773 lines
27 KiB
Python
773 lines
27 KiB
Python
#!/usr/bin/env sage -python
|
|
|
|
import numpy as np
|
|
import itertools as it
|
|
import warnings
|
|
import re
|
|
from typing import Iterable
|
|
from collections import Counter
|
|
from sage.arith.functions import LCM_list
|
|
import importlib
|
|
from .utility import import_sage, mod_one
|
|
from . import signature as sig
|
|
|
|
SIGMA = 0
|
|
SIGNATURE = 1
|
|
|
|
|
|
|
|
# #############################################################################
|
|
# 9.11 (9.8)
|
|
# 9.15 (9.9)
|
|
PLOTS_DIR = "../plots"
|
|
|
|
class CableSummand:
|
|
|
|
|
|
def __init__(self, knot_as_k_values, verbose=False):
|
|
|
|
self.verbose = verbose
|
|
self.knot_as_k_values = knot_as_k_values
|
|
self.knot_description = self.get_summand_descrption(knot_as_k_values)
|
|
self.signature_as_function_of_theta = \
|
|
self.get_summand_signature_as_theta_function()
|
|
self.sigma_as_function_of_theta = self.get_sigma_as_function_of_theta()
|
|
|
|
@staticmethod
|
|
def get_summand_descrption(knot_as_k_values):
|
|
description = ""
|
|
if knot_as_k_values[0] < 0:
|
|
description += "-"
|
|
description += "T("
|
|
for k in knot_as_k_values:
|
|
description += "2, " + str(2 * abs(k) + 1) + "; "
|
|
return description[:-2] + ")"
|
|
|
|
@classmethod
|
|
def get_blanchfield_for_pattern(cls, k_n, theta=0):
|
|
|
|
msg = "Theorem on which this function is based, assumes " +\
|
|
"theta < k, where q = 2*k + 1 for pattern knot T(p, q)."
|
|
if theta == 0:
|
|
sf = cls.get_untwisted_signature_function(k_n)
|
|
return sf.square_root() + sf.minus_square_root()
|
|
|
|
k = abs(k_n)
|
|
assert theta <= k, msg
|
|
|
|
results = []
|
|
ksi = 1/(2 * k + 1)
|
|
|
|
# print("lambda_odd, i.e. (theta + e) % 2 != 0")
|
|
for e in range(1, k + 1):
|
|
if (theta + e) % 2 != 0:
|
|
results.append((e * ksi, 1 * sgn(k_n)))
|
|
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
|
|
|
# for example for k = 9 (q = 19) from this part we get
|
|
# for even theta
|
|
# 2/19: 1
|
|
# 4/19: 1
|
|
# 6/19: 1
|
|
# 8/19: 1
|
|
# 11/19: -1
|
|
# 13/19: -1
|
|
# 15/19: -1
|
|
# 17/19: -1
|
|
#
|
|
# for odd theta
|
|
# 1/19: 1
|
|
# 3/19: 1
|
|
# 5/19: 1
|
|
# 7/19: 1
|
|
# 9/19: 1
|
|
# 10/19: -1
|
|
# 12/19: -1
|
|
# 14/19: -1
|
|
# 16/19: -1
|
|
# 18/19: -1
|
|
|
|
# print("lambda_even")
|
|
# print("normal")
|
|
for e in range(1, theta):
|
|
if (theta + e) % 2 == 0:
|
|
results.append((e * ksi, 1 * sgn(k_n)))
|
|
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
|
# print("reversed")
|
|
for e in range(theta + 1, k + 1):
|
|
if (theta + e) % 2 == 0:
|
|
results.append((e * ksi, -1 * sgn(k_n)))
|
|
results.append((1 - e * ksi, 1 * sgn(k_n)))
|
|
|
|
return sig.SignatureFunction(values=results)
|
|
|
|
@classmethod
|
|
def get_satellite_part(cls, *knot_as_k_values, theta=0):
|
|
patt_k = knot_as_k_values[-1]
|
|
ksi = 1/(2 * abs(patt_k) + 1)
|
|
|
|
satellite_part = sig.SignatureFunction()
|
|
# For each knot summand consider k values in reversed order,
|
|
# ommit k value for pattern.
|
|
for layer_num, k in enumerate(knot_as_k_values[:-1][::-1]):
|
|
sf = cls.get_untwisted_signature_function(k)
|
|
shift = theta * ksi * 2^layer_num
|
|
right_shift = sf >> shift
|
|
left__shift = sf << shift
|
|
for _ in range(layer_num):
|
|
right_shift = right_shift.double_cover()
|
|
left__shift = left__shift.double_cover()
|
|
satellite_part += right_shift + left__shift
|
|
return satellite_part
|
|
|
|
@staticmethod
|
|
def get_untwisted_signature_function(k=None, q=None):
|
|
# return the signature function of the T_{2, 2k+1} torus knot
|
|
|
|
if q is not None:
|
|
signum = sign(q)
|
|
q = abs(q)
|
|
k = (q - 1)/2
|
|
elif k is not None:
|
|
signum = sign(k)
|
|
k = abs(k)
|
|
q = 2 * k + 1
|
|
else:
|
|
raise ValueError('k or q value must be given')
|
|
|
|
counter = Counter({(2 * a + 1)/(2 * q) : -signum
|
|
for a in range(k)})
|
|
counter.update(Counter({(2 * a + 1)/(2 * q) : signum
|
|
for a in range(k + 1, q)}))
|
|
return sig.SignatureFunction(counter=counter)
|
|
|
|
def get_summand_signature_as_theta_function(self):
|
|
# knot_as_k_values = self.knot_as_k_values
|
|
def get_summand_signture_function(theta):
|
|
|
|
patt_k = self.knot_as_k_values[-1]
|
|
|
|
# theta should not be larger than k for the pattern.
|
|
theta %= (2 * abs(patt_k) + 1)
|
|
theta = min(theta, 2 * abs(patt_k) + 1 - theta)
|
|
|
|
pattern_part = self.get_blanchfield_for_pattern(patt_k, theta)
|
|
satellite_part = self.get_satellite_part(*self.knot_as_k_values,
|
|
theta=theta)
|
|
sf = satellite_part + pattern_part
|
|
|
|
satellite_part.plot_title = self.knot_description + \
|
|
", theta = " + str(theta) + \
|
|
", satellite part."
|
|
pattern_part.plot_title = self.knot_description + \
|
|
", theta = " + str(theta) + \
|
|
", pattern part."
|
|
sf.plot_title = self.knot_description +\
|
|
", theta = " + str(theta)
|
|
|
|
return pattern_part, satellite_part, sf
|
|
get_summand_signture_function.__doc__ = \
|
|
get_summand_signture_function_docsting
|
|
|
|
return get_summand_signture_function
|
|
|
|
def get_file_name_for_summand_plot(self, theta=0):
|
|
if self.knot_as_k_values[0] < 0:
|
|
name = "inv_T_"
|
|
else:
|
|
name = "T_"
|
|
for k in self.knot_as_k_values:
|
|
name += str(abs(k)) + "_"
|
|
name += "_theta_" + str(theta)
|
|
return name
|
|
|
|
def plot_summand_for_theta(self, theta, save_path=None):
|
|
pp, sp, sf = self.signature_as_function_of_theta(theta)
|
|
title = self.knot_description + ", theta = " + str(theta)
|
|
if save_path is not None:
|
|
file_name = self.get_file_name_for_summand_plot(theta)
|
|
save_path = os.path.join(save_path, file_name)
|
|
sig.SignaturePloter.plot_sum_of_two(pp, sp, title=title,
|
|
save_path=save_path)
|
|
|
|
def plot_summand_sigma(self):
|
|
sigma = self.sigma_as_function_of_theta
|
|
# pattern part
|
|
th_values = list(range(abs(self.knot_as_k_values[-1]) + 1))
|
|
y = [sigma(th)[0] for th in th_values]
|
|
print("plot_summand_sigma")
|
|
print(th_values)
|
|
print(y)
|
|
|
|
# satellite_part
|
|
patt_k = self.knot_as_k_values[-1]
|
|
patt_q = 2 * abs(patt_k) + 1
|
|
ksi = 1/patt_q
|
|
x = []
|
|
s = self.get_untwisted_signature_function
|
|
list_of_signatue_functions = [s(k) for k in self.knot_as_k_values[:-1]]
|
|
for i, k in enumerate(self.knot_as_k_values[:-1][::-1]):
|
|
layer_num = i + 1
|
|
x.append(ksi * layer_num)
|
|
print("\nx")
|
|
print(x)
|
|
print(th_values)
|
|
print("\nx product")
|
|
x = list(set(it.product(x, th_values)))
|
|
x = [(a * b) for (a, b) in x]
|
|
print(x)
|
|
|
|
|
|
def print_sigma_as_function_of_theta(self, theta):
|
|
if not theta:
|
|
return
|
|
|
|
# theta should not be larger than q for the pattern.
|
|
patt_k = self.knot_as_k_values[-1]
|
|
|
|
patt_q = 2 * abs(patt_k) + 1
|
|
theta %= patt_q
|
|
|
|
ksi = 1/patt_q
|
|
|
|
# satellite part (Levine-Tristram signatures)
|
|
print(3 * "\n" + 10 * "#" + " " + self.knot_description +
|
|
" " + 10 * "#" + "\n")
|
|
|
|
satellite_part = 0
|
|
for layer_num, k in enumerate(self.knot_as_k_values[::-1]):
|
|
|
|
sigma_q = self.get_untwisted_signature_function(k)
|
|
arg = ksi * theta * layer_num
|
|
sp = sigma_q(arg)
|
|
satellite_part += 2 * sp
|
|
|
|
if details and arg:
|
|
label = "ksi * theta * layer_num = " + str(arg)
|
|
title = self.knot_description + ", layer " + str(layer_num)
|
|
title += ", theta = " + str(theta)
|
|
sigma_q.plot(special_point=(mod_one(arg), sp),
|
|
special_label=label,
|
|
title=title,)
|
|
|
|
pp = (-patt_q + 2 * theta - 2 * (theta^2/patt_q)) * sign(patt_k)
|
|
sigma = pp + satellite_part
|
|
print(self.knot_description + ", theta = " + str(theta))
|
|
print("pp = " + str(pp), end=', ')
|
|
print("satellite_part = " + str(satellite_part) + "\n")
|
|
|
|
def get_sigma_as_function_of_theta(self):
|
|
|
|
patt_k = self.knot_as_k_values[-1]
|
|
patt_q = 2 * abs(patt_k) + 1
|
|
ksi = 1/patt_q
|
|
|
|
def sigma_as_function_of_theta(theta):
|
|
if theta == 0:
|
|
return 0, 0, 0
|
|
|
|
# theta should not be larger than q for the pattern.
|
|
patt_k = self.knot_as_k_values[-1]
|
|
theta %= (2 * abs(patt_k) + 1)
|
|
|
|
satellite_part = 0
|
|
for i, k in enumerate(self.knot_as_k_values[:-1][::-1]):
|
|
layer_num = i + 1
|
|
sigma_q = self.get_untwisted_signature_function(k)
|
|
sp = 2 * sigma_q(ksi * theta * layer_num)
|
|
satellite_part += sp
|
|
if theta:
|
|
pp = (-patt_q + 2 * theta - 2 * (theta^2/patt_q)) * sign(patt_k)
|
|
else:
|
|
pp = 0
|
|
return pp, satellite_part, pp + satellite_part
|
|
return sigma_as_function_of_theta
|
|
|
|
|
|
class CableSum:
|
|
|
|
def __init__(self, knot_sum, verbose=False):
|
|
|
|
self.verbose = verbose
|
|
self.knot_sum_as_k_valus = knot_sum
|
|
self.knot_description = self.get_knot_descrption(knot_sum)
|
|
self.patt_k_list = [abs(i[-1]) for i in knot_sum]
|
|
self.patt_q_list = [2 * i + 1 for i in self.patt_k_list]
|
|
|
|
if any(n not in Primes() for n in self.patt_q_list):
|
|
msg = "Incorrect k- or q-vector. This implementation assumes that"\
|
|
+ " all last q values are prime numbers.\n" + \
|
|
str(self.patt_q_list)
|
|
raise ValueError(msg)
|
|
self.q_order = LCM_list(self.patt_q_list)
|
|
|
|
self.knot_summands = [CableSummand(k, verbose) for k in knot_sum]
|
|
self.signature_as_function_of_theta = \
|
|
self.get_signature_as_function_of_theta()
|
|
self.sigma_as_function_of_theta = \
|
|
self.get_sigma_as_function_of_theta()
|
|
|
|
|
|
def __call__(self, *thetas):
|
|
return self.signature_as_function_of_theta(*thetas)
|
|
|
|
def get_dir_name_for_plots(self, dir=None):
|
|
dir_name = ''
|
|
for knot in self.knot_summands:
|
|
if knot.knot_as_k_values[0] < 0:
|
|
dir_name += "inv_"
|
|
dir_name += "T_"
|
|
for k in knot.knot_as_k_values:
|
|
k = 2 * abs (k) + 1
|
|
dir_name += str(k) + "_"
|
|
dir_name = dir_name[:-1]
|
|
print(dir_name)
|
|
dir_path = os.getcwd()
|
|
if dir is not None:
|
|
dir_path = os.path.join(dir_path, dir)
|
|
dir_path = os.path.join(dir_path, dir_name)
|
|
|
|
if not os.path.isdir(dir_path):
|
|
os.mkdir(dir_path)
|
|
return dir_name
|
|
|
|
def plot_sum_for_theta_vector(self, thetas, save_to_dir=False):
|
|
if save_to_dir:
|
|
if not os.path.isdir(PLOTS_DIR):
|
|
os.mkdir(PLOTS_DIR)
|
|
dir_name = self.get_dir_name_for_plots(dir=PLOTS_DIR)
|
|
save_path = os.path.join(os.getcwd(), PLOTS_DIR)
|
|
save_path = os.path.join(save_path, dir_name)
|
|
else:
|
|
save_path = None
|
|
|
|
# for theta, knot in zip(thetas, self.knot_summands):
|
|
# knot.plot_summand_for_theta(thetas, save_path=save_path)
|
|
|
|
# pp, sp, sf = self.signature_as_function_of_theta(*thetas)
|
|
# title = self.knot_description + ", thetas = " + str(thetas)
|
|
# if save_path is not None:
|
|
# file_name = re.sub(r', ', '_', str(thetas))
|
|
# file_name = re.sub(r'[\[\]]', '', str(file_name))
|
|
# file_path = os.path.join(save_path, file_name)
|
|
# sig.SignaturePloter.plot_sum_of_two(pp, sp, title=title,
|
|
# save_path=file_path)
|
|
#
|
|
# if save_path is not None:
|
|
# file_path = os.path.join(save_path, "all_" + file_name)
|
|
# sf_list = [knot.signature_as_function_of_theta(thetas[i])[2]
|
|
# for i, knot in enumerate(self.knot_summands)]
|
|
# sig.SignaturePloter.plot_many(*sf_list, cols=2)
|
|
# pp, sp, sf = knot.signature_as_function_of_theta(thetas[i])
|
|
# (pp + sp) = sp.plot
|
|
#
|
|
# sig.SignatureFunction.plot_sum_of_two(pp, sp, title=title,
|
|
# save_path=file_path)
|
|
|
|
|
|
return dir_name
|
|
|
|
def plot_sigma_for_summands(self):
|
|
for knot in self.knot_summands:
|
|
knot.plot_summand_sigma()
|
|
|
|
def parse_thetas(self, *thetas):
|
|
summands_num = len(self.knot_sum_as_k_valus)
|
|
if not thetas:
|
|
thetas = summands_num * (0,)
|
|
elif len(thetas) == 1 and summands_num > 1:
|
|
if isinstance(thetas[0], Iterable):
|
|
if len(thetas[0]) >= summands_num:
|
|
thetas = thetas[0]
|
|
elif not thetas[0]:
|
|
thetas = summands_num * (0,)
|
|
elif thetas[0] == 0:
|
|
thetas = summands_num * (0,)
|
|
else:
|
|
msg = "This function takes at least " + str(summands_num) + \
|
|
" arguments or no argument at all (" + str(len(thetas)) \
|
|
+ " given)."
|
|
raise TypeError(msg)
|
|
return tuple(thetas)
|
|
|
|
@staticmethod
|
|
def get_knot_descrption(knot_sum):
|
|
|
|
"""
|
|
Arguments:
|
|
arbitrary number of lists of numbers,
|
|
each list encodes a single cable.
|
|
Examples:
|
|
sage: get_knot_descrption([1, 3], [2], [-1, -2], [-3])
|
|
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
|
|
"""
|
|
|
|
description = ""
|
|
for knot in knot_sum:
|
|
if knot[0] < 0:
|
|
description += "-"
|
|
description += "T("
|
|
for k in knot:
|
|
description += "2, " + str(2 * abs(k) + 1) + "; "
|
|
description = description[:-2] + ") # "
|
|
return description[:-3]
|
|
|
|
def get_sigma_as_function_of_theta(self, verbose=None):
|
|
default_verbose = verbose or self.verbose
|
|
|
|
def sigma_as_function_of_theta(*thetas, verbose=None, **kwargs):
|
|
|
|
verbose = verbose or default_verbose
|
|
thetas = self.parse_thetas(*thetas)
|
|
sigma = 0
|
|
for th, knot in zip(thetas, self.knot_summands):
|
|
_, _, s = knot.sigma_as_function_of_theta(th)
|
|
sigma += s
|
|
return sigma
|
|
|
|
return sigma_as_function_of_theta
|
|
|
|
def get_signature_as_function_of_theta(self, **key_args):
|
|
if 'verbose' in key_args:
|
|
verbose_default = key_args['verbose']
|
|
else:
|
|
verbose_default = False
|
|
knot_desc = self.knot_description
|
|
|
|
def signature_as_function_of_theta(*thetas, **kwargs):
|
|
# print("\n\nsignature_as_function_of_theta " + knot_desc)
|
|
verbose = verbose_default
|
|
if 'verbose' in kwargs:
|
|
verbose = kwargs['verbose']
|
|
thetas = self.parse_thetas(*thetas)
|
|
|
|
satellite_part = sig.SignatureFunction()
|
|
pattern_part = sig.SignatureFunction()
|
|
|
|
# for each cable knot (summand) in cable sum apply theta
|
|
for th, knot in zip(thetas, self.knot_summands):
|
|
pp, sp, _ = knot.signature_as_function_of_theta(th)
|
|
pattern_part += pp
|
|
satellite_part += sp
|
|
|
|
|
|
sf = pattern_part + satellite_part
|
|
|
|
if verbose:
|
|
print()
|
|
print(str(thetas))
|
|
print(sf)
|
|
assert sf.total_sign_jump() == 0
|
|
return pattern_part, satellite_part, sf
|
|
|
|
signature_as_function_of_theta.__doc__ =\
|
|
signature_as_function_of_theta_docstring
|
|
return signature_as_function_of_theta
|
|
|
|
def get_sign_ext_for_theta(self, thetas, limit):
|
|
_, _, sf = self.signature_as_function_of_theta(*thetas)
|
|
return sf.extremum(limit=limit)[1]
|
|
|
|
def is_metabolizer(self, theta):
|
|
# Check if square alternating difference
|
|
# divided by last q value is integer.
|
|
result = sum(el^2 / self.patt_q_list[idx] * (-1)^idx
|
|
for idx, el in enumerate(theta))
|
|
return result.is_integer()
|
|
|
|
def is_function_big_in_ranges(self, ranges_list, invariant=SIGMA,
|
|
verbose=None):
|
|
verbose = verbose or self.verbose
|
|
if invariant == SIGNATURE:
|
|
get_invariant = self.get_sign_ext_for_theta
|
|
name = "signature (extremum)"
|
|
else:
|
|
get_invariant = self.sigma_as_function_of_theta
|
|
name = "sigma value"
|
|
|
|
for thetas in it.product(*ranges_list):
|
|
|
|
# Check only non-zero metabolizers.
|
|
if not self.is_metabolizer(thetas) or not any(thetas):
|
|
continue
|
|
#
|
|
# cond1 = thetas[0] and thetas[3] and not thetas[1] and not thetas[2]
|
|
# cond = thetas[0] and thetas[3] and not thetas[1] and not thetas[2]
|
|
|
|
|
|
function_is_small = True
|
|
# Check if any element generated by thetas vector
|
|
# has a large signature or sigma.
|
|
for shift in range(1, self.q_order):
|
|
shifted_thetas = [shift * th for th in thetas]
|
|
limit = 5 + np.count_nonzero(shifted_thetas)
|
|
inv_value = get_invariant(shifted_thetas, limit=limit)
|
|
abs_value = abs(inv_value)
|
|
|
|
if verbose:
|
|
if shift == 1:
|
|
print("\n" + "*" * 10)
|
|
print("Knot sum:\n" + self.knot_description)
|
|
print("[ characters ] " + name)
|
|
print(shifted_thetas, end=" ")
|
|
print(inv_value)
|
|
|
|
if abs_value > limit:
|
|
function_is_small = False
|
|
if invariant == SIGMA and verbose:
|
|
self.print_calculations_for_sigma(*shifted_thetas)
|
|
break
|
|
if function_is_small:
|
|
return False
|
|
return True
|
|
|
|
def print_calculations_for_sigma(self, *thetas):
|
|
|
|
print("Calculation details for a cable sum:\n" +
|
|
self.knot_description + "\nand theta vector: " +
|
|
str(thetas) + "\n")
|
|
|
|
for i, (th, knot) in enumerate(zip(thetas, self.knot_summands)):
|
|
print("{}. {}, theta = {}".format(i + 1, knot.knot_description, th))
|
|
if not th:
|
|
continue
|
|
patt_k = knot.knot_as_k_values[-1]
|
|
q = 2 * abs(patt_k) + 1
|
|
th %= q
|
|
if patt_k > 0:
|
|
print("Pattern part = pp")
|
|
else:
|
|
print("Pattern part = -pp")
|
|
|
|
print("pp = -q + 2 * theta * (q - theta)/q =")
|
|
print(" = -{} + 2 * {} * ({} - {} )/{} =".format(
|
|
q, th, q, th, q))
|
|
print(" = -{} + {} * ({} )/{} =".format(
|
|
q, 2 * th, q - th, q))
|
|
print(" = -{} + {} * {} = ".format(
|
|
q, 2 * th, (q - th)/ q))
|
|
print(" = -{} + {} = ".format(
|
|
q, 2 * th * (q - th)/ q))
|
|
print(" = {} ".format(
|
|
-q + (2 * th * (q - th)/ q)))
|
|
|
|
pp = (-q + 2 * th - 2 * (th^2/q)) * sign(patt_k)
|
|
sigma = knot.sigma_as_function_of_theta(th)
|
|
print("Pattern part = {} ~ {}".format(sigma[0],int(sigma[0])))
|
|
print("Satellite part = {}".format(sigma[1]))
|
|
print("Sigma = {} ~ {}\n".format(sigma[2], int(sigma[2])))
|
|
|
|
def is_function_big_for_all_metabolizers(self, invariant=SIGMA):
|
|
num_of_summands = len(self.knot_sum_as_k_valus)
|
|
if num_of_summands % 4:
|
|
f_name = self.is_signature_big_for_all_metabolizers.__name__
|
|
msg = "Function {}".format(f_name) + " is implemented only for " +\
|
|
"knots that are direct sums of 4n direct summands."
|
|
raise ValueError(msg)
|
|
|
|
for shift in range(0, num_of_summands, 4):
|
|
ranges_list = num_of_summands * [range(0, 1)]
|
|
ranges_list[shift : shift + 3] = \
|
|
[range(0, i + 1) for i in self.patt_k_list[shift: shift + 3]]
|
|
ranges_list[shift + 3] = range(0, 2)
|
|
if not self.is_function_big_in_ranges(ranges_list, invariant):
|
|
return False
|
|
return True
|
|
|
|
|
|
class CableTemplate:
|
|
|
|
def __init__(self, knot_formula, q_vector=None, k_vector=None,
|
|
generate_q_vector=True, slice=True, verbose=False):
|
|
self.verbose = verbose
|
|
self._knot_formula = knot_formula
|
|
# q_i = 2 * k_i + 1
|
|
if k_vector is not None:
|
|
self.k_vector = k_vector
|
|
elif q_vector is not None:
|
|
self.q_vector = q_vector
|
|
elif generate_q_vector:
|
|
self.q_vector = self.get_q_vector(slice=slice)
|
|
|
|
@property
|
|
def cable(self):
|
|
if self._cable is None:
|
|
msg = "q_vector for cable instance has not been set explicit. " + \
|
|
"The variable is assigned a default value."
|
|
warnings.warn(msg)
|
|
self.fill_q_vector()
|
|
return self._cable
|
|
|
|
def fill_q_vector(self, q_vector=None, slice=True, lowest_number=2):
|
|
self.q_vector = q_vector or self.get_q_vector(slice, lowest_number)
|
|
|
|
@property
|
|
def knot_formula(self):
|
|
return self._knot_formula
|
|
|
|
@property
|
|
def k_vector(self):
|
|
return self._k_vector
|
|
@k_vector.setter
|
|
def k_vector(self, k):
|
|
self._k_vector = k
|
|
if self.extract_max(self.knot_formula) > len(k) - 1:
|
|
msg = "The vector for knot_formula evaluation is to short!"
|
|
msg += "\nk_vector " + str(k) + " \nknot_formula " \
|
|
+ str(self.knot_formula)
|
|
raise IndexError(msg)
|
|
|
|
self.knot_sum_as_k_valus = eval(self.knot_formula)
|
|
self._cable = CableSum(self.knot_sum_as_k_valus, verbose=self.verbose)
|
|
self._q_vector = [2 * k_val + 1 for k_val in k]
|
|
|
|
@property
|
|
def q_vector(self):
|
|
return self._q_vector
|
|
@q_vector.setter
|
|
def q_vector(self, new_q_vector):
|
|
self.k_vector = [(q - 1)/2 for q in new_q_vector]
|
|
|
|
@staticmethod
|
|
def extract_max(string):
|
|
numbers = re.findall(r'\d+', string)
|
|
numbers = map(int, numbers)
|
|
return max(numbers)
|
|
|
|
def get_q_vector(self, slice=True, lowest_number=2):
|
|
knot_formula = self.knot_formula
|
|
q_vector = [0] * (self.extract_max(knot_formula) + 1)
|
|
P = Primes()
|
|
for layer in self.get_layers_from_formula(knot_formula)[::-1]:
|
|
for el in layer:
|
|
q_vector[el] = P.next(lowest_number)
|
|
lowest_number = q_vector[el]
|
|
lowest_number *= 4
|
|
return q_vector
|
|
|
|
@staticmethod
|
|
def get_layers_from_formula(knot_formula):
|
|
k_indices = re.sub(r'[k-]', '', knot_formula)
|
|
k_indices = re.sub(r'\[\d+\]', lambda x: x.group()[1:-1], k_indices)
|
|
k_indices = eval(k_indices)
|
|
number_of_layers = max(len(lst) for lst in k_indices)
|
|
layers = []
|
|
for i in range(1, number_of_layers + 1):
|
|
layer = [lst[-i] for lst in k_indices if len(lst)>= i]
|
|
layers.append(layer)
|
|
return layers
|
|
|
|
def add_with_shift(self, other):
|
|
shift = self.extract_max(self.knot_formula) + 1
|
|
o_formula = re.sub(r'\d+', lambda x: str(int(x.group()) + shift),
|
|
other.knot_formula)
|
|
return self + CableTemplate(o_formula)
|
|
|
|
def __add__(self, other):
|
|
knot_formula = self.knot_formula[:-1] + ",\n" + other.knot_formula[1:]
|
|
return CableTemplate(knot_formula)
|
|
|
|
|
|
|
|
|
|
CableSum.get_signature_as_function_of_theta.__doc__ = \
|
|
"""
|
|
Function intended to construct signature function for a connected
|
|
sum of multiple cables with varying theta parameter values.
|
|
Accept arbitrary number of arguments (depending on number of cables in
|
|
connected sum).
|
|
Each argument should be given as list of integer representing
|
|
k - parameters for a cable: parameters k_i (i=1,.., n-1) for satelit knots
|
|
T(2, 2k_i + 1) and - the last one - k_n for a pattern knot T(2, 2k_n + 1).
|
|
Returns a function that will take theta vector as an argument and return
|
|
an object sig.SignatureFunction.
|
|
|
|
To calculate signature function for a cable sum and a theta values vector,
|
|
use as below.
|
|
|
|
sage: signature_function_generator = get_signature_as_function_of_theta(
|
|
[1, 3], [2], [-1, -2], [-3])
|
|
sage: sf = signature_function_generator(2, 1, 2, 2)
|
|
sage: print(sf)
|
|
0: 0
|
|
5/42: 1
|
|
1/7: 0
|
|
1/5: -1
|
|
7/30: -1
|
|
2/5: 1
|
|
3/7: 0
|
|
13/30: -1
|
|
19/42: -1
|
|
23/42: 1
|
|
17/30: 1
|
|
4/7: 0
|
|
3/5: -1
|
|
23/30: 1
|
|
4/5: 1
|
|
6/7: 0
|
|
37/42: -1
|
|
|
|
Or like below.
|
|
sage: print(get_signature_as_function_of_theta([1, 3], [2], [-1, -2], [-3]
|
|
)(2, 1, 2, 2))
|
|
0: 0
|
|
1/7: 0
|
|
1/6: 0
|
|
1/5: -1
|
|
2/5: 1
|
|
3/7: 0
|
|
1/2: 0
|
|
4/7: 0
|
|
3/5: -1
|
|
4/5: 1
|
|
5/6: 0
|
|
6/7: 0
|
|
"""
|
|
|
|
get_summand_signture_function_docsting = \
|
|
"""
|
|
This function returns sig.SignatureFunction for previously defined single
|
|
cable T_(2, q) and a theta given as an argument.
|
|
The cable was defined by calling function
|
|
get_summand_signature_as_theta_function(*arg)
|
|
with the cable description as an argument.
|
|
It is an implementaion of the formula:
|
|
Bl_theta(K'_(2, d)) =
|
|
Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t)
|
|
+ Bl(K')(ksi_l^theta * t)
|
|
"""
|
|
|
|
signature_as_function_of_theta_docstring = \
|
|
"""
|
|
Arguments:
|
|
|
|
Returns object of sig.SignatureFunction class for a previously defined
|
|
connected sum of len(arg) cables.
|
|
Accept len(arg) arguments: for each cable one theta parameter.
|
|
If call with no arguments, all theta parameters are set to be 0.
|
|
"""
|
|
#
|
|
# CableSummand.get_blanchfield_for_pattern.__doc__ = \
|
|
# """
|
|
# Arguments:
|
|
# k_n: a number s.t. q_n = 2 * k_n + 1, where
|
|
# T(2, q_n) is a pattern knot for a single cable from a cable sum
|
|
# theta: twist/character for the cable (value form v vector)
|
|
# Return:
|
|
# sig.SignatureFunction created for pattern signature function
|
|
# for a given cable and theta/character
|
|
# Based on:
|
|
# Proposition 9.8. in Twisted Blanchfield Pairing
|
|
# (https://arxiv.org/pdf/1809.08791.pdf)
|
|
# """
|
|
|
|
# CableSummand.get_summand_signature_as_theta_function.__doc__ = \
|
|
# """
|
|
# Argument:
|
|
# n integers that encode a single cable, i.e.
|
|
# values of q_i for T(2,q_0; 2,q_1; ... 2, q_n)
|
|
# Return:
|
|
# a function that returns sig.SignatureFunction for this single cable
|
|
# and a theta given as an argument
|
|
# """
|