signature_function/cable_signature.sage
2020-10-22 13:33:18 +02:00

724 lines
25 KiB
Python

#!/usr/bin/python
import numpy as np
import itertools as it
from typing import Iterable
from collections import Counter
from sage.arith.functions import LCM_list
import warnings
import re
# 9.11 (9.8)
# 9.15 (9.9)
class SignatureFunction(object):
def __init__(self, values=None, counter=None):
# builed counter based on values of signature jumps
if counter is None:
counter = Counter()
if values is None:
values = []
else:
msg = "Signature function is defined on the interval [0, 1)."
assert all(k < 1 for k, v in values), msg
for k, v in values:
counter[k] += v
self.cnt_signature_jumps = counter
# self.tikz_plot("bum.tex")
def is_zero_everywhere(self):
return not any(self.cnt_signature_jumps.values())
def double_cover(self):
# to read values for t^2
items = self.cnt_signature_jumps.items()
counter = Counter({(1 + k) / 2 : v for k, v in items})
counter.update(Counter({k / 2 : v for k, v in items}))
return SignatureFunction(counter=counter)
def square_root(self):
# to read values for t^(1/2)
counter = Counter()
for jump_arg, jump in self.cnt_signature_jumps.items():
if jump_arg < 1/2:
counter[2 * jump_arg] = jump
return SignatureFunction(counter=counter)
def minus_square_root(self):
# to read values for t^(1/2)
items = self.cnt_signature_jumps.items()
counter = Counter({mod_one(2 * k) : v for k, v in items if k >= 1/2})
return SignatureFunction(counter=counter)
def extremum(self):
max = 0
current = 0
items = sorted(self.cnt_signature_jumps.items())
for arg, jump in items:
current += 2 * jump
assert current == self(arg) + jump
if abs(current) > abs(max):
max = current
# if abs(max) > 9:
# return max
return max
def __rshift__(self, shift):
# A shift of the signature functions corresponds to the rotation.
counter = Counter({mod_one(k + shift) : v \
for k, v in self.cnt_signature_jumps.items()})
return SignatureFunction(counter=counter)
def __lshift__(self, shift):
return self.__rshift__(-shift)
def __neg__(self):
counter = Counter()
counter.subtract(self.cnt_signature_jumps)
return SignatureFunction(counter=counter)
def __add__(self, other):
counter = copy(self.cnt_signature_jumps)
counter.update(other.cnt_signature_jumps)
return SignatureFunction(counter=counter)
def __sub__(self, other):
counter = copy(self.cnt_signature_jumps)
counter.subtract(other.cnt_signature_jumps)
return SignatureFunction(counter=counter)
def __eq__(self, other):
return self.cnt_signature_jumps == other.cnt_signature_jumps
def __str__(self):
result = ''.join([str(jump_arg) + ": " + str(jump) + "\n"
for jump_arg, jump in sorted(self.cnt_signature_jumps.items())
if jump != 0])
return result
def __repr__(self):
result = ''.join([str(jump_arg) + ": " + str(jump) + ", "
for jump_arg, jump in sorted(self.cnt_signature_jumps.items())])
return result[:-2] + "."
def __call__(self, arg):
# return the value of the signature function at the point arg, i.e.
# sum of all signature jumps that occur before arg
items = self.cnt_signature_jumps.items()
result = [jump for jump_arg, jump in items if jump_arg < mod_one(arg)]
return 2 * sum(result) + self.cnt_signature_jumps[arg]
def total_sign_jump(self):
# Total signature jump is the sum of all jumps.
return sum([j[1] for j in sorted(self.cnt_signature_jumps.items())])
def step_function_data(self):
# Transform the signature jump data to a format understandable
# by the plot function.
lst = sorted(self.cnt_signature_jumps.items())
vals = ([(d[0], sum(2 * j[1] for j in lst[:lst.index(d)+1])) for d in lst] +
[(0,self.cnt_signature_jumps[0]), (1,self.total_sign_jump())])
print("step_function_data")
print(vals)
counter = copy(self.cnt_signature_jumps)
counter[0] = self.cnt_signature_jumps[0]
counter[1] = self.total_sign_jump()
print(sorted(counter.items()))
return vals
def plot(self):
# plot the signture function
plot_step_function(self.step_function_data())
def tikz_plot(self, file_name):
# Draw the graph of the signature and transform it into TiKz.
# header of the LaTeX file
with open(file_name, "w") as f:
f.write("\\documentclass[tikz]{standalone}\n")
f.write("\\usetikzlibrary{datavisualization, " +
"datavisualization.formats.functions}\n")
f.write("\\begin{document}\n")
f.write("\\begin{tikzpicture}\n")
data = sorted(self.step_function_data())
print("data")
print(data)
f.write("\\datavisualization[scientific axes, " +
"visualize as smooth line,\n")
f.write("x axis={ticks={none,major={at={")
f.write(", " + str(N(data[0][0],digits=4)) + " as \\(" + \
str(data[0][0]) + "\\)")
for jump_arg, jump in data:
f.write(", " + str(N(jump_arg,digits=4)) +
" as \\(" + str(jump_arg) + "\\)")
f.write("}}}}\n")
f.write(" ]\n")
f.write("data [format=function]{\n")
f.write("var x : interval [0:1];\n")
f.write("func y = \\value x;\n")
f.write("};\n")
# close LaTeX enviroments
f.write("\\end{tikzpicture}\n")
f.write("\\end{document}\n")
class TorusCable(object):
def __init__(self, knot_formula, k_vector=None, q_vector=None):
self._knot_formula = knot_formula
# q_i = 2 * k_i + 1
if k_vector is not None:
self.k_vector = k_vector
elif q_vector is not None:
self.q_vector = q_vector
else:
self.q_vector = self.get_q_vector(self.knot_formula)
self._sigma_function = None
self._signature_as_function_of_theta = None
@property
def signature_as_function_of_theta(self):
if self._signature_as_function_of_theta is None:
self._signature_as_function_of_theta = \
self.get_signature_as_function_of_theta()
return self._signature_as_function_of_theta
# knot encoding
@property
def knot_formula(self):
return self._knot_formula
# @knot_formula.setter
# def knot_formula(self, knot_formula):
# self._knot_formula = knot_formula
# knot encoding
@property
def knot_description(self):
return self._knot_description
# knot encoding
@property
def knot_sum(self):
return self._knot_sum
@knot_sum.setter
def knot_sum(self, knot_sum):
self._knot_sum = knot_sum
self._knot_description = self.get_knot_descrption(knot_sum)
self._last_k_list = [abs(i[-1]) for i in knot_sum]
self._last_q_list = [2 * i + 1 for i in self._last_k_list]
if any(n not in Primes() for n in self._last_q_list):
msg = "Incorrect q-vector. This implementation assumes that" + \
" all last q values are prime numbers.\n" + \
str(self._last_q_list)
raise ValueError(msg)
self.q_order = LCM_list(self._last_q_list)
@property
def last_k_list(self):
return self._last_k_list
@property
def last_q_list(self):
return self._last_q_list
@property
def q_order(self):
return self._q_order
@q_order.setter
def q_order(self, val):
self._q_order = val
@property
def k_vector(self):
return self._k_vector
@k_vector.setter
def k_vector(self, k):
self._k_vector = k
if self.extract_max(self.knot_formula) > len(k) - 1:
msg = "The vector for knot_formula evaluation is to short!"
msg += "\nk_vector " + str(k) + " \nknot_formula " \
+ str(self.knot_formula)
raise IndexError(msg)
self.knot_sum = eval(self.knot_formula)
self._q_vector = [2 * k_val + 1 for k_val in k]
@property
def q_vector(self):
return self._q_vector
@q_vector.setter
def q_vector(self, new_q_vector):
self.k_vector = [(q - 1)/2 for q in new_q_vector]
def __add__(self, other):
if self.k_vector != other.k_vector:
msg = "k_vectors are different. k-vector preserving addition is " +\
"impossible."
warnings.warn(msg)
shift = len(self.k_vector)
formula = re.sub(r'\d+', lambda x: str(int(x.group()) + shift),
other.knot_formula)
self.k_vector = self.k_vector + other.k_vector
other.k_vector = self.k_vector
else:
knot_formula = self.knot_formula[:-1] + ",\n" + \
other.knot_formula[1:]
cable = TorusCable(knot_formula, k_vector=self.k_vector)
s_signature_as_function_of_theta = self.signature_as_function_of_theta
o_signature_as_function_of_theta = other.signature_as_function_of_theta
shift = len(self.knot_sum)
def signature_as_function_of_theta(*thetas, **kwargs):
result = s_signature_as_function_of_theta(*thetas[shift:]) + \
o_signature_as_function_of_theta(*thetas[0:shift])
return result
cable._signature_as_function_of_theta = signature_as_function_of_theta
return cable
def get_q_vector(knot_formula, slice=True):
lowest_number = 2
q_vector = [0] * (TorusCable.extract_max(knot_formula) + 1)
P = Primes()
for layer in TorusCable.get_layers_from_formula(knot_formula)[::-1]:
for el in layer:
q_vector[el] = P.next(lowest_number)
lowest_number = q_vector[el]
lowest_number *= 4
return q_vector
@staticmethod
def extract_max(string):
numbers = re.findall(r'\d+', string)
numbers = map(int, numbers)
return max(numbers)
@staticmethod
def get_blanchfield_for_pattern(k_n, theta):
if theta == 0:
sf = TorusCable.get_untwisted_signature_function(k_n)
return sf.square_root() + sf.minus_square_root()
results = []
k = abs(k_n)
ksi = 1/(2 * k + 1)
counter = Counter()
# print("lambda_odd, i.e. (theta + e) % 2 != 0")
for e in range(1, k + 1):
if (theta + e) % 2 != 0:
counter[e * ksi] = 1 * sgn(k_n)
counter[1 - e * ksi] = -1 * sgn(k_n)
results.append((e * ksi, 1 * sgn(k_n)))
results.append((1 - e * ksi, -1 * sgn(k_n)))
# for example for k = 9 (q = 19) from this part we get
# for even theta
# 2/19: 1
# 4/19: 1
# 6/19: 1
# 8/19: 1
# 11/19: -1
# 13/19: -1
# 15/19: -1
# 17/19: -1
#
# for odd theta
# 1/19: 1
# 3/19: 1
# 5/19: 1
# 7/19: 1
# 9/19: 1
# 10/19: -1
# 12/19: -1
# 14/19: -1
# 16/19: -1
# 18/19: -1
# print("lambda_even")
# print("normal")
for e in range(1, theta):
if (theta + e) % 2 == 0:
results.append((e * ksi, 1 * sgn(k_n)))
results.append((1 - e * ksi, -1 * sgn(k_n)))
# print("reversed")
for e in range(theta + 1, k + 1):
if (theta + e) % 2 == 0:
results.append((e * ksi, -1 * sgn(k_n)))
results.append((1 - e * ksi, 1 * sgn(k_n)))
return SignatureFunction(values=results)
@staticmethod
def get_untwisted_signature_function(j):
# return the signature function of the T_{2,2k+1} torus knot
k = abs(j)
q = 2 * k + 1
values = ([((2 * a + 1)/(2 * q), -1 * sgn(j)) for a in range(k)] +
[((2 * a + 1)/(2 * q), 1 * sgn(j))
for a in range(k + 1, 2 * k + 1)])
return SignatureFunction(values=values)
@staticmethod
def get_knot_descrption(knot_sum):
description = ""
for knot in knot_sum:
if knot[0] < 0:
description += "-"
description += "T("
for k in knot:
description += "2, " + str(2 * abs(k) + 1) + "; "
description = description[:-2] + ") # "
return description[:-3]
@staticmethod
def get_layers_from_formula(knot_formula):
k_indices = re.sub(r'[k-]', '', knot_formula)
k_indices = re.sub(r'\[\d+\]', lambda x: x.group()[1:-1], k_indices)
k_indices = eval(k_indices)
number_of_layers = max(len(lst) for lst in k_indices)
layers = []
for i in range(1, number_of_layers + 1):
layer = set()
for lst in k_indices:
if len(lst) >= i:
layer.add(lst[-i])
layers.append(layer)
return layers
def get_signature_as_function_of_theta(self, **key_args):
if 'verbose' in key_args:
verbose_default = key_args['verbose']
else:
verbose_default = False
def signature_as_function_of_theta(*thetas, **kwargs):
verbose = verbose_default
if 'verbose' in kwargs:
verbose = kwargs['verbose']
len_a = len(self.knot_sum)
len_t = len(thetas)
# call with no arguments
if len_t == 0:
return signature_as_function_of_theta(*(len_a * [0]))
if len_t != len_a:
if isinstance(thetas, Iterable):
if len(thetas[0]) == len_a:
thetas = thetas[0]
else:
msg = "This function takes exactly " + str(len_a) + \
" arguments or no argument at all (" + str(len_t) + \
" given)."
raise TypeError(msg)
sf = SignatureFunction()
untwisted_part = SignatureFunction()
# for each cable knot in cable sum apply theta
# print(self.knot_sum)
for i, knot in enumerate(self.knot_sum):
try:
ssf = self.get_summand_signature_as_theta_function(*knot)
plus, _, up = ssf(thetas[i])
# sf += ssf(thetas[i])
sf += plus
untwisted_part += up
# in case wrong theata value was given
except ValueError as e:
print("ValueError: " + str(e.args[0]) +\
" Please change " + str(i + 1) + ". parameter.")
return None
# a = thetas[0]
# # last_q = abs (2 * self.knot_sum[-1][-1]) + 1
# if all(i == thetas[0] for i in thetas):
# print()
# print("\n" + "*" * 100)
# print(self.knot_description)
# print("one vector " + str(thetas))
# print("max sf " + str(sf.extremum()))
# print()
# # assert untwisted_part.is_zero_everywhere()
if verbose:
print()
print(str(thetas))
print(sf)
msg = "tota signature jump = " + str(sf.total_sign_jump())
msg += "\nfunction\n" + str(sf)
assert sf.total_sign_jump() == 0, msg
return sf
signature_as_function_of_theta.__doc__ =\
signature_as_function_of_theta_docstring
return signature_as_function_of_theta
def get_summand_signature_as_theta_function(self, *knot_as_k_values):
def get_summand_signture_function(theta):
# TBD: another formula (for t^2) description
# TBD if theata condition
k_n = knot_as_k_values[-1]
if theta > 2 * abs(k_n):
msg = "k for the pattern in the cable is " + str(k_n) + \
". Parameter theta should not be larger than abs(k)."
raise ValueError(msg)
# twisted part
cable_signature = self.get_blanchfield_for_pattern(k_n, theta)
twisted_part = self.get_blanchfield_for_pattern(k_n, theta)
untwisted_part = SignatureFunction()
# untwisted part
# for each knot summand consider k values in reversed order
# ommit last k = k_n value
ksi = 1/(2 * abs(k_n) + 1)
for i, k in enumerate(knot_as_k_values[:-1][::-1]):
power = 2^i
a = TorusCable.get_untwisted_signature_function(k)
shift = theta * ksi * power
b = a >> shift
c = a << shift
for _ in range(i):
b = b.double_cover()
c = c.double_cover()
cable_signature += b + c
untwisted_part += b + c
return cable_signature, twisted_part, untwisted_part
get_summand_signture_function.__doc__ = \
get_summand_signture_function_docsting
return get_summand_signture_function
def is_metabolizer(self, theta):
i = 1
sum = 0
for idx, el in enumerate(theta):
to_add = i * el^2
# print("i * el^2 " + str(i * el^2))
to_add /= self.last_q_list[idx]
sum += to_add
# print("i * el^2 % q_4: " + str(to_add))
# print("sum ", sum)
i *= -1
# if sum is integer
# continue
# if all(a in [1, last_q - 1] for a in vector):
# pass
# else:
# continue
# print(theta, end=" ")
# print(sum)
if sum.is_integer():
# print("#" * 100)
# print(theta)
return True
return False
# if self.is_value_for_vector_class_big(vector, sigma_or_sign):
# good_vectors.append(vector)
# else:
# # print(vector)
# bad_vectors.append(vector)
# return good_vectors, bad_vectors
def is_signature_big_in_ranges(self, ranges_list):
for theta in it.product(*ranges_list):
if not any(theta):
continue
we_have_a_problem = True
if self.is_metabolizer(theta):
for shift in range(1, self.q_order):
shifted_theta = [(shift * th) % self.last_q_list[i]
for i, th in enumerate(theta)]
shifted_theta = [min(th, self.last_q_list[i] - th)
for i, th in enumerate(shifted_theta)]
sf = self.signature_as_function_of_theta(*shifted_theta)
extremum = abs(sf.extremum())
if shift > 1:
print(shifted_theta, end=" ")
print(extremum)
if extremum > 5 + np.count_nonzero(shifted_theta):
# print("ok")
we_have_a_problem = False
break
elif shift == 1:
print("*" * 10)
print(shifted_theta, end=" ")
print(extremum)
if we_have_a_problem:
print("\n" * 10 + "!" * 1000)
return False
return True
def is_signature_big_for_all_metabolizers(self):
if len(self.knot_sum) == 8:
for shift in range(0, 8, 4):
ranges_list = 8 * [range(0, 1)]
ranges_list[shift : shift + 3] = [range(0, i + 1) for i in \
self.last_k_list[shift: shift + 3]]
ranges_list[shift + 3] = range(0, 2)
if not self.is_signature_big_in_ranges(ranges_list):
return False
else:
print("\n\nok")
return True
elif len(self.knot_sum) == 4:
upper_bounds = self.last_k_list[:3]
ranges_list = [range(0, i + 1) for i in upper_bounds]
ranges_list.append(range(0, 2))
if not self.is_signature_big_in_ranges(ranges_list):
return False
return True
msg = "Function implemented only for knots with 4 or 8 summands"
raise ValueError(msg)
def mod_one(n):
return n - floor(n)
TorusCable.get_knot_descrption.__doc__ = \
"""
Arguments:
arbitrary number of lists of numbers, each list encodes a single cable.
Examples:
sage: get_knot_descrption([1, 3], [2], [-1, -2], [-3])
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
"""
TorusCable.get_signature_as_function_of_theta.__doc__ = \
"""
Function intended to construct signature function for a connected
sum of multiple cables with varying theta parameter values.
Accept arbitrary number of arguments (depending on number of cables in
connected sum).
Each argument should be given as list of integer representing
k - parameters for a cable: parameters k_i (i=1,.., n-1) for satelit knots
T(2, 2k_i + 1) and - the last one - k_n for a pattern knot T(2, 2k_n + 1).
Returns a function that will take theta vector as an argument and return
an object SignatureFunction.
To calculate signature function for a cable sum and a theta values vector,
use as below.
sage: signature_function_generator = get_signature_as_function_of_theta(
[1, 3], [2], [-1, -2], [-3])
sage: sf = signature_function_generator(2, 1, 2, 2)
sage: print(sf)
0: 0
5/42: 1
1/7: 0
1/5: -1
7/30: -1
2/5: 1
3/7: 0
13/30: -1
19/42: -1
23/42: 1
17/30: 1
4/7: 0
3/5: -1
23/30: 1
4/5: 1
6/7: 0
37/42: -1
Or like below.
sage: print(get_signature_as_function_of_theta([1, 3], [2], [-1, -2], [-3]
)(2, 1, 2, 2))
0: 0
1/7: 0
1/6: 0
1/5: -1
2/5: 1
3/7: 0
1/2: 0
4/7: 0
3/5: -1
4/5: 1
5/6: 0
6/7: 0
"""
SignatureFunction.__doc__ = \
"""
This simple class encodes twisted and untwisted signature functions
of knots. Since the signature function is entirely encoded by its signature
jump, the class stores only information about signature jumps
in a dictionary self.cnt_signature_jumps.
The dictionary stores data of the signature jump as a key/values pair,
where the key is the argument at which the functions jumps
and value encodes the value of the jump. Remember that we treat
signature functions as defined on the interval [0,1).
"""
get_summand_signture_function_docsting = \
"""
This function returns SignatureFunction for previously defined single
cable T_(2, q) and a theta given as an argument.
The cable was defined by calling function
get_summand_signature_as_theta_function(*arg)
with the cable description as an argument.
It is an implementaion of the formula:
Bl_theta(K'_(2, d)) =
Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t)
+ Bl(K')(ksi_l^theta * t)
"""
signature_as_function_of_theta_docstring = \
"""
Arguments:
Returns object of SignatureFunction class for a previously defined
connected sum of len(arg) cables.
Accept len(arg) arguments: for each cable one theta parameter.
If call with no arguments, all theta parameters are set to be 0.
"""
mod_one.__doc__ = \
"""
Argument:
a number
Return:
the fractional part of the argument
Examples:
sage: mod_one(9 + 3/4)
3/4
sage: mod_one(-9 + 3/4)
3/4
sage: mod_one(-3/4)
1/4
"""
TorusCable.get_blanchfield_for_pattern.__doc__ = \
"""
Arguments:
k_n: a number s.t. q_n = 2 * k_n + 1, where
T(2, q_n) is a pattern knot for a single cable from a cable sum
theta: twist/character for the cable (value form v vector)
Return:
SignatureFunction created for twisted signature function
for a given cable and theta/character
Based on:
Proposition 9.8. in Twisted Blanchfield Pairing
(https://arxiv.org/pdf/1809.08791.pdf)
"""
TorusCable.get_summand_signature_as_theta_function.__doc__ = \
"""
Argument:
n integers that encode a single cable, i.e.
values of q_i for T(2,q_0; 2,q_1; ... 2, q_n)
Return:
a function that returns SignatureFunction for this single cable
and a theta given as an argument
"""