot_title
|
|
else:
|
|
title = self.plot_title or other.plot_title
|
|
return SignatureFunction(counter=counter, plot_title=title)
|
|
|
|
def __sub__(self, other):
|
|
counter = copy(self.jumps_counter)
|
|
counter.subtract(other.jumps_counter)
|
|
return SignatureFunction(counter=counter)
|
|
|
|
def __eq__(self, other):
|
|
return self.jumps_counter == other.jumps_counter
|
|
|
|
def __str__(self):
|
|
result = ''.join([str(jump_arg) + ": " + str(jump) + "\n"
|
|
for jump_arg, jump in sorted(self.jumps_counter.items())])
|
|
return result
|
|
|
|
def __repr__(self):
|
|
result = ''.join([str(jump_arg) + ": " + str(jump) + ", "
|
|
for jump_arg, jump in sorted(self.jumps_counter.items())])
|
|
return result[:-2] + "."
|
|
|
|
def __call__(self, arg):
|
|
# return the value of the signature function at the point arg, i.e.
|
|
# sum of all signature jumps that occur before arg
|
|
items = self.jumps_counter.items()
|
|
result = [jump for jump_arg, jump in items if jump_arg < mod_one(arg)]
|
|
return 2 * sum(result) + self.jumps_counter[arg]
|
|
|
|
def double_cover(self):
|
|
# to read values for t^2
|
|
items = self.jumps_counter.items()
|
|
counter = Counter({(1 + k) / 2 : v for k, v in items})
|
|
counter.update(Counter({k / 2 : v for k, v in items}))
|
|
return SignatureFunction(counter=counter)
|
|
|
|
def square_root(self):
|
|
# to read values for t^(1/2)
|
|
counter = Counter()
|
|
for jump_arg, jump in self.jumps_counter.items():
|
|
if jump_arg < 1/2:
|
|
counter[2 * jump_arg] = jump
|
|
return SignatureFunction(counter=counter)
|
|
|
|
def minus_square_root(self):
|
|
# to read values for t^(1/2)
|
|
items = self.jumps_counter.items()
|
|
counter = Counter({mod_one(2 * k) : v for k, v in items if k >= 1/2})
|
|
return SignatureFunction(counter=counter)
|
|
|
|
def is_zero_everywhere(self):
|
|
return not any(self.jumps_counter.values())
|
|
|
|
def extremum(self, limit=math.inf):
|
|
max_point = (0, 0)
|
|
current = 0
|
|
items = sorted(self.jumps_counter.items())
|
|
for arg, jump in items:
|
|
current += 2 * jump
|
|
assert current == self(arg) + jump
|
|
if abs(current) > abs(max_point[1]):
|
|
max_point = (arg, current)
|
|
if abs(current) > limit:
|
|
break
|
|
return max_point
|
|
|
|
def total_sign_jump(self):
|
|
# Total signature jump is the sum of all jumps.
|
|
return sum([j[1] for j in sorted(self.jumps_counter.items())])
|
|
|
|
def plot(self, *args, **kargs):
|
|
SignaturePloter.plot(self, *args, **kargs)
|
|
|
|
|
|
class SignaturePloter:
|
|
|
|
@classmethod
|
|
def plot_many(cls, *sf_list, save_path=None, title='', cols=None):
|
|
|
|
axes_num = len(sf_list)
|
|
if axes_num > 36:
|
|
sf_list = sf_list[36]
|
|
axes_num = 36
|
|
msg = "To many functions for the plot were given. "
|
|
msg += "Only 36 can be plotted "
|
|
warnings.warn(msg)
|
|
|
|
# print war, set val in conf
|
|
cols = cols or ceil(sqrt(axes_num))
|
|
rows = ceil(axes_num/cols)
|
|
fig, axes_matrix = plt.subplots(rows, cols,
|
|
sharex='col', sharey='row',
|
|
gridspec_kw={'hspace': 0, 'wspace': 0},
|
|
# sharey=True,
|
|
# sharex=True,
|
|
)
|
|
for i, sf in enumerate(sf_list):
|
|
col = i % cols
|
|
row = (i - col)/cols
|
|
sf.plot(subplot=True,
|
|
ax=axes_matrix[row][col],
|
|
title=sf.plot_title)
|
|
|
|
fig.suptitle(title)
|
|
plt.tight_layout()
|
|
|
|
cls.show_and_save(save_path)
|
|
|
|
@classmethod
|
|
def plot_sum_of_two(cls, sf1, sf2, save_path=None, title=''):
|
|
|
|
sf = sf1 + sf2
|
|
fig, axes_matrix = plt.subplots(2, 2, sharey=True, figsize=(10,5))
|
|
|
|
sf1.plot(subplot=True,
|
|
ax=axes_matrix[0][1])
|
|
|
|
sf2.plot(subplot=True,
|
|
ax=axes_matrix[1][0],
|
|
color='red',
|
|
linestyle='dotted')
|
|
|
|
sf.plot(subplot=True,
|
|
ax=axes_matrix[0][0],
|
|
color='black')
|
|
|
|
sf1.plot(subplot=True,
|
|
ax=axes_matrix[1][1],
|
|
alpha=0.3)
|
|
|
|
sf2.plot(subplot=True,
|
|
ax=axes_matrix[1][1],
|
|
color='red', alpha=0.3,
|
|
linestyle='dotted')
|
|
|
|
sf.plot(subplot=True,
|
|
ax=axes_matrix[1][1],
|
|
color='black',
|
|
alpha=0.7,)
|
|
|
|
fig.suptitle(title)
|
|
plt.tight_layout()
|
|
|
|
cls.show_and_save(save_path)
|
|
|
|
@classmethod
|
|
def plot(cls, sf, subplot=False, ax=None, save_path=None,
|
|
title="",
|
|
alpha=1,
|
|
color='blue',
|
|
linestyle='solid',
|
|
ylabel=''):
|
|
|
|
if ax is None:
|
|
fig, ax = plt.subplots(1, 1)
|
|
|
|
keys = sorted(sf.jumps_counter.keys())
|
|
y = [sf(k) + sf.jumps_counter[k] for k in keys]
|
|
xmax = keys[1:]
|
|
xmin = keys[:-1]
|
|
|
|
ax.set(ylabel=ylabel)
|
|
ax.set(title=title)
|
|
ax.hlines(y, xmin, xmax, color=color, linestyle=linestyle, alpha=alpha)
|
|
|
|
if subplot:
|
|
return ax
|
|
|
|
cls.show_and_save(save_path)
|
|
|
|
@staticmethod
|
|
def show_and_save(save_path):
|
|
|
|
if save_path is not None:
|
|
save_path = Path(save_path)
|
|
save_path = save_path.with_suffix('.png')
|
|
plt.savefig(save_path)
|
|
|
|
if ipython_info == JUPYTER:
|
|
plt.show()
|
|
|
|
elif True: # save_path is None:
|
|
plt.savefig('tmp.png')
|
|
plt.close()
|
|
image = Image.open('tmp.png')
|
|
image.show()
|
|
# msg = "For interactive shell set save_path."
|
|
# warnings.warn(msg)
|
|
|
|
@staticmethod
|
|
def step_function_data(sf):
|
|
# Transform the signature jump data to a format understandable
|
|
# by the plot function.
|
|
result = [(k, sf.sf(k) + sf.jumps_counter[k])
|
|
for k in sorted(sf.jumps_counter.keys())]
|
|
return result
|
|
|
|
@staticmethod
|
|
def tikz_plot(sf, save_as):
|
|
plt_sin = plot(sin(x), (x, 0, 2*pi))
|
|
# plt_sin.show()
|
|
plt_sin.save("MyPic.pdf")
|
|
|
|
return
|
|
# Draw the graph of the signature and transform it into TiKz.
|
|
# header of the LaTeX file
|
|
head = inspect.cleandoc(
|
|
r"""
|
|
\documentclass{standalone}
|
|
\usepackage{tikz}
|
|
\usetikzlibrary{calc}
|
|
\begin{document}
|
|
\begin{tikzpicture}
|
|
""")
|
|
|
|
body = \
|
|
r"""
|
|
%A piecewise linear function is drawn over the interval.
|
|
\draw (5,0) -- (6,-4);
|
|
%The axes are drawn.
|
|
\draw[latex-latex] ($(0,{-4*(2/5)}) +(0pt,-12.5pt)$) --
|
|
($(0,{4*(2/5)}) +(0pt,12.5pt)$) node[above right]{$y$};
|
|
\draw[latex-latex] ($({-4*(2/5)},0) +(-12.5pt,0pt)$) --
|
|
($({12*(2/5)},0) +(12.5pt,0pt)$) node[below right]{$x$};
|
|
"""
|
|
tail = \
|
|
r"""
|
|
\end{tikzpicture}
|
|
\end{document}
|
|
"""
|
|
tikzpicture = re.sub(r' +', ' ', ''.join([head, body, tail]))
|
|
tikzpicture = re.sub(r'\n ', '\n', tikzpicture)
|
|
|
|
with open("tmp.tex", "w") as f:
|
|
f.write(tikzpicture)
|
|
|
|
data = self.step_function_data()
|
|
with open(save_as, "w") as f:
|
|
head = \
|
|
r"""
|
|
\documentclass[tikz]{{standalone}}
|
|
%\usepackage{{tikz}}
|
|
\usetikzlibrary{{datavisualization}}
|
|
\usetikzlibrary{{datavisualization.formats.functions}}
|
|
%\usetikzlibrary{{calc}}
|
|
\begin{{document}}
|
|
\begin{{tikzpicture}}
|
|
\datavisualization[scientific axes, visualize as smooth line,
|
|
x axis={{ticks={{none,major={{at={{, {arg0} " as \\( {val0} \\
|
|
%]
|
|
""".format(arg0=str(N(data[0][0] ,digits=4)), val0=str(data[0][0]))
|
|
f.write(head)
|
|
|
|
|
|
# f.write(", " + str(N(data[0][0],digits=4)) + " as \\(" + \
|
|
# str(data[0][0]) + "\\)")
|
|
for jump_arg, jump in data[1:3]:
|
|
f.write(", " + str(N(jump_arg,digits=4)) +
|
|
" as \\(" + str(jump_arg) + "\\)")
|
|
f.write("}}}}\n")
|
|
f.write(" ]\n")
|
|
f.write("data [format=function]{\n")
|
|
f.write("var x : interval [0:1];\n")
|
|
f.write("func y = \\value x;\n")
|
|
f.write("};\n")
|
|
# close LaTeX enviroments
|
|
tail = \
|
|
r"""
|
|
%};
|
|
\end{tikzpicture}
|
|
\end{document}
|
|
"""
|
|
f.write(tail)
|
|
|
|
def mod_one(n):
|
|
return n - floor(n)
|
|
|
|
SignatureFunction.__doc__ = \
|
|
"""
|
|
This simple class encodes twisted and untwisted signature functions
|
|
of knots. Since the signature function is entirely encoded by its signature
|
|
jump, the class stores only information about signature jumps
|
|
in a dictionary self.jumps_counter.
|
|
The dictionary stores data of the signature jump as a key/values pair,
|
|
where the key is the argument at which the functions jumps
|
|
and value encodes the value of the jump. Remember that we treat
|
|
signature functions as defined on the interval [0,1).
|
|
"""
|
|
|
|
|
|
mod_one.__doc__ = \
|
|
"""
|
|
Argument:
|
|
a number
|
|
Return:
|
|
the fractional part of the argument
|
|
Examples:
|
|
sage: mod_one(9 + 3/4)
|
|
3/4
|
|
sage: mod_one(-9 + 3/4)
|
|
3/4
|
|
sage: mod_one(-3/4)
|
|
1/4
|
|
"""
|