signature_function/notebooks/main.ipynb
2021-01-11 06:58:30 +01:00

3682 lines
515 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"%load_ext pycodestyle_magic\n",
"\n",
"\n",
"# display full output, not only last result, except ended with semicolon\n",
"from IPython.core.interactiveshell import InteractiveShell\n",
"InteractiveShell.ast_node_interactivity = 'all';\n",
"from IPython.display import Image, SVG\n",
"\n",
"\n",
"# magic functions that do not work in current ipython --version\n",
"# \n",
"# auto check each cell, E703 - \"statement ends with a semicolon\"\n",
"# %flake8_on --ignore E703\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import importlib\n",
"\n",
"def import_sage(module_name):\n",
" \n",
" importlib.invalidate_caches() \n",
" sage_name = module_name + \".sage\"\n",
" python_name = module_name + \".sage.py\"\n",
"\n",
" if os.path.isfile(sage_name):\n",
" os.system('sage --preparse {}'.format(sage_name));\n",
" os.system('mv {} {}.py'.format(python_name, module_name))\n",
" if module_name in sys.modules:\n",
" return importlib.reload(sys.modules[module_name]) \n",
" return importlib.import_module(module_name, package=None)\n",
"\n",
"cs = import_sage('cable_signature')\n",
"# sig = import_sage('signature')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Other cables"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfd0lEQVR4nO3deXxU9b3/8dcnCxEsi0pZJELAguwJGlCsILiCv1Z6Xe7Viopg0VqX3+PeQlWq8qvFWrHq1Uf9URceqBdq3eGndcXSqrgFCSDIYmhkEWqosskSQj6/P+aQDmGSTDKTmeTwfj4e88jMnO853885Sd5z5nvOnDF3R0REwisj3QWIiEjjUtCLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKeibITPra2ZFZmbpriVdzOx3ZvbTerQfZ2bvNmZN6WBmeWbmZpaV7lqk6VLQNzFmtjPqVmlmu6MeXxY0uxO4193dzHLM7HEz+8LMdphZsZmNrkd/r1brs9zMlsU5by8zm2tmZWb2tZm9bmYn1KPv64MXrL1mNqvatBZm9pyZlQZBNqLa7PcCt5pZi3j7ayrM7BEzWxX8fsfVc95SMzsrSXWk7UUikW0g9aegb2Lc/TsHbsA64IdRz802s87ASOClYJYsYD1wOtAW+CXwjJnlxdnf6Gp9LgSejbPcdsA84ASgI/ARMDfOeQG+BH4NzKxh+rvAWGBzjLo3ASuB8+vRX0rVEqBLgOuAT1JYTlOjbZBCCvrm52zgE3ffA+Du37r7VHcvdfdKd38Z+DtwUn0XHLw4DAOejHruZTO7OVZ7d//I3R9396/dfR9wP3CCmR0TT3/u/oK7vwT8M8a0cnd/wN3fBfbXsIgFwP+Kp6/qzOy/zWy9mW03s0VmNix4vpOZ7YpeBzM7MXjXkh08Hm9mn5nZN8G7mG5Rbd3MfmZma4A1Naz37919PrCnnjU/BXQF/l/w7mty1OTLzGydmW0xsylR82SY2c1mVmJm/zSzZ8zs6GDy34KfW4PlDTWz483s7aDtFjObbWbt6lNnPBq6DaRhFPTNzwBgVU0Tzawj0AtY3oBlXwG84+6lB55w9x+4+91xzj8c2OzuhwR3I/kMyG/gvB8DBcDRwBzgWTM7wt03E3kB+feotpcDT7v7PjMbA9wKXAB8F3gH+GO1Zf8IOBno28DaYnL3yzn4Xd49UZNPI/LO6kzgdjPrEzx/Q1DP6cCxwDfA74Npw4Of7YLlvQ8Y8JugbR/gOGBqTTWZ2VIz21rD7eHE11qSQUHf/LQDdsSaEOxxzgaecPeVDVj2FcCshhRlZrlEAuQ/GzJ/A+0gsj3qzd3/x93/6e4V7v47IIdIUAI8QWTICDPLBC4FngqmXQv8xt0/c/cK4C6gIHqvPpj+tbvvbkhtDfR/3H23uy8hMixy4AXwWmCKu29w971EQvuimoaV3P1zd3/T3fe6exlwH5EXiZjcfaC7t6vhdl1S11AaTEHf/HwDtK7+pJllEAmjcuD6+i7UzE4DOgHPNWDe7wJvAA+7e/W928bUGtjakBnN7OfB8Ms2M9tK5PhG+2DyXKCvmXUnMlS2zd0/CqZ1A/77wF4r8DWRveAuUYtf35CaEhR9HGMX8J3gfjfgxah6PyMyFNYx1kLMrKOZPW1mG81sO/A//Gu7SDOloG9+lhIZmqliZgY8TuSf98JgvLy+rgRecPed9ZnJzI4iEvLz3H1aA/pNRB8ie6/1EozHTyYyPHOUu7cDthEJbILjH88Q2au/nH/tzUMkxK+ptufa0t0XRrVpzEvC1nfZ64HR1eo9wt031rCsu4LnB7h7GyLboMbTeM1sebWztqJvM+pZqzQSBX3z8yZwopkdEfXc/yUSej+MNVxQw+mJ0dNbEgm9WTGmLTCzqTXM1wZ4HXjP3Q85YGtmI8ysxmAys6xgPTKBTDM7InpIwSKnjh5YzxbB9OjQOR14NZ5aq2kNVABlQJaZ3Q60qdbmSWAckbN6ooN+BnCLmfUL+mxrZhfH0WcVi5w6egSRAM0O1isjmFbrNgP+AfSoR3czgGkHhpbM7LvBcQaIrH9lteW1BnYC28ysCzCptoW7e7/os7aq3a6tab7atoE0AnfXrYnegFLgrBjPPwv8R3C/G5E9sD1E/kEP3C4Lph8HbAeOqaWfS4EvAIsxrQQ4u4b5rgz6/rZa312D6ZcTeRGoqd+pwfzRt6nV1r/69LxgWmdgA9AizlrHAe8G9zOJnNK5HdhEZO/+kG1N5KyZv8ZY1uXAsmD+9cDMqGkOfK+O3+uCGOs1Is5tNobIAdmtwM+BvGD+rGrLvzq4n0HkuMkqIsc0SoC7otr+ikjgbwVOAfoBi4LfYzHwX8CGRvjbrnEb6Jb8mwUbXZoRM+tL5IDhEK/jF2hmY4F+7n5LA/rJBZ5x91MbWOdjwLPu/npD5q9j2b8DStz94eBxQrXW0MfbwBx3fyxZy4yjz0bbZnL4UtCLxGBmg4kMkx3n7jHPchJpLjQmJlKNmT0BvAX8b4W8hIH26EVEQk579CIiIZeWS5u2b9/e8/Ly0tG1iEiztWjRoi3u/t36zpeWoM/Ly6OoqCgdXYuINFtm9kVD5tPQjYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhFxSgt7MRlnki34/txq+dk5ERNIj4aAPvoHn98BoIl+ddmlw0S0REWkCknEe/RDgc3dfC2BmTxO5lOqKJCy7SRoxIvFlLFiQ+DJEDif6v2u4ZAzddOHgr07bwMFfqwaAmU00syIzKyorK0tCtyIiEo+UfTLW3R8BHgEoLCxs1ldSO1z3CkTSSf93DZeMPfqNRL7F6IDc4DkREWkCkhH0HwM9zay7mbUALgHmJWG5IiKSBAkP3bh7hZldT+RLojOJfH/m8oQrExGRpEjKGL27/xn4czKWJSIiyaVPxoqIhJyCXkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnIJeRCTkFPQiIiGnoBcRCTkFvYhIyCnoRURCTkEvIhJyCnoRkZBLKOjN7GIzW25mlWZWmKyiREQkeRLdo/8UuAD4WxJqERGRRpCVyMzu/hmAmSWnGhERSbqUjdGb2UQzKzKzorKyslR1KyJy2Ktzj97M3gI6xZg0xd3nxtuRuz8CPAJQWFjocVcoIiIJqTPo3f2sVBQiIiKNQ6dXioiEXKKnV/6bmW0AhgKvmNnrySlLRESSJdGzbl4EXkxSLSIi0gg0dCMiEnIKehGRkFPQi4iEnIJeRCTkFPQiIiGnoBcRCTkFvYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKeibsS1btvDqq69y++23s3nz5nSXIyJNVFYiM5vZdOCHQDlQAlzl7luTUJfE4O6sXr2a999/n9dee42SkhIAysvLueaaa9JcnYg0VQkFPfAmcIu7V5jZb4FbgF8kXpYcsGvXLhYvXsyCBQuYP38+3377LZWVlRx55JF07NiRyspKvv76azp37pzuUkWkiUoo6N39jaiHHwAXJVbO4WPEiJqn7d27ie3bP+Sbb15n585PgMjefFZWOzIyOhzUdv/+XeTk9OCMMxo2CrdgQYNmk8NIbX+rqaS/1YZLdI8+2njgTzVNNLOJwESArl27JrHbcNmy5WVKS28DIDPzSLKyjsEss8b2+/fvplWrfqkqT0SaIXP32huYvQV0ijFpirvPDdpMAQqBC7yuBQKFhYVeVFTUgHLDb8+ePTzwwAM8++yztGvXjlatWtXafuPGjfTs2ZPhw4fTq1cv8vLy6Nq1Kzk5OSmqWERSxcwWuXthveeLI5fr6ngccA1wprvvimceBX3d5s+fzx133EFFRQXt27fHzGK2279/Pzt27GD37t1kZmZiZuzfv5/OnTvTp08fBgwYQI8ePcjLy6NTp05kZOhEK5HmKi1Bb2ajgPuA0929LN75FPTx2bBhA7/4xS9YuXIlHTp0ICvr4JE2d2fjxo3k5OSwb98+cnJyaNmyJTk5OZSXl7Nr1y727t1LdnY27k5GRgY9evSgf//+9OnTh+7du5OXl0fbtm3TtIYiUh/pCvrPgRzgn8FTH7j7tXXNp6CPX3l5OQ899BBz5syhbdu2HHnkkQdNKy8v5+6776akpIRly5bx2WefsXHjRjIzM3F3KioqaNWqFa1atSIjI4Pdu3eze/duKisryczMZP/+/bRp04YTTjiBgQMH0rNnT/Ly8jjuuONo0aJFGtdcRKpL29BNQyjo6++dd95hypQplJeXVw3lbN26lX79+jFjxoyD2paXl7N+/XpKS0tZvXo1S5cuZfXq1Wzfvp2srCwqKirIyMigZcuWtGrVioqKCnbv3s2uXbvIysrCzKisrOTYY4+lb9++9O/fn+OPP55u3brRsWPHGoeRRKRxKegPA5s2beKWW25h2bJldOjQga+++ooJEyZw3XXXxTX/tm3bKC0t5e9//zsrVqxg+fLlrF27lsrKSsysavinVatWtGjRgr1797Jr1y727dtHVlYW7k5mZibf+973uOqqqxg5cmQjr7GIRGto0Cfz9EppZJ07d+bRRx9lxowZPPHEE5SXl9OrV6+452/bti35+fnk5+fzox/9CIDKyko2bdrEF198cdDwz+bNm8nMzKSyshKAFi1a0LJlSzIyMli8eLFCXqQZUdA3M9nZ2dxwww0UFhYybdo0evbsmdDyMjIy6NKlC126dOHUU0+ten7Pnj1Vwz+rVq1i2bJlrF69mp07d5Kdnc3xxx+f6KqISIpo6KYZc/eUjpe7O1u3bmX9+vX07t1bB2tFUqyhQzc6qboZS/VBUTPjqKOOYuDAgYeEfGlpKf379497WdHvHg44sNMxderUgx5Hu+uuuxrcJ8BLL73EihUr6jWPu1NaWsqsWbNiTl+wYAE/+MEP6rXMMBs1ahTt2rWLuU2efvpppk2bxsqVKxk6dCg5OTnce++9B7UZP348HTp0qPfvVmqmoJe0WLhw4SHPzZ49m+nTp7Nnzx7uueceZs+efUib6KBviIYE/bXXXsu7777LunXrmDBhAhs3bkyohvqqqKhIaX+JmjRpEk899VTMaa+++iqjRo3i6KOP5sEHH+TnP//5IW3GjRvHa6+91thlHlYU9JJ0a9euZdCgQXz88ccsX76cIUOGUFBQwMCBA1mzZg0A3/nOdw6Zb+zYseTm5jJ9+nS6du3K2LFjD5p+8803s3v3bgoKCrjsssuAyCeDf/KTn9CvXz/OOeccdu/eDUBJSQmjRo3ipJNOYtiwYaxcuZKFCxcyb948Jk2aREFBASUlJTz66KMMHjyY/Px8LrzwQnbtOvTD3Q8//DB//OMfmTlzJr/5zW/o0qVLjev+0UcfMXToUAYNGsSpp57KqlWrABg+fDjFxcVV7U477TSWLFnCt99+y/jx4xkyZAiDBg1i7ty5AMyaNYvzzz+fM844gzPPPDNmXwsWLGDEiBFcdNFF9O7dm8suu6zqXVBeXh5btmwBoKioiBHBlcmmTp3KlVdeybBhw+jWrRsvvPACkydPZsCAAYwaNYp9+/bVuG7xOvPMM2nduvUhz7s7xcXFnHjiiXTo0IHBgweTnZ19SLvhw4dz9NFHJ1yH/IuCXpJq1apVXHjhhcyaNYvBgwczY8YMbrrpJoqLiykqKiI3N7fGeefMmcOGDRuYNGkS69atY86cOQdNv/vuu2nZsiXFxcVVe/tr1qzhZz/7GcuXL6ddu3Y8//zzAEycOJGHHnqIRYsWce+993Lddddx6qmncv755zN9+nSKi4s5/vjjueCCC/j4449ZsmQJffr04fHHHz+kruuvv55LL72U8ePHM2XKFL788ssa16F379688847LF68mF/96lfceuutAEyYMKFq6Gf16tXs2bOH/Px8pk2bxhlnnMFHH33EX/7yFyZNmsS3334LwCeffMJzzz3HX//61xr7W7x4MQ888AArVqxg7dq1vPfeezW2PaCkpIS3336befPmMXbsWEaOHMmyZcto2bIlr7zyyiHtp0+fTkFBwSG3G2+8sc6+qtean5+vz2Gkgc66kaQpKytjzJgxvPDCC/Tt2xeAoUOHMm3aNDZs2MAFF1xQ61lCl156KWbG1KlTmTx5cswx+uq6d+9OQUEBACeddBKlpaXs3LmThQsXcvHFF1e127t3b8z5P/30U375y1+ydetWdu7cybnnnntIm4cffpgvvviCiooKbr/99lrr2bZtG1deeSVr1qyp+mwCwMUXX8ydd97J9OnTmTlzJuPGjQPgjTfeYN68eVXj1Hv27GHdunUAnH322XXu2Q4ZMqTqxbOgoIDS0lJOO+20WucZPXo02dnZDBgwgP379zNq1CgABgwYQGlp6SHtJ02axKRJk2pdZjxee+01Ro8enfBypP4U9JI0bdu2pWvXrrz77rtVQf/jH/+Yk08+mVdeeYXzzjuPP/zhD5xxxhkx5z+wp3fgYGw8e37RV+nMzMysurxDu3btDhoqqcm4ceN46aWXyM/PZ9asWSyIcdFzMyMvL68qnGtz2223MXLkSF588UVKS0urhkxatWrF2Wefzdy5c3nmmWdYtGgREBnOeP755znhhBMOWs6HH3540OUualJ9/Q+M52dlZVV9BmLPnj0x58nIyCA7O7tqO2dkZMQ8HjB9+vSYx0uGDx/Ogw8+WGeNB7zxxhtV77gktTR0I0nTokULXnzxRZ588smqYZe1a9fSo0cPbrzxRsaMGcPSpUsT6iM7O7vOceQ2bdrQvXt3nn32WSASpkuWLAGgdevW7Nixo6rtjh076Ny5M/v27YsZZvW1bdu2qjH86mfpXH311dx4440MHjyYo446CoBzzz2Xhx56qOrdy+LFixOuASJj9AdeTBIN10mTJlFcXHzIrT4hv23bNioqKjjmmGMSqkUaRkEvSXXkkUfy8ssvc//99zNv3jyeeeYZ+vfvT0FBAZ9++ilXXHFFQsufOHEiAwcOrDoYW5PZs2fz+OOPk5+fT79+/aoOcl5yySVMnz6dQYMGUVJSwp133snJJ5/M97//fXr37p1QbQCTJ0/mlltuYdCgQYfsHZ900km0adOGq666quq52267jX379jFw4ED69evHbbfdlnANAHfccQc33XQThYWFZGbW/MU1jWHYsGFcfPHFzJ8/n9zcXF5//XXefPNNzjrrrKo2mzdvJjc3l/vuu49f//rX5Obmsn37diAyhDd06FBWrVpFbm5uzOMmUj/6wJRIinz55ZeMGDGClStXHnbfC3D11Vdz9dVXc8opp6S7lGZNH5gSacKefPJJTj75ZKZNm3bYhTzAY489ppBPI+3RizRxy5Yt4/LLLz/ouZycHD788MM0VSTpoqtXioTUgAED4jqDSKQmh997SBGRw4yCXkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQSyjozexOM1tqZsVm9oaZHZuswkREJDkS3aOf7u4D3b0AeBmo/VsZREQk5RIKenffHvXwSCD1F84REZFaJXytGzObBlwBbANG1tJuIjARoGvXrol2KyIicarz6pVm9hbQKcakKe4+N6rdLcAR7n5HXZ3q6pUiIvXXaFevdPez6moTmA38Gagz6EVEJHUSPeumZ9TDMcDKxMoREZFkS3SM/m4zOwGoBL4Ark28JBERSaaEgt7dL0xWISIi0jj0yVgRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnIJeRCTkFPQiIiGnoBcRCTkFvYhIyCnoRURCTkEvIhJySQl6M/svM3Mza5+M5YmISPIkHPRmdhxwDrAu8XJERCTZspKwjPuBycDcJCxLUmzEiHRXELFgQboraHr0u5FkSWiP3szGABvdfUkcbSeaWZGZFZWVlSXSrYiI1IO5e+0NzN4COsWYNAW4FTjH3beZWSlQ6O5b6uq0sLDQi4qKGlCuiMjhy8wWuXthfeerc+jG3c+qocMBQHdgiZkB5AKfmNkQd99c30JERKRxNHiM3t2XAR0OPK7PHr2IiKSOzqMXEQm5ZJx1A4C75yVrWSIikjzaoxcRCTkFvYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnIJeRCTkFPQiIiGXUNCb2VQz22hmxcHtvGQVJiIiyZGVhGXc7+73JmE5IiLSCDR0IyIScskI+uvNbKmZzTSzo2pqZGYTzazIzIrKysqS0K2IiMTD3L32BmZvAZ1iTJoCfABsARy4E+js7uPr6rSwsNCLiorqX62IyGHMzBa5e2F956tzjN7dz4qzgEeBl+tbgIiINK5Ez7rpHPXw34BPEytHRESSLdGzbu4xswIiQzelwDWJFiQiIsmVUNC7++XJKkRERBqHTq8UEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnIJeRCTkFPQiIiGnoBcRCTkFvYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhJyCXkQk5BT0IiIhl3DQm9kNZrbSzJab2T3JKEpERJInK5GZzWwkMAbId/e9ZtYhOWWJiEiyJBT0wE+Bu919L4C7f5V4SXI4GjEi3RU0PQsWpLsCCYtEh256AcPM7EMz+6uZDa6poZlNNLMiMysqKytLsFsREYlXnXv0ZvYW0CnGpCnB/EcDpwCDgWfMrIe7e/XG7v4I8AhAYWHhIdPl8Ka9V5HGU2fQu/tZNU0zs58CLwTB/pGZVQLtAe2yi4g0EYkO3bwEjAQws15AC2BLgssUEZEkSvRg7Exgppl9CpQDV8YathERkfRJKOjdvRwYm6RaRESkEeiTsSIiIaegFxEJOQW9iEjIKehFRELO0nGSjJntAFalvOPkaU/zPo20OdffnGsH1Z9uzb3+E9y9dX1nSvT0yoZa5e6Faeo7YWZWpPrToznXDqo/3cJQf0Pm09CNiEjIKehFREIuXUH/SJr6TRbVnz7NuXZQ/el2WNafloOxIiKSOhq6EREJOQW9iEjIpSTozexoM3vTzNYEP4+K0abAzN4PvmR8qZn9Rypqq42ZjTKzVWb2uZndHGN6jpn9KZj+oZnlpaHMmOKo/T/NbEWwreebWbd01FmTuuqPanehmbmZNalT5uKp38z+PfgdLDezOamusTZx/P10NbO/mNni4G/ovHTUGYuZzTSzr4Kr6saabmb2YLBuS83sxFTXWJs46r8sqHuZmS00s/w6F+rujX4D7gFuDu7fDPw2RpteQM/g/rHAJqBdKuqroeZMoAToQeQ6+0uAvtXaXAfMCO5fAvwpXfU2oPaRQKvg/k+bSu3x1h+0aw38DfgAKEx33fXc/j2BxcBRweMO6a67nvU/Avw0uN8XKE133VG1DQdOBD6tYfp5wKuAEfl2vA/TXXM96z816u9mdDz1p2roZgzwRHD/CeBH1Ru4+2p3XxPc/xL4CvhuiuqLZQjwubuv9cjlmJ8msh7RotfrOeBMM7MU1liTOmt397+4+67g4QdAboprrE082x7gTuC3wJ5UFheHeOr/CfB7d/8GwN2/SnGNtYmnfgfaBPfbAl+msL5aufvfgK9raTIGeNIjPgDamVnn1FRXt7rqd/eFB/5uiPN/N1VB39HdNwX3NwMda2tsZkOI7EmUNHZhtegCrI96vCF4LmYbd68AtgHHpKS62sVTe7QJRPZwmoo66w/ebh/n7q+ksrA4xbP9ewG9zOw9M/vAzEalrLq6xVP/VGCsmW0A/gzckJrSkqK+/x9NWVz/u0m7BEIdXyJexd3dzGo8pzN4ZX2KyLdVVSarPonNzMYChcDp6a4lXmaWAdwHjEtzKYnIIjJ8M4LIHtnfzGyAu29NZ1H1cCkwy91/Z2ZDgafMrL/+Z1PHzEYSCfrT6mqbtKD32r9E/B9m1tndNwVBHvNtqpm1AV4BpgRvqdJpI3Bc1OPc4LlYbTaYWRaRt7D/TE15tYqndszsLCIvxKe7+94U1RaPuupvDfQHFgQjZZ2AeWZ2vrs36FogSRbP9t9AZGx1H/B3M1tNJPg/Tk2JtYqn/gnAKAB3f9/MjiBywbCmNARVk7j+P5oyMxsIPAaMdvc6MydVQzfzgCuD+1cCc6s3MLMWwItExs6eS1FdtfkY6Glm3YPaLiGyHtGi1+si4G0PjpCkWZ21m9kg4A/A+U1sfBjqqN/dt7l7e3fPc/c8IuOUTSXkIb6/nZeI7M1jZu2JDOWsTWGNtYmn/nXAmQBm1gc4AihLaZUNNw+4Ijj75hRgW9TQcpNnZl2BF4DL3X11XDOl6CjyMcB8YA3wFnB08Hwh8FhwfyywDyiOuhWk68i3/+vo/GoixwqmBM/9ikioQOSP+1ngc+AjoEc6661n7W8B/4ja1vPSXXN96q/WdgFN6KybOLe/ERl+WgEsAy5Jd831rL8v8B6RM3KKgXPSXXNU7X8kctbePiLvnCYA1wLXRm373wfrtqwJ/u3UVf9jwDdR/7tFdS1Tl0AQEQk5fTJWRCTkFPQiIiGnoBcRCTkFvYhIyCnoRURCTkEvIhJyCnoRkZD7/8M5kyCAb099AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 1\n",
"pp = -101/11, satellite_part = -4\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -145/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAh90lEQVR4nO3deZgU5bn38e89rMo2rMYjIsY3KiowwAABgbBIHNSjiYa8ekBF0Dkkbrk0EONKVGIEg1tihIAhGogHFZRXj4pGCSJug4ALiwQyIIgyiEyGTbb7/aOKyTDMUt0zPT0lv891zUV31/NU3V10/7rqqeouc3dERCS+MtJdgIiIVI2CXEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BnkJm1sDMlpvZsemu5UhkZr81s58k0H6EmS1MZU3pYGbtzczNrG66a5HUUJAnycxeNLPt4d9eM9tT4v6jYbNcYIG7bwr7jDGzj8ysyMz+aWZjEljeADP70My2mdmXZjbHzI6L2LeBmU0zs3Xhspea2ZAkn+v28Ll+GLHvyWb2nJkVmNlWM3vZzE5JYNnXmFmemX1tZtNLTatvZk+bWX4YVP1Ldb8PuNnM6kddXm1hZlPMbJWZHTCzEQn2zTezs6qpjrR9CFRlHRxpFORJcvch7t7Y3RsDM4AJB++7++iw2WjgiRLdDLgMaA7kANeY2cURF7kcONvdM4H/AFYDf4jYty7wKfA9oBlwKzDLzNpH6VzyuYbPdxHwVMRlZwJzgVOAY4B3geci9gX4DLgbeKyc6QuB4cDnZdS9CVgJnJ/A8mpUBQG5DPgp8H4NllPbaB1EpCBPETNrB3wbeOfgY+4+wd3fd/d97r6KINDOjDI/d//C3T8r8dB+4P+UWN5NZvZ8OX13uPs4d8939wPu/jzwT6BbEs+rPdAXeLzEY8+b2U3lLPtdd5/m7lvdfS9wP3CKmbWMsjx3n+3uzwJfljFtj7s/4O4LCdZHWeYD50ZZVmlm9qCZfWpm/zKzxWbWN3z8W2a2s+RzMLOu4V5HvfD+SDNbYWZfhXshJ5Ro62Z2tZmtJvhALut5/97d/wbsTrDmJ4B2wP8L957Glpg8zMzWm9kWM7ulRJ+M8PWzJtzbm2VmLcLJC8J/t4Xz62VmJ5nZa2HbLWY2w8wyE6kzimTXwZFIQZ46HYG17r6vrIlmZgSB+HHUGZpZOzPbBuwCfg5MODjN3X/j7udFnM8xwMmJLLuEy4A33D2/xLLPc/ffROzfD/jc3Q8L5hRZAXROsu97QBbQApgJPGVmDd39c4IPiB+XaHsp8KS77zWzC4CbgQuB1sAbwF9LzfsHQE/gtCRrK5O7XwqsB/4z3IOaUGJyH4I9o0HA7WbWIXz82rCe7xHs7X0F/D6c1i/8NzOc31sEe5b3hG07AMcD48qrycw+CIcEy/p7pOrPWhTkqZMJFFUwfRzB+v9T1Bm6+/pwaKUVwfDIykSLCrcYZwB/dveE+xME+fQk+mFmbQkC4oZk+iepiOD/ImHu/hd3/zLcg/ot0IAgCAH+TDCkg5nVAS7h38Noo4F73H1F+EH+ayCr5FZ5OH2ru+9KprYk/crdd7n7MoJhi4MfcKOBW9x9g7t/TfDa/FF5wz7u/g93f8Xdv3b3AmASwYdAmdy9k7tnlvP302p9hkcoBXkCzGxYiQN+L1bS/CugSTnzuYYgEM8N3zgJcfetBEHyXCIHocwsgyBs9gDXJLpcM+sDfAt4Oom+rYF5wCPuXnrrNJWaANuS6WhmPw+HRwrDPaFmBB+iEAyLnWZmJwKDgUJ3fzecdgLw4MGtTmArwVZsyYPTnyZTUxWVPI6wE2gc3j4BmFOi3hUEQ1XHlDUTMzvGzJ40s41m9i/gL/x7vUgaKMgT4O4zShz0q+ysjw+AE0sHrZmNBG4CBrn7hiqUUxdoAzSN0jgcyplG8Oa8KByvTtTlwGx3355IJzNrThDic919fBLLrYoOBFufCQnHw8cSDJ80D/eECgkCGXffDcwi2Cq/lEMPan8K/HepLc+j3H1RiTap/NnRROf9KTCkVL0N3X1jOfP6dfh4R3dvSrAOrLyZm9nHduhZTyX/Hi2vn0SnIE+RMKT/AfQ4+JiZDSN4Ewx297Wl+5jZfDMbV9b8zOxCMzslPDDVmmB3dkm4dY6ZjTOz+RWU9AeCUPvPsnbnrezT90pOP4og1KYnWHdT4GXgTXc/7IComfU3s3KDx8zqmllDoA5Qx8walvxwtODUyobh3frh9JKh8j3gxRLty621lCbAPqAAqGtmt3P4h+bjwAiCs2JKBvmjwC/N7PRwmc3MbGiEZRaz4NTKhgQBWS98XhnhtArXGfAFwYH2qB4Fxh8c+jGz1uE4PwTP/0Cp+TUBtgOFFpwCW+FptO5+esmznkr9jS6vX0XrQA6llZJakwm21g66G2gJvFfOFsnxwJvlzOs44CWCMd8PCd5cP4zSN3yD/jfBgbvPSyx7WDj9+BLzLc8PCIYoXi9jWkV1/xDoDlxRakusXYm+i8rpC8GxgF0EezHDw9u3lpi+KnzsOIIPjF0EQwVY8EWs04BnI9Za0ssE6/sTYB3BmROHDIe4+5sE/w/vu/u6Eo/PAe4FngyHHj4CIp+3H5oXPpfewJTw9sEDj5Wts3uAW8Ohkp9HWNaDBKeIzjOzIuBtggOxuPtOYDzwZji/7wK/AroS7KG8AMxO8LlFVdE6kBJMF5ZIHTNrACwhGEbZVEnbtsAsd++d5LKWhstJ+GwQMxsOnO7uv0yib1Xrngo85e4vJ9O/knn/Fljj7o+E96tUaznLeA2Y6e5Tq2ueEZaZsnUm8aQgF0mSmXUHXgGOd/eKzlASSSkNrYgkwcz+DLwK/EwhLummLXIRkZjTFrmISMyl5BfNWrVq5e3bt0/FrEVEvpEWL168xd1bJ9M3JUHevn178vLyUjFrEZFvJDNbV3mrsmloRUQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYi5SkJtZpgUXuV0Z/j5zr1QXJiIi0UQ9/fBB4CV3/5EFVyQ/OoU1iYhIAioNcjNrRvDTkSMguOAtwRVmRCLr3z/dFdQu8+enuwL5JokytHIiwY/L/8nMlpjZVDNrVLqRmeWaWZ6Z5RUUFFR7oSIiUrZKfzTLzLIJfmj+THd/x8weBP7l7reV1yc7O9v1zU4RkejMbLG7ZyfTN8oW+QZgg7u/E95/muDqICIiUgtUGuTu/jnwqZmdEj40CFie0qpERCSyqGetXAvMCM9YWQtckbqSREQkEZGC3N2XAkmN3YiISGrpm50iIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkIuIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTm6kZpZGb5QBGwH9jn7tmpLEpERKKLFOShAe6+JWWViIhIUjS0IiISc1GD3IF5ZrbYzHLLamBmuWaWZ2Z5BQUF1VehiIhUKGqQ93H3rsAQ4Goz61e6gbtPcfdsd89u3bp1tRYpIiLlixTk7r4x/HczMAfokcqiREQkukqD3MwamVmTg7eB7wMfpbowERGJJspZK8cAc8zsYPuZ7v5SSqsSEZHIKg1yd18LdK6BWkREJAk6/VBEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkIuIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMRc5CA3szpmtsTMnk9lQSIikphEtsivB1akqhAREUlO3SiNzKwtcC4wHrghpRVJterfP90VBObPT3cFtYv+X6Q6Rd0ifwAYCxwor4GZ5ZpZnpnlFRQUVEdtIiISQaVb5GZ2HrDZ3RebWf/y2rn7FGAKQHZ2tldXgVI12uKqnfT/ItUpyhb5mcD5ZpYPPAkMNLO/pLQqERGJrNIgd/dfuntbd28PXAy85u7DU16ZiIhEovPIRURiLtJZKwe5+3xgfkoqERGRpGiLXEQk5hTkIiIxpyAXEYk5BbmISMwpyCWS/Px8zjjjjMjte/fufdhj7sH3xMaNG3fI/ZJ+/etfJ71MgGeffZbly5cn1Mfdyc/PZ/r06WVOnz9/Puedd15C8/wmy8nJITMzs8x18uSTTzJ+/HhWrlxJr169aNCgAffdd98hbUaOHEmbNm0S/r+V8inIJSUWLVp02GMzZsxg4sSJ7N69mwkTJjBjxozD2pQM8mQkE+SjR49m4cKFrF+/nlGjRrFx48Yq1ZCoffv21ejyqmrMmDE88cQTZU578cUXycnJoUWLFjz00EP8/Oc/P6zNiBEjeOmll1Jd5hFFQS4JW7t2LV26dOG9997j448/pkePHmRlZdGpUydWr14NQOPGjQ/rN3z4cNq2bcvEiRNp164dw4cf+r2ym266iV27dpGVlcWwYcMA2L9/P1dddRWnn3463//+99m1axcAa9asIScnh27dutG3b19WrlzJokWLmDt3LmPGjCErK4s1a9bwxz/+ke7du9O5c2cuuugidu7ceVhdjzzyCH/961957LHHuOeeezjuuOPKfe7vvvsuvXr1okuXLvTu3ZtVq1YB0K9fP5YuXVrcrk+fPixbtowdO3YwcuRIevToQZcuXXjuuecAmD59Oueffz4DBw5k0KBBZS5r/vz59O/fnx/96EeceuqpDBs2rHgvpn379mzZsgWAvLw8+oe/wjVu3Dguv/xy+vbtywknnMDs2bMZO3YsHTt2JCcnh71795b73KIaNGgQTZo0Oexxd2fp0qV07dqVNm3a0L17d+rVq3dYu379+tGiRYsq1yH/piCXhKxatYqLLrqI6dOn0717dx599FGuv/56li5dSl5eHm3bti2378yZM9mwYQNjxoxh/fr1zJw585Dpv/nNbzjqqKNYunRp8db66tWrufrqq/n444/JzMzkmWeeASA3N5eHH36YxYsXc9999/HTn/6U3r17c/755zNx4kSWLl3KSSedxIUXXsh7773HsmXL6NChA9OmTTusrmuuuYZLLrmEkSNHcsstt/DZZ5+V+xxOPfVU3njjDZYsWcKdd97JzTffDMCoUaOKh2Y++eQTdu/eTefOnRk/fjwDBw7k3Xff5fXXX2fMmDHs2LEDgPfff5+nn36av//97+Uub8mSJTzwwAMsX76ctWvX8uabb5bb9qA1a9bw2muvMXfuXIYPH86AAQP48MMPOeqoo3jhhRcOaz9x4kSysrIO+7vuuusqXVbpWjt37oyZJdRPqi6hLwTJka2goIALLriA2bNnc9pppwHQq1cvxo8fz4YNG7jwwgv5zne+U27/Sy65BDNj3LhxjB07tswx8tJOPPFEsrKyAOjWrRv5+fls376dRYsWMXTo0OJ2X3/9dZn9P/roI2699Va2bdvG9u3bOfvssw9r88gjj7Bu3Tr27dvH7bffXmE9hYWFXH755axevRozK97CHTp0KHfddRcTJ07kscceY8SIEQDMmzePuXPnFo8T7969m/Xr1wMwePDgSrdMe/ToUfzhmJWVRX5+Pn369Kmwz5AhQ6hXrx4dO3Zk//795OTkANCxY0fy8/MPaz9mzBjGjBlT4TyjeOmllxgyZEiV5yOJU5BLZM2aNaNdu3YsXLiwOMj/67/+i549e/LCCy9wzjnnMHnyZAYOHFhm/4NbagcPdkbZcmvQoEHx7Tp16rBr1y4OHDhAZmbmIUMZ5RkxYgTPPvssnTt3Zvr06cwv42cHzYz27dsXh29FbrvtNgYMGMCcOXPIz88vHtI4+uijGTx4MM899xyzZs1i8eLFQDDc8Mwzz3DKKaccMp933nmHRo0aVbq80s//4Hh63bp1OXAg+FXp3bt3l9knIyODevXqFa/njIyMMsfjJ06cWObxin79+vHQQw9VWuNB8+bNK95jkpqloRWJrH79+syZM4fHH3+8eFhk7dq1fPvb3+a6667jggsu4IMPPqjSMurVq1fpOG7Tpk058cQTeeqpp4AgLJctWwZAkyZNKCoqKm5bVFTEsccey969e8sMq0QVFhYWj6GXPsvlyiuv5LrrrqN79+40b94cgLPPPpuHH364eO9jyZIlVa4BgjHygx8WVQ3PMWPGsHTp0sP+EgnxwsJC9u3bR8uWLatUiyRHQS4JadSoEc8//zz3338/c+fOZdasWZxxxhlkZWXx0Ucfcdlll1Vp/rm5uXTq1Kn4YGd5ZsyYwbRp0+jcuTOnn3568UHEiy++mIkTJ9KlSxfWrFnDXXfdRc+ePTnzzDM59dRTq1QbwNixY/nlL39Jly5dDtu67datG02bNuWKK64ofuy2225j7969dOrUidNPP53bbrutyjUA3HHHHVx//fVkZ2dTp06daplnVH379mXo0KH87W9/o23btrz88su88sornHXWWcVtPv/8c9q2bcukSZO4++67adu2Lf/617+AYIitV69erFq1irZt25Z53EISY1HGKROVnZ3teXl51T5fkdrss88+o3///qxcuZKMjCNrG+nKK6/kyiuv5Lvf/W66S4ktM1vs7tnJ9D2yXm0iKfL444/Ts2dPxo8ff8SFOMDUqVMV4mmkLXKRNPvwww+59NJLD3msQYMGvPPOO2mqSNKhKlvkOmtFJM06duwY6QwckfIcefuAUqFVq1axefPmdJchIglQkEuxt956i8suu4yRI0cqzEViREEuALzxxhtcf/31NGrUiPz8fP7whz+kuyQRiUhBLrz22mvceOONNGnShB07dnDyySdz9dVXp7ssEYlIQX6Ee+mllxg7dixNmzalqKiIE044galTp9KqVat0lyYiESnIj2DPP/88t956K5mZmRQWFnLSSScxZcoU/cSoSMwoyI9Qc+bM4Y477qB58+YUFhbSoUMHJk+eTGZmZrpLE5EE6TzyI9CsWbO49957admyJVu3bqVjx448/PDDZV4MQkRqv0qD3MwaAguABmH7p939jlQXJqnxl7/8hfvvv784xLt27coDDzzA0Ucfne7SRCRJUbbIvwYGuvt2M6sHLDSzF9397RTXJtXI3Zk+fToPP/wwrVu3ZsuWLfTs2ZNJkybRsGHDdJcnIlVQaZB78GMs28O79cK/6v+BFkkZd2fy5MlMmTKlOMT79OnDhAkTDrlwgYjEU6SDnWZWx8yWApuBV9z9sF/zMbNcM8szs7yCgoJqLlOS5e787ne/OyTEBwwYwMSJExXiIt8QkYLc3fe7exbQFuhhZmeU0WaKu2e7e3br1q2ruUxJhrszadIk/vSnP9GmTRsKCgoYPHgw99xzD/Xr1093eSJSTRI6/dDdtwGvAzkpqUaqzYEDB5gwYQIzZ86kTZs2bN68mfPOO4+7776bevXqpbs8EalGlQa5mbU2s8zw9lHAYGBliuuSKti/fz/jx49n1qxZtG7dms2bN/PDH/6QO+64g7p1dcapyDdNlHf1scCfzawOQfDPcvfnU1uWJGvfvn3ceeedvPDCC8UhPnToUH7xi18ckVeuETkSRDlr5QOgSw3UIlW0d+9ebr/9dubNm1cc4sOGDeOGG27AzNJdnoikiPazvyH27NnDzTffzOuvv06rVq3YvHkzI0aM4Nprr1WIi3zDKci/Ab7++mvGjh3LwoULadWqFQUFBVx11VWMHj1aIS5yBFCQx9zu3bu58cYbefvtt4tD/Nprr2XEiBEKcZEjhII8xnbu3MnPfvYz3n//fVq2bMmWLVu44YYbGD58eLpLE5EapCCPqe3bt3PdddfxwQcf0KJFC7788kt+8Ytf8OMf/zjdpYlIDVOQx1BRURFXX301K1asoHnz5nz55ZfccsstXHjhhekuTUTSQEEeM4WFhfzkJz9h9erVNGvWjK+++opf/epXnHfeeekuTUTSREEeI1u3bmX06NHk5+fTrFkztm3bxt13301Ojn4xQeRIpiCPiS1btpCbm8vGjRtp0qQJhYWF3HvvvQwaNCjdpYlIminIY2Dz5s3k5uayadMmGjVqRFFREZMmTaJv377pLk1EagEFeS23adMmcnNzKSgo4Oijj2bHjh08+OCD9OrVK92liUgtoSBPs/z8fDIyMmjXrt1h0zZu3MiVV17Jtm3baNiwIbt37+Z3v/sd3bt3T0OlIlJb6efw0uzee+/l0ksvZe3atYc8vm7dOq644gq2bdtG/fr12bNnD4888ohCXEQOoyBPo61bt7J48WL27NlDbm4u69atA+Cf//wno0aNYvv27dSrV4/9+/czefJkunTRj1CKyOEU5Gm0YMEC3J1WrVqxc+dOrrrqKhYsWMDIkSPZtWsXderUAeCPf/wjHTt2THO1IlJbKcjTaPbs2Rx11FEAtGzZkqKiIq655hr27t2LmVGnTh2mTp1Khw4d0lypiNRmCvI02bRpEytWrKBp06bFj7Vq1Yrjjz8egPr16zNt2jROPvnkdJUoIjGhIE+T+fPn4+6H/dRsRkYG7k7jxo1p1qxZmqoTkThRkKeBu/PMM8/QuHHjMqe3aNGCL774gtzcXLZu3VrD1YlI3CjI02DdunWsW7eu3CAHaNOmDRs2bGD06NFs27at5ooTkdhRkKfBq6++ClDhFXz2799P/fr1WbZsGffff39NlSYiMaRvdtYwd2fOnDmHHOQ8aN++fWzbto39+/djZnTr1o1zzz2X3r17p6FSEYkLBXkNW7lyJQUFBbRp0waAPXv28NVXX2FmZGRk0KdPH84++2x69uxJkyZN0lytiMSBgryGvfzyy+zevZsvvviCjIwM6tevz7nnnsvgwYPp2rUrDRs2THeJIhIzlQa5mR0PPA4cAzgwxd0fTHVh31SLFi2iTZs25OTkMHDgQDp16kTduvo8FZHkRUmQfcCN7v6+mTUBFpvZK+6+PMW1fSNNnjyZZs2akZGh48wiUj0qDXJ33wRsCm8XmdkK4DhAQV6O/v0rmtq8hqoIzJ9fo4uTmKn4tVpz9DqtmoQ2C82sPdAFeKeMablmlmdmeQUFBdVUnoiIVMbcPVpDs8bA34Hx7j67orbZ2dmel5dXDeWJiBwZzGyxu2cn0zfSFrmZ1QOeAWZUFuIiIlKzKg1yC75+OA1Y4e6TUl+SiIgkIsoW+ZnApcBAM1sa/p2T4rpERCSiKGetLATK/1EQERFJK53MLCIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkIuIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYq7SIDezx8xss5l9VBMFiYhIYqJskU8HclJch4iIJKnSIHf3BcDWGqhFRESSUG1j5GaWa2Z5ZpZXUFBQXbMVEZFKVFuQu/sUd8929+zWrVtX12xFRKQSOmtFRCTmFOQiIjEX5fTDvwJvAaeY2QYzG5X6skREJKq6lTVw90tqohAREUmOhlZERGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkIuIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMRQpyM8sxs1Vm9g8zuynVRYmISHSVBrmZ1QF+DwwBTgMuMbPTUl2YiIhEUzdCmx7AP9x9LYCZPQlcACxPZWHp0r9/1ecxf37V5yFyJKmO9x0cue+9KEMrxwGflri/IXzsEGaWa2Z5ZpZXUFBQXfWJiEglomyRR+LuU4ApANnZ2V5d861pR+onukg66X1XNVG2yDcCx5e43zZ8TEREaoEoQf4e8B0zO9HM6gMXA3NTW5aIiERV6dCKu+8zs2uAl4E6wGPu/nHKKxMRkUgijZG7+/8C/5viWkREJAn6ZqeISMwpyEVEYk5BLiIScwpyEZGYM/fq/+6OmRUBq6p9xjWjFbAl3UVUgepPL9WfXnGu/xR3b5JMx2r7Zmcpq9w9O0XzTikzy4tr7aD60031p1ec6zezvGT7amhFRCTmFOQiIjGXqiCfkqL51oQ41w6qP91Uf3rFuf6ka0/JwU4REak5GloREYk5BbmISMxVS5CbWQsze8XMVof/Ni+jTZaZvWVmH5vZB2b2f6tj2cmq7ILSZtbAzP4nnP6OmbVPQ5nlilD/DWa2PFzXfzOzE9JRZ3miXtDbzC4yMzezWnVKWZT6zezH4f/Bx2Y2s6ZrLE+E1047M3vdzJaEr59z0lFneczsMTPbbGYflTPdzOyh8Pl9YGZda7rG8kSofVhY84dmtsjMOkeasbtX+Q+YANwU3r4JuLeMNicD3wlv/wewCcisjuUnUW8dYA3wbaA+sAw4rVSbnwKPhrcvBv4nHbVWof4BwNHh7Z/Erf6wXRNgAfA2kJ3uuhNc/98BlgDNw/tt0l13ArVPAX4S3j4NyE933aXq6wd0BT4qZ/o5wIuAAd8F3kl3zQnU3rvEa2ZI1Nqra2jlAuDP4e0/Az8o3cDdP3H31eHtz4DNQOtqWn6iii8o7e57gIMXlC6p5HN6GhhkZlaDNVak0vrd/XV33xnefZvgyk61RZT1D3AXcC+wuyaLiyBK/VcBv3f3rwDcfXMN11ieKLU70DS83Qz4rAbrq5S7LwC2VtDkAuBxD7wNZJrZsTVTXcUqq93dFx18zZDA+7a6gvwYd98U3v4cOKaixmbWg2BrYE01LT9RUS4oXdzG3fcBhUDLGqmucpEuiF3CKIItlNqi0vrD3eHj3f2Fmiwsoijr/2TgZDN708zeNrOcGquuYlFqHwcMN7MNBNchuLZmSqs2ib4/aqvI79vIX9E3s1eBb5Ux6ZaSd9zdzazccxrDT8YngMvd/UDU5UtyzGw4kA18L921RGVmGcAkYESaS6mKugTDK/0JtqoWmFlHd9+WzqIiugSY7u6/NbNewBNmdoberzXHzAYQBHmfKO0jB7m7n1XBQr8ws2PdfVMY1GXuRppZU+AF4JZwlyddolxQ+mCbDWZWl2AX88uaKa9SkS6IbWZnEXzQfs/dv66h2qKorP4mwBnA/HA061vAXDM7392T/j2KahRl/W8gGN/cC/zTzD4hCPb3aqbEckWpfRSQA+Dub5lZQ4Ifo6otw0OVifUF482sEzAVGOLukTKnuoZW5gKXh7cvB54ro7j6wByCsaunq2m5yYpyQemSz+lHwGseHoGoBSqt38y6AJOB82vR+OxBFdbv7oXu3srd27t7e4KxwtoS4hDt9fMswdY4ZtaKYKhlbQ3WWJ4ota8HBgGYWQegIVBQo1VWzVzgsvDsle8ChSWGfms1M2sHzAYudfdPInespiOxLYG/AauBV4EW4ePZwNTw9nBgL7C0xF9WGo8enwN8QjBOf0v42J0EgQHBi/cp4B/Au8C301VrkvW/CnxRYl3PTXfNidRfqu18atFZKxHXvxEMDy0HPgQuTnfNCdR+GvAmwRktS4Hvp7vmUvX/leCst70Eez6jgNHA6BLr/vfh8/uwNr12ItQ+FfiqxPs2L8p89RV9EZGY0zc7RURiTkEuIhJzCnIRkZhTkIuIxJyCXEQk5hTkIiIxpyAXEYm5/w/tzf1IY6x+bAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAor0lEQVR4nO3deZwU9bnv8c+X1cgmqxpQITnEBYFBRxBFRaOCMYpJ9EQjm4oEz8EkNze4HGM0GjRCNDdGPYkHEVQi0QQjN8aFo+EaN8JwREQjikoUNDpso4Agy3P/qGLSDDNMz8L0YH3fr1e/puu3VD3dM11P1+9XU6WIwMzMsqtJoQMwM7PCciIwM8s4JwIzs4xzIjAzyzgnAjOzjHMiMDPLOCeCRkxSS0mvStq/0LFkkaSbJV1Sg/ajJT2zO2MqBEndJYWkZoWOxXYPJ4ICkfSopHXpY7OkT3OWf5U2Gws8HRHvp30mSFos6WNJb0uaUIPtnSjpZUlrJa2S9JCkrnn2bSnpLkl/T7e9UNJptXyt69LX+nKefb8k6WFJpZJWS3pc0sE12PZ4SSWSNkmaVqGuhaTfSVqW7ugGV+j+M+A/JLXId3uNQT28Z8sknVxPsRQsiUi6U9ISSdskjW7o7e9JnAgKJCJOi4jWEdEamAFM2r4cEePSZuOAe3O6CRgJtAeGAuMlnZvnJl8FhkTEPsDngTeA/8yzbzPgXeAEoB3wQ+ABSd3z6Zz7WtPX+xzwYJ7b3geYDRwM7Av8FXg4z74A7wE/AaZWUf8MMBz4RyVxvw+8BpxZg+01qCp2sPtQt/fss+Il4N+A/yl0II1eRPhR4AcwDfhJhbIDgU+AZrvodyvwy1psryVwI/BqTtkVwB9rsI5FwDdqse3uwFage07ZH4Er8uzfAQigYw23+xNg2i7qlwODKym/Crg7z22MBp7JWf4FSQL9CFgAHJeW7wdsyH0NwBFAKdA8Xb4Q+BuwBngcOCinbQD/TpLM367P94zki8e29G9vHXBZ+jsLYBTwDrASuCqnT5P07+dNYBXwANAhrXsn7bsufQwEvgg8lbZdSfJFaJ+a/i3V4Hf/DDB6d63/s/DwEUHj1Rt4KyK2VFYpScBxwCv5rlDSgZLWknzIfwBM2l4XET+NiK/muZ59gS/VZNs5RgJ/iYhlOdv+akT8NM/+xwP/iIhVtdh2bfwN6FvLvvOBIpId8W+AByXtFRH/AOYC/5rTdgQwMyI2SxoG/AfwdaAz8Bfg/grrPgsYAByWRxx5v2cRMYJk531GJEdwk3KqB5EcZXwZ+JGkQ9PyS9N4TiA52lwD3J6zbUh29K0j4nmSI9sb07aHAgcA11YVk6RF6ZBmZY878nj9Vg0ngsZrH+DjXdRfS/L7uzvfFUbEO5EMDXUiGd55raZBSWpO8g1uekTUuD9JIphWi35I6kayg/l+bfrX0sckv4sai4j7ImJVRGyJiJtJjsS2j9VPJxmSQlJT4Dz+OQw4DrgxIv6WfhG4ASiSdFDO6m+MiNUR8cmuYqjn9+zHEfFJRLxEMuyyPUGOIzlCWB4Rm0j+Ns+ual4gIpZGxJyI2BQRpcAtJEmkUhHRJyL2qeLxb/XwujLPiaABSTo/Z8L00WqarwHaVLGe8SQ71NPTD16NRMRqkh3RwzWZxJPUhGRn9SkwvqbblTSIZFjkd7Xo2xl4ArgjIip+O96d2gBra9NR0g8k/U1SWXok1o4kCUMyZn+YpB7AKUBZRPw1rTsI+MX2b73AapJv0bmT++/msf36fs9y51E2AK1z4n0oJ96/kQz/7VtFXPtKmilphaSPgPv45/tiBeBE0IAiYkb8c9K0urNuFgE9Ku6oJV1IMh775YhYXodwmgFdgLb5NE6Hou4i+XB/IyI212Kbo4BZEbGuJp0ktSfZoc2OiIm12G5dHEry7bdGJB1HMr7+r0D79EisjGSHTkRsJBlLH04yLJR7UsC7wLcrfPP9XEQ8l9Nml5cNruN7VtNLEr8LnFYh3r0iYkUV67ohLe8dEW1J3gNVtXJJr1Q46yz38auq+ln+nAgaqXQnvxTov71M0vkkH6JTIuKtin0kzZV0bWXrk/R1SQdLapJ+U7wFeDE9OkDStZLm7iKk/yTZKZ5R2XBEFadf5tZ/jmSnOK2GcbclmSx9NiKuqKR+sKQqd1ySmknaC2gKNJW0V25yVXJq7F7pYou0PnendALwaE77KmOtoA2whWQCuJmkH7Fz0r2HZIL5THZMBL8CrpTUK91mO0nn5LHN7THW6T0DPgC+kO/20ngnbh+6ktQ5neeA5PVvq7C+NiQTx2VKTmHe5WnQEdEr5wtUxce4qvopOT14L5Ik0zz93XqfVwm/KY3br0m+LW73E6AjML+Kb0QHAM9Wsa6uwGMkY94vk3w4v5ZP3/QD/m2Sic9/5Gz7/LT+gJz1VuUskiGWP1dSt6u4vwYcBVxQ4ZvggTl9n6uiLyRzIZ+QHEUNT5//MKd+SVrWlWTn+QnJUAdK/pHvMOAPecaa63GS9/t14O/ARioM50TEsyS/h/+JiL/nlD8E3ATMTIdOFgN5/98GdX/PbgR+mA71/CCP7f2C5HTVJyR9DLxAMpFNRGwAJgLPpus7GvgxyVlSZcAjwKwavLaaeILk93kMcGf6/Phd9sgoRfjGNI2VpJbAiyTDQO9X07Yb8EBEHFPLbS1Mt1Pjs3EkDQd6RcSVtehb17inAA9GxOO16V/Num8G3oyIO9LlOsVaxTaeAn4TEVPqa515bHO3vWe2Z3IiMCsQSUcBc4ADImJXZ4iZ7VYeGjIrAEnTgf8GvuckYIXmIwIzs4zzEYGZWcY1ysvKdurUKbp3717oMMzM9hgLFixYGRGda9O3USaC7t27U1JSUugwzMz2GJL+Xn2rynloyMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOqTQSSDpD0Z0mvppeD/W4lbSTpVklLldxN6IiculGS3kgfo+r7BZiZWd3kc/roFuB/R8T/SGoDLJA0JyJezWlzGtAzfQwguWTxAEkdgGuAYpLrjy+QNDsi1tTrqzAzs1qrNhGkV718P33+saS/kVyyNzcRDAPuieR6FS9I2ie9hO9gYE7ONe/nAEPZ+f6r1kAGDy50BJZlc+cWOgKrTI3mCCR1B/oB8ypUdWXHa60vT8uqKq9s3WMllUgqKS0trUlYZmZWBzW5X21r4PckV0v8qL4DiYg7SW4eQXFxsa+Et5tU9o0sIlizZg3t27dnx5tzmVkW5JUIJDUnSQIzIqKyuwmtILnr0Xbd0rIVJMNDueVzaxOo7T4rV67krLPOonXr1hx77LEcc8wx9OnThy5duhQ6NDNrANUmgpyblv8tIm6potlsYLykmSSTxWUR8b6kx4Eb0htpA5wK1PguVrZ7de7cmYMPPphFixbxyCOP8Mgjj7B161b23XdfBg0axMCBA+nTpw8dOnQodKhmthtUez8CSYOAv/DP+9wC/AdwIEBE/CpNFreRTARvAC6IiJK0/4Vpe4CJEXF3dUEVFxeHLzrXsJ566ikuv/xy9ttvPyAZLtq4cSMfffQRkti2bRtdu3bluOOOY8CAAfTu3Zt27doVOGoz207SgogorlXfxnhjGieChrd582aGDBlCkyZN+NznPrdTfUSwYcMGPv74Y5o0acKWLVsYPXo0l156aQGiNbOK6pII/J/FBkDz5s351re+RVlZWaX1kmjVqhX77bcfrVq1okWLFpx88skNHKWZ7Q5OBFbuzDPPRBJbt26tss2nn37KRx99xKRJkzj00EMbMDoz212cCKxcly5dOP7441m9enWl9Vu3bqW0tJTLLruM4447roGjM7PdxYnAdnDeeeexbds2Kps7WrNmDfvttx9DhgwpQGRmtrs4EdgOjjjiCPbbbz/Wr19fXhYRfPDBB7Ru3ZqVK1cyatQoVqxYUcAozaw+ORHYDiQxcuRI1q1bV15WWlrK5z//edauXUurVq344IMPGD58OIsXLy5gpGZWX5wIbCdDhgyhWbNmbN68mdWrV9OxY0fuuusubrvtNjZv3kzTpk3Ztm0bY8aM4amnnip0uGZWR04EtpM2bdpwxhln8M4779C0aVNuv/12OnbsyIABA5g2bRqtWrVi06ZNtG7dmgkTJnDfffdVOqdgZnsGJwKr1DnnnEOnTp245ZZb6NGjR3n5v/zLv3DvvffSvXt31q5dW97mpptuYsuWLQWM2Mxqy/9ZbFUqKyur8jIS69ev58orr+TZZ5+lc+fOlJaWcuyxx3LjjTfSqlWrBo7UzPyfxbZb7OpaQq1ateKWW27hnHPOobS0lE6dOvH8889z0UUX8eGHHzZglGZWV04EVmvNmjXj8ssv5/vf/z6rVq2iXbt2LFu2jBEjRrB06dJCh2dmeXIisDqRxPnnn8+kSZNYt24dLVq0YP369YwePZp58yreyM7MGiMnAqsXJ510ElOmTKFp06Zs3bqV5s2bM378eB5++OFCh2Zm1XAisHpz+OGHc99997Hvvvuyfv162rdvz3XXXcdtt93Gtm3bql+BmRWEE4HVq65duzJ9+nT69OnD6tWr6dy5M3fffTdXXXUVmzZtKnR4ZlaJahOBpKmSPpRU6fUEJE2QtDB9LJa0VVKHtG6ZpJfTOp8PmhHt2rXjjjvuYOjQoXz44Yd06tSJJ554gksuuYS1a9cWOjwzqyCfI4JpJLegrFRETI6IoogoIrkf8f+LiNzrGJ+Y1tfq/FbbM7Vo0YLrr7+eiy++mJUrV9KhQwcWL17MyJEjeffddwsdnpnlqDYRRMTTQOUXqN/ZecD9dYrIPjMkcckll3DttddSVlZGq1atWLlyJSNGjGDRokWFDs/MUvU2RyBpb5Ijh9/nFAfwhKQFksZW03+spBJJJaWlpfUVljUCZ5xxRvkF6yQREVx88cU8+eSThQ7NzKjfyeIzgGcrDAsNiogjgNOAf5d0fFWdI+LOiCiOiOLOnTvXY1jWGPTv35/p06fTpk0bNm7cSJs2bbj88suZPn26L1hnVmD1mQjOpcKwUESsSH9+CDwE9K/H7dke5otf/CL33XcfX/ziF1m7di0dO3bkF7/4BTfccIMvWGdWQPWSCCS1A04AHs4payWpzfbnwKmA72SScZ06dWLKlCkMGjSIlStX0qVLF2bNmsX3vve9He6KZmYNJ5/TR+8HngcOlrRc0kWSxkkal9Psa8ATEZH7Sd4XeEbSS8BfgUci4rH6DN72THvvvTc/+9nP+OY3v1l+eum8efO44IILfME6swLwZaitYCKCmTNncvPNN9OuXTvWr19P27Ztuf322+nZs2ehwzPbo/gy1LZHksR5553HzTffzIYNG2jRogUbNmxg9OjRvPDCC4UOzywznAis4E444QSmTJlCs2bN2LJlCy1btuTSSy9l1qxZhQ7NLBOcCKxR6NWrF/feey/7778/69ato3379kycOJFbb73VF6wz282cCKzR6Nq1K9OmTaNv376sWrWKzp07M23aNK688ko2btxY6PDMPrOcCKxRadeuHbfffjunn346paWldO7cmSeffJJx48axZs2aQodn9pnkRGCNTosWLfjxj3/M2LFjWblyJe3bt+fVV19l5MiRvPfee4UOz+wzx4nAGiVJfPvb3+a6666jrKyMZs2a8d5777Fy5cpCh2b2meNEYI3a6aefzh133EHz5s25+uqr6dOnT6FDMvvMaVboAMyqU1xczJw5c2jRokWhQzH7TPIRge0RnATMdh8nAjOzjHMiMDPLOCcC26MtW7aMww8/PO/2xxxzzE5l2y+8eO211+6wnOuGG26o9TYB/vCHP/Dqq6/WqE9EsGzZMqZNm1Zp/dy5c/nqV79ao3V+Vi1cuJCBAwfSq1cv+vTpw29/+9sd6mfOnMnEiRN57bXXGDhwIC1btuRnP/vZDm0uvPBCunTpUuPf7WeBE4FlynPPPbdT2YwZM5g8eTIbN25k0qRJzJgxY6c2uYmgNmqTCMaNG8czzzzDO++8w0UXXcSKFSvqFENN7Uk3C9p777255557eOWVV3jsscf43ve+x9q1a8vrH330UYYOHUqHDh249dZb+cEPfrDTOkaPHs1jj2XzSvlOBPaZ8dZbb9GvXz/mz5/PK6+8Qv/+/SkqKqJPnz688cYbALRu3XqnfsOHD6dbt25MnjyZAw88kOHDh+9Qf8UVV/DJJ59QVFTE+eefD8DWrVu5+OKL6dWrF6eeeiqffPIJAG+++SZDhw7lyCOP5LjjjuO1117jueeeY/bs2UyYMIGioiLefPNN/uu//oujjjqKvn378o1vfIMNGzbsFNcdd9zB/fffz9SpU7nxxhvp2rVrla/9r3/9KwMHDqRfv34cc8wxLFmyBIDjjz+ehQsXlrcbNGgQL730EuvXr+fCCy+kf//+9OvXj4cfTu4pNW3aNM4880xOOukkvvzlL1e6rblz5zJ48GDOPvtsDjnkEM4///zyo6ju3buX/69HSUkJgwcPBpKjrVGjRnHcccdx0EEHMWvWLC677DJ69+7N0KFD2bx5c5WvLR9f+tKXyi9d/vnPf54uXbqw/d7nEcHChQs54ogj6NKlC0cddRTNmzffaR3HH388HTp0qFMce6yIaHSPI488Mszy8fbbb0evXr3itddei6Kioli4cGFERIwfPz7uu+++iIjYtGlTbNiwISIiWrVqtdM6ZsyYEZMmTYrLL788brrpppgxY8ZObXL7vf3229G0adN48cUXIyLinHPOiXvvvTciIk466aR4/fXXIyLihRdeiBNPPDEiIkaNGhUPPvhg+TpWrlxZ/vyqq66KW2+9dadtjhs3Lu6999748Y9/HGPGjIkVK1bsUP/nP/85Tj/99IiIKCsri82bN0dExJw5c+LrX/96RERMmzYtvvvd70ZExJIlS2L7Z+vKK68sj3nNmjXRs2fPWLduXdx9993RtWvXWLVq1U7x5G63bdu28e6778bWrVvj6KOPjr/85S8REXHQQQdFaWlpRETMnz8/TjjhhIiIuOaaa+LYY4+NTz/9NBYuXBif+9zn4k9/+lNERJx11lnx0EMP7bSdSZMmRd++fXd6XHrppVXGFhExb968OOSQQ2Lr1q0REbFgwYIYMWLEDm2uueaamDx58k59t/897YmAkqjlPrfa/yOQNBX4KvBhROw0eCZpMMktKt9Oi2ZFxHVp3VDgF0BTYEpE/LRespdZjtLSUoYNG8asWbM47LDDABg4cCATJ05k+fLlfP3rX9/ljW7OO+88JHHttddy2WWXVTpHUFGPHj0oKioC4Mgjj2TZsmWsW7eO5557jnPOOae83aZNmyrtv3jxYn74wx+ydu1a1q1bx5AhQ3Zqc8cdd/D3v/+dLVu28KMf/WiX8ZSVlTFq1CjeeOMNJJV/wz7nnHO4/vrrmTx5MlOnTmX06NEAPPHEE8yePbt8nHzjxo288847AJxyyinVfjPu378/3bp1A6CoqIhly5YxaNCgXfY57bTTaN68Ob1792br1q0MHToUgN69e7Ns2bKd2k+YMIEJEybscp0Vvf/++4wYMYLp06fTpEky4PHYY49x2mmn1Wg9WZPPP5RNA24D7tlFm79ExA6zVpKaArcDpwDLgfmSZkdEzQZKzarRrl07DjzwQJ555pnyRPCtb32LAQMG8Mgjj/CVr3yFX//615x00kmV9pcE/HOyePvyrrRs2bL8edOmTfnkk0/Ytm0b++yzzw5DMVUZPXo0f/jDH+jbty/Tpk1j7ty5lcbVvXv38p33rlx99dWceOKJPPTQQyxbtqx8SGbvvffmlFNO4eGHH+aBBx5gwYIFQDIS8Pvf/56DDz54h/XMmzePVq1aVbu9iq9/+3xCs2bNyi8bXvGKsdv7NGnShObNm5e/z02aNKl0PmLy5MmVztccf/zx3HrrrTuVf/TRR5x++ulMnDiRo48+urz8iSee4Pe//321rynLqp0jiIingdW1WHd/YGlEvBURnwIzgWG1WI/ZLrVo0YKHHnqIe+65h9/85jdAMl/whS98ge985zsMGzaMRYsW1WkbzZs3r3Ycu23btvTo0YMHH3wQSHa2L730EgBt2rTh448/Lm/78ccfs//++7N58+ZKd3Y1VVZWVj6HUPEsozFjxvCd73yHo446ivbt2wMwZMgQfvnLX5Yf/bz44ot1jgGSOYLtyaauO98JEyawcOHCnR6VJYFPP/2Ur33ta4wcOZKzzz67vLysrIwtW7bQsWPHOsXyWVdfk8UDJb0k6VFJvdKyrsC7OW2Wp2WVkjRWUomkku2TPGb5atWqFX/84x/5+c9/zuzZs3nggQc4/PDDKSoqYvHixYwcObJO6x87dix9+vQpnyyuyowZM7jrrrvo27cvvXr1Kp+EPffcc5k8eTL9+vXjzTff5Prrr2fAgAEce+yxHHLIIXWKDeCyyy7jyiuvpF+/fjt9uz7yyCNp27YtF1xwQXnZ1VdfzebNm+nTpw+9evXi6quvrnMMANdccw3f/e53KS4upmnTpvWyznw88MADPP3000ybNo2ioiKKiopYuHAhc+bM4eSTTy5v949//INu3bpxyy238JOf/IRu3brx0UcfAckQ4cCBA1myZAndunXjrrvuarD4Cy2vm9dL6g78sYo5grbAtohYJ+krwC8ioqeks4GhETEmbTcCGBAR46vbnm9eb1Z/3nvvPQYPHsxrr71WPm6eFWPGjGHMmDE7DBV9VhX05vUR8VFErEuf/wloLqkTsAI4IKdpt7TMzBrIPffcw4ABA5g4cWLmkgDAlClTMpEE6qrOVx+VtB/wQUSEpP4kyWUVsBboKakHSQI4F/hWXbdnZvkbOXJkrYfFXn75ZUaMGLFDWcuWLZk3b159hGaNSD6nj94PDAY6SVoOXAM0B4iIXwFnA5dI2gJ8ApybntO6RdJ44HGS00enRsQru+VVmFm96927d15nQNmeL685gobmOQIzs5op6ByBmZnt2ZwIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjqk0EkqZK+lDS4irqz5e0SNLLkp6T1DenbllavlCSbzBgZtYI5XNEMA0Yuov6t4ETIqI3cD1wZ4X6EyOiqLY3TDAzs92r2ltVRsTTkrrvov65nMUXSG5Sb2Zme4j6niO4CHg0ZzmAJyQtkDR2Vx0ljZVUIqmktLS0nsMyM7OqVHtEkC9JJ5IkgkE5xYMiYoWkLsAcSa9FxNOV9Y+IO0mHlYqLixvfjZTNzD6j6uWIQFIfYAowLCJWbS+PiBXpzw+Bh4D+9bE9MzOrP3VOBJIOBGYBIyLi9ZzyVpLabH8OnApUeuaRmZkVTrVDQ5LuBwYDnSQtB64BmgNExK+AHwEdgTskAWxJzxDaF3goLWsG/CYiHtsNr8HMzOogn7OGzqumfgwwppLyt4C+O/cwM7PGxP9ZbGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhmXVyKQNFXSh5IqvdWkErdKWippkaQjcupGSXojfYyqr8DNzKx+5HtEMA0Yuov604Ce6WMs8J8AkjqQ3NpyAMmN66+R1L62wZqZWf3LKxFExNPA6l00GQbcE4kXgH0k7Q8MAeZExOqIWAPMYdcJxczMGlh9zRF0Bd7NWV6ellVVvhNJYyWVSCopLS2tp7DMzKw6jWayOCLujIjiiCju3LlzocMxM8uM+koEK4ADcpa7pWVVlZuZWSNRX4lgNjAyPXvoaKAsIt4HHgdOldQ+nSQ+NS0zM7NGolk+jSTdDwwGOklaTnImUHOAiPgV8CfgK8BSYANwQVq3WtL1wPx0VddFxK4mnc3MrIHllQgi4rxq6gP49yrqpgJTax6amZk1hEYzWWxmZoXhRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcXklAklDJS2RtFTSFZXU/1zSwvTxuqS1OXVbc+pm12PsZmZWD6q9Q5mkpsDtwCnAcmC+pNkR8er2NhHxv3LaXwr0y1nFJxFRVG8Rm5lZvcrniKA/sDQi3oqIT4GZwLBdtD8PuL8+gjMzs90vn0TQFXg3Z3l5WrYTSQcBPYCncor3klQi6QVJZ1W1EUlj03YlpaWleYRlZmb1ob4ni88FfhcRW3PKDoqIYuBbwP+R9MXKOkbEnRFRHBHFnTt3ruewzMysKvkkghXAATnL3dKyypxLhWGhiFiR/nwLmMuO8wdmZlZg+SSC+UBPST0ktSDZ2e909o+kQ4D2wPM5Ze0ltUyfdwKOBV6t2NfMzAqn2rOGImKLpPHA40BTYGpEvCLpOqAkIrYnhXOBmREROd0PBX4taRtJ0vlp7tlGZmZWeNpxv904FBcXR0lJSaHDMDPbY0hakM7H1pj/s9jMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws4/JKBJKGSloiaamkKyqpHy2pVNLC9DEmp26UpDfSx6j6DN7MzOqu2juUSWoK3A6cAiwH5kuaXcmdxn4bEeMr9O0AXAMUAwEsSPuuqZfozcyszvI5IugPLI2ItyLiU2AmMCzP9Q8B5kTE6nTnPwcYWrtQzcxsd8gnEXQF3s1ZXp6WVfQNSYsk/U7SATXsi6SxkkoklZSWluYRlpmZ1Yf6miz+v0D3iOhD8q1/ek1XEBF3RkRxRBR37ty5nsIyM7Pq5JMIVgAH5Cx3S8vKRcSqiNiULk4Bjsy3r5mZFVY+iWA+0FNSD0ktgHOB2bkNJO2fs3gm8Lf0+ePAqZLaS2oPnJqWmZlZI1HtWUMRsUXSeJIdeFNgakS8Iuk6oCQiZgPfkXQmsAVYDYxO+66WdD1JMgG4LiJW74bXYWZmtaSIKHQMOykuLo6SkpJCh2FmtseQtCAiimvT1/9ZbGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhmXVyKQNFTSEklLJV1RSf33Jb0qaZGkJyUdlFO3VdLC9DG7Yl8zMyusam9VKakpcDtwCrAcmC9pdkS8mtPsRaA4IjZIugSYBHwzrfskIorqN2wzM6sv+RwR9AeWRsRbEfEpMBMYltsgIv4cERvSxReAbvUbppmZ7S75JIKuwLs5y8vTsqpcBDyas7yXpBJJL0g6q6pOksam7UpKS0vzCMvMzOpDtUNDNSFpOFAMnJBTfFBErJD0BeApSS9HxJsV+0bEncCdkNy8vj7jMjOzquVzRLACOCBnuVtatgNJJwNXAWdGxKbt5RGxIv35FjAX6FeHeM3MrJ7lkwjmAz0l9ZDUAjgX2OHsH0n9gF+TJIEPc8rbS2qZPu8EHAvkTjKbmVmBVTs0FBFbJI0HHgeaAlMj4hVJ1wElETEbmAy0Bh6UBPBORJwJHAr8WtI2kqTz0wpnG5mZWYEpovENxxcXF0dJSUmhwzAz22NIWhARxbXp6/8sNjPLOCcCM7OMcyIwM8s4JwIzs4xzIjAzyzgnAjOzjHMiMDPLOCcCM7OMcyIwM8s4JwIzs4xzIjAzyzgnAjOzjHMiMDPLOCcCM7OMcyIwM8s4JwIzs4zLKxFIGippiaSlkq6opL6lpN+m9fMkdc+puzItXyJpSD3GbmZm9aDaRCCpKXA7cBpwGHCepMMqNLsIWBMR/wL8HLgp7XsYyT2OewFDgTvS9ZmZWSNR7T2Lgf7A0oh4C0DSTGAYO96Efhhwbfr8d8BtSm5ePAyYGRGbgLclLU3X93z9hN/4DB5c6Ah2be7cQkdgWebPR+OUz9BQV+DdnOXlaVmlbSJiC1AGdMyzLwCSxkoqkVRSWlqaX/RmZlZn+RwRNIiIuBO4E5Kb1xc4nFrL6jcKs3z489E45XNEsAI4IGe5W1pWaRtJzYB2wKo8+5qZWQHlkwjmAz0l9ZDUgmTyd3aFNrOBUenzs4GnIiLS8nPTs4p6AD2Bv9ZP6GZmVh+qHRqKiC2SxgOPA02BqRHxiqTrgJKImA3cBdybTgavJkkWpO0eIJlY3gL8e0Rs3U2vxczMakHJF/fGpbi4OEpKSgodhpnZHkPSgogork1f/2exmVnGORGYmWWcE4GZWcY5EZiZZVyjnCyW9DGwpNBx1FInYGWhg6gDx19Yjr+w9uT4D46INrXp2Gj+s7iCJbWd/S40SSV7auzg+AvN8RfWnhy/pFqfaumhITOzjHMiMDPLuMaaCO4sdAB1sCfHDo6/0Bx/Ye3J8dc69kY5WWxmZg2nsR4RmJlZA3EiMDPLuEaRCCR1kDRH0hvpz/aVtCmS9LykVyQtkvTNQsSaE89QSUskLZV0RSX1LSX9Nq2fJ6l7AcKsUh7xf1/Sq+l7/aSkgwoRZ1Wqiz+n3TckhaRGdUpgPvFL+tf0d/CKpN80dIxVyeNv50BJf5b0Yvr385VCxFkVSVMlfShpcRX1knRr+voWSTqioWOsSh6xn5/G/LKk5yT1zWvFEVHwBzAJuCJ9fgVwUyVtvgT0TJ9/Hngf2KdA8TYF3gS+ALQAXgIOq9Dm34Bfpc/PBX5b6Pe5hvGfCOydPr9kT4s/bdcGeBp4ASgudNw1fP97Ai8C7dPlLoWOuwax3wlckj4/DFhW6LgrxHc8cASwuIr6rwCPAgKOBuYVOuYaxH5Mzt/MafnG3iiOCEhucj89fT4dOKtig4h4PSLeSJ+/B3wIdG6oACvoDyyNiLci4lNgJslryJX7mn4HfFmSGjDGXak2/oj4c0RsSBdfILm7XGORz/sPcD1wE7CxIYPLQz7xXwzcHhFrACLiwwaOsSr5xB5A2/R5O+C9BoyvWhHxNMl9U6oyDLgnEi8A+0jav2Gi27XqYo+I57b/zVCDz21jSQT7RsT76fN/APvuqrGk/iTfRt7c3YFVoSvwbs7y8rSs0jYRsQUoAzo2SHTVyyf+XBeRfENqLKqNPz2cPyAiHmnIwPKUz/v/JeBLkp6V9IKkoQ0W3a7lE/u1wHBJy4E/AZc2TGj1pqafj8Yq789tg11iQtJ/A/tVUnVV7kJEhKQqz2lNM/O9wKiI2Fa/UVpFkoYDxcAJhY4lX5KaALcAowscSl00IxkeGkzyre5pSb0jYm0hg8rTecC0iLhZ0kCSuxce7s9rw5F0IkkiGJRP+wZLBBFxclV1kj6QtH9EvJ/u6Cs9DJbUFngEuCo9ZCuUFcABOcvd0rLK2iyX1IzkEHlVw4RXrXziR9LJJIn6hIjY1ECx5aO6+NsAhwNz09G4/YDZks6MiMZw67t83v/lJOO7m4G3Jb1OkhjmN0yIVcon9ouAoQAR8bykvUgu5tZYhreqk9fno7GS1AeYApwWEXntcxrL0NBsYFT6fBTwcMUGkloAD5GM3f2uAWOrzHygp6QeaVznkryGXLmv6WzgqUhncBqBauOX1A/4NXBmIxqf3m6X8UdEWUR0iojuEdGdZKy0sSQByO/v5w8kRwNI6kQyVPRWA8ZYlXxifwf4MoCkQ4G9gNIGjbJuZgMj07OHjgbKcoauGzVJBwKzgBER8XreHQs9C57uGzsCTwJvAP8NdEjLi4Ep6fPhwGZgYc6jqIAxfwV4nWSe4qq07DqSHQ4kf/wPAkuBvwJfKPT7XMP4/xv4IOe9nl3omGsSf4W2c2lEZw3l+f6LZHjrVeBl4NxCx1yD2A8DniU5o2ghcGqhY64Q//0kZx1uJjnyuggYB4zLee9vT1/fy43pbyeP2KcAa3I+tyX5rNeXmDAzy7jGMjRkZmYF4kRgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ9/8BPOwzDaUt/UMAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 1\n",
"pp = 101/11, satellite_part = 8\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 189/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -101/11\n",
"Satellite part = -4\n",
"Sigma = -145/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 101/11\n",
"Satellite part = 8\n",
"Sigma = 189/11\n",
"\n",
"**********\n",
"[0, 0, 1, 1] 4\n",
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfx0lEQVR4nO3de3RU5b3/8fcXEhCQi7coihD0h8g9SADxguAVtJXW29EKQpVS2p+XrnMKhSKVHkUrWLuOrvqrVhGlqMULwvJW8bQcaxEkHAOCgogGBaUmKEEkkNv398ce0iHXSWYyk+x8XmvNYmb2fvbznWHmMzvPfmaPuTsiIhJerVJdgIiINC4FvYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhJyCvhkys75mlmNmlupaUsXMfmtmP6nH+pPM7K3GrCkVzCzTzNzM0lJdizRdCvomxsz2RV3Kzawo6vb1kdXuBO5zdzeztmb2mJltN7NvzCzXzMbWo79XK/VZbGbvxdj2NDNbZmb5ZvaVmf3FzHrXo++bIx9YB81sYaVlbczsOTPLiwTZqErN7wN+aWZtYu2vqTCzR8xsS+T/d1I92+aZ2YUJqiMlHxLxvm6k/hT0TYy7H3noAnwKfDfqvsVm1hUYDbwYaZIGfAacB3QGbgeWmFlmjP2NrdTnKuDZGMvtAiwHegPHA+8Ay2JsC/A5cBewoIblbwHjgV3V1P0FsBm4vB79JVUtAboe+Cnwv0kspynpQnyvG6kvd9eliV6APODCSvfdALxRR7sNwJUN6C8TKAMyo+57CZgRY/ujAQeOqWe/dwELa1m+AxhVzf2zgMdj7GMS8FbU7f8i+IDcC6wDzo3cfwKwP/oxAGcA+UB65PaNwAfA18BfgB5R6zrwf4GtwCd11PQWMKkez9MioBwoAvYB0yP/Zw5MJNgxKABmRbVpBcwAtgG7gSXA0ZFln0ba7otcRgCnAn+NrFsALAa6NPLrvEGvG11iv2iPvvkZAGypaaGZHQ+cBmxqwLZvAP7u7nmH7nD377j7b2JsPxLY5e67G9B3Q3wADGpg27VAFkHIPAU8a2ZHuPsuYCVwTdS6E4Bn3L3EzMYBvwSuAI4D/g48XWnb3wOGA30bWFu13H0Ch/+VNy9q8TkEe8gXAL8ysz6R+2+J1HMecCLBh9PvI8tGRv7tEtne24AB90TW7QOcDMypqSYz22Bme2q4PBTjQ0v266bFUdA3P12Ab6pbYGbpBHtgT7j75gZs+wZgYUOKMrNuBAHy7w1p30DfEDwf9ebuf3L33e5e6u6/BdoSBCXAEwRDRphZa+A6gr1pgKnAPe7+gbuXAncDWWbWI2rz97j7V+5e1JDaGujX7l7k7usJhoYOfQBOJdjD3+HuBwlC+6qahpXc/SN3X+HuB909H7if4EOiWu4+0N271HD5aV1Fp+h10+Io6Jufr4GOle80s1YEYVQM3FzfjZrZOQTDFs81oO1xwOvAQ+5eee+2MXUE9jSkoZn93Mw+MLNCM9tDcHzj2MjiZUBfM+sJXAQUuvs7kWU9gP86tNcKfEWwF3xS1OY/a0hNcYo+jrEfODJyvQewNKreDwiG546vbiNmdryZPWNmO81sL/An/vW8JFQKXzctjoK++dlAMDRTITLN8jGCN++V7l7SgO1OBF5w9331aWRmRxG8WZe7+9wG9BuPPgR7r/ViZucSjG9fAxzl7l2AQoLAxt0PEIxljycYtlkU1fwz4MeV9lzbufuqqHUa85Sw9d32Z8DYSvUe4e47a9jW3ZH7B7h7J4LnoMZpvGa2qdKsrejLH2ppl8rXTYujoG9+VgBnmNkRUff9P4LQ+251wwU1TE+MXt6OIPQWVrNspZnNqaFdJ4KDkf9w9xnVLB9lZjUGk5mlRR5Ha6C1mR0RPaQQmTp66HG2iSyPDp3zgFdjqbWSjkApwQHWNDP7FdCp0jpPEhzAvZzDg/4PwEwz6xfps7OZXR1DnxUiU0ePIAjQ9MjjahVZVutzBvwTOKUe3f0BmHtoaMnMjoscZ4Dg8ZdX2l5HggOzhWZ2EjCtto27ez+PmrVV6TK1ujZ1vW6kEaT6aLAuNV+oZtZN5P5ngX+LXO9BsAd2gH/NntgHXB9ZfjLBzJIaZzQQjEFvB6yaZduAi2poNzHS97eV+u4eWT6B4M1cU79zIu2jL3MqPf7KyzMjy7oSzMZpE2Otk4jMuiH4YFkQeV6+INi7r/JcE8yc+Z9qtjUBeC/S/jNgQdQyB/5PHf+vK6t5XKNifM7GERyQ3QP8nH/NukmrtP3JkeutCMa/txAc09gG3B217n8SBP4e4EygH8EspH1ALvAfwI4Ev65rfd3okviLRZ54aUbMrC/BAcNhXsd/oJmNB/q5+8wG9NMNWOLuZzWwzkeBZ939Lw1pX8e2fwtsc/eHIrfjqrWGPv4KPOXujyZqmzH02WjPmbRcCnqRapjZUIJhspPdvdpZTiLNhcboRSoxsyeAN4CfKeQlDLRHLyISctqjFxEJuZSc2vTYY4/1zMzMVHQtItJsrVu3rsDdj6tvu5QEfWZmJjk5OanoWkSk2TKz7Q1pp6EbEZGQU9CLiIScgl5EJOQU9CIiIaegFxEJuYQEvZmNifzY8UdmprPRiYg0IXEHfeQXeH4PjCX46bTrIifdEhGRJiAR8+iHAR+5+8cAZvYMwalU30/AtpukUaPi38bKlfFvQ6Ql0fuu4RIxdHMSh/902g4O/1k1AMxsipnlmFlOfn5+AroVEZFYJO2bse7+CPAIQHZ2drM+k1pL3SsQSSW97xouEXv0Owl+xeiQbpH7RESkCUhE0K8FeplZTzNrA1wLLE/AdkVEJAHiHrpx91Izu5ngx35bE/x+5qa4KxMRkYRIyBi9u78CvJKIbYmISGLpm7EiIiGnoBcRCTkFvYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnIJeRCTk4gp6M7vazDaZWbmZZSeqKBERSZx49+g3AlcAbyagFhERaQRp8TR29w8AzCwx1YiISMIlbYzezKaYWY6Z5eTn5yerWxGRFq/OPXozewM4oZpFs9x9WawdufsjwCMA2dnZHnOFIiISlzqD3t0vTEYhIiLSODS9UkQk5OKdXvl9M9sBjABeNrO/JKYsERFJlHhn3SwFliaoFhERaQQauhERCTkFvYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnIJeRCTkFPRyGHcnLy+Pp59+mrvuugt3T3VJIhKntHgam9l84LtAMbAN+KG770lAXZJExcXFrF+/njfffJMVK1bw1VdfceDAAU444QRuv/32VJcnInGKK+iBFcBMdy81s3uBmcAv4i9LGltBQQFr165lxYoVvP3227g7ZWVldO7cmYyMDPbs2UPv3r1TXaaIJEBcQe/ur0fdXA1cFV85LceoUcntz72coqKtFBau4uuv/0JR0TbMjP790+jSpQtpaYe/FIqKihg4cGByi5QmKdmv1ZqsXJnqCpqvePfoo90I/LmmhWY2BZgC0L179wR2K7HYvv3X5Oc/R6tW7Wjd+kjS04/HzDjmmOrXT0tLo1evXsktUkQahdV1sM3M3gBOqGbRLHdfFllnFpANXOExHL3Lzs72nJycBpQrDbVr1y5mzpzJhg0byMjIqLIHX9nOnTsZPnw4w4YNo1evXvTo0YMTTzyR1q1bJ6liEanMzNa5e3a928U7q8LMJgE/Bi5w9/2xtFHQp0ZpaSkPP/wwjz/+OEceeSQdO3ascd3i4mL27dvHgQMHSE9Pr5h907NnT/r27Uv//v3p2bMnPXr04KijjsLMkvUwRFqslAS9mY0B7gfOc/f8WNsp6FNr9erVzJw5k2+//ZaMjIwqIX3gwAF2795NmzZtKCkpoV27drRv3560tDSKioooKiqitLSU9PR0SktL6dChA71796Z///707t2bzMxMunfvzhFHHJGiRygSTqkK+o+AtsDuyF2r3X1qXe0U9KmXn5/PrFmzWLduHccddxzp6ekVywoKChgxYgSXX345W7duZcOGDXz44Yfs3r27ItzNrOIDoLy8nKKiIvbv30+rVq1o1aoVpaWldO3alT59+tC/f39OPfVUMjMz6dq1K61a6esbIg2RsqGbhlDQNw2lpaU8/vjjPPzww3To0IFOnToB8MUXXzB9+nSuueaaw9bft28feXl5bN++nffff5+NGzfy0UcfUVJSUhHu6enptG/fnrZt21JcXExRUdFhwz9mxqmnnkrfvn3p168fPXv2JDMzk86dO6fiKRBpVhT00mDr1q1jxowZFBYWkpGRQUFBAQ8++CBDhw6ts6278+WXX5KXl8cnn3zChg0b+OCDD9i5cyetWrXC3SktLaV9+/a0a9euYvhn//79lJWVkZ6eTklJCZ06daJPnz5Mnz6dHj16JOFRizQ/CnqJy1dffcXs2bNZvXo1Zsarr77Kcccd1+DtFRcXs2PHDvLy8g4b/tmzZw+tW7emrKwMM6v4ACgvL6egoIAFCxYwaNCgBD4ykfBQ0EvcysvLWbRoEcuXL+e5555rlJk0e/fuJS8vj7y8PDZt2sSmTZv4+OOPKSsrA+D111/XMI5IDRT0kjCHxtKT2d+uXbvYs2cPffr0SVq/Is1NQ4Ne0x+kimTPiTezihk6leXl5dG/f/+Yt3XWWWdVue/QzsycOXMOux3t7rvvbnCfAC+++CLvv/9+vdocOlPowoULq12+cuVKvvOd79Rrm2GVm5vLiBEj6NevHwMHDuTPfz78S/jPPPMMc+fOZfPmzYwYMYK2bdty3333HbbOjTfeSEZGRr3/b8NAQS+hsmrVqir3LV68mPnz53PgwAHmzZvH4sWLq6wTHfQN0ZCgnzp1Km+99RaffvopN910Ezt37oyrhvoqLS1Nan/xaN++PU8++SSbNm3itdde42c/+xl79uypWP7qq68yZswYjj76aB544AF+/vOfV9nGpEmTeO2115JYddOhoJdm4+OPP2bw4MGsXbuWTZs2MWzYMLKyshg4cCBbt24F4Mgjj6zSbvz48XTr1o358+fTvXt3xo8ff9jyGTNmUFRURFZWFtdffz0AZWVl/OhHP6Jfv35cfPHFFBUVAbBt2zbGjBnDkCFDOPfcc9m8eTOrVq1i+fLlTJs2jaysLLZt28Yf//hHhg4dyqBBg7jyyivZv7/ql8Yfeughnn76aRYsWMA999zDSSedVONjf+eddxgxYgSDBw/mrLPOYsuWLQCMHDmS3NzcivXOOecc1q9fz7fffsuNN97IsGHDGDx4MMuWLQNg4cKFXH755Zx//vlccMEF1fa1cuVKRo0axVVXXcXpp5/O9ddfX/FXUGZmJgUFBQDk5OQwKnLGszlz5jBx4kTOPfdcevTowQsvvMD06dMZMGAAY8aMoaSkpMbHFovTTjut4txLJ554IhkZGeTnB9/RdHdyc3M544wzyMjIYOjQoYd9L+SQkSNHcvTRR8dVR7Pl7km/DBkyxEVi8cknn3i/fv188+bNnpWV5bm5ue7ufvPNN/uf/vQnd3c/ePCg79+/393dO3ToUGUbixcv9nnz5vkvfvELv/fee33x4sVV1olu98knn3jr1q393XffdXf3q6++2hctWuTu7ueff75/+OGH7u6+evVqHz16tLu7T5w40Z999tmKbRQUFFRcnzVrlj/wwANV+pw6daovWrTIf/3rX/vkyZN9586dhy3/29/+5pdddpm7uxcWFnpJSYm7u69YscKvuOIKd3dfuHCh33bbbe7uvmXLFj/03po5c2ZFzV9//bX36tXL9+3b548//rifdNJJvnv37ir1RPfbqVMn/+yzz7ysrMzPPPNM//vf/+7u7j169PD8/Hx3d1+7dq2fd9557u5+xx13+Nlnn+3FxcWem5vr7dq181deecXd3b/3ve/50qVLq/Qzb948HzRoUJXLLbfcUmNt7u5r1qzx008/3cvKytzdfd26dT5hwoTD1rnjjjt8/vz5Vdoeej01V0CONyBzE3n2SpFGkZ+fz7hx43jhhRfo27cvACNGjGDu3Lns2LGDK664otYzbV533XWYGXPmzGH69Okx/WpWz549ycrKAmDIkCHk5eWxb98+Vq1axdVXX12x3sGDB6ttv3HjRm6//Xb27NnDvn37uOSSS6qs89BDD7F9+3ZKS0v51a9+VWs9hYWFTJw4ka1bt2JmFXvIV199NXfeeSfz589nwYIFTJo0CQhmLy1fvrxinPrAgQN8+umnAFx00UV17tkOGzaMbt26AZCVlUVeXh7nnHNOrW3Gjh1Leno6AwYMoKysjDFjxgAwYMAA8vLyqqw/bdo0pk2bVus2K/viiy+YMGECTzzxRMU3rF977TXGjh1br+20NAp6afI6d+5M9+7deeuttyqC/gc/+AHDhw/n5Zdf5tJLL+Xhhx/m/PPPr7b9oYPLhw7GxnKwuW3bthXXW7duTVFREeXl5XTp0uWwoZKaTJo0iRdffJFBgwaxcOFCVlZzMnUzIzMzsyKcazN79mxGjx7N0qVLycvLqxgyad++PRdddBHLli1jyZIlrFu3Dgj+Un/++eer/HjMmjVr6NChQ539VX78h8bz09LSKC8vB4IPj+ratGrVivT09Irn+dC3piubP39+tcdLRo4cyQMPPFDl/r1793LZZZcxd+5czjzzzIr7X3/9dZ5//vk6H1NLpjF6afLatGnD0qVLefLJJ3nqqaeAYLz+lFNO4dZbb2XcuHFs2LAhrj4OfUO3Np06daJnz548++yzQBCm69evB6Bjx4588803Fet+8803dO3alZKSkmrDrL4KCwsrxvArz9KZPHkyt956K0OHDuWoo44C4JJLLuHBBx+s+Ovl3XffjbsGCMboD32YxBuu06ZNIzc3t8qlupAvLi7m+9//PjfccANXXfWv3zcqLCyktLSUY2r6YQUBFPTSTHTo0IGXXnqJ3/3udyxfvpwlS5bQv39/srKy2LhxIzfccENc258yZQoDBw6sOBhbk8WLF/PYY48xaNAg+vXrV3GQ89prr2X+/PkMHjyYbdu2ceeddzJ8+HDOPvtsTj/99LhqA5g+fTozZ85k8ODBVfaOhwwZQqdOnfjhD39Ycd/s2bMpKSlh4MCB9OvXj9mzZ8ddA8Add9zBbbfdRnZ2dlJ/m2DJkiW8+eabLFy4kKysLLKyssjNzWXFihVceOGFFevt2rWLbt26cf/993PXXXfRrVs39u7dCwRDeCNGjGDLli1069aNxx57LGn1p5q+MCXSzH3++eeMGjWKzZs3t7gzg06ePJnJkycfNpQTZvrClEgL9OSTTzJ8+HDmzp3b4kIe4NFHH20xIR8P7dGLtFDvvfceEyZMOOy+tm3bsmbNmhRVJHVp6B69Zt2ItFADBgyIaQaRNH8t7289EZEWRkEvIhJyCnoRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5Bb2ISMjFFfRmdqeZbTCzXDN73cxOTFRhIiKSGPHu0c9394HungW8BNT+6wkiIpJ0cQW9u++NutkBSP6Jc0REpFZxn+vGzOYCNwCFwOha1psCTAHo3r17vN2KiEiM6jx7pZm9AZxQzaJZ7r4sar2ZwBHufkddnerslSIi9ddoZ6909wvrWidiMfAKUGfQi4hI8sQ766ZX1M1xwOb4yhERkUSLd4z+N2bWGygHtgNT4y9JREQSKa6gd/crE1WIiIg0Dn0zVkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnIJeRCTkFPQiIiGnoBcRCTkFvYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhFxCgt7M/sPM3MyOTcT2REQkceIOejM7GbgY+DT+ckREJNHSErCN3wHTgWUJ2JYk2ahRqa4gsHJlqitoevR/I4kS1x69mY0Ddrr7+hjWnWJmOWaWk5+fH0+3IiJSD+buta9g9gZwQjWLZgG/BC5290IzywOy3b2grk6zs7M9JyenAeWKiLRcZrbO3bPr267OoRt3v7CGDgcAPYH1ZgbQDfhfMxvm7rvqW4iIiDSOBo/Ru/t7QMah2/XZoxcRkeTRPHoRkZBLxKwbANw9M1HbEhGRxNEevYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnIJeRCTkFPQiIiGnoBcRCbm4gt7M5pjZTjPLjVwuTVRhIiKSGGkJ2Mbv3P2+BGxHREQagYZuRERCLhFBf7OZbTCzBWZ2VE0rmdkUM8sxs5z8/PwEdCsiIrEwd699BbM3gBOqWTQLWA0UAA7cCXR19xvr6jQ7O9tzcnLqX62ISAtmZuvcPbu+7eoco3f3C2Ms4I/AS/UtQEREGle8s266Rt38PrAxvnJERCTR4p11M8/MsgiGbvKAH8dbkIiIJFZcQe/uExJViIiINA5NrxQRCTkFvYhIyCnoRURCTkEvIhJyCnoRkZBT0IuIhJyCXkQk5BT0IiIhp6AXEQk5Bb2ISMgp6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnIJeRCTkFPQiIiEXd9Cb2S1mttnMNpnZvEQUJSIiiZMWT2MzGw2MAwa5+0Ezy0hMWSIikihxBT3wE+A37n4QwN2/jL8kaYlGjUp1BU3PypWprkDCIt6hm9OAc81sjZn9j5kNrWlFM5tiZjlmlpOfnx9ntyIiEqs69+jN7A3ghGoWzYq0Pxo4ExgKLDGzU9zdK6/s7o8AjwBkZ2dXWS4tm/ZeRRpPnUHv7hfWtMzMfgK8EAn2d8ysHDgW0C67iEgTEe/QzYvAaAAzOw1oAxTEuU0REUmgeA/GLgAWmNlGoBiYWN2wjYiIpE5cQe/uxcD4BNUiIiKNQN+MFREJOQW9iEjIKehFREJOQS8iEnKWikkyZvYNsCXpHSfOsTTvaaTNuf7mXDuo/lRr7vX3dveO9W0U7/TKhtri7tkp6jtuZpaj+lOjOdcOqj/VwlB/Q9pp6EZEJOQU9CIiIZeqoH8kRf0miupPneZcO6j+VGuR9afkYKyIiCSPhm5EREJOQS8iEnJJCXozO9rMVpjZ1si/R1WzTpaZvR35kfENZvZvyaitNmY2xsy2mNlHZjajmuVtzezPkeVrzCwzBWVWK4ba/93M3o881/9tZj1SUWdN6qo/ar0rzczNrElNmYulfjO7JvJ/sMnMnkp2jbWJ4fXT3cz+ZmbvRl5Dl6aizuqY2QIz+zJyVt3qlpuZPRB5bBvM7Ixk11ibGOq/PlL3e2a2yswG1blRd2/0CzAPmBG5PgO4t5p1TgN6Ra6fCHwBdElGfTXU3BrYBpxCcJ799UDfSuv8FPhD5Pq1wJ9TVW8Dah8NtI9c/0lTqT3W+iPrdQTeBFYD2amuu57Pfy/gXeCoyO2MVNddz/ofAX4Sud4XyEt13VG1jQTOADbWsPxS4FXACH4db02qa65n/WdFvW7GxlJ/soZuxgFPRK4/AXyv8gru/qG7b41c/xz4EjguSfVVZxjwkbt/7MHpmJ8heBzRoh/Xc8AFZmZJrLEmddbu7n9z9/2Rm6uBbkmusTaxPPcAdwL3AgeSWVwMYqn/R8Dv3f1rAHf/Msk11iaW+h3oFLneGfg8ifXVyt3fBL6qZZVxwJMeWA10MbOuyamubnXV7+6rDr1uiPG9m6ygP97dv4hc3wUcX9vKZjaMYE9iW2MXVouTgM+ibu+I3FftOu5eChQCxySlutrFUnu0mwj2cJqKOuuP/Ll9sru/nMzCYhTL838acJqZ/cPMVpvZmKRVV7dY6p8DjDezHcArwC3JKS0h6vv+aMpieu8m7BQIdfyIeAV3dzOrcU5n5JN1EcGvVZUnqj6pnpmNB7KB81JdS6zMrBVwPzApxaXEI41g+GYUwR7Zm2Y2wN33pLKoergOWOjuvzWzEcAiM+uv92zymNlogqA/p651Exb0XvuPiP/TzLq6+xeRIK/2z1Qz6wS8DMyK/EmVSjuBk6Nud4vcV906O8wsjeBP2N3JKa9WsdSOmV1I8EF8nrsfTFJtsair/o5Af2BlZKTsBGC5mV3u7g06F0iCxfL87yAYWy0BPjGzDwmCf21ySqxVLPXfBIwBcPe3zewIghOGNaUhqJrE9P5oysxsIPAoMNbd68ycZA3dLAcmRq5PBJZVXsHM2gBLCcbOnktSXbVZC/Qys56R2q4leBzRoh/XVcBfPXKEJMXqrN3MBgMPA5c3sfFhqKN+dy9092PdPdPdMwnGKZtKyENsr50XCfbmMbNjCYZyPk5ijbWJpf5PgQsAzKwPcASQn9QqG245cENk9s2ZQGHU0HKTZ2bdgReACe7+YUyNknQU+Rjgv4GtwBvA0ZH7s4FHI9fHAyVAbtQlK1VHvv1fR+c/JDhWMCty338ShAoEL+5ngY+Ad4BTUllvPWt/A/hn1HO9PNU116f+SuuupAnNuonx+TeC4af3gfeAa1Ndcz3r7wv8g2BGTi5wcaprjqr9aYJZeyUEfzndBEwFpkY997+PPLb3muBrp676HwW+jnrv5tS1TZ0CQUQk5PTNWBGRkFPQi4iEnIJeRCTkFPQiIiGnoBcRCTkFvYhIyCnoRURC7v8DRJneryOgr2UAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 2\n",
"pp = -85/11, satellite_part = -4\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -129/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAihUlEQVR4nO3de3hU5bn38e+dcJKznCwKiHp54hg0oKggYlXQVquV/eoWBBWQdiO6fQuVrShVqVto6SturScoarEWKqftEa1Si1QwSFRQkKJRQZSAEEAChHC/f6whDSGHNZNMJiv8Ptc1V2bWep617pms+c2aZ62ZMXdHRESiKy3VBYiISOUoyEVEIk5BLiIScQpyEZGIU5CLiEScglxEJOIU5ElkZvXN7GMza5vqWo5EZvZbM/tZHO2HmdmSZNaUCmbW0czczOqkuhZJDgV5gszsFTPbFbsUmNm+YrcfizUbCbzt7ptifcaa2Soz22lmn5vZ2DjWd4GZfWRm281sq5nNM7PjQvatb2bTzeyL2LqzzWxggvd1V+y+fhSy7ylmtsDMcs3sOzN7zcxOjWPdo80sy8z2mtnMEvPqmdlfzCwnFlT9SnT/DfBfZlYv7PpqCjN7wszWmtkBMxsWZ98cM/thFdWRkheBym43RxoFeYLcfaC7N3b3xsAsYPLB2+4+KtZsFPBssW4GXA8cDQwARpvZNSFX+TFwibs3B44F1gG/D9m3DvAVcD7QDLgLmG1mHcN0Ln5fY/d3KTAn5LqbAwuBU4FjgOXAgpB9Ab4G7gdmlDF/CTAY+KaUujcBa4DL41hftSonID8Afg68X43l1CTNqdx2c2Rxd10qeQFmAveXmNYByAfqlNNvGvBwAuurDzwAfFxs2h3Ai3Es40PgpwmsuyNQCHQsNu1F4I6Q/VsADrSMc733AzPLmb8B6FfK9DuBP4RcxzBgSbHbDxG8AO4AVgB9YtN/AOwufh+AM4BcoG7s9o3AJ8A24DXg+GJtHfgPghfjzyuoaQkwLI7H6VngQGzb2wWMi/3PHBgKfAlsAe4s1icttv2sB7YCs4EWsXlfxvruil16AycBb8babiHYkWke77YU5/8/oe3mSLlojzx5ugKfufv+0maamQF9gNVhF2hmHcxsO8GT9BfA5IPz3P2/3f1HIZdzDHBKPOsu5nrg7+6eU2zdP3L3/w7Zvy/wjbtvTWDdifgE6J5g3/eADIIQeQ6YY2YN3P0bYDHwb8XaDgGed/cCM7sC+C/gKqA18HfgTyWW/RPgLKBTgrWVyt2HEITvjz14BzW52OzzCPZwLwTuNrPTY9NvidVzPsG7vW3AI7F5fWN/m8eW9w+Cd5YPxNqeDrQHJpZVk5l9GBsSLO3yaMi7Vt3bTaQoyJOnObCznPkTCR7/P4RdoLt/6cHQSiuC4ZE18RZlZnUJ9qCedve4+xME+cwE+mFm7QgC4vZE+idoJ8H/Im7u/kd33+ru+939twTvhA6O0z5NMKSDmaUD1/KvYbRRwAPu/knshfzXQIaZHV9s8Q+4+3funp9IbQn6lbvnu/sHBEM3B1/gRhHsoW9w970E2+bVZQ37uPs/3f11d9/r7rnAVIIXgVK5ezd3b17G5ecVFZ2i7SZSFORxMLPrih3we6WC5tuAJmUsZzRBIF4We+LExd2/IwiSBfEchDKzNIKw2QeMjne9ZnYewbDCXxLo2xpYBDzq7iX3TpOpCbA9kY5m9gsz+8TM8mLvhJoRvIhCMF7bycxOAC4C8tx9eWze8cBDB/c6ge8I9mKLH5z+KpGaKqn4cYTdQOPY9eOBecXq/YRg+OyY0hZiZseY2fNmttHMdgB/5F+PS5VK4XYTKQryOLj7LP/XQb+Kzvr4EDihZNCa2Y0E45EXuvuGSpRTB2gDNA3TODaUM53gyflTdy9IYJ1DgbnuviueTmZ2NMGTcaG7T0pgvZVxOsHeZ1zMrA/B+PK/AUfH3gnlEQQy7r6HYCx5MMGwSvGD2l8BN5fY8zzK3ZcWa5PMrx2Nd9lfAQNL1NvA3TeWsaxfx6Z3dfemBI+BlbVwM1td4qyn4pfHyumXyu0mUhTkSRIL6X8CvQ5OM7PrCJ4EF7n7ZyX7mNliM5tY2vLM7CozO9XM0mJ7KVOBlbG9c8xsopktLqek3xOE2o9Leztfxul7xecfRRBqM+OsuynBwb533P2OUub3M7Myg8fM6phZAyAdSDezBsVfHC04tbJB7Ga92PzioXI+8Eqx9mXWWkITYD/BAcw6ZnY3h79oPkNwgPRyDg3yx4DxZtY5ts5mZjYoxDqLxE6tbEAQkHVj9ystNq/cxwz4FjgxjtU9Bkw6OPRjZq1j4/wQ3P8DJZbXhODAZ54Fp8CWexqtu3cutgNU8jKqtD4VbTdyKAV5cj1OsLd20P1AS+C9MvZI2gPvlLGs44BXCcZ8PyJ4cl0Zpm/sCXozwYG7b4qt+7rY/PbFlluWnxAMUbxVyrzy6r4S6AncUGJPrEOxvkvL6AvBsYB8gncxg2PX7yo2f21s2nEET/x8gqECLPggVidgfshai3uN4PH+FPgC2EOJ4RB3f4fg//C+u39RbPo84EHg+djQwyog9Hn7MYti9+Uc4InY9YMHHit6zB4A7ooNlfwixLoeIjjVb5GZ7QTeJTgQi7vvBiYB78SWdzbwK4KzdPKAl4C5cd63MCrabqQYc9cPSySLmdUHVhIMo2yqoG07YLa7n5PgurJj64n7qL6ZDQY6u/v4BPpWtu6ngDnu/loi/StY9m+B9e7+aOx2pWotYx1vAs+5+1NVtcwQ60zaYybRpCAXSZCZ9QReB9q7e3lnKIkklYZWRBJgZk8DbwC3KcQl1bRHLiIScdojFxGJuKR8o1mrVq28Y8eOyVi0iEittGLFii3u3jqRvkkJ8o4dO5KVlZWMRYuI1Epm9kXFrUqnoRURkYhTkIuIRJyCXEQk4hTkIiIRpyAXEYm4UEFuZs0t+JHbNbHvZ+6d7MJERCScsKcfPgS86u5XW/CL5A2TWJOIiMShwiA3s2YEX585DMDd9xH8woxIaP36pbqCmmXx4lRXILVJmKGVEwi+XP4PZrbSzJ4ys0YlG5nZSDPLMrOs3NzcKi9URERKV+GXZplZJsEXzZ/r7svM7CFgh7tPKKtPZmam65OdIiLhmdkKd89MpG+YPfINwAZ3Xxa7/ReCXwcREZEaoMIgd/dvgK/M7NTYpAuBj5NalYiIhBb2rJVbgFmxM1Y+A25IXkkiIhKPUEHu7tlAQmM3IiKSXPpkp4hIxCnIRUQiTkEuIhJxCnIRkYhTkIuIRJyCXEQk4hTkIiIRpyAXEYk4BbmISMQpyEVEIk5BLiIScQpyEZGIU5CLiEScglxEJOIU5CIiEacgFxGJOAW5iEjEKchFRCJOQS4iEnEKchGRiFOQi4hEnIJcRCTiFOQiIhGnIBcRibg6YRqZWQ6wEygE9rt7ZjKLEhGR8EIFecwF7r4laZWIiEhCNLQiIhJxYYPcgUVmtsLMRpbWwMxGmlmWmWXl5uZWXYUiIlKusEF+nrufAQwE/sPM+pZs4O5PuHumu2e2bt26SosUEZGyhQpyd98Y+7sZmAf0SmZRIiISXoVBbmaNzKzJwevAxcCqZBcmIiLhhDlr5RhgnpkdbP+cu7+a1KpERCS0CoPc3T8DuldDLSIikgCdfigiEnEKchGRiFOQi4hEnIJcRCTiFOQiIhGnIBcRiTgFuYhIxCnIRUQiTkEuIhJxCnIRkYhTkIuIRJyCXEQk4hTkIiIRpyAXEYk4BbmISMQpyEVEIk5BLiIScQpyEZGIU5CLiEScglxEJOIU5CIiEacgFxGJOAW5iEjEKchFRCIudJCbWbqZrTSzF5NZkIiIxCeePfJbgU+SVYiIiCSmTphGZtYOuAyYBNye1IqkSvXrl+oKAosXp7qCmkX/F6lKYffI/x8wDjhQVgMzG2lmWWaWlZubWxW1iYhICBXukZvZj4DN7r7CzPqV1c7dnwCeAMjMzPSqKlAqR3tcNZP+L1KVwuyRnwtcbmY5wPNAfzP7Y1KrEhGR0CoMcncf7+7t3L0jcA3wprsPTnplIiISis4jFxGJuFBnrRzk7ouBxUmpREREEqI9chGRiFOQi4hEnIJcRCTiFOQiIhGnIJeUysnJoUuXLqHbn3POOYdNcw8+fzZx4sRDbhf361//OuF1AsyfP5+PP/44rj7uTk5ODjNnzix1/uLFi/nRj34U1zJrq+zsbHr37k3nzp3p1q0bf/7znw+Z//zzzzNp0iTWrFlD7969qV+/Pr/5zW8OaXPjjTfSpk2buP+3tYGCXCJl6dKlh02bNWsWU6ZMYc+ePUyePJlZs2Yd1qZ4kCcikSAfNWoUS5Ys4csvv+Smm25i48aNlaohXvv376/W9VVGw4YNeeaZZ1i9ejWvvvoqt912G9u3by+a/8orrzBgwABatGjBtGnT+MUvfnHYMoYNG8arr75ajVXXHApyqTE+++wzevTowXvvvcfq1avp1asXGRkZdOvWjXXr1gHQuHHjw/oNHjyYdu3aMWXKFDp06MDgwYd+Xu2OO+4gPz+fjIwMrrvuOgAKCwsZMWIEnTt35uKLLyY/Px+A9evXM2DAAM4880z69OnDmjVrWLp0KQsXLmTs2LFkZGSwfv16nnzySXr27En37t356U9/yu7duw+r69FHH+VPf/oTM2bM4IEHHuC4444r874vX76c3r1706NHD8455xzWrl0LQN++fcnOzi5qd9555/HBBx/w/fffc+ONN9KrVy969OjBggULAJg5cyaXX345/fv358ILLyx1XYsXL6Zfv35cffXVnHbaaVx33XVF72I6duzIli1bAMjKyqJf7Nu9Jk6cyNChQ+nTpw/HH388c+fOZdy4cXTt2pUBAwZQUFBQ5n0L45RTTuHkk08G4Nhjj6VNmzYc/M4mdyc7O5szzjiDNm3a0LNnT+rWrXvYMvr27UuLFi0qVUdkuXuVX84880wXCePzzz/3zp07+5o1azwjI8Ozs7Pd3X306NH+xz/+0d3d9+7d67t373Z390aNGh22jFmzZvnkyZP9l7/8pT/44IM+a9asw9oU7/f55597enq6r1y50t3dBw0a5M8++6y7u/fv398//fRTd3d/9913/YILLnB396FDh/qcOXOKlrFly5ai63feeadPmzbtsHWOGjXKn332Wf/Vr37lw4cP940bNx4y/6233vLLLrvM3d3z8vK8oKDA3d1ff/11v+qqq9zdfebMmX7rrbe6u/vatWv94HNr/PjxRTVv27bNTz75ZN+1a5f/4Q9/8OOOO863bt16WD3F19u0aVP/6quvvLCw0M8++2z/+9//7u7uxx9/vOfm5rq7+3vvvefnn3++u7vfc889fu655/q+ffs8OzvbjzrqKH/55Zfd3f0nP/mJz5s377D1TJ482bt3737Y5ZZbbimzNnf3ZcuW+WmnneaFhYXu7r5ixQofMmTIIW3uuecenzJlymF9D25PUQRkeYKZG9cHgkSSITc3lyuuuIK5c+fSqVMnAHr37s2kSZPYsGEDV111VdHeWmmuvfZazIyJEycybty4UsfISzrhhBPIyMgA4MwzzyQnJ4ddu3axdOlSBg0aVNRu7969pfZftWoVd911F9u3b2fXrl1ccsklh7V59NFH+eKLL9i/fz933313ufXk5eUxdOhQ1q1bh5kV7eEOGjSI++67jylTpjBjxgyGDRsGwKJFi1i4cGHROPGePXv48ssvAbjooosq3DPt1asX7dq1AyAjI4OcnBzOO++8cvsMHDiQunXr0rVrVwoLCxkwYAAAXbt2JScn57D2Y8eOZezYseUus6RNmzYxZMgQnn76adLSggGDV199lYEDB8a1nCONglxSrlmzZnTo0IElS5YUBfm///u/c9ZZZ/HSSy9x6aWX8vjjj9O/f/9S+5sZ8K+DnQdvl6d+/fpF19PT08nPz+fAgQM0b978kKGMsgwbNoz58+fTvXt3Zs6cyeJSvs7QzOjYsWNR+JZnwoQJXHDBBcybN4+cnJyiIY2GDRty0UUXsWDBAmbPns2KFSuA4J30Cy+8wKmnnnrIcpYtW0ajRo0qXF/J+39wPL1OnTocOBB8W/WePXtK7ZOWlkbdunWLHue0tLRSx+OnTJlS6vGKvn37Mm3atMOm79ixg8suu4xJkyZx9tlnF01ftGgRL7zwQoX36UimMXJJuXr16jFv3jyeeeYZnnvuOSAYLz/xxBMZM2YMV1xxBR9++GGl1lG3bt0Kx3GbNm3KCSecwJw5c4AgLD/44AMAmjRpws6dO4va7ty5k7Zt21JQUFBqWMUrLy+vaAy95Fkuw4cPZ8yYMfTs2ZOjjz4agEsuuYSHH3646N3HypUrK10DBGPkB18sKhueY8eOJTs7+7BLaSG+b98+rrzySq6//nquvvrqoul5eXns37+fli1bVqqW2k5BLjVCo0aNePHFF/nd737HwoULmT17Nl26dCEjI4NVq1Zx/fXXV2r5I0eOpFu3bkUHO8sya9Yspk+fTvfu3encuXPRQcRrrrmGKVOm0KNHD9avX899993HWWedxbnnnstpp51WqdoAxo0bx/jx4+nRo8dhe7dnnnkmTZs25YYbbiiaNmHCBAoKCujWrRudO3dmwoQJla4B4J577uHWW28lMzOT9PT0KllmGLNnz+btt99m5syZZGRkkJGRQXZ2Nq+//jo//OEPi9p98803tGvXjqlTp3L//ffTrl07duzYAQRDbL1792bt2rW0a9eO6dOnV1v9qWZhxhPjlZmZ6VlZWVW+XJEj0ddff02/fv1Ys2ZN0bjxkWL48OEMHz78kKGW2srMVrh7ZiJ9j6ytQiRinnnmGc466ywmTZp0xIU4wFNPPXVEhHhlaY9cpJb66KOPGDJkyCHT6tevz7Jly1JUkZSnMnvkOmtFpJbq2rVrqDNwJPqOvPdqUu3cnWXLlrFv375UlyJSKynIJancnccee4zhw4fzy1/+UmEukgQKckkad+fhhx/mySef5Nhjj2XRokW88cYbqS5LpNbRGLkkhbszdepUZs2aVfQFSJdffjkXX3xxqksTqXUU5FLlDhw4wOTJk5kzZ05RiF922WXcfffd1KmjTU6kqulZJVWqsLCQSZMmMX/+/KIQv/LKKxk/fny1flJQ5EiiIJcqs3//fu69915eeumlohAfNGgQ48aNOyI/zCJSXRTkUiUKCgqYMGECixYtok2bNmzevJnBgwfzn//5n6G+jVBEEldhkJtZA+BtoH6s/V/c/Z5kFybRsW/fPsaPH8/ixYtp3bo1mzdv5oYbbmD06NEKcZFqEGaPfC/Q3913mVldYImZveLu7ya5NomAvXv3Mm7cOJYsWUKrVq3Izc3l5ptvZuTIkQpxkWpSYZDHfoJoV+xm3dil6r+gRSJnz5493H777SxbtqwoxG+55RaGDRumEBepRqGOQJlZupllA5uB1939sG/dMbORZpZlZlkHfzRVaq/vv/+eMWPGsHz5clq2bElubi633347N9xwg0JcpJqFCnJ3L3T3DKAd0MvMupTS5gl3z3T3zNatW1dxmVKT7Nq1i9GjR/P+++/TokULtm7dyvjx4w/79XoRqR5xnRPm7tuBt4ABSalGarwdO3bws5/9jFWrVnH00UezdetW7rrrrkN+sFhEqleFQW5mrc2seez6UcBFwJok1yU10Pbt27n55ptZu3YtzZo1Y9u2bdx7771ceeWVqS5N5IgW5qyVtsDTZpZOEPyz3f3F5JYlNc13333HqFGjyMnJoWnTpuTl5TFp0iQuueSSVJcmcsQLc9bKh0CPaqhFaqgtW7YwcuRINm7cSJMmTcjLy+PBBx+kf//+qS5NRNAnO6UC3377LSNGjODbb7+lYcOG7Ny5k6lTp9KnT59UlyYiMQpyKdOmTZsYPnw4W7dupWHDhuzevZuHHnqI3r17p7o0ESlGQS6l2rBhA8OHDycvL48GDRqwZ88e/ud//oeePXumujQRKUFBLof54osvGDFiBDt37qRevXoUFBTw6KOP0qOHDpWI1EQKcjnEZ599xogRI8jPz6du3boUFhby+OOP06XLYZ8BE5EaQkEuRdatW8fIkSPZt28faWlpmBlPPvkkp59+eqpLE5Fy6Nv+BYBPPvmE4cOHU1BQAECdOnUU4iIRoSAXVq1axciRIzlw4AAHDhygQYMGTJ8+nVNOOSXVpYlICAryI9zKlSu5+eabSUtLY//+/TRu3Jjp06dz0kknpbo0EQlJQX4Ey8rK4uc//zl16tRh7969NGvWjOnTp9OxY8dUlyYicVCQH6HeffddRo8eTYMGDdi7dy8tW7ZkxowZtG/fPtWliUicFOS11Pvvv8/OnTtLnbdkyRLGjBnDUUcdRX5+Pm3atGHGjBkce+yx1VyliFQFBXkttGfPHsaMGcMtt9zC999/f8i8t956i9tvv53GjRuze/du2rZty/Tp0znmmGNSVK2IVJaCvBZavnw5+/btY/Xq1dx6663k5+cDsGjRIsaNG0eTJk3YtWsX7du3Z/r06egXnUSiTR8IqoUWLFhAeno6LVu2JDs7m9tuu42BAwdy//3307x5c3bs2MFJJ53E73//e5o3b57qckWkkhTktczOnTtZsmQJLVu2xMz4wQ9+QFZWFsuXL6dVq1Zs376d0047jUceeYSmTZumulwRqQIK8lrmnXfewd1JT08HwMxo27Yt7k5ubi5dunRh2rRpNGnSJMWVikhVUZDXMvPnz6du3bqHTDMzzAx3p1WrVhx11FEpqk5EkkEHO2uR7777jvfff7/Mce82bdrw17/+lbvvvpv9+/dXb3EikjQK8lrkb3/7G+5OWlrp/9a0tDTatm3La6+9xn333UdhYWE1VygiyaAgr0Xmzp1b4bBJYWEh6enpzJkzh5dffrmaKhORZNIYeS3x9ddfs2bNmlI/2LN37162bdtGWloa9erVY8CAAVx88cX62TaRWkJBXku8+eabuHvRQc38/Hx27NhBWloajRo14uqrr+bCCy+ke/fuhx0MFZFoU5DXAu7O3LlzMTM2bdpEWloarVq1YtiwYZx//vl06tSpzHFzEYm+CoPczNoDzwDHAA484e4PJbswCS83N5dvv/2WDh068OMf/5g+ffpw4oknYmapLk1EqkGYPfL9wP919/fNrAmwwsxed/ePk1ybhNS6dWv+93//lxYtWqS6FBFJgQqD3N03AZti13ea2SfAcYCCvAz9+lX3Gg0oPcQXL67WQiRiqn9bLZ2208qJa+DUzDoCPYBlpcwbaWZZZpaVm5tbReWJiEhFzN3DNTRrDPwNmOTuc8trm5mZ6VlZWVVQnojIkcHMVrh7ZiJ9Q+2Rm1ld4AVgVkUhLiIi1avCILfg1IfpwCfuPjX5JYmISDzC7JGfCwwB+ptZduxyaZLrEhGRkMKctbKE4LQIERGpgfRxPxGRiFOQi4hEnIJcRCTiFOQiIhGnIBcRiTgFuYhIxCnIRUQiTkEuIhJxCnIRkYhTkIuIRJyCXEQk4hTkIiIRpyAXEYk4BbmISMQpyEVEIk5BLiIScQpyEZGIU5CLiEScglxEJOIU5CIiEacgFxGJOAW5iEjEKchFRCJOQS4iEnEVBrmZzTCzzWa2qjoKEhGR+ITZI58JDEhyHSIikqAKg9zd3wa+q4ZaREQkAVU2Rm5mI80sy8yycnNzq2qxIiJSgSoLcnd/wt0z3T2zdevWVbVYERGpgM5aERGJOAW5iEjEhTn98E/AP4BTzWyDmd2U/LJERCSsOhU1cPdrq6MQERFJjIZWREQiTkEuIhJxCnIRkYhTkIuIRJyCXEQk4hTkIiIRpyAXEYk4BbmISMQpyEVEIk5BLiIScQpyEZGIU5CLiEScglxEJOIU5CIiEacgFxGJOAW5iEjEKchFRCJOQS4iEnEKchGRiFOQi4hEnIJcRCTiFOQiIhGnIBcRiTgFuYhIxIUKcjMbYGZrzeyfZnZHsosSEZHwKgxyM0sHHgEGAp2Aa82sU7ILExGRcOqEaNML+Ke7fwZgZs8DVwAfJ7OwVOnXr/LLWLy48ssQOZJUxfMOjtznXpihleOAr4rd3hCbdggzG2lmWWaWlZubW1X1iYhIBcLskYfi7k8ATwBkZmZ6VS23uh2pr+giqaTnXeWE2SPfCLQvdrtdbJqIiNQAYYL8PeBkMzvBzOoB1wALk1uWiIiEVeHQirvvN7PRwGtAOjDD3VcnvTIREQkl1Bi5u78MvJzkWkREJAH6ZKeISMQpyEVEIk5BLiIScQpyEZGIM/eq/+yOme0E1lb5gqtHK2BLqouoBNWfWqo/taJc/6nu3iSRjlX2yc4S1rp7ZpKWnVRmlhXV2kH1p5rqT60o129mWYn21dCKiEjEKchFRCIuWUH+RJKWWx2iXDuo/lRT/akV5foTrj0pBztFRKT6aGhFRCTiFOQiIhFXJUFuZi3M7HUzWxf7e3QpbTLM7B9mttrMPjSz/1MV605URT8obWb1zezPsfnLzKxjCsosU4j6bzezj2OP9V/N7PhU1FmWsD/obWY/NTM3sxp1SlmY+s3s32L/g9Vm9lx111iWENtOBzN7y8xWxrafS1NRZ1nMbIaZbTazVWXMNzObFrt/H5rZGdVdY1lC1H5drOaPzGypmXUPtWB3r/QFmAzcEbt+B/BgKW1OAU6OXT8W2AQ0r4r1J1BvOrAeOBGoB3wAdCrR5ufAY7Hr1wB/TkWtlaj/AqBh7PrPolZ/rF0T4G3gXSAz1XXH+fifDKwEjo7dbpPquuOo/QngZ7HrnYCcVNddor6+wBnAqjLmXwq8AhhwNrAs1TXHUfs5xbaZgWFrr6qhlSuAp2PXnwZ+UrKBu3/q7uti178GNgOtq2j98Sr6QWl33wcc/EHp4orfp78AF5qZVWON5amwfnd/y913x26+S/DLTjVFmMcf4D7gQWBPdRYXQpj6RwCPuPs2AHffXM01liVM7Q40jV1vBnxdjfVVyN3fBr4rp8kVwDMeeBdobmZtq6e68lVUu7svPbjNEMfztqqC/Bh33xS7/g1wTHmNzawXwd7A+ipaf7zC/KB0URt33w/kAS2rpbqKhfpB7GJuIthDqSkqrD/2dri9u79UnYWFFObxPwU4xczeMbN3zWxAtVVXvjC1TwQGm9kGgt8huKV6Sqsy8T4/aqrQz9vQH9E3szeAH5Qy687iN9zdzazMcxpjr4zPAkPd/UDY9UtizGwwkAmcn+pawjKzNGAqMCzFpVRGHYLhlX4Ee1Vvm1lXd9+eyqJCuhaY6e6/NbPewLNm1kXP1+pjZhcQBPl5YdqHDnJ3/2E5K/3WzNq6+6ZYUJf6NtLMmgIvAXfG3vKkSpgflD7YZoOZ1SF4i7m1esqrUKgfxDazHxK80J7v7nurqbYwKqq/CdAFWBwbzfoBsNDMLnf3hL+PogqFefw3EIxvFgCfm9mnBMH+XvWUWKYwtd8EDABw93+YWQOCL6OqKcNDFYn0D8abWTfgKWCgu4fKnKoaWlkIDI1dHwosKKW4esA8grGrv1TRehMV5geli9+nq4E3PXYEogaosH4z6wE8Dlxeg8ZnDyq3fnfPc/dW7t7R3TsSjBXWlBCHcNvPfIK9ccysFcFQy2fVWGNZwtT+JXAhgJmdDjQAcqu1yspZCFwfO3vlbCCv2NBvjWZmHYC5wBB3/zR0xyo6EtsS+CuwDngDaBGbngk8Fbs+GCgAsotdMlJ49PhS4FOCcfo7Y9PuJQgMCDbeOcA/geXAiamqNcH63wC+LfZYL0x1zfHUX6LtYmrQWSshH38jGB76GPgIuCbVNcdReyfgHYIzWrKBi1Ndc4n6/0Rw1lsBwTufm4BRwKhij/0jsfv3UU3adkLU/hSwrdjzNivMcvURfRGRiNMnO0VEIk5BLiIScQpyEZGIU5CLiEScglxEJOIU5CIiEacgFxGJuP8PxIvnAhMKSVsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAn5UlEQVR4nO3de5xVddn//9ebo6ggIJgEKlR4ImXQEdIEUVPBSrwzFRVEpYiK9P7VjZmHNJXiFu67OylSSgI8Jh75ZUaWcntWhkQFTDlEHDQdQFDkIIfr+8dacG+GGWbPzGb24Ho/H4/9YK/PYa1rL/bsa6/PZ+21FBGYmVl2NSp2AGZmVlxOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhnnRNCASWouaZ6kDsWOJYsk/Zekb9eg/SWSnt2dMRWDpM6SQlKTYsdiu4cTQZFIelzS2vSxSdLHOcu3pc2GAU9HxDtpn5GS5kj6UNI/JI2swfZOlvS6pNWSVkp6WFLHPPs2l3SHpH+m254tqX8tX+va9LW+nmffQyU9Kqlc0ipJ0yUdVoNtj5BUJmmjpEkV6ppJekDS4vSDrm+F7mOBqyU1y3d7DUEB9tliSV8qUCxFSSJ13QdZ40RQJBHRPyL2jYh9gbuBW7YtR8TwtNlw4M6cbgIuBtoA/YARkgbmucl5wBkR0Rr4NDAf+HWefZsAS4GTgP2Aa4H7JXXOp3Pua01f7/PA1Dy33RqYBhwGfAp4GXg0z74AbwM3AxOrqH8WGAT8q5K43wH+DpxVg+3Vqyo+YFtTt332SdAa74P8RYQfRX4Ak4CbK5QdDKwHmuyi363AuFpsrznwM2BeTtlVwB9qsI7XgHNqse3OwBagc07ZH4Cr8uzfFghg/xpu92Zg0i7qlwF9Kym/Bvhdntu4BHg2Z/kXJAn0A2AW0DstPxBYl/sagGOAcqBpunwZ8AbwPjAdOCSnbQDfJUnm/yjkPiP54rE1fe+tBa5M/88CGAIsAVYA1+T0aZS+fxYCK4H7gbZp3ZK079r0cTzwWeDJtO0Kki9CrWv6Xqrh/3+t3jdZefiIoOE6ClgUEZsrq5QkoDcwN98VSjpY0mqSP/L/AG7ZVhcRoyPiK3mu51PAoTXZdo6LgWciYnHOtr8SEaPz7N8H+FdErKzFtmvjDaB7LfvOBEpIPoTuAaZK2isi/gXMAM7LaTsYuC8iNkkaAFwNfA1oDzwD3Fth3WcDvYAj84gj730WEYNJPry/GskR3C051SeSfMM+FfixpCPS8u+l8ZxEcrT5PvCrnG1D8kG/b0S8QHJk+7O07RHAQcANVcUk6bV0SLOyx/g8Xv+2OOrzfbNnKXYm8qPKI4KLgBd30ecnwKtA81psry3wQ+ALtejbFPgLcHstX+sC4JJa9u0ELAcuqEXf2h4RnEaSkPPZxiXkHBFUUv8+0D19fj7wXPq8McnQVM90+XFgaE6/RiRHEIekywGcsrv2GbAY+FLOcud0m51yyl4GBqbP3wBOzanrAGwiGVLc1ndXR7ZnA6/U5j2xu983WXn4iKAeSbooZ8L08Wqavw+0rGI9I0i+WX85IjbWNI6IWAVMBh6tySSepEYkQwcfAyNqul1JJ5IMizxQi77tgT8D4yOi4rfj3aklsLo2HSX9h6Q3JK1Jj8T2A9ql1Y8CR0rqQpJs1kTEy2ndIcAvtn3rBVaRfIvOndxfmsf2C73PcudR1gH75sT7cE68b5AM/32qirg+Jek+ScslfQDcxf/tl4Iq4vtmj+JEUI8i4u74v0nT6s66eQ3oUvGDWtJlJOOxp0bEsjqE0wQ4AGiVT+N0KOoOkj/ucyJiUy22OQR4KCLW1qSTpDYkf8zTImJULbZbF0eQHHnViKTeJOPr5wFtIpmkX0PygU5EbCAZSx9EMiyUe1LAUuBbEdE659EiIp7PabPLywbXcZ/V9JLES4H+FeLdKyKWV7Gun6blR0VEK5J9oKpWLmluhbPOch+37aJfMd83exQnggYq/ZBfAPTcVibpIpI/otMiYlHFPpJmSLqhsvVJ+pqkwyQ1Sr8l/TfJ4fiqtP4GSTN2EdKvST4UvxoR6ytZf2WnX+bWtyD5UJxUw7hbkUyWPhcRV1VS31dSlR9ckppI2otk+KWxpL1yk6uSU2P3ShebpfW5H0onkQzVVBtrBS2BzSQTwE0k/Zidk+4UkuGks9gxEdwG/EhSt3Sb+0k6N49tbouxTvsMeBf4TL7bS+MdJemQdP3t03kOSF7/1grra0kycbxGySnMuzwNOiK65XyBqvgYXlmf6vaB7ciJoGG7neTb4jY3A/sDM6v4RnQQ8FwV6+oI/An4EHid5I/z3/Lpm/6Bf4tk4vNfOdu+KK0/KGe9VTmbZIjlqUrqdhX3vwHHAZdW+CZ4cE7f56voC8mprutJjqIGpc+vzal/My3rSPLBsZ5kqAMlP+Q7Engkz1hzTSfZ328B/wQ2UGE4JyKeI/l/+FtE/DOn/GHgP4H70qGTOUDev9ug7vvsZ8C16VDPf+SxvV+QnKr5Z0kfAi+STGQTEeuAUcBz6fq+QDK/dQzJEdJjwEM1eG35qm4fWA6lkynWAElqDrxCMgz0TjVtOwH3R8QJtdzW7HQ7NT6rQtIgoFtE/KgWfesa92+BqRExvTb9q1n3fwELI2J8ulynWKvYxpPAPRHx20KtM49t7rZ9ZnsmJwKzIpF0HPAEcFBEfFjseCy7PDRkVgSSJpOchvvvTgJWbD4iMDPLOB8RmJllXIO8rGy7du2ic+fOxQ7DzGyPMWvWrBUR0b42fRtkIujcuTNlZWXFDsPMbI8h6Z/Vt6qch4bMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyrtpEIOkgSU9JmpdeDvaKStpI0q2SFii5m9AxOXVDJM1PH0MK/QLMzKxu8jl9dDPwg4j4m6SWwCxJT0TEvJw2/YGu6aMXySWLe0lqC1wPlJJcf3yWpGkR8X5BX4WZmdVatYkgverlO+nzDyW9QXLJ3txEMACYEsn1Kl6U1Dq9hG9f4Imca94/AfRj5/uvWj3p27fYEViWzZhR7AisMjWaI5DUGegBvFShqiM7Xmt9WVpWVXll6x4mqUxSWXl5eU3CMjOzOqjJ/Wr3BR4kuVriB4UOJCImABMASktLfSW83eST8I1s7dq1NG3alObNmxc7FLNPhLyOCCQ1JUkCd0dEZXcTWk5y16NtOqVlVZWb1dq4ceM48cQTGTp0KJMnT2bOnDls2lSbWyibGeRxRJDev/UO4I2I+O8qmk0DRki6j2SyeE1EvCNpOvDT9CbSAKcDNb6LlVmuL33pS0ydOpX58+fz6quv0qRJ8jbu0aMHffr0oaSkhK5du24vN7Ndy+cv5Ysk9819Pb2dIcDVwMEAEXEb8EfgTJKbra8DLk3rVkm6CZiZ9rtx28SxWW0de+yxdOjQgXXr1tGhQwcANm/ezJw5c5g5cyZNmjShcePGHHvssfTp04fu3bvz2c9+lkaN/LMZs8o0yBvTlJaWhq8+arvy+9//nrFjx3LggQdWWr9582Y++OADNm7cSKNGjWjdujV33XUXBxxwQD1HalY/JM2KiNLa9PVXJNsj9e/fnyZNmrB58+ZK65s0aULbtm058MAD2bJlC7169aJ9+1pdqt3sE8+JwPZIrVq14swzz2TlypW7bPfee+9xzDHHcN1115FMd5lZRU4Etsc677zziAiqGt4sLy+nY8eOjB07lmbNmtVzdGZ7DicC22MdeuihHHrooaxZs2anuohg3bp1nHfeeey3335FiM5sz+FEYHssSQwZMoQNGzbsUL5+/XpWrFjBAQccwNixY5k0aVKVRw1m5kRge7iTTjqJvffem40bNwLw8ccfs3r1aj796U+zevVq2rVrx6233sqoUaOqnFg2yzonAtujNW/enPPOO4/333+fLVu2UF5ezve//33uuusuevfuvf3I4OGHH+bf//3fWbt2bbFDNmtwnAhsj3f22WcD8O6773L++edzwQUXsPfeezNmzBjOP/983nvvPdq1a8dLL73EpZdeyrvvvlvcgM0aGCcC2+N17NiRE044gd69e/ODH/xg+2miTZo0YeTIkVx55ZWsWLGCVq1asXTpUgYPHsxbb71V5KjNGg7/stg+ET766COaNWtG06ZNK61/+umn+eEPf0jTpk3ZunUrEcHYsWM5/vjj6zlSs93Dvyy2zNtnn32qTAIAffr04Y477tj+a+TmzZvzve99jwcffNBnFFnmORFYZhx55JHcdddddOjQgbVr19K2bVt++tOfMm7cOLZu3Vrs8MyKxonAMuXTn/40kydPpqSkhJUrV9K+fXsmT57MVVddtdPvEcyywonAMqdVq1b88pe/5Mtf/vL2M4qefPJJhg8fzqpVvkq6ZY8TgWVSs2bN+MlPfsLw4cNZsWIFbdq04Y033mDIkCEsWbKk2OGZ1SsnAsssSQwbNowbb7yRNWvW0KJFC1auXMngwYN55ZVXih2eWb2pNhFImijpPUlzqqgfKWl2+pgjaYuktmndYkmvp3U+H9QapC9/+cuMHz+erVu3bv8Nwre+9S2mT59e5MjM6kc+RwSTgH5VVUbEmIgoiYgSkvsR/2+F21GenNbX6vxWs/pQWlrK5MmT2W+//diwYQOtWrXi6quv5ne/+51PL7VPvGoTQUQ8DeQ7g3YBcG+dIjIrki5dujBlyhS6du26/YJ148aN4+abb2bTpk3FDs9stynYHIGkvUmOHB7MKQ7gz5JmSRpWTf9hksoklZWXlxcqLLMaadeuHb/5zW846aSTtl+w7pFHHuGKK67gww8/LHZ4ZrtFISeLvwo8V2FY6MSIOAboD3xXUp+qOkfEhIgojYhS31vWiqlFixbccsstXHjhhZSXl7P//vszc+ZMLr30Uv71r38VOzyzgitkIhhIhWGhiFie/vse8DDQs4DbM9ttGjduzPe//31++MMfsmrVKlq2bMmyZcsYNGgQb775ZrHDMyuogiQCSfsBJwGP5pTtI6nltufA6UClZx6ZNUSSOO+88/j5z3/Ohg0baNq0KRs3buSyyy7jueeeK3Z4ZgWTz+mj9wIvAIdJWiZpqKThkobnNPs34M8R8VFO2aeAZyW9CrwMPBYRfypk8Gb1oXfv3txxxx00b958+wXrrrjiCqZOneoziuwTwZehNsvTO++8w4gRI1i6dCmtW7dm5cqVDBo0iMsvv5zGjRsXOzzLOF+G2qwedOjQgUmTJtGjR4/tF6y76667fME62+M5EZjVQMuWLRk3bhxf/epXKS8vp127djz11FN885vf9AXrbI/lRGBWQ82aNeP666/nO9/5DitWrKB169a89dZbDB48mMWLFxc7PLMacyIwqwVJDB06lJtvvpkPPviAFi1a8P7773PxxRfzt7/9rdjhmdWIE4FZHfTv35/bbrtt+9lDjRo1Yvjw4Tz++ONFjswsf04EZnV0zDHHMHnyZNq0acP69etp1aoV1157Lb/73e+KHZpZXpwIzAqgc+fO3HnnnRx22GGsXr0agNmzZxc1JrN8ORGYFUjbtm2ZMGECJ598Mp/73OcYNWpUsUMyy0uTYgdg9kmy1157ccstt7Bp0yaaNWtW7HDM8uIjArMCk+QkYHsUJwIzs4xzIjAzyzgnArN6snjxYj7/+c/n3f6EE07YqWzb7xVuuOGGHZZz/fSnP631NgEeeeQR5s2bV6M+EcHixYuZNGlSpfUzZszgK1/5So3W+Un3wQcf0KlTJ0aMGLFD+ejRo7n77rt5+umnOeaYY2jSpAkPPPDADm369etH69atC7ZPnQjMGqjnn39+p7K7776bMWPGsGHDBm655RbuvvvundrkJoLaqE0iGD58OM8++yxLlixh6NChLF++vE4x1NTmzZvrdXuFcN1119Gnz843bZw+fTqnn346Bx98MJMmTeLCCy/cqc3IkSO58847CxaLE4FZESxatIgePXowc+ZM5s6dS8+ePSkpKeHoo49m/vz5AOy777479Rs0aBCdOnVizJgxHHzwwQwaNGiH+quuuor169dTUlLCRRddBMCWLVv45je/Sbdu3Tj99NNZv349AAsXLqRfv34ce+yx9O7dm7///e88//zzTJs2jZEjR1JSUsLChQv5zW9+w3HHHUf37t0555xzWLdu3U5xjR8/nnvvvZeJEyfys5/9jI4dO1b52l9++WWOP/54evTowQknnLD9jm99+vTZ4bcXJ554Iq+++iofffQRl112GT179qRHjx48+mhy/6tJkyZx1llnccopp3DqqadWuq0ZM2bQt29fvv71r3P44Ydz0UUXbT+K6ty5MytWrACgrKyMvn37AsnR1pAhQ+jduzeHHHIIDz30EFdeeSVHHXUU/fr1Y9OmTVW+tnzNmjWLd999l9NPP32H8g8++ICPP/6Y9u3b07lzZ44++mgaNdr5Y/rUU0+lZcuWdY5jGycCs3r25ptvcs455zBp0iSOO+44brvtNq644gpmz55NWVkZnTp1qrLvPffcw7Jlyxg5ciRLlizhnnvu2aF+9OjRtGjRgtmzZ28/Wpg/fz7f/e53mTt3Lq1bt+bBBx8EYNiwYYwbN45Zs2YxduxYvvOd73DCCSdw1llnMWbMGGbPns1nP/tZvva1rzFz5kxeffVVjjjiCO64446d4hoxYgQXXHABl112Gddccw1vv/12la/h8MMP55lnnuGVV17hxhtv5OqrrwZg6NCh24eW3nrrLTZs2ED37t0ZNWoUp5xyCi+//DJPPfUUI0eO5KOPkntg/e1vf+OBBx7gf//3f6vc3iuvvML//M//MG/ePBYtWpTX3eUWLlzIk08+ybRp0xg0aBAnn3wyr7/+Oi1atOCxxx7bqf2YMWMoKSnZ6XH55Zfv1Hbr1q384Ac/YOzYsTvV/eUvf6kyqe1O1f6OQNJE4CvAexGx02CjpL4kt6j8R1r0UETcmNb1A34BNAZ+GxGjCxO22Z6pvLycAQMG8NBDD3HkkUcCcPzxxzNq1CiWLVvG1772Nbp27Vpl/wsuuABJ3HDDDVx55ZV53SGtS5culJSUAHDssceyePFi1q5dy/PPP8+55567vd3GjRsr7T9nzhyuvfZaVq9ezdq1aznjjDN2ajN+/Hj++c9/snnzZn784x/vMp41a9YwZMgQ5s+fj6Tt37DPPfdcbrrpJsaMGcPEiRO55JJLAPjzn//MtGnTtn9wbtiwgSVLlgBw2mmn0bZt211ur2fPntuTa0lJCYsXL+bEE0/cZZ/+/fvTtGlTjjrqKLZs2UK/fv0AOOqooyq9wuzIkSMZOXLkLte5zfjx4znzzDMrTfh/+tOfuPTSS/NaTyHl84OyScAvgSm7aPNMROwwayGpMfAr4DRgGTBT0rSIqNngo9knyH777cfBBx/Ms88+uz0RXHjhhfTq1YvHHnuMM888k9tvv51TTjml0v6SgP+bLN62vCvNmzff/rxx48asX7+erVu30rp167wug3HJJZfwyCOP0L17dyZNmsSMGTMqjatz587bP7x35brrruPkk0/m4YcfZvHixduHZPbee29OO+00Hn30Ue6//35mzZoFJBPRDz74IIcddtgO63nppZfYZ599qt1exde/bT6hSZMmbN26FWCnGwtt69OoUSOaNm26fT83atSo0vmIMWPGVDpf06dPH2699dYdyl544QWeeeYZxo8fz9q1a/n444/Zd999GT16NC+//DK//vWvq31NhVbt0FBEPA3U5o4bPYEFEbEoIj4G7gMG1GI9Zp8YzZo14+GHH2bKlCnbh3UWLVrEZz7zGS6//HIGDBjAa6+9VqdtNG3atNpx7FatWtGlSxemTp0KJB+2r776KpDcfOfDDz/c3vbDDz+kQ4cObNq0qdIPu5pas2bN9jmEimcZfeMb3+Dyyy/nuOOOo02bNgCcccYZjBs3bvvRzyuvvFLnGCCZI9iWbLYNl9XWyJEjmT179k6PikkAkgn/JUuWsHjxYsaOHcvFF1/M6NGjmTt3LocffnhRbntaqDmC4yW9KulxSd3Sso7A0pw2y9KySkkaJqlMUll5eXmBwjJrePbZZx/+8Ic/8POf/5xp06Zx//338/nPf56SkhLmzJnDxRdfXKf1Dxs2jKOPPnr7ZHFV7r77bu644w66d+9Ot27dtk/CDhw4kDFjxtCjRw8WLlzITTfdRK9evfjiF7/I4YcfXqfYAK688kp+9KMf0aNHj52+XR977LG0atVqh+GR6667jk2bNnH00UfTrVs3rrvuujrHAHD99ddzxRVXUFpa2iDuOf34449vH4ICmDlzJp06dWLq1Kl861vfolu3btvrevfuzbnnnstf//pXOnXqxPTp0+u07bxuXi+pM/CHKuYIWgFbI2KtpDOBX0REV0lfB/pFxDfSdoOBXhExouI6KvLN682y6e2336Zv3778/e9/r/RsmU+y0047jSlTptChQ4da9S/qzesj4oOIWJs+/yPQVFI7YDlwUE7TTmmZmdlOpkyZQq9evRg1alTmkgDAE088UeskUFd1vvqopAOBdyMiJPUkSS4rgdVAV0ldSBLAQGDnX0aYmQEXX3xxrYfFXn/9dQYPHrxDWfPmzXnppZcKEdonXj6nj94L9AXaSVoGXA80BYiI24CvA9+WtBlYDwyMZLxps6QRwHSS00cnRsTc3fIqzCzTjjrqKN8IqA7ymiOob54jMDOrmaLOEZiZ2Z7NicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMq7aRCBpoqT3JM2pov4iSa9Jel3S85K659QtTstnS/INBszMGqB8jggmAf12Uf8P4KSIOAq4CZhQof7kiCip7Q0TzMxs96r2VpUR8bSkzruofz5n8UWSm9SbmdkeotBzBEOBx3OWA/izpFmShu2qo6RhksoklZWXlxc4LDMzq0q1RwT5knQySSI4Maf4xIhYLukA4AlJf4+IpyvrHxETSIeVSktLG96NlM3MPqEKckQg6Wjgt8CAiFi5rTwilqf/vgc8DPQsxPbMzKxw6pwIJB0MPAQMjoi3csr3kdRy23PgdKDSM4/MzKx4qh0aknQv0BdoJ2kZcD3QFCAibgN+DOwPjJcEsDk9Q+hTwMNpWRPgnoj40254DWZmVgf5nDV0QTX13wC+UUn5IqD7zj3MzKwh8S+LzcwyzonAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOPySgSSJkp6T1Klt5pU4lZJCyS9JumYnLohkuanjyGFCtzMzAoj3yOCSUC/XdT3B7qmj2HArwEktSW5tWUvkhvXXy+pTW2DNTOzwssrEUTE08CqXTQZAEyJxItAa0kdgDOAJyJiVUS8DzzBrhOKmZnVs0LNEXQEluYsL0vLqirfiaRhksoklZWXlxcoLDMzq06DmSyOiAkRURoRpe3bty92OGZmmVGoRLAcOChnuVNaVlW5mZk1EIVKBNOAi9Ozh74ArImId4DpwOmS2qSTxKenZWZm1kA0yaeRpHuBvkA7SctIzgRqChARtwF/BM4EFgDrgEvTulWSbgJmpqu6MSJ2NelsZmb1LK9EEBEXVFMfwHerqJsITKx5aGZmVh8azGSxmZkVhxOBmVnGORGYmWWcE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcbllQgk9ZP0pqQFkq6qpP7nkmanj7ckrc6p25JTN62AsZuZWQFUe4cySY2BXwGnAcuAmZKmRcS8bW0i4v/Laf89oEfOKtZHREnBIjYzs4LK54igJ7AgIhZFxMfAfcCAXbS/ALi3EMGZmdnul08i6AgszVlelpbtRNIhQBfgyZzivSSVSXpR0tlVbUTSsLRdWXl5eR5hmZlZIRR6sngg8EBEbMkpOyQiSoELgf+R9NnKOkbEhIgojYjS9u3bFzgsMzOrSj6JYDlwUM5yp7SsMgOpMCwUEcvTfxcBM9hx/sDMzIosn0QwE+gqqYukZiQf9jud/SPpcKAN8EJOWRtJzdPn7YAvAvMq9jUzs+Kp9qyhiNgsaQQwHWgMTIyIuZJuBMoiYltSGAjcFxGR0/0I4HZJW0mSzujcs43MzKz4tOPndsNQWloaZWVlxQ7DzGyPIWlWOh9bY/5lsZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnG5ZUIJPWT9KakBZKuqqT+Eknlkmanj2/k1A2RND99DClk8GZmVnfV3qFMUmPgV8BpwDJgpqRpldxp7PcRMaJC37bA9UApEMCstO/7BYnezMzqLJ8jgp7AgohYFBEfA/cBA/Jc/xnAExGxKv3wfwLoV7tQzcxsd8gnEXQEluYsL0vLKjpH0muSHpB0UA37ImmYpDJJZeXl5XmEZWZmhVCoyeL/H+gcEUeTfOufXNMVRMSEiCiNiNL27dsXKCwzM6tOPolgOXBQznKntGy7iFgZERvTxd8Cx+bb18zMiiufRDAT6Cqpi6RmwEBgWm4DSR1yFs8C3kifTwdOl9RGUhvg9LTMzMwaiGrPGoqIzZJGkHyANwYmRsRcSTcCZRExDbhc0lnAZmAVcEnad5Wkm0iSCcCNEbFqN7wOMzOrJUVEsWPYSWlpaZSVlRU7DDOzPYakWRFRWpu+/mWxmVnGORGYmWWcE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZVxeiUBSP0lvSlog6apK6r8vaZ6k1yT9VdIhOXVbJM1OH9Mq9jUzs+Kq9laVkhoDvwJOA5YBMyVNi4h5Oc1eAUojYp2kbwO3AOendesjoqSwYZuZWaHkc0TQE1gQEYsi4mPgPmBAboOIeCoi1qWLLwKdChummZntLvkkgo7A0pzlZWlZVYYCj+cs7yWpTNKLks6uqpOkYWm7svLy8jzCMjOzQqh2aKgmJA0CSoGTcooPiYjlkj4DPCnp9YhYWLFvREwAJkBy8/pCxmVmZlXL54hgOXBQznKntGwHkr4EXAOcFREbt5VHxPL030XADKBHHeI1M7MCyycRzAS6SuoiqRkwENjh7B9JPYDbSZLAeznlbSQ1T5+3A74I5E4ym5lZkVU7NBQRmyWNAKYDjYGJETFX0o1AWURMA8YA+wJTJQEsiYizgCOA2yVtJUk6oyucbWRmZkWmiIY3HF9aWhplZWXFDsPMbI8haVZElNamr39ZbGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhmXVyKQ1E/Sm5IWSLqqkvrmkn6f1r8kqXNO3Y/S8jclnVHA2M3MrACqTQSSGgO/AvoDRwIXSDqyQrOhwPsR8Tng58B/pn2PJLnHcTegHzA+XZ+ZmTUQ1d6zGOgJLIiIRQCS7gMGsONN6AcAN6TPHwB+qeTmxQOA+yJiI/APSQvS9b1QmPAbnr59ix3Brs2YUewILMv899Ew5TM01BFYmrO8LC2rtE1EbAbWAPvn2RcAScMklUkqKy8vzy96MzOrs3yOCOpFREwAJkBy8/oih1NrWf1GYZYP/300TPkcESwHDspZ7pSWVdpGUhNgP2Blnn3NzKyI8kkEM4GukrpIakYy+TutQptpwJD0+deBJyMi0vKB6VlFXYCuwMuFCd3MzAqh2qGhiNgsaQQwHWgMTIyIuZJuBMoiYhpwB3BnOhm8iiRZkLa7n2RieTPw3YjYsptei5mZ1YKSL+4NS2lpaZSVlRU7DDOzPYakWRFRWpu+/mWxmVnGORGYmWWcE4GZWcY5EZiZZVyDnCyW9CHwZrHjqKV2wIpiB1EHjr+4HH9x7cnxHxYRLWvTscH8sriCN2s7+11sksr21NjB8Reb4y+uPTl+SbU+1dJDQ2ZmGedEYGaWcQ01EUwodgB1sCfHDo6/2Bx/ce3J8dc69gY5WWxmZvWnoR4RmJlZPXEiMDPLuAaRCCS1lfSEpPnpv20qaVMi6QVJcyW9Jun8YsSaE08/SW9KWiDpqkrqm0v6fVr/kqTORQizSnnE/31J89J9/VdJhxQjzqpUF39Ou3MkhaQGdUpgPvFLOi/9P5gr6Z76jrEqebx3Dpb0lKRX0vfPmcWIsyqSJkp6T9KcKuol6db09b0m6Zj6jrEqecR+URrz65Kel9Q9rxVHRNEfwC3AVenzq4D/rKTNoUDX9PmngXeA1kWKtzGwEPgM0Ax4FTiyQpvvALelzwcCvy/2fq5h/CcDe6fPv72nxZ+2awk8DbwIlBY77hru/67AK0CbdPmAYsddg9gnAN9Onx8JLC523BXi6wMcA8ypov5M4HFAwBeAl4odcw1iPyHnPdM/39gbxBEByU3uJ6fPJwNnV2wQEW9FxPz0+dvAe0D7+gqwgp7AgohYFBEfA/eRvIZcua/pAeBUSarHGHel2vgj4qmIWJcuvkhyd7mGIp/9D3AT8J/AhvoMLg/5xP9N4FcR8T5ARLxXzzFWJZ/YA2iVPt8PeLse46tWRDxNct+UqgwApkTiRaC1pA71E92uVRd7RDy/7T1DDf5uG0oi+FREvJM+/xfwqV01ltST5NvIwt0dWBU6AktzlpelZZW2iYjNwBpg/3qJrnr5xJ9rKMk3pIai2vjTw/mDIuKx+gwsT/ns/0OBQyU9J+lFSf3qLbpdyyf2G4BBkpYBfwS+Vz+hFUxN/z4aqrz/buvtEhOS/gIcWEnVNbkLERGSqjynNc3MdwJDImJrYaO0iiQNAkqBk4odS74kNQL+G7ikyKHURROS4aG+JN/qnpZ0VESsLmZQeboAmBQR/yXpeJK7F37ef6/1R9LJJIngxHza11siiIgvVVUn6V1JHSLinfSDvtLDYEmtgMeAa9JDtmJZDhyUs9wpLauszTJJTUgOkVfWT3jVyid+JH2JJFGfFBEb6ym2fFQXf0vg88CMdDTuQGCapLMioiHc+i6f/b+MZHx3E/APSW+RJIaZ9RNilfKJfSjQDyAiXpC0F8nF3BrK8FZ18vr7aKgkHQ38FugfEXl95jSUoaFpwJD0+RDg0YoNJDUDHiYZu3ugHmOrzEygq6QuaVwDSV5DrtzX9HXgyUhncBqAauOX1AO4HTirAY1Pb7PL+CNiTUS0i4jOEdGZZKy0oSQByO/98wjJ0QCS2pEMFS2qxxirkk/sS4BTASQdAewFlNdrlHUzDbg4PXvoC8CanKHrBk3SwcBDwOCIeCvvjsWeBU8/G/cH/grMB/4CtE3LS4Hfps8HAZuA2TmPkiLGfCbwFsk8xTVp2Y0kHziQvPmnAguAl4HPFHs/1zD+vwDv5uzracWOuSbxV2g7gwZ01lCe+18kw1vzgNeBgcWOuQaxHwk8R3JG0Wzg9GLHXCH+e0nOOtxEcuQ1FBgODM/Z979KX9/rDem9k0fsvwXez/m7Lctnvb7EhJlZxjWUoSEzMysSJwIzs4xzIjAzyzgnAjOzjHMiMDPLOCcCM7OMcyIwM8u4/wcXvtVryJOF4wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 2\n",
"pp = 85/11, satellite_part = 8\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 173/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -85/11\n",
"Satellite part = -4\n",
"Sigma = -129/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 85/11\n",
"Satellite part = 8\n",
"Sigma = 173/11\n",
"\n",
"[0, 0, 2, 2] 4\n",
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiDElEQVR4nO3deXxU9f3v8dcnhEURBBSQsoje68oWIIALVFBRXH5FrbRWUdCyadFeewW1SMFSrIC1/an1KipSMV1AQdCqiFWuIi5EBYQKUjQgSzWssoWE5PP7Y4Z0CJNkkpnMJCfv5+MxDyZztvcMyTtnvufkjLk7IiISXGmpDiAiIlVLRS8iEnAqehGRgFPRi4gEnIpeRCTgVPQiIgGnoq+BzOxsM8s2M0t1llQxs9+Z2a0VmH+omS2pykypYGbtzczNLD3VWaT6UtFXM2a2N+JWZGYHIr6+ITzbJOAhd3czq29mz5jZBjPbY2bLzeyyCmzvtRLbzDezz2Jc9nQzm29muWa2w8wWmtkZFdj26PAvrINmNrPEtHpm9oKZ5YSLrG+JxR8Cfmlm9WLdXnVhZtPNbG34/3doBZfNMbOLE5QjJb8kzOxEM3vPzLab2S4ze9/Mzk9mhtpGRV/NuPtxh2/ARuC/Ih7LMrNWQD/gpfAi6cDXwAXA8cB9wGwzax/j9i4rsc2lwJwY4zYBFgBnAC2Bj4D5MS4LsAX4DTCjlOlLgMHAv6Pk3gqsAX5Qge0lVRkFugK4DfgkiXGqk73ALUBzoCkwBXhZ70qqjoq+5ukPfOLueQDuvs/dJ7p7jrsXufsrwFdA94quOPzLoQ/wXMRjr5jZPdHmd/eP3P0Zd9/h7gXA74EzzOyEWLbn7nPd/SVge5Rp+e7+B3dfAhSWsorFwBWxbKskM/tvM/vazL4zs4/NrE/48ZPMbH/kczCzbuF3LXXDX99iZp+b2c7wu5iTI+Z1M/uZma0D1pXyvP/o7v8A8iqYeRbQjlAp7jWzsRGTbzCzjWa2zczGRSyTZmb3mNn68B70bDNrFp78TvjfXeH1nWtm/8vM3grPu83MssysSUVylsfd89x9rbsXAUbo/7cp0KzsJaWyVPQ1TydgbWkTzawlcDqwuhLrvgl4191zDj/g7le6+4MxLv994N/uflRxV5HPgS6VXHYZkEGoXP4MzDGzBu7+b0K/QH4UMe+NwF/dvcDMBgK/BK4htEf6LvCXEuu+CugFnF3JbFG5+40c+S5vasTk3oTeWV0E/MrMzgo/fns4zwXA94CdwB/D074f/rdJeH3vEyre34bnPQtoC0wsLZOZrQwPv0S7PV7W8zGzlYR+2S0Annb3b2N6IaTCVPQ1TxNgT7QJ4T3OLOBP7r6mEuu+CZhZmVBm1oZQgfyiMstX0h5Cr0eFufvz7r7d3Q+5+++A+oSKEuBPhIaMMLM6wE+AWeFpo4Dfuvvn7n4IeADIiNyrD0/f4e4HKpOtku539wPuvoLQ0NDhX4CjgHHuvsndDxIq7WtLGyZx93+5+yJ3P+juucDDhH5JROXund29SSm328oK7O6dgcbA9YSG6aSKqOhrnp1Ao5IPmlkaoTLKB0ZXdKVm1hs4CXihEss2B94AHnf3knu3VakRsKsyC5rZXeHhl91mtovQ8Y0Tw5PnA2eb2SmEhsp2u/tH4WknA/99eK8V2EFoL7h1xOq/rkymOEUex9gPHBe+fzIwLyLv54SGSlpGW4mZtTSzv5rZZjP7Dnie/7wuCRcexvkLcI+ZVfbdmZRDRV/zrCQ0NFPMzAx4htAP7w/D4+UVNQSY6+57K7KQmTUlVPIL3H1yJbYbj7MI7b1WSHg8fiyh4Zmm7t4E2E2osAkf/5hNaK/+Rv6zNw+hEh9ZYs/1GHdfGjFPVV4StqLr/hq4rETeBu6+uZR1PRB+vJO7Nyb0GpR6Gq+ZrS5x1lbk7YkK5KwLnFqB+aUCVPQ1zyKgm5k1iHjs/xEqvf+KNlxQyumJkdOPIVR6M6NMW2xmE0tZrjGwEHjP3Y86YGtmfc2s1GIys/Tw86gD1DGzBpFDChY6dfTw86wXnh5ZOhcAr8WStYRGwCEgF0g3s18RGkKI9BwwlNBZPZFF/wRwr5l1CG/zeDMbFMM2i1no1NEGhAq0bvh5pYWnlfmaAd9QsUJ8Aph8eGjJzJqHjzNA6PkXlVhfI0Jnxew2s9bAmLJW7u4dIs/aKnEbFW0ZMzvHzHqHX4djzOxuQjspH1bgeUkFqOhrGHf/BngLGAgQ/gEeSejA4r+txDn3ZtaW0Fh2WefGX0VoCOTtKNPaAu+VstzVQA/g5hJ7cu0ill1ayrIQOhX0AHAPoT3HA+HHDlsbfqw1oV8oBwgNRWCh00zP5j+nmZaXNdJC4HXgC2ADoQOCRwy3uPt7hErwE3ffEPH4PEKnA/41PLSxCoj57xbC3gg/l/OA6eH7hw+Mlvea/Ra4LzwUc1cM2/pvQgc73zCzPcAHhA4U4+77gcnAe+H1nQPcD3Qj9A7n78DcCj63WNQndDxnO7AZuBy4wt23VMG2BDB98EjNY2ZnEzpg2NPL+Q80s8FAB3e/txLbaQPMdvfzKpnzaWCOuy+szPLlrPt3wHp3fzz8dVxZS9nGW8Cf3f3pRK0zhm1W2WsmtZeKXiQKM+tBaJisrbtHPctJpKbQ0I1ICWb2J+BN4P+o5CUItEcvIhJw2qMXEQm4lFxE6MQTT/T27dunYtMiIjXWxx9/vM3dm1d0uZQUffv27cnOzk7FpkVEaiwz21D+XEfT0I2ISMCp6EVEAk5FLyIScCp6EZGAU9GLiARcQorezAZY6MOO/2WlfOyciIikRtxFH/4Enj8SuoLf2cBPwhfdEhGRaiAR59H3BP7l7l8CmNlfCV1C958JWHe11Ldv/OtYvDj+dYjUJvq5q7xEDN205shreW/iyI9VA8DMRphZtpll5+bmJmCzIiISi6T9Zay7Tyf0IQtkZmbW6Cup1da9ApFU0s9d5SVij34zoU/FOaxN+DEREakGElH0y4DTzOwUM6sHXEfoo8tERKQaiHvoxt0PmdloQp/DWQeY4e6r404mIiIJkZAxend/FXg1EesSEZHE0l/GiogEnIpeRCTgVPQiIgGnohcRCTgVvYhIwKnoRUQCTkUvIhJwKnoRkYBT0YuIBJyKXkQk4FT0IiIBp6IXEQk4Fb2ISMCp6EVEAk5FLyIScCp6EZGAU9GLiAScil5EJOBU9CIiAaeiFxEJOBW9iEjAqehFRAJORS8iEnAqehGRgIur6M1skJmtNrMiM8tMVCgREUmcePfoVwHXAO8kIIuIiFSB9HgWdvfPAcwsMWlERCThkjZGb2YjzCzbzLJzc3OTtVkRkVqv3D16M3sTOCnKpHHuPj/WDbn7dGA6QGZmpsecUERE4lJu0bv7xckIIiIiVUOnV4qIBFy8p1debWabgHOBv5vZwsTEEhGRRIn3rJt5wLwEZRERkSqgoRsRkYBT0YuIBJyKXkQk4FT0IiIBp6IXEQk4Fb2ISMCp6EVEAk5FLyIScCp6EZGAU9GLiAScil5EJOBU9CIiAaeiFxEJOBW9iEjAqehFRAJORS8iEnAqehGRgFPRi4gEnIpeRCTgVPQiIgGnohcRCTgVvYhIwKnoRUQCTkUvIhJwcRW9mU0zszVmttLM5plZkwTlEhGRBIl3j34R0NHdOwNfAPfGH0lERBIpPZ6F3f2NiC8/AK6NL07t0bdvqhOELF6c6gRS3el7teZL5Bj9LcBrpU00sxFmlm1m2bm5uQncrIiIlMXcvewZzN4ETooyaZy7zw/PMw7IBK7x8lYIZGZmenZ2diXiiojUXmb2sbtnVnS5codu3P3icjY8FLgSuCiWkhcRkeSKa4zezAYAY4EL3H1/YiKJiEgixTtG/xjQCFhkZsvN7IkEZBIRkQSK96yb/52oICIiUjX0l7EiIgGnohcRCTgVvYhIwKnoRUQCTkUvtVJOTg4dO3aMef7zzjvvqMcO/9nIxIkTj/g60gMPPFDpbQK89NJL/POf/6zQMu5OTk4OM2fOjDp98eLFXHnllRVaZ1Bt2LCBbt26kZGRQYcOHXjiiSNPHHzwwQfJysrinXfeoVu3bqSnp/PCCy8cMc+AAQNo0qRJtX5NVfQiMVi6dOlRj2VlZTFt2jTy8vKYOnUqWVlZR80TWfSVUZmiHzVqFEuWLGHjxo389Kc/ZfPmzXFlqKhDhw4ldXvxaNWqFe+//z7Lly/nww8/5MEHH2TLli3F0xcuXMgll1xCu3btmDlzJtdff/1R6xgzZgyzZs1KZuwKU9FLrffll1/StWtXli1bxurVq+nZsycZGRl07tyZdevWAXDccccdtdzgwYNp06YN06ZNo127dgwePPiI6ffccw8HDhwgIyODG264AYDCwkKGDx9Ohw4duOSSSzhw4AAA69evZ8CAAXTv3p0+ffqwZs0ali5dyoIFCxgzZgwZGRmsX7+ep556ih49etClSxd++MMfsn//0X+n+Pjjj/OXv/yFGTNm8Nvf/pbWrVuX+tw/+ugjzj33XLp27cp5553H2rVrAfj+97/P8uXLi+fr3bs3K1asYN++fdxyyy307NmTrl27Mn/+fABmzpzJD37wAy688EIuuuiiqNtavHgxffv25dprr+XMM8/khhtuKH4X1L59e7Zt2wZAdnY2fcNXUps4cSJDhgyhT58+nHzyycydO5exY8fSqVMnBgwYQEFBQanPLRb16tWjfv36ABw8eJCioqLiad999x35+fk0b96c9u3b07lzZ9LSjq7Miy66iEaNGsWVo8q5e9Jv3bt3d5FU+uqrr7xDhw6+Zs0az8jI8OXLl7u7++jRo/355593d/eDBw/6/v373d29YcOGR60jKyvLp06d6nfffbdPmTLFs7KyjponcrmvvvrK69Sp459++qm7uw8aNMhnzZrl7u4XXnihf/HFF+7u/sEHH3i/fv3c3X3IkCE+Z86c4nVs27at+P64ceP8kUceOWqbo0aN8lmzZvn999/vw4YN882bNx8x/e233/YrrrjC3d13797tBQUF7u6+aNEiv+aaa9zdfebMmf7zn//c3d3Xrl3rh39m77333uLMO3fu9NNOO8337t3rzz77rLdu3dq3b99+VJ7I7TZu3Ni//vprLyws9HPOOcffffddd3c/+eSTPTc3193dly1b5hdccIG7u0+YMMHPP/98z8/P9+XLl/sxxxzjr776qru7X3XVVT5v3ryjtjN16lTv0qXLUbfbb789aq6NGzd6p06d/JhjjvHHHnus+PEXX3zRx48ff8S8Jf8/or2mVQnI9kp0blx/MCVSk+Xm5jJw4EDmzp3L2WefDcC5557L5MmT2bRpE9dccw2nnXZaqcv/5Cc/wcyYOHEiY8eOjTpGX9Ipp5xCRkYGAN27dycnJ4e9e/eydOlSBg0aVDzfwYMHoy6/atUq7rvvPnbt2sXevXu59NJLj5rn8ccfZ8OGDRw6dIhf/epXZebZvXs3Q4YMYd26dZhZ8R7yoEGDmDRpEtOmTWPGjBkMHToUgDfeeIMFCxbw0EMPAZCXl8fGjRsB6N+/P82aNStzez179qRNmzYAZGRkkJOTQ+/evctc5rLLLqNu3bp06tSJwsJCBgwYAECnTp3Iyck5av4xY8YwZsyYMtcZqW3btqxcuZItW7Zw1VVXce2119KyZUtef/11br755pjXU51p6EZqreOPP5527dqxZMmS4seuv/56FixYwDHHHMPll1/OW2+9VeryZgb852Ds4a/LcniYAKBOnTocOnSIoqIimjRpwvLly4tvn3/+edTlhw4dymOPPcZnn33GhAkTyMvLi5qrffv2xeVclvHjx9OvXz9WrVrFyy+/XLy+Y489lv79+zN//nxmz55dPPTk7rz44ovFOTdu3MhZZ50FQMOGDSv1/AHS09OLh01KPqfDy6SlpVG3bt3i1zktLS3q8YBp06aRkZFx1O2OO+4oM9v3vvc9OnbsyLvvvguEhrV69uxZ7nOqCVT0UmvVq1ePefPm8dxzz/HnP/8ZCI3Xn3rqqdxxxx0MHDiQlStXxrWNunXrljuO3LhxY0455RTmzJkDhMp0xYoVADRq1Ig9e/YUz7tnzx5atWpFQUFB1IO/FbV79+7iMfySZ+kMGzaMO+64gx49etC0aVMALr30Uh599NHidy+ffvpp3BkgNEb/8ccfA/Diiy/Gta4xY8Yc8Uvz8O2RRx45at5NmzYVHyfZuXMnS5Ys4YwzzmD16tWceeaZ1KlTJ64s1YWKXmq1hg0b8sorr/D73/+eBQsWMHv2bDp27EhGRgarVq3ipptuimv9I0aMoHPnzsV7xKXJysrimWeeoUuXLnTo0KH4IOd1113HtGnT6Nq1K+vXr2fSpEn06tWL888/nzPPPDOubABjx47l3nvvpWvXrkftHXfv3p3GjRsfMXwxfvx4CgoK6Ny5Mx06dGD8+PFxZwCYMGECP//5z8nMzExquX7++ef06tWLLl26cMEFF3DXXXfRqVMnXnvtteIhIoBly5bRpk0b5syZw8iRI+nQoUPxtD59+jBo0CD+8Y9/0KZNGxYuXJi0/LEq94NHqoI+eESk+tuyZQt9+/ZlzZo1Uc82CbL+/fvz3HPP0apVq1RHOUJlP3ikdv3viUhMnnvuOXr16sXkyZNrXckDLFq0qNqVfDy0Ry8iCfXZZ59x4403HvFY/fr1+fDDD1OUKDiq7KMERUQqolOnTkf8sZWkXu17Tya1yqeffnrEWSsitZGKXgJr7ty53HzzzYwePZp9+/alOo5IyqjoJZD+9re/MXnyZFq0aEF2dnbxOeoitZHG6CVwZs2axR/+8AdOOOEEduzYwfnnn8+PfvSjVMcSSRkVvQSGu/Pss8/y2GOP0bx5c7Zt20avXr14+OGHadCgQarjiaSMil4Cwd154okneOqpp4pLvk+fPkyZMuWI66uI1EYqeqnx3J1HH32UmTNnFpd8v379eOCBB6hXr16q44mknIpeajR35+GHHyYrK4sWLVqQm5tL//79mTRpEnXr1k11PJFqIa6zbsxskpmtNLPlZvaGmX0vUcFEylNUVMSUKVOOKPkrrriC3/zmNyp5kQjxnl45zd07u3sG8ApQ9qcciCRIYWEhkydPZvbs2cUlf9VVVzFhwgTS0/VGVSRSXD8R7v5dxJcNgeRfOEdqnUOHDvHrX/+aV155pbjkBw0axNixY2vlBbhEyhP3ro+ZTQZuAnYD/cqYbwQwAqBdu3bxblZqqYKCAsaPH88bb7xB8+bN+fbbbxk8eDB33nlnTJ/wJFIblXv1SjN7EzgpyqRx7j4/Yr57gQbuPqG8jerqlVIZ+fn5/PKXv+Ttt9/mxBNPJDc3l6FDh3L77ber5KVWqLKrV7r7xTGuKwt4FSi36EUq6uDBg4wdO5YlS5YUl/yIESMYOXKkSl6kHPGedXNaxJcDgTXxxRE5Wl5eHnfeeecRJX/77ber5EViFO8Y/YNmdgZQBGwARsUfSeQ/9u3bx5133sknn3zCCSecwLZt2/jFL37B4MGDUx1NpMaI96ybHyYqiEhJe/fu5Y477mDlypU0a9aM7du3c/fdd+sCZSIVpBOOpVr67rvv+NnPfsaaNWto2rQp27dv57777uPqq69OdTSRGkdFL9XOrl27uO2221i3bh3HH388O3fu5P777+fKK69MdTSRGklFL9XKjh07GDVqFDk5ORx//PHs3r2byZMnc+mll6Y6mkiNpaKXamPbtm2MGDGCzZs306hRI3bv3s2UKVO48MILUx1NpEZT0Uu18O233zJs2DC++eYbGjZsyJ49e3j44Yfp06dPqqOJ1Hgqekm5rVu3MmzYMLZv386xxx7L/v37eeSRRzjnnHNSHU0kEFT0klKbNm1i+PDh7Nq1iwYNGpCXl8ejjz5Kjx49Uh1NJDBU9JIyGzZsYPjw4ezZs4d69epRUFDA448/TteuXVMdTSRQVPSSEl9++SUjRozgwIED1K1bl6KiIp588kk6duyY6mgigaOil6Rbt24dI0aMID8/n7S0NMyMJ598krPOOivV0UQCSUUvSbVmzRpGjhxJYWEhZkadOnWYPn06p59+eqqjiQSWPo5HEmr16tVs27Yt6rRVq1YxfPhwioqKKCoqokGDBsyYMUMlL1LFVPSSMO7O2LFjGTZs2FFlv3z5ckaOHElaWhqFhYUcd9xxPP3005x66qkpSitSe6joJWHWrFlDbm4uW7duZdSoUezYsQOA7OxsbrvtNtLT08nPz6dx48Y888wztG/fPrWBRWoJFb0kzMKFC3F3WrRowddff82tt97KokWLGD16NPXr1yc/P59mzZoxY8YM2rZtm+q4IrVGuZ8ZWxX0mbHBU1hYSP/+/alTpw4NGjQA4JtvvuHgwYM0a9aMAwcO0KJFC5566ilatmyZ4rQiNVOVfWasSCxWrFjBvn37aNGiRfFjLVu2pKioiO3bt9OqVSumT59O8+bNU5hSpHbS0I0kxGuvvUa0d4dpaWm4O02bNqVhw4YpSCYiKnqJW35+Pq+//jpNmzaNOr158+asXLmSO++8k7y8vCSnExEVvcQtOzub/Px86tWrF3W6mXHSSSfx8ccfc9ddd3Hw4MEkJxSp3VT0EreXX34ZMytznsLCQurWrcubb77J888/n6RkIgI6GCtx2rdvH4sXL446bJOfn8/OnTsxM9LS0ujduzcDBgzQdeZFkkxFL3F5//33KSwsJD099K2Ul5fHrl27SEtLo169elxxxRX079+fbt26FZ92KSLJpaKXuMyfP5+CggK2bt1KWloajRs35sc//jH9+vWjS5cuxb8ARCR1EvJTaGb/F3gIaO7u0a9oJYFz6NAhVq5cSevWrbn88svp168fZ5xxBmlpOvQjUp3EXfRm1ha4BNgYfxypSdLT05k3bx5NmzYt92CsiKROIvbofw+MBeYnYF2SZH37xruGZglIAYsXJ2Q1gRL//01i6P+m5ovrPbaZDQQ2u/uKGOYdYWbZZpadm5sbz2ZFRKQCyr2omZm9CZwUZdI44JfAJe6+28xygMxYxuh1UTMRkYqrsouaufvFpWywE3AKsCI8PtsG+MTMerr7vysaREREqkalx+jd/TOg+FKFFdmjFxGR5NF5cCIiAZewv2Zx9/aJWpeIiCSO9uhFRAJORS8iEnAqehGRgFPRi4gEnIpeRCTgVPQiIgGnohcRCTgVvYhIwKnoRUQCTkUvIhJwKnoRkYBT0YuIBJyKXkQk4FT0IiIBp6IXEQk4Fb2ISMCp6EVEAk5FLyIScCp6EZGAU9GLiAScil5EJOBU9CIiAaeiFxEJOBW9iEjAxVX0ZjbRzDab2fLw7fJEBRMRkcRIT8A6fu/uDyVgPSIiUgU0dCMiEnCJKPrRZrbSzGaYWdPSZjKzEWaWbWbZubm5CdisiIjEwty97BnM3gROijJpHPABsA1wYBLQyt1vKW+jmZmZnp2dXfG0IiK1mJl97O6ZFV2u3DF6d784xgBPAa9UNICIiFSteM+6aRXx5dXAqvjiiIhIosV71s1UM8sgNHSTA4yMN5CIiCRWXEXv7jcmKoiIiFQNnV4pIhJwKnoRkYBT0YuIBJyKXkQk4FT0IiIBp6IXEQk4Fb2ISMCp6EVEAk5FLyIScCp6EZGAU9GLiAScil5EJOBU9CIiAaeiFxEJOBW9iEjAqehFRAJORS8iEnAqehGRgFPRi4gEnIpeRCTgVPQiIgGnohcRCTgVvYhIwKnoRUQCLu6iN7PbzWyNma02s6mJCCUiIomTHs/CZtYPGAh0cfeDZtYiMbFERCRR4ip64FbgQXc/CODu38YfSWqjvn1TnaD6Wbw41QkkKOIdujkd6GNmH5rZ/zezHqXNaGYjzCzbzLJzc3Pj3KyIiMSq3D16M3sTOCnKpHHh5ZsB5wA9gNlmdqq7e8mZ3X06MB0gMzPzqOlSu2nvVaTqlFv07n5xadPM7FZgbrjYPzKzIuBEQLvsIiLVRLxDNy8B/QDM7HSgHrAtznWKiEgCxXswdgYww8xWAfnAkGjDNiIikjpxFb275wODE5RFRESqgP4yVkQk4FT0IiIBp6IXEQk4Fb2ISMBZKk6SMbM9wNqkbzhxTqRmn0Zak/PX5Oyg/KlW0/Of4e6NKrpQvKdXVtZad89M0bbjZmbZyp8aNTk7KH+qBSF/ZZbT0I2ISMCp6EVEAi5VRT89RdtNFOVPnZqcHZQ/1Wpl/pQcjBURkeTR0I2ISMCp6EVEAi4pRW9mzcxskZmtC//bNMo8GWb2fvhDxlea2Y+Tka0sZjbAzNaa2b/M7J4o0+ub2d/C0z80s/YpiBlVDNl/YWb/DL/W/zCzk1ORszTl5Y+Y74dm5mZWrU6ZiyW/mf0o/H+w2sz+nOyMZYnh+6edmb1tZp+Gv4cuT0XOaMxshpl9G76qbrTpZmaPhJ/bSjPrluyMZYkh/w3h3J+Z2VIz61LuSt29ym/AVOCe8P17gClR5jkdOC18/3vAVqBJMvKVkrkOsB44ldB19lcAZ5eY5zbgifD964C/pSpvJbL3A44N37+1umSPNX94vkbAO8AHQGaqc1fw9T8N+BRoGv66RapzVzD/dODW8P2zgZxU547I9n2gG7CqlOmXA68BRujT8T5MdeYK5j8v4vvmsljyJ2voZiDwp/D9PwFXlZzB3b9w93Xh+1uAb4HmScoXTU/gX+7+pYcux/xXQs8jUuTzegG4yMwsiRlLU252d3/b3feHv/wAaJPkjGWJ5bUHmARMAfKSGS4GseQfDvzR3XcCuPu3Sc5YlljyO9A4fP94YEsS85XJ3d8BdpQxy0DgOQ/5AGhiZq2Sk6585eV396WHv2+I8Wc3WUXf0t23hu//G2hZ1sxm1pPQnsT6qg5WhtbA1xFfbwo/FnUedz8E7AZOSEq6ssWSPdJPCe3hVBfl5g+/3W7r7n9PZrAYxfL6nw6cbmbvmdkHZjYgaenKF0v+icBgM9sEvArcnpxoCVHRn4/qLKaf3YRdAqGcDxEv5u5uZqWe0xn+zTqL0KdVFSUqn0RnZoOBTOCCVGeJlZmlAQ8DQ1McJR7phIZv+hLaI3vHzDq5+65UhqqAnwAz3f13ZnYuMMvMOupnNnnMrB+hou9d3rwJK3ov+0PEvzGzVu6+NVzkUd+mmllj4O/AuPBbqlTaDLSN+LpN+LFo82wys3RCb2G3JydemWLJjpldTOgX8QXufjBJ2WJRXv5GQEdgcXik7CRggZn9wN0rdS2QBIvl9d9EaGy1APjKzL4gVPzLkhOxTLHk/ykwAMDd3zezBoQuGFadhqBKE9PPR3VmZp2Bp4HL3L3czknW0M0CYEj4/hBgfskZzKweMI/Q2NkLScpVlmXAaWZ2SjjbdYSeR6TI53Ut8JaHj5CkWLnZzawr8CTwg2o2Pgzl5Hf33e5+oru3d/f2hMYpq0vJQ2zfOy8R2pvHzE4kNJTzZRIzliWW/BuBiwDM7CygAZCb1JSVtwC4KXz2zTnA7oih5WrPzNoBc4Eb3f2LmBZK0lHkE4B/AOuAN4Fm4cczgafD9wcDBcDyiFtGqo58+3+Ozn9B6FjBuPBjvyZUKhD65p4D/Av4CDg1lXkrmP1N4JuI13pBqjNXJH+JeRdTjc66ifH1N0LDT/8EPgOuS3XmCuY/G3iP0Bk5y4FLUp05IvtfCJ21V0DondNPgVHAqIjX/o/h5/ZZNfzeKS//08DOiJ/d7PLWqUsgiIgEnP4yVkQk4FT0IiIBp6IXEQk4Fb2ISMCp6EVEAk5FLyIScCp6EZGA+x/kqcLcECI6rgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 3\n",
"pp = -73/11, satellite_part = -8\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -161/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhQklEQVR4nO3deXxU9b3/8dcnJOwgWCKiCMFWQSAQJIK7oEVxuWKt3J8LilVLaa/L73F/QvUqFX9eq0I3rfV6rVqEor2iotTWhar8FFEh1LDvGlbRoKxlS8jn98c5SYeQ5WSSSXLg/Xw85pGZOd/vOZ8zmXnPOd9zZsbcHRERia+0hi5ARERqR0EuIhJzCnIRkZhTkIuIxJyCXEQk5hTkIiIxpyBPITNrZmZLzaxTQ9dyJDKzX5rZj2vQ/kYzm53KmhqCmWWZmZtZekPXIqmhIE+Smb1hZrvCS5GZ7U+4/WTYbBTwvrt/EfYZY2aLzWynmX1uZmNqsLzBZrbIzLaZ2ddmNt3Mjo/Yt5mZPWNma8Nl55vZxUmu665wXRdF7Huymb1mZoVm9o2ZvWVm3Wuw7FvNLM/M9pnZpHLTmprZS2ZWEAbVoHLdfwH8h5k1jbq8xsLMnjKzFWZWYmY31rBvgZl9t47qaJA3ATPrYGYfhs/1bWb2kZmdVZ81xImCPEnufrG7t3b31sBUYELpbXcfHTYbDUxJ6GbADUB7YChwq5ldHXGRS4GL3L0dcBywCviviH3TgfXAecBRwL3Ai2aWFaVz4rqG6zsHmBZx2e2AGUB3oCMwF3gtYl+ATcB/As9WMn02MALYXEHdXwDLgctrsLx6VUVALgB+Avy9HstpTHYBNwGZBK+XR4A/a6+iYgryFDGzLsCJwCel97n7BHf/u7sXu/sKgkCLtJXh7l+6+6aEuw4A30lY3l1m9nolff/h7uPdvcDdS9z9deBzoH8S65UFnANMTrjvdTO7q5Jlz3X3Z9z9G3cvAn4NdDezb0VZnru/4u6vAl9XMG2/u//G3WcTPB4VmQVcGmVZ5ZnZo2a23sx2mNl8MzsnvP9YM9uduA5mdmq415ER3r7JzJaZ2dZwL6RrQls3s38zs1UEb8gVrffv3P0dYG8Na54CdCEIvV1mNjZh8nVmts7MtpjZPQl90sLnz5pwC/hFMzs6nPx++HdbOL8zzOzbZvZu2HaLmU01s3Y1qbM67r7X3Ve4ewnBBtABgkA/uuqeRyYFeepkA5+5e3FFE83MCAJxSdQZmlkXM9sG7AHuBCaUTnP3h939sojz6QicXJNlJ7gB+MDdCxKWfZm7Pxyx/7nAZnc/JJhTZBnQN8m+84AcgvB4HphmZs3dfTPBG8S/JrS9HviTuxeZ2TDgP4ArCbYoPwBeKDfvK4CBQM8ka6uQu18PrAP+JdyDmpAw+WyCPaMLgJ+Z2Snh/beF9ZxHsLe3FfhdOO3c8G+7cH4fEQTrQ2HbU4ATgPGV1WRmC8PhkYouT1S1Pma2kODNbAbwtLt/FemBOMIoyFOnHbCziunjCR7/P0SdobuvC4dWOhAMjyyvaVHhFuNU4Dl3r3F/giCflEQ/zKwzQUD8ezL9k7ST4H9RY+7+R3f/OtyD+iXQjCAIAZ4jGNLBzJoA1/DPYbTRwEPuvix8I/85kJO4VR5O/8bd9yRTW5Lud/c97r6AYOim9A1uNHCPu29w930Ez82rKhvGcPfV7j7T3fe5eyHwK4I3gQq5ex93b1fJ5SdVFezufYC2wLUEw2hSAQV5DZjZdQkH/N6opvlWoE0l87mVIBAvDV84NeLu3xAEyWs1GTM0szSCsNkP3FrT5ZrZ2cCxwEtJ9M0E3gaecPfyW6ep1AbYlkxHM7szHB7ZHu4JHUXwJgrBsFhPM+sGDAG2u/vccFpX4NHSrU7gG4Kt2MSD0+uTqamWEo8j7AZah9e7AtMT6l1GMJTRsaKZmFlHM/uTmW00sx3AH/nn41LnwmGWF4C7zCzZvavDmoK8Btx9asJBv+rO+lgIdCsftGZ2E3AXcIG7b6hFOenAMQRbK9UKh3KeIXhxfj8cr66pkcAr7r6rJp3MrD1BiM9w9weTWG5tnEKw9Vkj4Xj4WILhk/bhntB2gkDG3fcCLxJslV/PwQe11wM/Krfl2cLd5yS0SeXXjtZ03uuBi8vV29zdN1Yyr5+H92e7e1uCx8Aqm7mZLbGDz3pKvDxZWb8KZBAcd5JyFOQpEob0amBA6X1mdh3Bi2CIu39Wvo+ZzTKz8RXNz8yuNLPu4YGpTILd2U/DrXPMbLyZzaqipP8iCLV/qWh33io+fS9xeguCUJtUw7rbAm8BH7r7IQdEzWyQmVUaPGaWbmbNgSZAEzNrnvjmaMGplc3Dm03D6Ymhch7wRkL7Smstpw1QDBQC6Wb2Mw5905wM3EhwVkxikD8J3G1mvcJlHmVmwyMss4wFp1Y2JwjIjHC90sJpVT5mwJfULPCeBB4sHfoxs8xwnB+C9S8pN782BGeVbLfgFNgqT6N1916JZz2Vu4yuqI+ZnW5mZ4ePQwsz+ynBRsgnFbU/0inIU+u/CbbWSv0n8C1gXiVbJCcAH1Yyr+OBNwnGfBcRvLi+F6Vv+AL9EcGBu80Jy74unH5CwnwrcwXBEMV7FUyrqu7vAacBPyi3JdYloe+cSvpCcCxgD8FezIjw+r0J01eE9x1P8Iaxh2CoAAs+iNUTeDVirYneIni8VwJrCQ64HTQc4u4fEvwf/u7uaxPun05wutyfwqGHxUDk8/ZDb4frcibwVHi99MBjdY/ZQ8C94VDJnRGW9SjBwcS3zWwn8DHBgVjcfTfwIPBhOL/TgfuBUwn2UP4CvFLDdYuiGcHxlK+BjcAlBEORm6rsdYQy/bBE6phZM+BTgmGUL6pp2xl40d3PTHJZ+eFyanw2iJmNAHq5+91J9K1t3U8D09z9rWT6VzPvXwJr3P2J8Hataq1kGe8Cz7v703U1zwjLTNljJvGkIBdJkpmdBswETnD3qs5QEkkpDa2IJMHMngP+Bvxvhbg0NG2Ri4jEnLbIRURiLiVfQNOhQwfPyspKxaxFRA5L8+fP3+Lumcn0TUmQZ2VlkZeXl4pZi4gclsxsbfWtKqahFRGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiblIQW5m7Sz4kdvl4fczn5HqwkREJJqopx8+Crzp7ldZ8IvkLVNYk4iI1EC1QW5mRxF8feaNEPzgLcEvzIhENmhQQ1fQuMya1dAVyOEkytBKN4Ivl/+DmX1qZk+bWavyjcxslJnlmVleYWFhnRcqIiIVq/ZLs8wsl+CL5s9y90/M7FFgh7uPq6xPbm6u65OdIiLRmdl8d89Npm+ULfINwAZ3L/2JpZcIfh1EREQagWqD3N03A+vNrHt41wXA0pRWJSIikUU9a+U2YGp4xspnwA9SV5KIiNREpCB393wgqbEbERFJLX2yU0Qk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkIuIxFx6lEZmVgDsBA4Axe6em8qiREQkukhBHhrs7ltSVomIiCRFQysiIjEXNcgdeNvM5pvZqIoamNkoM8szs7zCwsK6q1BERKoUNcjPdvdTgYuBfzOzc8s3cPen3D3X3XMzMzPrtEgREalcpCB3943h36+A6cCAVBYlIiLRVRvkZtbKzNqUXgcuBBanujAREYkmylkrHYHpZlba/nl3fzOlVYmISGTVBrm7fwb0rYdaREQkCTr9UEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkEud2L59O++88w7jx49n1apVDV2OyBElPWpDM2sC5AEb3f2y1JUkceDuFBQU8PHHH/Pmm2+ybNkyAPbs2cOVV17ZwNWJHFkiBzlwB7AMaJuiWqSR27dvHwsXLuT9999n5syZfPPNN5SUlNCyZUsyMzMxMzZv3kzXrl0bulSRI0qkIDezzsClwIPAv6e0IqlTgwbVrn9R0RZ27JjL1q1/Y8eOjwDH/QBNmhxFWtoxmFlZ25KSfUA7hg076pD5zJpVuzoON7X9v9QV/V8OD1G3yH8DjAXaVNbAzEYBowC6dOlS68Kk4W3f/hGrV9+OexFpaS1JT2+HWeVPmZKSPbRu3aceKxQRiBDkZnYZ8JW7zzezQZW1c/engKcAcnNzva4KlNqpzRZXcfFpPP30zTz99NO0bt2UNm2qfrps3ryXY49dx/nn/5pTTjmFrl270rVrV1q2bJl8EYcpbQlLXTL3qjPXzB4CrgeKgeYEY+SvuPuIyvrk5uZ6Xl5eXdYpDWju3Lncfffd7Ny5k2OOOXg4JVFJSQm7du1i9+7dmBlNmjShqKiIY445hh49epCdnc13vvMdsrKyOO6442jSpEk9r4lI42Vm8909N6m+1QV5uQUNAu6s7qwVBfnhZ8uWLYwbN465c+eSmZlJRkbGIW02b95MkyZNKC4uJiMjgxYtWtC8eXP279/Pnj172Lt3LxkZGZQ+57p160bPnj3p1asX3bp1Iysri/bt21f6RiFyOKtNkNfkrBU5gnXo0IHHH3+cyZMn88QTT9CyZUvatv3nCUwlJSWYGY8++ijr1q1j0aJFLF26lPXr1wOUhXN6ejotW7YkPT2dL7/8koKCAmbMmEF6ejoHDhygVatWnHzyyWRnZ9O9e/ey4ZnmzZs3yHqLxEGNtsij0hb54S0/P5+xY8eybdu2sqGW3bt307ZtW6ZPn35Q2+LiYjZs2EBBQQGrV69mwYIFrFy5kq+//rosvM2MFi1a0LJlS0pKStizZw+7d+8mLS2NtLQ0iouL6dSpE927d6dPnz58+9vfJisri06dOpGWps+0yeGh3oZWolKQH/62bt3Kfffdx4cffkiHDh3YsWMHgwcP5uc//3mk/rt27aKgoIC1a9eydOlSFi9ezOrVqykqKioL74yMDFq2bEmzZs0qHJ4xM0488USGDx/O9773vRSvsUhqaWhF6l379u35zW9+w/PPP89jjz3Gjh07yM7Ojty/devW9O7dm969e3PppZcCwadFv/rqKwoKCvj8889ZuHAhy5YtY+PGjaSlpZWFd+n4e3p6OsuWLWPJkiUKcjmiKcglaWlpaYwYMYKcnBzGjRvHKaecUqv5mRkdO3akY8eODBw4kKuvvhqA/fv3lw3PrFq1ioULF7Jy5UoKCwspKSmhZ8+edbE6IrGloRWpE6Vby/Vp586drF27lm7dutGqVat6XbZIXavN0IqOFEmdaIhTBtu0aUPv3r0PCfGCggJ69+4deT5nnnnmIfeVbuCMHz/+oNuJEo8H1HSZAK+++ipLly6tUZ/SLyubNGlShdNnzZrFZZfpO+0A1q5dy6mnnkpOTg69evXiySefPGj6ww8/zNSpU3n//fc59dRTSU9P56WXXjqozdChQ2nXrl2jf0wV5HLEmzNnziH3TZ06lYkTJ7J3714mTJjA1KlTD2kT9cBuZZIJ8tGjRzN79mzWrVvHzTffzMaNG2tVQ00VFxfX6/Jqo1OnTnz00Ufk5+fzySef8PDDD7Np06ay6W+99RYXXnghXbp0YdKkSVx77bWHzGPMmDFMmTKlPstOioJcDmufffYZ/fr1Y968eSxZsoQBAwaQk5NDnz59yr43vXXr1of0GzFiBJ07d2bixIl06dKFESMO/iDzXXfdxZ49e8jJyeG6664D4MCBA/zwhz+kV69eXHjhhezZsweANWvWMHToUPr3788555zD8uXLmTNnDjNmzGDMmDHk5OSwZs0afv/733PaaafRt29fvv/977N79+5D6nriiSd44YUXePbZZ3nooYc4/vjjK133uXPncsYZZ9CvXz/OPPNMVqxYAcC5555Lfn5+Wbuzzz6bBQsW8I9//IObbrqJAQMG0K9fP1577TUAJk2axOWXX87555/PBRdcUOGyZs2axaBBg7jqqqvo0aMH1113XdleTFZWFlu2bAEgLy+PQeE3ho0fP56RI0dyzjnn0LVrV1555RXGjh1LdnY2Q4cOpaioqNJ1i6Jp06Y0a9YMCL65s6SkpGzajh072L9/P5mZmWRlZdGnT58KT2W94IILaNOm0q+Yajzcvc4v/fv3d5GG8vnnn3uvXr18+fLlnpOT4/n5+e7ufuutt/of//hHd3fft2+f7969293dW7Vqdcg8pk6d6hMmTPCf/vSn/sgjj/jUqVMPaZPY7/PPP/cmTZr4p59+6u7uw4cP9ylTpri7+/nnn+8rV650d/ePP/7YBw8e7O7uI0eO9GnTppXNY8uWLWXX77nnHn/ssccOWebo0aN9ypQpfv/99/stt9ziGzduPGj6e++955deeqm7u2/fvt2Liorc3X3mzJl+5ZVXurv7pEmT/I477nB39xUrVnjp6/Xuu+8uq3nr1q1+0kkn+a5du/wPf/iDH3/88f71118fUk/ictu2bevr16/3AwcO+Omnn+4ffPCBu7t37drVCwsL3d193rx5ft5557m7+3333ednnXWW79+/3/Pz871Fixb+17/+1d3dr7jiCp8+ffohy5kwYYL37dv3kMttt91WYV3r1q3z7Oxsb9GihT/++ONl97/88ss+bty4g9qW/39U9JimEpDnSWauzlqRw1JhYSHDhg3jlVdeKTur5YwzzuDBBx9kw4YNXHnllZx00kmV9r/mmmswM8aPH8/YsWMrHCMvr1u3buTk5ADQv39/CgoK2LVrF3PmzGH48OFl7fbt21dh/8WLF3Pvvfeybds2du3axUUXXXRImyeeeIK1a9dSXFzMz372syrr2b59OyNHjmTVqlWYWdkW7vDhw3nggQeYOHEizz77LDfeeCMAb7/9NjNmzOAXv/gFAHv37mXdunUADBkyhKOPPrrK5Q0YMIDOnTsDkJOTQ0FBAWeffXaVfS6++GIyMjLIzs7mwIEDDB06FIDs7GwKCgoOaT9mzBjGjBlT5TwTnXDCCSxcuJBNmzZxxRVXcNVVV9GxY0fefPNNfvCDH0SeT2OnoRU5LB111FF06dKF2bNnl9137bXXMmPGDFq0aMEll1zCu+++W2n/0oO3pQc7oxzMLd2NB8q+c6akpIR27dqRn59fdin9NaXybrzxRh5//HEWLVrEfffdx969eyusKysrqyx8qzJu3DgGDx7M4sWL+fOf/1w2v5YtWzJkyBBee+01XnzxxbKhIXfn5ZdfLqtz3bp1ZaeURjkrqKL1h+BrGUqHNcqvU2mftLQ0MjIyyh7n0g+FlTdx4kRycnIOudx+++1V1nbcccfRu3dvPvjgAyAYdhowYEC16xQXCnI5LDVt2pTp06czefJknn/+eSAYLz/xxBO5/fbbGTZsGAsXLqzVMjIyMqodx23bti3dunVj2rRpQBCWCxYsAIKzbnbu3FnWdufOnXTq1ImioqIKD67W1Pbt28vG0Muf5XLLLbdw++23c9ppp9G+fXsALrroIn7729+W7X18+umnta4BgjHy+fPnA/Dyyy/Xal5jxow56E2x9PLYY48d0nbDhg1lxym2bt3K7Nmz6d69O0uWLKFHjx6H1bdvKsjlsNWqVStef/11fv3rXzNjxgxefPFFevfuTU5ODosXL+aGG26o1fxHjRpFnz59yrZoKzN16lSeeeYZ+vbtS69evcoOIl599dVMnDiRfv36sWbNGh544AEGDhzIWWedRY8ePWpVG8DYsWO5++676dev3yFbt/3796dt27YHDS+MGzeOoqIi+vTpQ69evRg3blytawC47777uOOOO8jNza3X8Fy2bBkDBw6kb9++nHfeedx5551kZ2fzxhtvlA3hAMybN4/OnTszbdo0fvSjH9GrV6+yaeeccw7Dhw/nnXfeoXPnzrz11lv1Vn9N6ANBIkegTZs2MWjQIJYvX37EffHYkCFDmDx5Mp06dWroUg6iDwSJSGSTJ09m4MCBPPjgg0dciAPMnDmz0YV4bWmLXEQiW7RoEddff/1B9zVr1oxPPvmkgSo6fOjbD0WkXmRnZx/0YSJpHI68/SoRkcOMglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmKs2yM2suZnNNbMFZrbEzO6vj8JERCSaKJ/s3Aec7+67zCwDmG1mb7j7xymuTUREIqg2yMOfINoV3swIL3X/BS0iIpKUSGPkZtbEzPKBr4CZ7n7IN+SY2SgzyzOzvMLCwjouU0REKhMpyN39gLvnAJ2BAWbWu4I2T7l7rrvnZmZm1nGZIiJSmRqdteLu24D3gKHVNBURkXoS5ayVTDNrF15vAQwBlqe4LhERiSjKWSudgOfMrAlB8L/o7q+ntiwREYkqylkrC4F+9VCLiIgkQZ/sFBGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkIuIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMVdtkJvZCWb2npktNbMlZnZHfRQmIiLRpEdoUwz8H3f/u5m1Aeab2Ux3X5ri2kREJIJqg9zdvwC+CK/vNLNlwPGAgrwSgwY1dAX/NGtWQ1cgjVljea7qeVo7NRojN7MsoB/wSQXTRplZnpnlFRYW1lF5IiJSHXP3aA3NWgP/D3jQ3V+pqm1ubq7n5eXVQXkiIkcGM5vv7rnJ9I20RW5mGcDLwNTqQlxEROpXlLNWDHgGWObuv0p9SSIiUhNRtsjPAq4Hzjez/PBySYrrEhGRiKKctTIbsHqoRUREkqBPdoqIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZirNsjN7Fkz+8rMFtdHQSIiUjNRtsgnAUNTXIeIiCSp2iB39/eBb+qhFhERSUKdjZGb2SgzyzOzvMLCwrqarYiIVKPOgtzdn3L3XHfPzczMrKvZiohINXTWiohIzCnIRURiLsrphy8AHwHdzWyDmd2c+rJERCSq9OoauPs19VGIiIgkR0MrIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkIuIxJyCXEQk5iIFuZkNNbMVZrbazO5KdVEiIhJdtUFuZk2A3wEXAz2Ba8ysZ6oLExGRaNIjtBkArHb3zwDM7E/AMGBpKgtrKIMG1X4es2bVfh4iR5K6eN3BkfvaizK0cjywPuH2hvC+g5jZKDPLM7O8wsLCuqpPRESqEWWLPBJ3fwp4CiA3N9frar717Uh9RxdpSHrd1U6ULfKNwAkJtzuH94mISCMQJcjnASeZWTczawpcDcxIbVkiIhJVtUMr7l5sZrcCbwFNgGfdfUnKKxMRkUgijZG7+1+Bv6a4FhERSYI+2SkiEnMKchGRmFOQi4jEnIJcRCTmzL3uP7tjZjuBFXU+4/rRAdjS0EXUgupvWKq/YcW5/u7u3iaZjnX2yc5yVrh7bormnVJmlhfX2kH1NzTV37DiXL+Z5SXbV0MrIiIxpyAXEYm5VAX5Uymab32Ic+2g+hua6m9Yca4/6dpTcrBTRETqj4ZWRERiTkEuIhJzdRLkZna0mc00s1Xh3/YVtMkxs4/MbImZLTSz/1UXy05WdT8obWbNzOx/wumfmFlWA5RZqQj1/7uZLQ0f63fMrGtD1FmZqD/obWbfNzM3s0Z1SlmU+s3sX8P/wRIze76+a6xMhOdOFzN7z8w+DZ8/lzREnZUxs2fN7CszW1zJdDOzx8L1W2hmp9Z3jZWJUPt1Yc2LzGyOmfWNNGN3r/UFmADcFV6/C3ikgjYnAyeF148DvgDa1cXyk6i3CbAGOBFoCiwAepZr8xPgyfD61cD/NESttah/MNAyvP7juNUftmsDvA98DOQ2dN01fPxPAj4F2oe3j2noumtQ+1PAj8PrPYGChq67XH3nAqcCiyuZfgnwBmDA6cAnDV1zDWo/M+E5c3HU2utqaGUY8Fx4/TngivIN3H2lu68Kr28CvgIy62j5NVX2g9Luvh8o/UHpRInr9BJwgZlZPdZYlWrrd/f33H13ePNjgl92aiyiPP4ADwCPAHvrs7gIotT/Q+B37r4VwN2/qucaKxOldgfahtePAjbVY33Vcvf3gW+qaDIMmOyBj4F2ZtapfqqrWnW1u/uc0ucMNXjd1lWQd3T3L8Lrm4GOVTU2swEEWwNr6mj5NRXlB6XL2rh7MbAd+Fa9VFe9SD+IneBmgi2UxqLa+sPd4RPc/S/1WVhEUR7/k4GTzexDM/vYzIbWW3VVi1L7eGCEmW0g+B2C2+qntDpT09dHYxX5dRv5I/pm9jfg2Aom3ZN4w93dzCo9pzF8Z5wCjHT3kqjLl+SY2QggFzivoWuJyszSgF8BNzZwKbWRTjC8Mohgq+p9M8t2920NWVRE1wCT3P2XZnYGMMXMeuv1Wn/MbDBBkJ8dpX3kIHf371ax0C/NrJO7fxEGdYW7kWbWFvgLcE+4y9NQovygdGmbDWaWTrCL+XX9lFetSD+IbWbfJXijPc/d99VTbVFUV38boDcwKxzNOhaYYWaXu3vS30dRh6I8/hsIxjeLgM/NbCVBsM+rnxIrFaX2m4GhAO7+kZk1J/gyqsYyPFSdWP9gvJn1AZ4GLnb3SJlTV0MrM4CR4fWRwGsVFNcUmE4wdvVSHS03WVF+UDpxna4C3vXwCEQjUG39ZtYP+G/g8kY0Pluqyvrdfbu7d3D3LHfPIhgrbCwhDtGeP68SbI1jZh0Ihlo+q8caKxOl9nXABQBmdgrQHCis1yprZwZwQ3j2yunA9oSh30bNzLoArwDXu/vKyB3r6Ejst4B3gFXA34Cjw/tzgafD6yOAIiA/4ZLTgEePLwFWEozT3xPe938JAgOCJ+80YDUwFzixoWpNsv6/AV8mPNYzGrrmmtRfru0sGtFZKxEffyMYHloKLAKubuiaa1B7T+BDgjNa8oELG7rmcvW/QHDWWxHBns/NwGhgdMJj/7tw/RY1pudOhNqfBrYmvG7zosxXH9EXEYk5fbJTRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZj7/2PddQvRSTrhAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEICAYAAAAUZ1CdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAotklEQVR4nO3deZgV5Zn38e/PZumo7BDJyyI6IRpRgdiCRoxAoqJJxDGaQQVxZUhkNMkbMzouEI1xIY7RRCNEESHELW6MjlGSyOuuNIrihoKiNprQ7BAWabjfP6rAQ9NNn4amT3Xz+1zXuTj1LFX3KbrrPvXU01WKCMzMzLJit0IHYGZmlsuJyczMMsWJyczMMsWJyczMMsWJyczMMsWJyczMMsWJKcMkNZf0lqQvFTqWXZGkGyT9oBbtz5T07M6MqRAkdZMUkpoUOhbbNTgxFYikxyWtSl/rJX2Ws3xb2mwE8HREfJr2uUjSG5JWSvpA0kW12N4ASbMlLZO0WNJDkjrl2be5pDskfZhue5ak47bzs65KP+vsPPt+RdIjksolLZH0hKT9arHtUZJKJa2TNLFSXTNJf5I0Pz3w9q/U/VfAf0lqlu/2sqAO9tl8Sd+qo1gKktQktZf0XPqzvkzSC5KOqM8YbPs5MRVIRBwXEXtGxJ7AFOD6TcsRMTJtNhKYnNNNwBlAG2AQMErSkDw3+RZwbES0Bv4P8B7wuzz7NgE+Bo4CWgGXAfdJ6pZP59zPmn7e54H789x2a2AqsB+wF/Ay8EiefQE+AX4BTKim/llgKPD3KuL+FHgHOKEW26tX1RzwW7Nj+6wxWAWcDXQg+X25Dvgfn/U1DE5MGSWpK7Av8NKmsoi4PiJeiYiKiJhDcrDJ61tgRPwjIj7JKdoAfDlnexdLerSavv+MiDERMT8iNkbEo8AHwCHb8bm6AUcCk3LKHpV0cTXbfjki7oiIJRGxHrgR2E9Su3y2FxEPRsTDwOIq6j6LiF9HxLMk+6Mq04Fv57OtyiTdJOljSSskzZR0ZFreUdLq3M8g6WvpGU7TdPlsSW9LWpqe8eyd0zYknS/pPZIvGJU/13bvM0mTga4kB/FVkn6WU326pI8kLZJ0aU6f3dKfn3npGcp9ktqm1U+n/y5L13e4pH+R9Le07SJJUyS1znO35iUi1kbEnIjYSPKFbgNJgmq77Z6WBU5M2XUQ8H5EVFRVKUkkB/g3812hpK6SlgFrgJ8C12+qi4hrI+I7ea5nL+Artdl2jjOAZyJifs62vxMR1+bZ/xvA3yNiq0Szk7wN9NzOvjOAXiQHwz8C90sqjoi/kyS87+e0HQbcExHrJQ0G/gs4ieQb/zPA3ZXWfSLQFzggjzjy3mcRMQz4CPhueoZ7fU51P5KzsG8CV0j6alr+H2k8R5GcjS8FbsnZNkDrdH0vkCSKa9K2XwW6AGOqi0nS6+lwXFWvW7f1eSS9DqwlOYO8PSIW1rQPrPCcmLKrNbByG/VjSP7/7sx3hRHxUTqU155kOO6d2gaVfqOfAtwVEbXuT5KYJm5HPyR1Jjng/WR7+m+nlST/F7UWEX+IiMXpGe4NQHOSAzvAXSRDiEgqAk7l82HbkcA1EfF2+sXkl0Cv3LOmtH5JRKzZVgx1vM9+HhFrIuI14DU+T9gjgUsjoiwi1pH8bJ5c3bBZRMyNiGkRsS4iyoH/JklqVYqIgyOidTWvH24r4Ig4GGgJnEYybGsNgBNTPZJ0es4EgMdraL4UaFHNekaRHOC/nR4IaiUilpAcGB+pzZi7pN1IDp6fAaNqu11J/YCOwJ+2o28H4Eng1oiofPawM7UAlm1PR0k/TYfjlqdnqq1IvhRAMgx7gKR9gKOB5RHxclq3N3DTprMCYAnJWUbuZJWP89h+Xe+z3Otwq4E9c+J9KCfet0mGzvaqJq69JN0jaYGkFcAf+Hy/1Ll0WO9u4GJJ23v2a/XIiakeRcSUnEkANc1qex3Yp3LikHQ2cDHwzYgo24FwmgBfJPk2WaN06PAOkoPN99JrF7U1HHgwIlbVppOkNiQH2KkRcfV2bHdHfJXk7KBW0utJPyMZrmuTnqkuJ0kwRMRa4D6Ss6ZhbDnJ5WPg3yudGXwhIp7PabPNxwLs4D6r7SMHPgaOqxRvcUQsqGZdv0zLD4qIliT7QNWtXNKb2nJWZ+7rtur6VaEpyXVbyzgnpoxKk85coM+mMkmnk/xSHx0R71fuI2m6pDFVrU/SSZL2Sy9UdyAZPnk1PXtC0hhJ07cR0u9IDtLfrWr4SFVPt86t/wLJQXpiLeNuCTwBPBcRW02QkNRfUrUHUklNJBUDRUCRpOLcZK9kKnxxutgsrc89SB4FPJ7TvtpYK2kBVADlQBNJV7D1l4BJwJkks/5yE9NtwCWSeqTbbCXplDy2uSnGHdpnwD+o3QH8NuDqTUONkjqk18kg+fwbK62vBcmsueVK/mRhm3/2EBE9cmd1VnqNrKqPpMMk9VPyJwFfkPSfJF+qXqqqvWWLE1O2jSP5Nr3JL4B2wIxqvjF2AZ6rZl2dgD+TXDOZTXKw+Nd8+qYHnH8nuZD/95xtn57Wd8lZb3VOJBkSe6qKum3F/a/AocBZlb4pd83p+3w1fSG5lraG5CxzaPr+spz6OWlZJ5KD+RqSoSmU/GHzAcDDecaa6wmS/f0u8CHJBfgtht8i4jmS/4dXIuLDnPKHSKY335MOdb0B5P13Y+z4PrsGuCwdmvtpHtu7iWRywZOSVgIvkkzMICJWA1cDz6XrOwz4OfA1kjPIx4AHa/HZ8tWc5NraYmABcDzJ0Pcn2+xlmaDwgwIzS1Jz4FWSYbtPa2jbGbgvIr6+ndualW6n1rPdJA0FekTEJdvRd0fjvh24PyKe2J7+Naz7BmBeRNyaLu9QrNVs42/AHyPi9rpaZx7b3Gn7zKwuODGZFYikQ4FpQJeI2NYMTLNdiofyzApA0l3AX4AfOSmZbclnTGZmlik+YzIzs0zJ5A0N27dvH926dSt0GGZmDcbMmTMXRUSHQsdRFzKZmLp160ZpaWmhwzAzazAkfVhzq4bBQ3lmZpYpTkxmZpYpTkxmZpYpTkxmZpYpTkxmZpYpNSYmSV0kPSXprfT28xdW0UaSbpY0V8nTJr+WUzdc0nvpa3hdfwAzM2tc8pkuXgH834h4RVILYKakaRHxVk6b44Du6asvySMS+kpqC4wGSkievzJT0tSIWFqnn8LMzBqNGhNTelfrT9P3KyW9TfKIgNzENBiYFMn9jV6U1Dp9ZEB/YFrOM3+mAYOA+nwCqeXo37/QEdiubPr0QkdgDUGtrjFJ6gb0ZuuHbXViy2fNlKVl1ZVXte4RkkollZaXl9cmLDMza0TyvvODpD2BB0juhryirgOJiPHAeICSkhLfWXYn8TfW+hURLF26lDZt2rDlg3HNrDp5JSZJTUmS0pSIqOppkwtInoq5See0bAHJcF5u+fTtCdSsIVqwYAHf//73adWqFUcccQSHH344PXv2pH379oUOzSyzanzshZKveXcBSyLiR9W0+TYwiuTxxX2BmyOiTzr5YSbJY5QBXgEO2XTNqTolJSXhe+VZYxARnHbaacybNw9JRAQRQceOHTnyyCM57LDDOOigg2jTpk2hQ7UGTtLMiCgpdBx1IZ/E1A94BpgNbEyL/wvoChARt6XJ67ckExtWA2dFRGna/+y0PcDVEXFnTUE5MVlj8vjjj3PFFVfQsWNHIElWa9asYcWKFey2225s3LiRLl26cOSRR9KnTx8OOuggWrZsWeCoraHZpRJTITgxWWOydu1ajjnmGIqLi2nevPlW9RHB6tWrWblyJUVFRVRUVDBixAhGjBhRgGitoWpMicl3fjDbyYqLizn55JNZurTqP9+TxB577EHHjh35whe+QHFxMQMHDqznKM2yw4nJrB6cdNJJAGzcuLHaNmvXrmXVqlXccMMNfPnLX66v0Mwyx4nJrB507tyZQw89tNqzpoqKChYvXsxll11G37596zk6s2xxYjKrJ0OHDqWioqLKusWLF9OlSxcP4ZnhxGRWb/r27Uvbtm1ZvXr15rKI4B//+AetW7fmk08+4ayzzuLTTz8tYJRmhefEZFZPioqKGDp0KCtWfH7jlIULF9KlSxeWLFlCixYtKCsrY9iwYbzzzjsFjNSssJyYzOrR8ccfv3lK+KJFi+jYsSN33HEHv/71r1m7di1NmzZl3bp1nH322Tz33HOFDtesIJyYzOpR27Zt+da3vsVHH31E8+bNueWWW2jdujX9+vVjwoQJNG/enPXr11NcXMyFF17I/fffTxb/1tBsZ3JiMqtnQ4YMoX379vzmN7+hS5fPbzG5//77M3nyZDp37szKlStp27Yt11xzDTfeeCMbNmwoYMRm9ct3fjArgOXLl9OqVasq61auXMlFF13EjBkz6NChA+Xl5QwYMIBf/OIXFBcX13Ok1lD4zg9mtkOqS0oALVq04Oabb+a73/0uCxcupH379kyfPp3zzjuPxYsX12OUZoXhxGSWQc2aNWP06NGcf/75LFq0iNatW/Puu+8ybNgw5s+fX+jwzHYqJyazjJLEOeecw9VXX82KFSsoLi5m2bJlnHHGGbzyyiuFDs9sp3FiMsu4QYMGMW7cuM3Lu+22GyNHjuTxxx8vYFRmO48Tk1kD0Lt3b+666y7atGnDmjVraNmyJZdddhm33367p5Nbo+PEZNZAdOvWjcmTJ7PffvuxbNky2rdvz+9+9zvGjBnDZ599VujwzOpMjYlJ0gRJCyW9UU39RZJmpa83JG1IH6mOpPmSZqd1nv9ttoPatm3L+PHjGTBgAIsWLaJDhw48+uijjBo1ipUrVxY6PLM6kc8Z00SSR6ZXKSLGRkSviOgFXAL8v4hYktNkQFrfKObXmxVacXEx1157LUOHDqW8vJx27drx6quvMnz4cN8A1hqFGhNTRDwNLKmpXepU4O4disjMalRUVMSPfvQjLrnkks03gP30008ZNmwYb7/9dqHDM9shdXaNSdLuJGdWD+QUB/CkpJmSRtTQf4SkUkml5eXldRWWWaMliZNPPpmbbrqJtWvX0qRJk803gH3mmWcKHZ7ZdqvLyQ/fBZ6rNIzXLyK+BhwHnC/pG9V1jojxEVESESUdOnSow7DMGrcjjjiCO++8k+LiYioqKth999358Y9/zL333usZe9Yg1WViGkKlYbyIWJD+uxB4COhTh9szs9R+++3H5MmT6dSpEytWrKBdu3Zcd9113HDDDb4BrDU4dZKYJLUCjgIeySnbQ1KLTe+BY4AqZ/aZ2Y7r2LEjd955J4ceeiiLFi3ii1/8InfffTcXXXQRa9asKXR4ZnnLZ7r43cALwH6SyiSdI2mkpJE5zf4VeDIi/plTthfwrKTXgJeBxyLiz3UZvJltqUWLFtx0002ceOKJm28A+/TTT3PeeeexaNGiQodnlhc/9sKsEYoIJk6cyG9/+1vatGmz+flOt9xyC/vuu2+hw7OdwI+9MLNMk8RZZ53Ftddey8qVKykuLmbFihUMHz4cf+mzrHNiMmvEjj76aMaNG4ckIoKioiJ++MMf8thjjxU6NLNqOTGZNXK9evVi0qRJtGvXjtWrV9OqVSsuv/xyxo0b5+nklklOTGa7gK5duzJp0iQOOOAAli5dSocOHRg/fjyjR4/2DWAtc5yYzHYRbdq04bbbbmPgwIGUl5fToUMHHnvsMc4//3yWL19e6PDMNnNiMtuFbLoB7JlnnsnChQtp164dr7322uZlsyxwYjLbxey2225ccMEFXHbZZSxdupQmTZpQVlbGkiX53qvZbOdyYjLbRZ100kncfPPNNG3alCuvvJL999+/0CGZAdCk0AGYWeEcfvjhTJs2jWbNmhU6FLPNfMZktotzUrKscWIyM7NMcWIyM7NMcWIysyrNnz+fAw88MO/2X//617cq23RniTFjxmyxnOuXv/zldm8T4OGHH+att96qVZ+IYP78+UycOLHK+unTp/Od73ynVutszCR1lfSkpLclvSWpW07dEEmXStpf0guS1kn6aaX+EyQtlJTXo4+cmMysTjz//PNblU2ZMoWxY8eydu1arr/+eqZMmbJVm9zEtD22JzGNHDmSZ599lo8++ohzzjmHBQsW7FAMtVVRUVGv26sDk4CxEfFVkge+5v7R23HAn4ElwAXAr6roPxEYlO/GnJjMrEbvv/8+vXv3ZsaMGbz55pv06dOHXr16cfDBB/Pee+8BsOeee27Vb+jQoXTu3JmxY8fStWtXhg4dukX9xRdfzJo1a+jVqxenn346ABs2bOC8886jR48eHHPMMZsfcjhv3jwGDRrEIYccwpFHHsk777zD888/z9SpU7nooovo1asX8+bN4/e//z2HHnooPXv25Hvf+x6rV6/eKq5bb72Vu+++mwkTJnDNNdfQqVOnaj/7yy+/zOGHH07v3r35+te/zpw5cwD4xje+waxZsza369evH6+99hr//Oc/Ofvss+nTpw+9e/fmkUeS56dOnDiRE044gYEDB/LNb36zym1Nnz6d/v37c/LJJ7P//vtz+umnbz7L7Nat2+ZnapWWltK/f38gORsdPnw4JM/M+1DSSZKulzRb0p8lNa32w+VB0gFAk4iYBhARqyJidVonoBfwSkQsjIgZwPrK64iIp0kSV34iInOvQw45JMyssD744IPo0aNHvPPOO9GrV6+YNWtWRESMGjUq/vCHP0RExLp162L16tUREbHHHntstY4pU6bE9ddfH//5n/8Z1113XUyZMmWrNrn9PvjggygqKopXX301IiJOOeWUmDx5ckREDBw4MN59992IiHjxxRdjwIABERExfPjwuP/++zevY9GiRZvfX3rppXHzzTdvtc2RI0fG5MmT4+c//3mce+65sWDBgi3qn3rqqfj2t78dERHLly+P9evXR0TEtGnT4qSTToqIiIkTJ8aFF14YERFz5syJTcetSy65ZHPMS5cuje7du8eqVavizjvvjE6dOsXixYu3iid3uy1btoyPP/44NmzYEIcddlg888wzERGx9957R3l5eUREzJgxI4466qiIiBg9enQcccQRAcwEegKrgeMiSWgPASdGpWMscBEwq4rXzVW0PRF4FHgQeBUYCxSldV8DJlVqPwb4aRXr6Qa8Ubm8qleNf8ckaQLwHWBhRGw1+CupP8kj1T9Iix6MiCvTukHATUARcHtEXFvT9swsO8rLyxk8eDAPPvggBxxwAJD87dPVV19NWVkZJ510Et27d6+2/6mnnookxowZw89+9rO87ma+zz770KtXLwAOOeQQ5s+fz6pVq3j++ec55ZRTNrdbt25dlf3feOMNLrvsMpYtW8aqVas49thjt2pz66238uGHH1JRUcEVV1yxzXiWL1/O8OHDee+995DE+vXJCcEpp5zCVVddxdixY5kwYQJnnnkmAE8++SRTp07lV79KRrTWrl3LRx99BCSPIWnbtu02t9enTx86d+4MJHeGnz9/Pv369dtmn+OOO47nnnsugNkkx9tNTwufTZIQthARY0kSTD6aAEcCvYGPgHuBM4E7SIbnHs9zPXnL5w9sJwK/JRljrM4zEbHFlUJJRcAtwNFAGTBD0tSIqN1gsJkVTKtWrejatSvPPvvs5sR02mmn0bdvXx577DGOP/54xo0bx8CBA6vsn4z0fD75YdPytjRv3nzz+6KiItasWcPGjRtp3br1FkNn1TnzzDN5+OGH6dmzJxMnTmT69OlVxtWtW7fNyWRbLr/8cgYMGMBDDz3E/PnzNw+h7b777hx99NE88sgj3HfffcycORNIRqEeeOAB9ttvvy3W89JLL7HHHnvUuL3Kn3/T9agmTZqwceNGIEl2VfWJiI2S1sfn3wA2UsVxXtJFwOlVbP7piLigUlkZMCsi3k/7PgwcRpKYjgG+V+OHqqUarzFFbccGP9cHmBsR70fEZ8A9wODtWI+ZFUizZs146KGHmDRpEn/84x+B5HrTvvvuywUXXMDgwYN5/fXXd2gbTZs23XwWUp2WLVuyzz77cP/99wPJwf+1114DoEWLFqxcuXJz25UrV/KlL32J9evXVznZoraWL1+++RpU5Vl85557LhdccAGHHnoobdq0AeDYY4/lN7/5zeazw1dffXWHY4DkGtOm5PfAAw/s0LoiYmxE9KriVTkpAcwAWkvqkC4PBN6S1Irk2tPiHQqmCnU1+eFwSa9JelxSj7SsE/BxTpuytKxKkkZIKpVUWl5eXkdhmdmO2mOPPXj00Ue58cYbmTp1Kvfddx8HHnggvXr14o033uCMM87YofWPGDGCgw8+ePPkh+pMmTKFO+64g549e9KjR4/NkwqGDBnC2LFj6d27N/PmzeOqq66ib9++HHHEEXVy/7+f/exnXHLJJfTu3Xur2XSHHHIILVu25Kyzztpcdvnll7N+/XoOPvhgevToweWXX77DMQCMHj2aCy+8kJKSEoqKiupknfmIiA3AT4G/SpoNCPg9yWjYXza1k9RRUhnwE+AySWWSWqZ1dwMvkEzQKJN0zra2qXzGfNM5649Wc42pJbAxIlZJOh64KSK6SzoZGBQR56bthgF9I2JUTdsrKSmJ0tLSGuMyMyukTz75hP79+/POO++w226FneQsaWZElNTj9m4nmTvwYl2ve4f3ZESsiIhV6fv/BZpKag8sALrkNO2clpmZNXiTJk2ib9++XH311QVPSoUQEefujKQEdXB3cUkdgX9EREjqQ5LsFgPLgO6S9iFJSEOA03Z0e2ZmWXDGGWds9zDm7NmzGTZs2BZlzZs356WXXqqL0Bq8fKaL3w30B9qn44ejgaYAEXEbcDLwA0kVwBpgSDojpELSKOAJkumLEyLizZ3yKczMGpCDDjoorxmGu6q8rjHVN19jMjOrnfq+xrQz7XoDo2ZmlmlOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlilOTGZmlik1JiZJEyQtlPRGNfWnS3pd0mxJz0vqmVM3Py2fJckPWDIzsxrlc8Y0ERi0jfoPgKMi4iDgKmB8pfoBEdGrsTzAyszMdq4aH60eEU9L6raN+udzFl8EOtdBXGZmtouq62tM5wCP5ywH8KSkmZJGbKujpBGSSiWVlpeX13FYZmbWUNR4xpQvSQNIElO/nOJ+EbFA0heBaZLeiYinq+ofEeNJhwFLSkqiruIyM7OGpU7OmCQdDNwODI6IxZvKI2JB+u9C4CGgT11sz8zMGq8dTkySugIPAsMi4t2c8j0ktdj0HjgGqHJmn5mZ2SY1DuVJuhvoD7SXVAaMBpoCRMRtwBVAO+BWSQAV6Qy8vYCH0rImwB8j4s874TOYmVkjks+svFNrqD8XOLeK8veBnlv3MDMzq57v/GBmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpnixGRmZpmSV2KSNEHSQklVPhpdiZslzZX0uqSv5dQNl/Re+hpeV4GbmVnjlO8Z00Rg0DbqjwO6p68RwO8AJLUleRR7X6APMFpSm+0N1szMGr+8ElNEPA0s2UaTwcCkSLwItJb0JeBYYFpELImIpcA0tp3gzMxsF1dX15g6AR/nLJelZdWVb0XSCEmlkkrLy8vrKCwzM2toMjP5ISLGR0RJRJR06NCh0OGYmVmB1FViWgB0yVnunJZVV25mZlalukpMU4Ez0tl5hwHLI+JT4AngGElt0kkPx6RlZmZmVWqSTyNJdwP9gfaSykhm2jUFiIjbgP8FjgfmAquBs9K6JZKuAmakq7oyIrY1icLMzHZxeSWmiDi1hvoAzq+mbgIwofahmZnZrigzkx/MzMzAicnMzDLGicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDLFicnMzDIlr8QkaZCkOZLmSrq4ivobJc1KX+9KWpZTtyGnbmodxm5mZo1QjU+wlVQE3AIcDZQBMyRNjYi3NrWJiB/ntP8PoHfOKtZERK86i9jMzBq1fM6Y+gBzI+L9iPgMuAcYvI32pwJ310VwZma268knMXUCPs5ZLkvLtiJpb2Af4G85xcWSSiW9KOnE6jYiaUTarrS8vDyPsMzMrDGq68kPQ4A/RcSGnLK9I6IEOA34taR/qapjRIyPiJKIKOnQoUMdh2VmZg1FPolpAdAlZ7lzWlaVIVQaxouIBem/7wPT2fL6k5mZ2RbySUwzgO6S9pHUjCT5bDW7TtL+QBvghZyyNpKap+/bA0cAb1Xua2ZmtkmNs/IiokLSKOAJoAiYEBFvSroSKI2ITUlqCHBPRERO968C4yRtJEmC1+bO5jMzM6tMW+aRbCgpKYnS0tJCh2Fm1mBImplez2/wfOcHMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLFCcmMzPLlLwSk6RBkuZImivp4irqz5RULmlW+jo3p264pPfS1/C6DN7MzBqfGp9gK6kIuAU4GigDZkiaWsWTaO+NiFGV+rYFRgMlQAAz075L6yR6MzNrdPI5Y+oDzI2I9yPiM+AeYHCe6z8WmBYRS9JkNA0YtH2hmpnZriCfxNQJ+DhnuSwtq+x7kl6X9CdJXWrZF0kjJJVKKi0vL88jLDMza4zqavLD/wDdIuJgkrOiu2q7gogYHxElEVHSoUOHOgrLzMwamnwS0wKgS85y57Rss4hYHBHr0sXbgUPy7WtmZpYrn8Q0A+guaR9JzYAhwNTcBpK+lLN4AvB2+v4J4BhJbSS1AY5Jy8zMzKpU46y8iKiQNIokoRQBEyLiTUlXAqURMRW4QNIJQAWwBDgz7btE0lUkyQ3gyohYshM+h5mZNRKKiELHsJWSkpIoLS0tdBhmZg2GpJkRUVLoOOqC7/xgZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZ4sRkZmaZkldikjRI0hxJcyVdXEX9TyS9Jel1SX+VtHdO3QZJs9LX1Mp9zczMctX4aHVJRcAtwNFAGTBD0tSIeCun2atASUSslvQD4Hrg39K6NRHRq27DNjOzxiqfM6Y+wNyIeD8iPgPuAQbnNoiIpyJidbr4ItC5bsM0M7NdRT6JqRPwcc5yWVpWnXOAx3OWiyWVSnpR0onVdZI0Im1XWl5enkdYZmbWGNU4lFcbkoYCJcBROcV7R8QCSfsCf5M0OyLmVe4bEeOB8QAlJSVRl3GZmVnDkc8Z0wKgS85y57RsC5K+BVwKnBAR6zaVR8SC9N/3gelA7x2I18zMGrl8EtMMoLukfSQ1A4YAW8yuk9QbGEeSlBbmlLeR1Dx93x44AsidNGFmZraFGofyIqJC0ijgCaAImBARb0q6EiiNiKnAWGBP4H5JAB9FxAnAV4FxkjaSJMFrK83mMzMz24Iisnc5p6SkJEpLSwsdhplZgyFpZkSUFDqOuuA7P5iZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWaY4MZmZWabklZgkDZI0R9JcSRdXUd9c0r1p/UuSuuXUXZKWz5F0bB3GbmZmjVCNiUlSEXALcBxwAHCqpAMqNTsHWBoRXwZuBK5L+x4ADAF6AIOAW9P1mZmZValJHm36AHMj4n0ASfcAg4G3ctoMBsak7/8E/FaS0vJ7ImId8IGkuen6Xqib8LOnf/9CR7Bt06cXOgLblfn3w/KRz1BeJ+DjnOWytKzKNhFRASwH2uXZFwBJIySVSiotLy/PL3ozM2t08jljqhcRMR4YD1BSUhIFDme7+RuXWfX8+2H5yOeMaQHQJWe5c1pWZRtJTYBWwOI8+5qZmW2WT2KaAXSXtI+kZiSTGaZWajMVGJ6+Pxn4W0REWj4knbW3D9AdeLluQjczs8aoxqG8iKiQNAp4AigCJkTEm5KuBEojYipwBzA5ndywhCR5kba7j2SiRAVwfkRs2EmfxczMGgElJzbZUlJSEqWlpYUOw8yswZA0MyJKCh1HXfCdH8zMLFOcmMzMLFOcmMzMLFOcmMzMLFMyOflB0kpgTqHj2E7tgUWFDmIHOP7CcvyF1ZDj3y8iWhQ6iLqQmTs/VDKnoc4ukVTaUGMHx19ojr+wGnL8khrNVGYP5ZmZWaY4MZmZWaZkNTGNL3QAO6Ahxw6Ov9Acf2E15PgbcuxbyOTkBzMz23Vl9YzJzMx2UU5MZmaWKZlITJLaSpom6b303zZVtOkl6QVJb0p6XdK/FSLWnHgGSZojaa6ki6uoby7p3rT+JUndChBmtfKI/yeS3kr39V8l7V2IOKtTU/w57b4nKSRlagpwPvFL+n76f/CmpD/Wd4zVyeNnp6ukpyS9mv78HF+IOKsjaYKkhZLeqKZekm5OP9/rkr5W3zFWJ4/YT09jni3peUk96zvGOhERBX8B1wMXp+8vBq6ros1XgO7p+/8DfAq0LlC8RcA8YF+gGfAacEClNj8EbkvfDwHuLfR+rmX8A4Dd0/c/aGjxp+1aAE8DLwIlhY67lvu/O/Aq0CZd/mKh465F7OOBH6TvDwDmFzruSvF9A/ga8EY19ccDjwMCDgNeKnTMtYj96zk/M8dlKfbavDJxxgQMBu5K398FnFi5QUS8GxHvpe8/ARYCHeorwEr6AHMj4v2I+Ay4h+Qz5Mr9TH8CvilJ9RjjttQYf0Q8FRGr08UXSZ4+nBX57H+Aq4DrgLX1GVwe8on/POCWiFgKEBEL6znG6uQTewAt0/etgE/qMb4aRcTTJM+Nq85gYFIkXgRaS/pS/US3bTXFHhHPb/qZIXu/t3nLSmLaKyI+Td//HdhrW40l9SH5tjZvZwdWjU7AxznLZWlZlW0iogJYDrSrl+hqlk/8uc4h+QaZFTXGnw6/dImIx+ozsDzls/+/AnxF0nOSXpQ0qN6i27Z8Yh8DDJVUBvwv8B/1E1qdqe3vR1Zl7fc2b/V2SyJJfwE6VlF1ae5CRISkauewp99cJgPDI2Jj3UZplUkaCpQARxU6lnxJ2g34b+DMAoeyI5qQDOf1J/nW+7SkgyJiWSGDytOpwMSIuEHS4SRPtz7Qv6/1R9IAksTUr9CxbI96S0wR8a3q6iT9Q9KXIuLTNPFUOWwhqSXwGHBpeopdKAuALjnLndOyqtqUSWpCMqSxuH7Cq1E+8SPpWyRfHI6KiHX1FFs+aoq/BXAgMD0dPe0ITJV0QkRk4X5i+ez/MpLrA+uBDyS9S5KoZtRPiNXKJ/ZzgEEAEfGCpGKSm6NmZTiyJnn9fmSVpIOB24HjIiIrx5xaycpQ3lRgePp+OPBI5QaSmgEPkYz9/qkeY6vKDKC7pH3SuIaQfIZcuZ/pZOBvkV6RzIAa45fUGxgHnJCh6xubbDP+iFgeEe0joltEdCMZa89KUoL8fn4eJjlbQlJ7kqG99+sxxurkE/tHwDcBJH0VKAbK6zXKHTMVOCOdnXcYsDznUkOmSeoKPAgMi4h3Cx3Pdiv07Iv0WN0O+CvwHvAXoG1aXgLcnr4fCqwHZuW8ehUw5uOBd0muc12all1JcgCE5JfxfmAu8DKwb6H3cy3j/wvwj5x9PbXQMdcm/kptp5OhWXl57n+RDEe+BcwGhhQ65lrEfgDwHMmMvVnAMYWOuVL8d5PM6l1PcmZ6DjASGJmz729JP9/sLP3s5BH77cDSnN/b0kLHvD0v35LIzMwyJStDeWZmZoATk5mZZYwTk5mZZYoTk5mZZYoTk5mZZYoTk5mZZYoTk5mZZcr/B2EKRCDHlEQxAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 3\n",
"pp = 73/11, satellite_part = 12\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 205/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -73/11\n",
"Satellite part = -8\n",
"Sigma = -161/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 73/11\n",
"Satellite part = 12\n",
"Sigma = 205/11\n",
"\n",
"[0, 0, 3, 3] 4\n",
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlR0lEQVR4nO3de3RU9b338fc3JNwDIVxERQR9EBSBoAErVQRFRGvhFKRFQaTSemmt7WofXLbWllMfWiz2tKc9pVarBQTkiIBQqQWxoCgqhAoKFqEgoihtIBIIJEKS7/PHDGkIuUwyQ/Zk5/NaaxYzs2+fGZLP7PnNzmxzd0REJLxSgg4gIiKnl4peRCTkVPQiIiGnohcRCTkVvYhIyKnoRURCTkXfAJnZRWaWY2YWdJagmNkvzOzuWsw/ycxePZ2ZgmBm3czMzSw16CySvFT0ScbMCspdSs2ssNzt8dHZHgIecXc3s2Zm9oSZfWBmh81sk5ldX4vtvVBhm8fM7J0Yl73AzJaaWa6Z5ZnZCjPrWYtt3xN9wfrMzGZVmNbUzJ41s93RIhtSYfFHgB+YWdNYt5cszOwxM3sv+v87qZbL7jazYQnKEfiLhJlNjGb4WlAZGgMVfZJx99YnLsAe4Ivl7ptnZmcCQ4HnooukAh8CVwFtgR8Cz5hZtxi3d32Fba4DFsYYNwNYBvQEzgDWA0tjXBbgY+D/AU9WMf1VYAKwr5LcnwDbgJG12F69qqZANwPfAP5Wj3GSjpm1A34AbA06S9ip6Buea4G/uXsRgLsfcfep7r7b3Uvd/XngfeDS2q44+uJwJTCn3H3Pm9n9lc3v7uvd/Ql3z3P348AvgZ5m1j6W7bn7Ynd/DjhQybRj7v4rd38VKKliFWuAL8SyrYrM7L/N7EMzO2RmG83syuj9nc3saPnHYGaXRN+1pEVv325mfzezT6PvYs4tN6+b2TfNbAewo4rH/Vt3fwkoqmXmp4CuwJ+i777uKzd5vJntMbP9ZvZAuWVSzOx+M9tpZgfM7Bkzy4xOfiX678Ho+i43s/PN7K/Refeb2Twzy6hNzlr4GfBrYP9pWr9Eqegbnj7Ae1VNNLMzgAuo217SRGCtu+8+cYe73+ju02NcfjCwz91PKe7T5O9AvzouuwHIAjKB+cBCM2vu7vuIvIB8udy8twIL3P24mY0ishc6GugIrAWerrDu/wAuAy6qY7ZKufutnPwu7+flJl9B5J3VNcCPzOzC6P3fiua5CjgL+BT4bXTa4Oi/GdH1vQ4YkQI+C7gQOAeYWlUmM3vbzA5WcZlZzXIDgWzg0difAakrFX3DkwEcrmxCdI9zHjDb3bfVYd0TgVl1CWVmXYgUyHfrsnwdHSbyfNSau8919wPuXuzuvwCaESlKgNlEhowwsybAzcBT0Wl3AT9z97+7ezHwUyCr/F59dHqeuxfWJVsd/ae7F7r7ZiJDQydeAO8CHnD3j9z9MyKlfVNVw0ru/g93f9HdP3P3XOC/iLxIVMrd+7p7RhWXb1S2TPQ5nQnc4+6ldX7EEjMVfcPzKZBe8U4zSyFSRseAe2q7UjO7AugMPFuHZTsCK4GZ7l5x7/Z0SgcO1mVBM/u/0eGXfDM7SOTzjQ7RyUuBi8ysO5Ghsnx3Xx+ddi7w3yf2WoE8InvBZ5db/Yd1yRSn8p9jHAVaR6+fCywpl/fvRIbCzqhsJWZ2hpktMLO9ZnYImMu/n5dE+Qbwtru/keD1ShVU9A3P20SGZsqYmQFPEPnlHRMdL6+t24DF7l5Qm4WiH6itBJa5+7Q6bDceFxLZe62V6Hj8fUSGZ9q5ewaQT6SwiX7+8QyRvfpb+ffePERK/M4Ke64t3H1duXlO51fC1nbdHwLXV8jb3N33VrGun0bv7+PubYg8B1UexmtmWysctVX+UtWwzDXAl8xsn5ntAwYBvzCz/6nlY5MYqegbnheBS8ysebn7fkek9L5Y2XBBFYcnlp/egkjpzapk2hozm1rFcm2AFcBr7n7KB7ZmNsTMqiwmM0uNPo4mQBMza15+SMEih46eeJxNo9PLl85VwAuxZK0gHSgGcoFUM/sR0KbCPHOASUSO6ilf9I8C3zez3tFttjWzsTFss4xFDh1tTqRA06KPKyU6rdrnDPgncF4tNvcoMO3E0JKZdYx+zgCRx19aYX3pQAGQb2ZnA1OqW7m79y5/1FaFy11VLDaJyM9rVvSSA/wn8EAV80ucVPQNjLv/E/grMAog+gt8J5FfmH1W4Zh7MzuHyFh2dcfG/weRIZDVlUw7B3itiuW+BAwAvlphT65ruWXXVbEsRA4FLQTuJ7LnWBi974T3ovedTeQFpZDIUAQWOcz0Iv59mGlNWctbAfwF2A58QOTol5OGW9z9NSIl+Dd3/6Dc/UuAh4EF0aGNLUDMf7cQtTL6WAYBj0Wvn/hgtKbn7GfAD6NDMf83hm39N5FDYFea2WHgDSIfFOPuR4FpwGvR9X2OSOFeQuQdznJgcS0fW43c/aC77ztxITLceMjd8xO9LYkwnXik4TGzi4h8YDjQa/gPNLMJQG93/34dttMFeMbdB9Ux5x+Ahe6+oi7L17DuXwA73X1m9HZcWavYxl+B+e7+h0StM4ZtnrbnTBovFb1IJcxsAJFhsnPcvdKjnEQaCg3diFRgZrOBVcB3VPISBtqjFxEJOe3Ri4iEXCDfWtehQwfv1q1bEJsWEWmwNm7cuN/dO9Z2uUCKvlu3buTk5ASxaRGRBsvMPqh5rlNp6EZEJORU9CIiIaeiFxEJORW9iEjIqehFREIuIUVvZiMscrLjf1gVp50TEZFgxF300bPF/JbIN/hdBNwc/dItERFJAok4jn4g8A933wVgZguIfIXuuwlYd1IaMiT+daxZE/86RBoT/d7VXSKGbs7m5O/y/oiTT6sGgJndYWY5ZpaTm5ubgM2KiEgs6u0vY939MSInWSA7O7tBf5NaY90rEAmSfu/qLhF79HuJnBXnhC7R+0REJAkkoug3AD3MrLuZNQXGETl1mYiIJIG4h27cvdjM7iFyHs4mwJPuvjXuZCIikhAJGaN39z8Df07EukREJLH0l7EiIiGnohcRCTkVvYhIyKnoRURCTkUvIhJyKnoRkZBT0YuIhJyKXkQk5FT0IiIhp6IXEQk5Fb2ISMip6EVEQk5FLyIScip6EZGQU9GLiIScil5EJORU9CIiIaeiFxEJORW9iEjIqehFREJORS8iEnIqehGRkFPRi4iEnIpeRCTk4ip6MxtrZlvNrNTMshMVSkREEifePfotwGjglQRkERGR0yA1noXd/e8AZpaYNCIiknD1NkZvZneYWY6Z5eTm5tbXZkVEGr0a9+jNbBXQuZJJD7j70lg35O6PAY8BZGdne8wJRUQkLjUWvbsPq48gIiJyeujwShGRkIv38MovmdlHwOXAcjNbkZhYIiKSKPEedbMEWJKgLCIichpo6EZEJORU9CIiIaeiFxEJORW9iEjIqehFREJORS8iEnIqehGRkFPRi4iEnIpeRCTkVPQiIiGnohcRCTkVvYhIyKnoRURCTkUvIhJyKnoRkZBT0YuIhJyKXkQk5FT0IiIhp6IXEQk5Fb2ISMip6EVEQk5FLyIScip6EZGQU9GLiIRcXEVvZjPMbJuZvW1mS8wsI0G5REQkQeLdo38RuNjd+wLbge/HH0lERBIpNZ6F3X1luZtvADfFF6fxGDIk6AQRa9YEnUCSnX5WG75EjtHfDrxQ1UQzu8PMcswsJzc3N4GbFRGR6pi7Vz+D2SqgcyWTHnD3pdF5HgCygdFe0wqB7Oxsz8nJqUNcEZHGy8w2unt2bZercejG3YfVsOFJwI3ANbGUvIiI1K+4xujNbARwH3CVux9NTCQREUmkeMfo/wdIB140s01m9mgCMomISALFe9TN/0lUEBEROT30l7EiIiGnohcRCTkVvYhIyKnoRURCTkUvkkC7d+/m4osvjnn+QYMGnXLfiT9HmTp16km3y/vpT39a520CPPfcc7z77ru1Wsbd2b17N7Nmzap0+po1a7jxxhtrtc6wO3ToEF26dOGee+456f7p06czb948XnnlFS655BJSU1N59tlnT5pnxIgRZGRkJOQ5VdGLBGjdunWn3Ddv3jxmzJhBUVERP//5z5k3b94p85Qv+rqoS9HfddddvPrqq+zZs4fJkyezd+/euDLUVnFxcb1uLxEefPBBBg8efMr9K1asYPjw4XTt2pVZs2Zxyy23nDLPlClTeOqppxKSQ0Uvcprs2rWL/v37s2HDBrZu3crAgQPJysqib9++7NixA4DWrVufstyECRPo0qULM2bMoGvXrkyYMOGk6ffffz+FhYVkZWUxfvx4AEpKSvj6179O7969GT58OIWFhQDs3LmTESNGcOmll3LllVeybds21q1bx7Jly5gyZQpZWVns3LmTxx9/nAEDBtCvXz/GjBnD0aOn/v3jzJkzefrpp3nyySf52c9+xtlnn13lY1+/fj2XX345/fv3Z9CgQbz33nsADB48mE2bNpXNd8UVV7B582aOHDnC7bffzsCBA+nfvz9Lly4FYNasWYwcOZKrr76aa665ptJtrVmzhiFDhnDTTTfRq1cvxo8fX/YuqFu3buzfvx+AnJwchkS/oW3q1KncdtttXHnllZx77rksXryY++67jz59+jBixAiOHz9e5WOL1caNG/nnP//J8OHDT7r/0KFDHDt2jI4dO9KtWzf69u1LSsqpVXzNNdeQnp4edw5Q0YucFu+99x5jxoxh1qxZDBgwgEcffZRvf/vbbNq0iZycHLp06VLlsvPnz+ejjz5iypQp7Nmzh/nz5580ffr06bRo0YJNmzaV7e3v2LGDb37zm2zdupWMjAwWLVoEwB133MFvfvMbNm7cyCOPPMI3vvENBg0axMiRI5kxYwabNm3i/PPPZ/To0WzYsIHNmzdz4YUX8sQTT5yS65577uHmm2/m9ttv54EHHuDjjz+u8jH06tWLtWvX8tZbb/GTn/yEH/zgBwBMnjy5bOhn+/btFBUV0a9fP6ZNm8bVV1/N+vXrWb16NVOmTOHIkSMA/O1vf+PZZ5/l5ZdfrnJ7b731Fr/61a9499132bVrF6+99lqV856wc+dO/vrXv7Js2TImTJjA0KFDeeedd2jRogXLly8/Zf4ZM2aQlZV1yuXee+89Zd7S0lK+973v8cgjj5wybdWqVVW+aJ0ucf3BlIicKjc3l1GjRrF48WIuuugiAC6//HKmTZvGRx99xOjRo+nRo0eVy998882YGVOnTuW+++6rdIy+ou7du5OVlQXApZdeyu7duykoKGDdunWMHTu2bL7PPvus0uW3bNnCD3/4Qw4ePEhBQQHXXXfdKfPMnDmTDz74gOLiYn70ox9Vmyc/P5/bbruNHTt2YGZle8hjx47loYceYsaMGTz55JNMmjQJgJUrV7Js2bKyYiwqKmLPnj0AXHvttWRmZla7vYEDB5a9eGZlZbF7926uuOKKape5/vrrSUtLo0+fPpSUlDBixAgA+vTpw+7du0+Zf8qUKUyZMqXadZ4wc+ZMbrjhhkpf0P/yl7/w1a9+Nab1JIqKXiTB2rZtS9euXXn11VfLiv6WW27hsssuY/ny5dxwww38/ve/5+qrr650eTMD/v1h7Inb1WnWrFnZ9SZNmlBYWEhpaSkZGRknDZVUZdKkSTz33HP069ePWbNmsaaSL383M7p161ZWztV58MEHGTp0KEuWLGH37t1lQyYtW7bk2muvZenSpTzzzDNs3LgRiHzQu2jRInr27HnSet58801atWpV4/YqPv4T4/mpqamUlpYCkRePypZJSUkhLS2t7HlOSUmp9POAGTNmVPp5yeDBg/n1r3990n2vv/46a9euZebMmRQUFHDs2DFat27N9OnTWb9+Pb/73e9qfEyJpKEbkQRr2rQpS5YsYc6cOWXDLrt27eK8887j3nvvZdSoUbz99ttxbSMtLa3GceQ2bdrQvXt3Fi5cCETKdPPmzQCkp6dz+PDhsnkPHz7MmWeeyfHjxysts9rKz88vG8OveJTO1772Ne69914GDBhAu3btALjuuuv4zW9+U/bu5a233oo7A0TG6E+8mJwYzqqrKVOmsGnTplMuFUseIh+o79mzh927d/PII48wceJEpk+fztatW+nVqxdNmjSJK0ttqehFToNWrVrx/PPP88tf/pJly5bxzDPPcPHFF5OVlcWWLVuYOHFiXOu/44476Nu3b9mHsVWZN28eTzzxBP369aN3795lH3KOGzeOGTNm0L9/f3bu3MlDDz3EZZddxuc//3l69eoVVzaA++67j+9///v079//lL3jSy+9lDZt2pw0fPHggw9y/Phx+vbtS+/evXnwwQfjzgDw4x//mG9/+9tkZ2fXe7lW5oUXXigbIgLYsGEDXbp0YeHChdx555307t27bNqVV17J2LFjeemll+jSpQsrVqyo83ZrPPHI6aATj4g0Xh9//DFDhgxh27ZtlR5tEmbXXnstc+bM4cwzz6zT8nU98UjjepZFJFBz5szhsssuY9q0aY2u5AFefPHFOpd8PLRHLyINwjvvvMOtt9560n3NmjXjzTffDChR/TttpxIUEUkGffr0iekIIjlV43vvJCLSyKjoRURCTkUvIhJyKnoRkZBT0YvUweHDh5k6dSpr165tkF+fK42Lil6kDl544QUWLVrEvffey8MPPxx0HJFqqehFaqm0tJTZs2fTsWNHUlNTueyyy4KOJFItFb1ILa1fv57c3FxSUlJIT0+v9AxCIskkrqI3s4fM7G0z22RmK83srEQFE0lWc+bMITU1lfz8fCZMmEDTpk2DjiRSrXj36Ge4e193zwKeB6o/G4FIA7dnzx42bNhA27ZtMTNGjhwZdCSRGsVV9O5+qNzNVkD9f3GOSD068d3ueXl5DBs2jA4dOgScSKRmcX/XjZlNAyYC+cDQaua7A7gDoGvXrvFuVqTeHTlyhMWLF5OZmUleXh633HJL0JFEYlLjHr2ZrTKzLZVcRgG4+wPufg4wD7inqvW4+2Punu3u2R07dkzcIxCpJytXruTYsWMUFhZy/vnnn3SSCJFkVuMevbsPi3Fd84A/Az+OK5FIEnJ3Zs2aRevWrSkoKGDSpEkxnctVJBnEe9RN+VPZjwK2xRdHJDnl5OTw8ccfk5aWRsuWLRk6tMpRSpGkE+8Y/XQz6wmUAh8Ad8UfSST5zJ07l9TUVPLy8pg8eTLNmjULOpJIzOIqencfk6ggIslq7969vP7667Rv3579+/czevTooCOJ1Ir+MlakBosWLcLdycvLY8iQIZxxxhlBRxKpFRW9SDUKCwtZuHAhmZmZlJaWMn78+KAjidSazhkrUo1Vq1ZRVFRESkoK5557Lv369Qs6kkitaY9epAonDqls2bIlR48e1SGV0mCp6EWqsHnzZvbs2UPz5s1p0aIFw4bF+iclIslFRS9Shblz59KkSRPy8vK46aabaN68edCRROpERS9SiX379vHKK6/Qrl07zIwxY3QksTRcKnqRSixZsoTS0lIOHjzIoEGDOPvss4OOJFJnKnqRCoqKiliwYAGZmZkUFxczYcKEoCOJxEWHV4pUsHr1ao4ePYqZcdZZZ3HppZcGHUkkLtqjFynH3fnjH/9IixYtOHLkiA6plFBQ0YuUs2XLFt5//31atGhB06ZNGT58eNCRROKmohcp5+mnnyYlJYW8vDzGjBlDq1atgo4kEjcVvUhUbm4uL730EpmZmQCMHTs24EQiiaGiF4launQppaWl5OfnM3DgQM4555ygI4kkhIpeBDh27Bjz588nIyOD48ePM3HixKAjiSSMil4EePnllzl8+DDFxcV06tSJAQMGBB1JJGFU9NLonfiWyubNm1NQUMBtt91GSop+NSQ89NMsjd62bdvYvn07rVq1Ii0tjeuvvz7oSCIJpaKXRm/BggWYGXl5eYwcOZL09PSgI4kklIpeGrW8vDxWrFhB+/btcXe+8pWvBB1JJOFU9NKo/elPf6KkpIRDhw7Rv39/unfvHnQkkYRT0UujVVxczNy5c2nbti3Hjh3TIZUSWip6abTWrl3LwYMHcXfat2/P5z73uaAjiZwWCSl6M/uembmZdUjE+kTqw+zZs2nWrBn5+flMnDiR1FR9a7eEU9xFb2bnAMOBPfHHEakfO3bsYOvWrbRu3ZrU1FS+8IUvBB1J5LRJxC7ML4H7gKUJWJfUsyFDgk4QsWZN/W5vwYIFABw4cIBRo0bRtm3b+g0Qg8b6fyOJF9cevZmNAva6++YY5r3DzHLMLCc3NzeezYrEJT8/n+XLl9O+fXsAHVIpoVfjHr2ZrQI6VzLpAeAHRIZtauTujwGPAWRnZ3stMspp1Bj31p5//nlKSkooKCigd+/e9OjRI+hIlWqM/zdyetRY9O4+rLL7zawP0B3YHD3VWhfgb2Y20N33JTSlSIIUFxfz1FNP0aZNGw4dOsSkSZOCjiRy2tV5jN7d3wE6nbhtZruBbHffn4BcIqfFG2+8QV5eHm3atCEjI4Mrrrgi6Egip52Oo5dGZfbs2aSlpZGfn8+ECRN0SKU0Cgkrenfvpr15SWa7du1i06ZNtGnThiZNmvDFL34x6Egi9UJ79NJoPPPMM5gZBw4c4Lrrris7N6xI2KnopVE4fPgwy5YtIzMzE3dn3LhxQUcSqTcqemkUXnjhBY4fP86RI0fo2bMnvXr1CjqSSL1R0UvolZaWMnv2bNLT0ykqKmLSpElEDwkWaRRU9BJ669evJzc3l5SUFNLT0xk8eHDQkUTqlYpeQm/OnDmkpqaSn5/P+PHjadq0adCRROqVil5Cbc+ePWzYsIG2bdtiZowaNSroSCL1TkUvobZw4UIgcm7YYcOG0aGDTpkgjY+KXkLryJEjLF68mMzMTEpLS7nllluCjiQSCBW9hNbKlSs5duwYhYWFnHfeefTu3TvoSCKBUNFLKLk7s2bNonXr1hQWFuqQSmnUVPQSSjk5OXzyySekpaXRsmVLhg4dGnQkkcCo6CWU5s6dS5MmTcjLy2PcuHE0b9486EgigVHRS+js3buX119/nYyMDMyML33pS0FHEgmUil5CZ9GiRbg7eXl5XHXVVXTuXNmZMEUaDxW9hEphYSELFy4sO6RywoQJQUcSCZxOryOh8uKLL1JUVERKSgpdu3alX79+QUcSCZz26CU0ThxS2bJlS44ePapDKkWiVPQSGps3b+bDDz+kefPmtGjRgmHDhgUdSSQpqOglNE4cUnngwAFuuukmWrRoEXQkkaSgopdQ2LdvH6+88grt2rXDzBgzZkzQkUSShopeQmHJkiW4OwcPHuTzn/88Z599dtCRRJKGil4avKKiIhYsWEC7du0oLi5m/PjxQUcSSSo6vFIavNWrV3P06FFSUlI466yzyM7ODjqSSFKJa4/ezKaa2V4z2xS93JCoYCKxcHf++Mc/0qJFCwoKCnRIpUglErFH/0t3fyQB6xGptS1btvD++++TmZlJSUkJw4cPDzqSSNLRGL00aE8//TQpKSnk5eUxevRoWrVqFXQkkaSTiKK/x8zeNrMnzaxdVTOZ2R1mlmNmObm5uQnYrDR2ubm5vPTSS2RmZgIwduzYgBOJJKcai97MVpnZlkouo4DfAecDWcAnwC+qWo+7P+bu2e6e3bFjx0Tll0Zs6dKllJaWkp+fz4ABA+jatWvQkUSSUo1j9O4e09+Rm9njwPNxJxKJwbFjx5g/fz4ZGRkcPHiQiRMnBh1JJGnFe9TNmeVufgnYEl8ckdi8/PLLHD58mOLiYjp16sTAgQODjiSStOI96ubnZpYFOLAbuDPeQCI1OfEtlc2bN6egoIC7776blBQdVyBSlbiK3t1vTVQQkVht27aN7du30759e0pKSrj++uuDjiSS1LQbJA3OggULMDPy8vIYOXIk6enpQUcSSWoqemlQ8vLyWLFiBe3bt6e0tJQvf/nLQUcSSXoqemlQ/vSnP1FSUsKhQ4fo378/5513XtCRRJKeil4ajOLiYubOnUvbtm05duyYDqkUiZGKXhqMtWvXcvDgQdydzMxMLr/88qAjiTQIKnppMGbPnk2zZs04dOgQEydOJDVV37ItEgsVvTQIO3bsYOvWrbRu3ZomTZpw4403Bh1JpMFQ0UtSKSwsZP78+XzyyScn3b9gwQIADhw4wBe+8AXatm0bRDyRBklFL0ll//79PPzww4wcOZLvfve7bNy4kU8//ZTly5fTvn17AMaNGxdwSpGGRYOcklRatWpF8+bN6dChA+vWrWPt2rW0adOGkpISCgoK6N27Nz169Ag6pkiDoj16SSqtW7empKSElJQUOnbsyBlnnEFpaSnt27fnyJEjdOrUiQ8//DDomCINiopekkpaWhopKSmUlpYCYGa0bt2atLQ0OnXqxOrVqxk9ejTf+ta3ePPNN8vmE5GqqeglqZgZrVq1oqSk5JRpTZs2pXPnznTq1ImcnBwmT57M1KlT6z+kSAOjopekk56eTnFxcZXTzYzS0lK6du3KV7/61XpMJtIwqegl6aSnp1e6Rw9QWlrKJ598woUXXsjcuXPp3r17PacTaXhU9JJ0ThxlU1FxcTH79u3juuuu49FHHy07KbiIVE+HV0rSadu27SlFX1hYyKeffsqdd97J17/+dcwsoHQiDY+KXpJORkbGSWP0hw4doqioiGnTpjFixIgAk4k0TCp6STrt2rUr26Pfv38/zZo14/HHH6dv374BJxNpmDRGL0nnxNDNvn376Ny5M3PnzlXJi8RBRS9Jp3Xr1hw+fJhLLrmE2bNn06VLl6AjiTRoGrqRpNOjRw++853vcOedd5KWlhZ0HJEGT0UvSadnz5707Nkz6BgioaGhGxGRkIu76M3sW2a2zcy2mtnPExFKREQSJ66hGzMbCowC+rn7Z2bWKTGxREQkUeIdo78bmO7unwG4+7/ijySN0ZAhQSdIPmvWBJ1AwiLeoZsLgCvN7E0ze9nMBlQ1o5ndYWY5ZpaTm5sb52ZFRCRWNe7Rm9kqoHMlkx6ILp8JfA4YADxjZue5u1ec2d0fAx4DyM7OPmW6NG7aexU5fWosencfVtU0M7sbWBwt9vVmVgp0ALTLLiKSJOIdunkOGApgZhcATYH9ca5TREQSKN4PY58EnjSzLcAx4LbKhm1ERCQ4cRW9ux8DJiQoi4iInAb6y1gRkZBT0YuIhJyKXkQk5FT0IiIhZ0EcJGNmh4H36n3DidOBhn0YaUPO35Czg/IHraHn7+nu6bVdKKjvo3/P3bMD2nbczCxH+YPRkLOD8gctDPnrspyGbkREQk5FLyISckEV/WMBbTdRlD84DTk7KH/QGmX+QD6MFRGR+qOhGxGRkFPRi4iEXL0UvZllmtmLZrYj+m+7SubJMrPXoycZf9vMvlIf2apjZiPM7D0z+4eZ3V/J9GZm9r/R6W+aWbcAYlYqhuzfNbN3o8/1S2Z2bhA5q1JT/nLzjTEzN7OkOmQulvxm9uXo/8FWM5tf3xmrE8PPT1czW21mb0V/hm4IImdlzOxJM/tX9Ft1K5tuZvbr6GN728wuqe+M1Ykh//ho7nfMbJ2Z9atxpe5+2i/Az4H7o9fvBx6uZJ4LgB7R62cBnwAZ9ZGvisxNgJ3AeUS+Z38zcFGFeb4BPBq9Pg7436Dy1iH7UKBl9PrdyZI91vzR+dKBV4A3gOygc9fy+e8BvAW0i97uFHTuWuZ/DLg7ev0iYHfQuctlGwxcAmypYvoNwAuAETk73ptBZ65l/kHlfm6ujyV/fQ3djAJmR6/PBv6j4gzuvt3dd0Svfwz8C+hYT/kqMxD4h7vv8sjXMS8g8jjKK/+4ngWuMTOrx4xVqTG7u69296PRm28AXeo5Y3Viee4BHgIeBorqM1wMYsn/deC37v4pgLv/q54zVieW/A60iV5vC3xcj/mq5e6vAHnVzDIKmOMRbwAZZnZm/aSrWU353X3diZ8bYvzdra+iP8PdP4le3wecUd3MZjaQyJ7EztMdrBpnAx+Wu/1R9L5K53H3YiAfaF8v6aoXS/byJhPZw0kWNeaPvt0+x92X12ewGMXy/F8AXGBmr5nZG2Y2ot7S1SyW/FOBCWb2EfBn4Fv1Ey0havv7kcxi+t1N2Fcg1HAS8TLu7mZW5TGd0VfWp4icrao0UfmkcmY2AcgGrgo6S6zMLAX4L2BSwFHikUpk+GYIkT2yV8ysj7sfDDJULdwMzHL3X5jZ5cBTZnaxfmfrj5kNJVL0V9Q0b8KK3qs/ifg/zexMd/8kWuSVvk01szbAcuCB6FuqIO0Fzil3u0v0vsrm+cjMUom8hT1QP/GqFUt2zGwYkRfiq9z9s3rKFoua8qcDFwNroiNlnYFlZjbS3ev0XSAJFsvz/xGRsdXjwPtmtp1I8W+on4jViiX/ZGAEgLu/bmbNiXxhWDINQVUlpt+PZGZmfYE/ANe7e42dU19DN8uA26LXbwOWVpzBzJoCS4iMnT1bT7mqswHoYWbdo9nGEXkc5ZV/XDcBf/XoJyQBqzG7mfUHfg+MTLLxYaghv7vnu3sHd+/m7t2IjFMmS8lDbD87zxHZm8fMOhAZytlVjxmrE0v+PcA1AGZ2IdAcyK3XlHW3DJgYPfrmc0B+uaHlpGdmXYHFwK3uvj2mherpU+T2wEvADmAVkBm9Pxv4Q/T6BOA4sKncJSuoT77935/ObyfyWcED0ft+QqRUIPLDvRD4B7AeOC/IvLXMvgr4Z7nnelnQmWuTv8K8a0iio25ifP6NyPDTu8A7wLigM9cy/0XAa0SOyNkEDA86c7nsTxM5au84kXdOk4G7gLvKPfe/jT62d5LwZ6em/H8APi33u5tT0zr1FQgiIiGnv4wVEQk5Fb2ISMip6EVEQk5FLyIScip6EZGQU9GLiIScil5EJOT+P/M+FQLC58cNAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 4\n",
"pp = -65/11, satellite_part = -12\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -197/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjrElEQVR4nO3deZgU5bn38e/NwIBsjgwT4bCI5HUJ66AjKi6gHhFNoh6VvBoQMC4xamLOUTiisklQBE2OJhL1KBANMYKK8rqh5siriAJDBEUECToKuA0gyMgO9/mjikkzzFLTMz09NfP7XFdf9HQ9VXV30/3rqqeqnzJ3R0RE4qtBugsQEZGqUZCLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchTyMwam9kKM2ub7lrqIzO718x+UYn2w8xsfiprSgcz62RmbmYN012LpIaCPElm9pKZFYW33Wa2K+HvB8Nm1wBvuPsX4TzDzWy5mW01s0/MbHgl1neGmb1vZpvNbKOZzTazdhHnbWxmj5rZp+G6l5rZuUk+16Lwub4fcd6jzew5Mys0s01mNtfMjqnEum8ws3wz22lm00tMyzSzp8ysIAyqfiVmvwe41cwyo66vtjCzh81slZntM7NhlZy3wMz+tZrqSPuXgJkNCWu4Kl011HYK8iS5+7nu3tzdmwMzgEn7/3b3a8Nm1wKPJ8xmwBDgMGAAcIOZXRpxlSuAc9w9C/gXYDXwx4jzNgTWAn2BQ4HbgZlm1inKzInPNXy+C4BZEdedBcwBjgEOBxYBz0WcF+Bz4DfA1DKmzwcGA1+WUvcXwErg/Eqsr0aVE5DLgOuAv9dgObWOmR0G3Ap8kO5aajMFeYqYWUegM7Bw/2PuPsnd/+7ue9x9FUGgnRJlee7+lbt/nvDQXuD/JKzvFjN7vox5v3P3se5e4O773P154BPg+CSeVyfgNOCxhMeeN7Nbylj3Ind/1N03uftu4HfAMWaWHWV97v6Muz8LbCxl2i53/y93n0/wepRmHvDDKOsqyczuM7O1ZvatmS0xs9PCx9uY2bbE52Bmx4V7HY3Cv39mZh+a2TfhXsgRCW3dzK43s9UEX8ilPe8H3P1vwI5K1vw40BH4f+He04iEyYPM7DMz22BmtyXM0yB8/6wJ9/ZmmlmrcPIb4b+bw+WdbGbfN7P/CdtuMLMZZpZVmTor4S7gfmBDipZfJyjIU6c78LG77yltopkZQSBG3tIws45mthnYDtwMTNo/zd0nuvuPIi7ncODoyqw7wRDgTXcvSFj3j9x9YsT5Twe+dPeDgjlFPgR6JjnvYiAXaAX8BZhlZk3c/UuCL4ifJLS9HPiru+82swsItiIvAnKAN4EnSiz7QuBEoEuStZXK3S8HPgN+HO5BTUqYfCrBntFZwGgz+0H4+C/DevoS7O19AzwQTjs9/DcrXN7bBHuWd4VtfwB0AMaWVZOZvRd2CZZ2m1LOfL2BPODBstpIQEGeOlnA1nKmjyV4/adFXaC7fxZ2rbQm6B5ZWdmiwi3GGcCf3L3S8xME+fQk5sPM2hMExH8kM3+SthL8X1Sau//Z3TeGe1D3Ao0JghDgTwRdOphZBnAZ/+xGuxa4y90/DL/I7wRyE7fKw+mb3H17MrUlaZy7b3f3ZQRdN/u/4K4FbnP3de6+k+C9eUlZ3T7u/g93f9Xdd7p7IfBbgi+BUrl7D3fPKuN2XWnzhK/pFOAGd9+X9DOuJxTklWBmgxIO+L1UQfNvgBZlLOcGgkD8YfjBqRR330QQJM9V5iCUmTUgCJtdwA2VXa+ZnQq0AZ5KYt4c4BVgiruX3DpNpRbA5mRmNLObw+6RLeGe0KEEX6IQdIt1MbMjgbOBLe6+KJx2BHDf/q1OYBPBVmziwem1ydRURYnHEbYBzcP7RwCzE+r9kKCr6vDSFmJmh5vZX81svZl9C/yZf74u1eU64D13f6eal1snKcgrwd1nJBz0q+isj/eAI0sGrZn9DLgFOMvd11WhnIbA94CWURqHXTmPEnw4Lw77qytrKPCMuxdVZqbwgNUrwBx3n5DEeqviBwRbn5US9oePIOg+OSzcE9pCEMi4+w5gJsFW+eUceFB7LfDzElueh7j7goQ2qRx2tLLLXgucW6LeJu6+voxl3Rk+3t3dWxK8BlbWws3sAzvwrKfEW1ndJmcB/2ZmX5rZl0Af4F4z+0Mln1u9oCBPkTCk/wH03v+YmQ0i+BCc7e4fl5zHzOaZ2djSlmdmF5nZMeGBqRyC3dl3w61zzGysmc0rp6Q/EoTaj0vbnbfST99LnH4IQahNr2TdLYG5wFvuftABUTPrZ2ZlBo+ZNTSzJkAGkGFmTRK/HC04tbJJ+GdmOD0xVPoCLyW0L7PWEloAe4BCoKGZjebgL83HgGEEZ8UkBvmDwEgz6xqu81AzGxhhncUsOLWyCUFANgqfV4NwWrmvGfAVwYH2qB4EJuzv+jGznLCfH4Lnv6/E8loARcAWC06BLfc0WnfvmnjWU4nbtWXMNozg/Zob3vKBccBtZbSv1xTkqfUQwdbafr8BsoHFZWyRdADeKmNZ7YCXCfp83yf4cP1blHnDD+jPCT4QXyase1A4vUPCcstyIUEXxeulTCuv7n8DTgCuKLEl1jFh3gVlzAvBsYDtBHsxg8P7tydMXxU+1o7gC2M7QVcBFvwQqwvwbMRaE80leL0/Aj4lOHvkgO4Qd3+L4P/h7+7+acLjs4G7gb+GXQ/Lgcjn7YdeCZ9LH+Dh8P7+A48VvWZ3AbeHXSU3R1jXfQSniL5iZluBdwgOxOLu24AJwFvh8k4iCNTjCPZQXgCeqeRzq5C7b3b3L/ffCLoDv3X3LdW9rrrAdGGJ1DGzxsC7BN0oX1TQtj0w0937JLmupeF6Kn02iJkNBrq6+8gk5q1q3Y8As9x9bjLzV7Dse4E17j4l/LtKtZaxjv8B/uLuj1TXMiOsM2WvmcSTglwkSWZ2AvAq0MHdyztDSSSl1LUikgQz+xPwGvBrhbikm7bIRURiTlvkIiIxl5IRzVq3bu2dOnVKxaJFROqkJUuWbHD3nGTmTUmQd+rUifz8/FQsWkSkTjKzTytuVTp1rYiIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMxFCnIzy7LgIrcrw/GZT051YSIiEk3U0w/vA15290ssuCJ50xTWJCIilVBhkJvZoQTDZw6D4IK3BENKikTWr1+6K6hd5s1LdwVSl0TpWjmSYHD5aWb2rpk9YmbNSjYys2vMLN/M8gsLC6u9UBERKV2Fg2aZWR7BQPOnuPtCM7uPYID3UWXNk5eX5/plp4hIdGa2xN3zkpk3yhb5OmCduy8M/36K4OogIiJSC1QY5OFlltaa2THhQ2cBK1JaldRpixYt4uOPD7pkqYgkKep55L8EZpjZewTXfbwzZRVJnffkk09y4YUX8tvf/patW3VNBpGqihTk7r7U3fPcvYe7X+ju36S6MKm72rVrR8OGDXniiSc4//zzefHFF9m3b1+6yxKJLf2yU2pcu3btMDPatGlDgwYNGD16NMOGDWPlypXpLk0klhTkUuNycnJo2DD4CUPTpk1p06YNq1ev5vLLL+fOO+9k8+bN6S1QJGYU5FLjWrduTYMG/3zrmRmtW7cmJyeH2bNnc8EFFzB79mz27t2bxipF4kNBLjUuOzu71D7xjIwM2rRpQ6NGjZgwYQKDBg1i+fLlaahQJF4U5FLjsrOz2bt3L2X9GO2QQw6hTZs2rF27lsGDB/PII4/UcIUi8aIglxrXpEkTmjZtWm7XyZ49e9i1axcdOnTgpJNOqsHqROInJRdfFqlITk4OmzdvLj7ouZ+7s2nTJvbs2cOwYcO48soradKkSZqqFIkHBbmkRdu2bfn6669p2vTAEZE3b95Mo0aNmD59OkcffXSaqhOJF3WtSFq0a9eOXbuC0ZDdncLCQtauXUvz5s0pKipiw4YNaa5QJD4U5JIWHTp0YPfu3Wzfvp0vvviCHj16cP7557NhwwZatGjB2LFj+e6779JdpkgsKMglLb73ve+xbds2du7cydixY3nooYcYMWIErVq1AuCbb75hypQpaa5SJB4U5JIWRx99NEOGDGH27Nn8+Mc/xsxo3rw5Y8aMYevWrWRnZzNz5kzef//9dJcqUutVeGGJZOjCElIVt956K6+99hqZmZnk5OTw5JNPkpmZme6yRFIq1ReWEKlRN998M02bNqVx48asXbuW6dOnp7skkVpNQS61TqtWrbjlllvYvHkz2dnZPPLII6xZsybdZYnUWgpyqZXOOeccTjrpJDZv3kxGRgZjx47VIFoiZVCQS61kZtx+++1kZGTQvHlzVqxYwVNPPZXuskRqJQW51Fpt27blxhtvZNOmTbRq1Yr77ruPzz//PN1lidQ6CnKp1S655BK6dOlCUVERe/fuZcKECWWOmihSXynIpVZL7B/PysrinXfeYe7cuekuS6RWUZBLrff973+fK6+8ko0bN5KVlcVdd93Fpk2b0l2WSK2hIJdYuOKKK+jQoQM7d+5k27Zt3HvvvekuSaTWUJBLLGRmZjJu3Dh27txJdnY2L7/8Mm+99Va6yxKpFRTkEhs9evRg4MCBbNy4kRYtWjBu3DiKiorSXZZI2kUKcjMrMLP3zWypmWkQFUmb66+/vniExE2bNvHAAw+kuSKR9KvMFvkZ7p6b7KAuItWhWbNmxSMktm7dmlmzZvHee++luyyRtFLXisROnz59GDBgABs3bqRJkyaMHj2anTt3prsskbSJGuQOvGJmS8zsmtIamNk1ZpZvZvmFhYXVV6FIKW666SaaNWtG48aNWbduHdOmTUt3SSJpEzXIT3X344BzgevN7PSSDdz9YXfPc/e8nJycai1SpKRWrVoxcuTI4hESp06dqhESpd6KFOTuvj7892tgNtA7lUWJRNG/f/+DRkjcs2dPussSqXEVBrmZNTOzFvvvA/2B5akuTKQiGiFRJBBli/xwYL6ZLQMWAS+4+8upLUskmsQRErOzszVCotRLFQa5u3/s7j3DW1d3n1AThYlEdckll9C1a1e2bt3Kvn37+M1vfqMREqVe0emHEnv7+8f37dtHVlYWCxcu5KWXXkp3WSI1RkEudULnzp0PGCHx7rvvZuPGjekuS6RGKMilzhg2bBgdO3Zk586dbN++nXvuuUddLFIvKMilzsjMzOSOO+5g586dtGrVildeeUUjJEq9oCCXOqVbt2785Cc/KR4h8Y477tAIiVLnKcilzrnuuuvIzs7G3TVCotQLCnKpc5o1a8bo0aP57rvvikdIXLZsWbrLEkkZBbnUSX369OGcc85h06ZNHHLIIRohUeo0BbnUWTfffDNNmzYlMzOT9evXM3Xq1HSXJJISCnKpsw477DBGjhzJli1byM7OZtq0aaxevTrdZYlUOwW51GkaIVHqAwW51Glmxm233VY8QuLKlSuZNWtWussSqVYKcqnz2rZty69//eviERLvv/9+1q9fn+6yRKqNglzqhYsvvphu3bpphESpkxTkUi9kZGQwZsyY4hESFy9ezIsvvpjuskSqhYJc6o3OnTtz1VVXsXHjRg499FCNkCh1hoJc6pWhQ4ceMELipEmT1MUisacgl3pl/wiJO3bsIDs7m9dee4358+enuyyRKlGQS73TrVs3Lr30UjZs2ECLFi0YP348W7duTXdZIklTkEu99Itf/ILWrVsXj5D4hz/8Id0liSRNQS71UrNmzRgzZgxFRUW0bt2ap59+mqVLl6a7LJGkKMil3jr55JM599xzi0dIHDNmjEZIlFhSkEu9dtNNN9G0aVMaNWqkERIlthTkUq9phESpCyIHuZllmNm7ZvZ8KgsSqWn9+/enT58+xSMkjhkzRiMkSqxUZov8RuDDVBUiki5mxq233lo8QuKqVauYOXNmussSiaxhlEZm1h74ITAB+I+UViTVql+/dFcQmDcv3RWUr23btvz7v/87EydOJDs7m9///vf07duXdu3apWR9+n+R6hR1i/y/gBHAvrIamNk1ZpZvZvmFhYXVUZtIjbrooosOGCFx/Pjx+vm+xIJV9EY1sx8B57n7dWbWD7jZ3X9U3jx5eXmen59fbUWK1JSPP/6Yyy67jKysLDZs2MC4ceP40Y/KfbuLVAszW+LuecnMG2WL/BTgfDMrAP4KnGlmf05mZSK1XefOnbn66qv5+uuv2bt3L2+88Ua6SxKpUIV95O4+EhgJkLBFPji1ZYmkz5AhQ8jPz+eUU07hsssuS3c5IhWKdLBTpD7JzMzkwQcfTHcZIpFVKsjdfR4wLyWViIhIUvTLThGRmFOQi4jEnIJcRCTmFOQiIjGnIBeJqKCggG7dukVu36dPn4Me2/8DvLFjxx7wd6I777wz6XUCPPvss6xYsaJS87g7BQUFTJ8+vdTp8+bN0w+jSvj2229p3749N9xwwwGPT5w4kRkzZvDGG29w3HHH0bBhQ5566qkD2gwYMICsrKxqe00V5CIpsmDBgoMemzFjBpMnT2bHjh1MmjSJGTNmHNQmMciTkUyQX3vttcyfP5/PPvuMK6+8kvXr11ephsqK42iTo0aN4vTTTz/o8blz59K/f386duzI9OnT+elPf3pQm+HDh/P4449XWy0KcpEkfPzxx/Tq1YvFixfzwQcf0Lt3b3Jzc+nRo0fxeObNmzc/aL7BgwfTvn17Jk+eTMeOHRk8+MDf1t1yyy1s376d3NxcBg0aBMDevXu5+uqr6dq1K/3792f79u0ArFmzhgEDBnD88cdz2mmnsXLlShYsWMCcOXMYPnw4ubm5rFmzhv/+7//mhBNOoGfPnlx88cVs27btoLqmTJnCE088wdSpU7nrrrvKHSxs0aJFnHzyyfTq1Ys+ffqwatUqAE4//fQDLpd36qmnsmzZMr777jt+9rOf0bt3b3r16sVzzz0HwPTp0zn//PM588wzOeuss0pd17x58+jXrx+XXHIJxx57LIMGDSrei+nUqRMbNmwAID8/n37hSGRjx45l6NChnHbaaRxxxBE888wzjBgxgu7duzNgwAB2795d5nOLasmSJXz11Vf079//gMe//fZbdu3aRU5ODp06daJHjx40aHBwzJ511lm0aNGiynUUc/dqvx1//PEuUtd88skn3rVrV1+5cqXn5ub60qVL3d39hhtu8D//+c/u7r5z507ftm2bu7s3a9bsoGXMmDHDJ02a5P/5n//pd999t8+YMeOgNonzffLJJ56RkeHvvvuuu7sPHDjQH3/8cXd3P/PMM/2jjz5yd/d33nnHzzjjDHd3Hzp0qM+aNat4GRs2bCi+f9ttt/n9999/0DqvvfZaf/zxx33cuHF+1VVX+fr16w+Y/vrrr/sPf/hDd3ffsmWL7969293dX331Vb/ooovc3X369Ol+4403urv7qlWrfH8OjBw5srjmb775xo866igvKiryadOmebt27Xzjxo0H1ZO43pYtW/ratWt97969ftJJJ/mbb77p7u5HHHGEFxYWurv74sWLvW/fvu7uPmbMGD/llFN8165dvnTpUj/kkEP8xRdfdHf3Cy+80GfPnn3QeiZNmuQ9e/Y86PbLX/7yoLZ79+71vn37+tq1a33atGl+/fXXF097+umnfdSoUQe0L/n/Udpr6u4O5HuSmatfdopUQmFhIRdccAHPPPMMXbp0AYJrf06YMIF169Zx0UUXcdRRR5U5/2WXXYaZMXbsWEaMGBFpdMUjjzyS3NxcAI4//ngKCgooKipiwYIFDBw4sLhdWdcbXb58ObfffjubN2+mqKiIc84556A2U6ZM4dNPP2XPnj2MHj263Hq2bNnC0KFDWb16NWZWvIU7cOBAxo8fz+TJk5k6dSrDhg0D4JVXXmHOnDncc889AOzYsYPPPvsMgLPPPptWrVqVu77evXvTvn17AHJzcykoKODUU08td55zzz2XRo0a0b17d/bu3cuAAQMA6N69OwUFBQe1Hz58OMOHDy93mftNmTKF8847r7imRC+//DJXXHFFpOVUJwW5SCUceuihdOzYkfnz5xcH+U9/+lNOPPFEXnjhBc477zweeughzjzzzFLnNzPgnwc79/9dnsaNGxffz8jIYPv27ezbt4+srKwDujLKMmzYMJ599ll69uzJ9OnTmVfKIORmRqdOnYrDtzyjRo3ijDPOYPbs2RQUFBR3aTRt2pSzzz6b5557jpkzZ7JkyRIg2Ot/+umnOeaYYw5YzsKFC2nWrFmF6yv5/Pf3pzds2JB9+4KRtXfs2FHqPA0aNKBRo0bFr3ODBg1K7Y+fPHlyqccrTj/9dO6///4DHnv77bd58803mTJlCkVFRezatYvmzZszceJEFi1axB//+McKn1N1Ux+5SCVkZmYye/ZsHnvsMf7yl78AQX95586d+dWvfsUFF1zAe++9V6V1NGrUqMJ+3JYtW3LkkUcya9YsIAjLZcuWAdCiRQu2bt1a3Hbr1q20bduW3bt3lxpWlbVly5biPvSSZ7lcddVV/OpXv+KEE07gsMMOA+Ccc87h97//ffHex7vvvlvlGiDoI9//ZfH0009XaVnDhw9n6dKlB91KhjgEB6w/++wzCgoKuOeeexgyZAgTJ07kgw8+4NhjjyUjI6NKtSRDQS5SSc2aNeP555/nd7/7HXPmzGHmzJl069aN3Nxcli9fzpAhQ6q0/GuuuYYePXoUH+wsy4wZM3j00Ufp2bMnXbt2LT6IeOmllzJ58mR69erFmjVrGD9+PCeeeCKnnHIKxx57bJVqAxgxYgQjR46kV69eB23dHn/88bRs2fKA7oVRo0axe/duevToQdeuXRk1alSVawAYM2YMN954I3l5eWkJz5Jeeuml4i4cgMWLF9O+fXtmzZrFz3/+c7p27Vo87bTTTmPgwIH87W9/o3379sydO7dK667wwhLJ0IUlROqnzz//nH79+rFy5cpSz9aoy84++2wee+wx2rZtm9T8qb6whIhIhR577DFOPPFEJkyYUO9CHODVV19NOsSrSlvkIpJ277//PpdffvkBjzVu3JiFCxemqaKaV5Utcp21IiJp171790hn4Ejp6t/+j4hIHaMgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmKgxyM2tiZovMbJmZfWBm42qiMBERiSbKLzt3Ame6e5GZNQLmm9lL7v5OimsTEZEIKgzy8BJEReGfjcJb9Q/QIiIiSYnUR25mGWa2FPgaeNXdDxrJxsyuMbN8M8svLCys5jJFRKQskYLc3fe6ey7QHuhtZt1KafOwu+e5e15OTk41lykiImWp1Fkr7r4ZeB0YUEFTERGpIVHOWskxs6zw/iHA2cDKFNclIiIRRTlrpS3wJzPLIAj+me7+fGrLEhGRqKKctfIe0KsGahERkSTol50iIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkIuIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmKgxyM+tgZq+b2Qoz+8DMbqyJwkREJJqGEdrsAW5y97+bWQtgiZm96u4rUlybiIhEUGGQu/sXwBfh/a1m9iHQDlCQl6Ffv3RX8E/z5qW7AqnNast7Ve/TqqlUH7mZdQJ6AQtLmXaNmeWbWX5hYWE1lSciIhUxd4/W0Kw58P+BCe7+THlt8/LyPD8/vxrKExGpH8xsibvnJTNvpC1yM2sEPA3MqCjERUSkZkU5a8WAR4EP3f23qS9JREQqI8oW+SnA5cCZZrY0vJ2X4rpERCSiKGetzAesBmoREZEk6JedIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzCnIRkZhTkIuIxJyCXEQk5ioMcjObamZfm9nymihIREQqJ8oW+XRgQIrrEBGRJFUY5O7+BrCpBmoREZEkVFsfuZldY2b5ZpZfWFhYXYsVEZEKVFuQu/vD7p7n7nk5OTnVtVgREamAzloREYk5BbmISMxFOf3wCeBt4BgzW2dmV6a+LBERiaphRQ3c/bKaKERERJKjrhURkZhTkIuIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMwpyEVEYk5BLiIScwpyEZGYU5CLiMScglxEJOYU5CIiMacgFxGJOQW5iEjMKchFRGJOQS4iEnMKchGRmFOQi4jEnIJcRCTmFOQiIjGnIBcRiTkFuYhIzCnIRURiTkEuIhJzkYLczAaY2Soz+4eZ3ZLqokREJLoKg9zMMoAHgHOBLsBlZtYl1YWJiEg0DSO06Q38w90/BjCzvwIXACtSWVi69OtX9WXMm1f1ZYjUJ9XxuYP6+9mL0rXSDlib8Pe68LEDmNk1ZpZvZvmFhYXVVZ+IiFQgyhZ5JO7+MPAwQF5enlfXcmtaff1GF0knfe6qJsoW+XqgQ8Lf7cPHRESkFogS5IuBo8zsSDPLBC4F5qS2LBERiarCrhV332NmNwBzgQxgqrt/kPLKREQkkkh95O7+IvBiimsREZEk6JedIiIxpyAXEYk5BbmISMwpyEVEYs7cq/+3O2a2FVhV7QuuGa2BDekuogpUf3qp/vSKc/3HuHuLZGastl92lrDK3fNStOyUMrP8uNYOqj/dVH96xbl+M8tPdl51rYiIxJyCXEQk5lIV5A+naLk1Ic61g+pPN9WfXnGuP+naU3KwU0REao66VkREYk5BLiISc9US5GbWysxeNbPV4b+HldIm18zeNrMPzOw9M/u/1bHuZFV0QWkza2xmT4bTF5pZpzSUWaYI9f+Hma0IX+u/mdkR6aizLFEv6G1mF5uZm1mtOqUsSv1m9pPw/+ADM/tLTddYlgjvnY5m9rqZvRu+f85LR51lMbOpZva1mS0vY7qZ2f3h83vPzI6r6RrLEqH2QWHN75vZAjPrGWnB7l7lGzAJuCW8fwtwdyltjgaOCu//C/AFkFUd60+i3gxgDdAZyASWAV1KtLkOeDC8fynwZDpqrUL9ZwBNw/u/iFv9YbsWwBvAO0Beuuuu5Ot/FPAucFj49/fSXXclan8Y+EV4vwtQkO66S9R3OnAcsLyM6ecBLwEGnAQsTHfNlai9T8J75tyotVdX18oFwJ/C+38CLizZwN0/cvfV4f3Pga+BnGpaf2UVX1Da3XcB+y8onSjxOT0FnGVmVoM1lqfC+t39dXffFv75DsGVnWqLKK8/wHjgbmBHTRYXQZT6rwYecPdvANz96xqusSxRanegZXj/UODzGqyvQu7+BrCpnCYXAI954B0gy8za1kx15auodndfsP89QyU+t9UV5Ie7+xfh/S+Bw8trbGa9CbYG1lTT+isrygWli9u4+x5gC5BdI9VVLNIFsRNcSbCFUltUWH+4O9zB3V+oycIiivL6Hw0cbWZvmdk7ZjagxqorX5TaxwKDzWwdwXUIflkzpVWbyn4+aqvIn9vIP9E3s9eANqVMui3xD3d3MyvznMbwm/FxYKi774u6fkmOmQ0G8oC+6a4lKjNrAPwWGJbmUqqiIUH3Sj+Crao3zKy7u29OZ1ERXQZMd/d7zexk4HEz66bPa80xszMIgvzUKO0jB7m7/2s5K/3KzNq6+xdhUJe6G2lmLYEXgNvCXZ50iXJB6f1t1plZQ4JdzI01U16FIl0Q28z+leCLtq+776yh2qKoqP4WQDdgXtib1QaYY2bnu3vS41FUoyiv/zqC/s3dwCdm9hFBsC+umRLLFKX2K4EBAO7+tpk1IRiMqrZ0D1Uk1heMN7MewCPAue4eKXOqq2tlDjA0vD8UeK6U4jKB2QR9V09V03qTFeWC0onP6RLgfzw8AlELVFi/mfUCHgLOr0X9s/uVW7+7b3H31u7eyd07EfQV1pYQh2jvn2cJtsYxs9YEXS0f12CNZYlS+2fAWQBm9gOgCVBYo1VWzRxgSHj2yknAloSu31rNzDoCzwCXu/tHkWespiOx2cDfgNXAa0Cr8PE84JHw/mBgN7A04ZabxqPH5wEfEfTT3xY+dgdBYEDw5p0F/ANYBHROV61J1v8a8FXCaz0n3TVXpv4SbedRi85aifj6G0H30ArgfeDSdNdcidq7AG8RnNGyFOif7ppL1P8EwVlvuwn2fK4ErgWuTXjtHwif3/u16b0TofZHgG8SPrf5UZarn+iLiMScftkpIhJzCnIRkZhTkIuIxJyCXEQk5hTkIiIxpyAXEYk5BbmISMz9L7NEZglHMY0NAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdEAAAEICAYAAAAA8s58AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoD0lEQVR4nO3de5gU5Zn38e/P4RRBAQGNKyBkJUbxMOqIGuOq6wmNkahxFyOnXdGXKDHvu4lZEo0YjYdAEo3xfGBRRIy6GomJGhIlxqCRMSKIR0BUiMoAoiAKDNzvH1Wj7TA901M00z3w+1xXX1P1HKru6pnpu+upp6sVEZiZmVnzbVPqAMzMzForJ1EzM7OMnETNzMwychI1MzPLyEnUzMwsIydRMzOzjJxEy5ik9pJelLRzqWPZGkn6uaRvNaP9CElPbs6YSkFSH0khqU2pYzErN06iJSLpYUmr0sc6SWtz1m9Mm50NPBERb6d9zpf0gqSVkl6XdH4z9nekpDmSVkhaJukBSbsU2Le9pNskvZHue5ak4zMe66r0WOcU2PeLkh6UVCNpuaRHJe3ejH2PllQtaY2kifXq2km6T9LCNEkcUa/7z4AfSmpX6P7KQRGes4WSji5SLCVPwJKGpTGMLFUMtuVyEi2RiDg+IjpFRCdgMjCubj0iRqXNRgGTcroJGAZ0BQYCoyUNLnCXLwLHRUQX4J+A14AbCuzbBngLOBzoDFwI3COpTyGdc481Pd4ZwL0F7rsLMBXYHdgJeAZ4sMC+AP8AfgJMyFP/JDAEeKeBuN8GXgZOasb+WlSe5NSFTXvOthiSugI/BOaWOhbbMjmJlilJvYEvAH+rK4uIcRHx94iojYhXSF4YDy1kexHxbkT8I6doPbBbzv7GSHooT98PI+LiiFgYERsi4iHgdeCADMfVBzgMuCOn7CFJY/Ls+5mIuC0ilkfEOuAqYHdJ3QrZX0TcHxG/AZY1ULc2Iq6OiCdJno+GTAe+Wsi+6pP0S0lvSfpA0rOSDkvLPy9pde4xSNo/PXNsm67/p6SXJL2XnknumtM2JJ0r6TWSN0P1jyvzcyZpEtAb+G06avD9nOozJL0paamkC3L6bJP+/cxPRznukbRDWv1E+nNFur1DJP2zpMfStkslTZbUpcCntbmuAK4Blm6m7dtWzkm0fO0NLIiI2oYqJYkkGRX8DltSb0krgI+A7wHj6uoi4sqIOLHA7ewEfLE5+84xDPhLRCzM2feJEXFlgf3/BXgnIjZKipvJS8C+GfvOBCqBHYC7gHsldYiId0iS87/ltB0K3B0R6yQNIjl7OgXoAfwFmFJv218HDgL2LCCOgp+ziBgKvAl8LR05GJdT/RWSs9ujgIsk7ZGWfzuN53CSUY73gOty9g3QJd3eUyQjKlekbfcAegEX54tJ0uz0MkRDj+sb6TcAqAJuzNfGbFM5iZavLsDKRuovJvn9/U+hG4yIN9Ph3O4kQ7IvNzeo9ExpMnB7RDS7P0kSnZihH5J6krw4/1eW/hmtJPldNFtE3BkRy9KRg58D7UmSEMDtJMPISKoATufToftRwBUR8VL6JupyoDL3bDStXx4RHzUWQ5Gfsx9HxEcR8TzwPJ++uRgFXBARiyJiDcnf5jfyXQeNiHkRMS0i1kREDfALkgTcoIjYJyK65Hmc01Cf9Dm9HhgdERsyH7FZE5xEW5CkM3Im1zzcRPP3gO3ybGc0STL6avqi1SwRsZzkRfzB5kz4kLQNyQv9WmB0c/cr6SvA54H7MvTtAfwBuD4i6p+VbU7bASuydJT0vXRI9v10BKAzyRsYSIbi95TUFzgGeD8inknrdgV+WXe2BSwnOXvLnQj2VgH7L/ZzlnvdeDXQKSfeB3LifYlkeHynPHHtJOluSYslfQDcyafPS7GcA8yOiKeLvF2zz3ASbUERMTlngk1Ts1tnA33rJzlJ/wmMAY6KiEWbEE4bYEdg+0Iap8PHt5G8MJ6aXmtrruHA/RGxqjmd0skhfwCmRsRlGfa7KfYgOetqlvT65/dJhmy7piMA75MkQyLiY+AekrPRoXx2AtlbwP+pd8b1uYiYkdOm0a9f2sTnrLlf7fQWcHy9eDtExOI827o8Ld87IrYneQ6Ub+OS5uqzs7tzH/mGao8CTpb0jqR3gC8DP5d0bTOPzaxRTqJlKk2Q84ABdWWSziB5ATomIhbU7yNpuqSLG9qepFMk7Z5OAulBMoT2XHpWiqSLJU1vJKQbSBLK1xoaQlTDHxHJrf8cSUKZ2My4twceBf4aERtNPpJ0hKS8L/qS2kjqAFQAFZI65L4xUfLxnQ7paru0PvcF/XDg4Zz2eWOtZzugFqgB2ki6iI3fsNwBjCCZ/ZubRG8EfiCpf7rPzpJOK2CfdTFu0nMGvEsyqa1QNwKX1Q03S+qRXteF5Pg31NvedsAq4H0lH7Nq9KNaEdE/d3Z3vceoPN1GkPy9VqaPauDHwAV52ptl4iRa3m4iOUup8xOgGzAzzzvxXsBf82xrF+ARkmt8c0he2E4upG/64vh/SF6M3snZ9xlpfa+c7ebzdZJh0ccbqGss7pOBA4H/qHcG0jun74w8fSG59vsRydn7kHT5wpz6V9KyXUgSz0ckw5MoucnFnsBvCow116Mkz/erwBvAx9Qbgo2Iv5L8Hv4eEW/klD8A/BS4Ox3ufAEo+HO5bPpzdgVwYTo8+70C9vdLko/U/EHSSuBpkklPRMRq4DLgr+n2DiZJZvuTnJn/Dri/GcdWkIhYERHv1D1ILkF8EBHvF3tftnVT+Eu5y5ak9sBzJEO3bzfRtidwT0R8OeO+ZqX7afasV0lDgP4R8YMMfTc17luBeyPi0Sz9m9j2z4H5EXF9ur5JsebZx2PAXRFxa7G2WcA+N9tzZra1cRI1KxFJBwLTgF4R0dhMbDMrUx7ONSsBSbcDfwT+rxOoWevlM1EzM7OMfCZqZmaWUVl+tVH37t2jT58+pQ7DzKzVePbZZ5dGRI9Sx7G1Kcsk2qdPH6qrq0sdhplZqyHpjaZbWbF5ONfMzCwjJ1EzM7OMnETNzMwychI1MzPLyEnUzMwsoyaTqKRekh6X9GL6lUTfaaCNJF0jaZ6Sb6HfP6duuKTX0sfwYh+AmZlZqRTyEZda4LsR8XdJ2wHPSpoWES/mtDke6Jc+DiL52qyDJO0AjAWqSL4/8FlJUyPivaIehZmZWQk0mUTTbw95O11eKeklkq+Nyk2ig4A7IrmH4NOSuqRfI3UEMC3nOyunAQOBKUU9CivYEUeUOgLbmk2fXuoIzIqrWddEJfUB9gP+Vq9qFz77XYmL0rJ85Q1t+2xJ1ZKqa2pqmhOWmZlZSRR8xyJJnYD/JfnWiQ+KHUhE3AzcDFBVVeW74m8mPhOwxqxcuZL27dvTrl27Uodi1ioUlEQltSVJoJMjoqFvoV8M9MpZ75mWLSYZ0s0tn54lUDPb/MaPH88jjzxCZWUlhx9+OJWVley+++60aVOWdwg1K7km/zMkCbgNeCkifpGn2VRgtKS7SSYWvR8Rb0t6FLhcUte03bHAD4oQt5ltBsceeywPPfQQL730En//+99p06YNkthvv/0+Saq77bYbFRUVpQ7VrCwU8vbyUGAoMEfSrLTsh0BvgIi4Efg9cAIwD1gN/Edat1zSpcDMtN8ldZOMzKz8HHzwwXTv3p3169fTpUsXAGpra5k9ezbPPPMMFRUVtG3blgMPPJDDDjuMfffdl759+7LNNv7IuW2dyvJLuauqqsLf4mJWGrfffju/+tWv2HnnnRusX7duHStXrmTt2rVIolu3btx111107dq1wfbWMiQ9GxFVpY5ja+O3j2b2GSeeeCIVFRWsX7++wfq2bduyww47sNNOO7F+/XoOPfTQT85azbY2TqJm9hndunXjqKOOYunSpY22e/fddznkkEMYM2YMydQJs62Pk6iZbWTw4MFEBPku99TU1NC3b1+uvPJKz9y1rZqTqJltZO+996Z3796sXLlyo7qI4MMPP+T000+nU6dOJYjOrHw4iZrZRiQxbNgwVq9e/Zny1atXs2zZMnbccUcuu+wy7r777rxnq2ZbAydRM2vQ0UcfTbt27Vi7di0Aa9as4YMPPmCnnXbigw8+oFu3bowfP56f/exn1NbWljhas9JwEjWzBnXs2JGTTz6Z5cuXU1tby7JlyxgzZgx33nknAwYMYOnSpfTo0YMpU6Zw/vnnb3TWarY1cBI1s7xOPfVUAJYsWcLw4cM55ZRT6NSpE1dffTUnn3wyS5YsoUePHjz55JOcddZZTc7oNdvSOImaWV59+/Zl//3356ijjmL06NGffJSlbdu2XHDBBXz7299m6dKldO7cmXnz5jF06FAWLFhQ4qjNWo7vWGRmjfrwww9p37593o+yTJs2jQsvvJAOHTpQW1vLNttsw1VXXUVVlW+e05J8x6LS8JmomTWqY8eOjX4W9JhjjuGmm25CEhFBmzZtOOecc3jooYdaMEqz0nASNbNNVllZyaRJk+jWrRsffvghnTt3ZuzYsdx4443+CIxt0ZxEzawoevXqxR133EH//v1577336N69O7fccgsXXXTRJx+TMdvSOImaWdF07dqVG264gaOPPpqamhp69OjB73//e84991zef//9UodnVnROomZWVB06dODyyy9nxIgRLFmyhG7duvH8888zYsQIFi9eXOrwzIrKSdTMim6bbbbhvPPO40c/+hHvvfceHTt25J133mHo0KHMnTu31OGZFU2TSVTSBElLJL2Qp/58SbPSxwuS1kvaIa1bKGlOWufPrJhtZU4++WR+9atfsXbtWioqKqitrWXkyJH8+c9/LnVoZkVRyJnoRGBgvsqIGB8RlRFRCfwA+HNELM9pcmRa788vmW2FDj74YCZOnMi2227L2rVr2Xbbbfnud7/L5MmTPXPXWr0mk2hEPAEsb6pd6nRgyiZFZGZbnH79+nHnnXey6667fnLz+l/84heMGzfON6+3Vq1o10QlbUtyxvq/OcUB/EHSs5LObqL/2ZKqJVXX1NQUKywzKxM77rgjEyZM4OCDD/7k5vX33HMP3/3ud/nwww9LHZ5ZJsWcWPQ14K/1hnK/EhH7A8cD50r6l3ydI+LmiKiKiKoePXoUMSwzKxcdO3bkqquu4pRTTqGmpobu3bszY8YMRo4cid88W2tUzCQ6mHpDuRGxOP25BHgAGFDE/ZlZK9SmTRt++MMf8p3vfOeTm9e//vrrDB06lPnz55c6PLNmKUoSldQZOBx4MKeso6Tt6paBY4EGZ/ia2dZFEsOGDWPcuHGsWrWK9u3bs3LlSoYPH84zzzxT6vDMClbIR1ymAE8Bu0taJOlMSaMkjcppdjLwh4jIvbCxE/CkpOeBZ4DfRcQjxQzezFq3o446iltuuQVJbNiwgbZt23Luuefy29/+ttShmRXEX4VmZiX31ltvce655/LOO+/QuXNnli1bxllnncWoUaM++Q5Ta5y/Cq00fMciMyu5upvX77XXXixfvpwePXpwyy23cOGFF7JmzZpSh2eWl5OomZWFLl26cMMNN3DcccdRU1PDjjvuyKOPPso555zjm9db2XISNbOy0b59e37yk59w5plnsmTJErp27cqcOXMYNmwYixYtKnV4ZhtxEjWzsrLNNttw7rnnMnbsWFasWEHHjh1ZsmQJQ4YM4YUXPMHfyouTqJmVpUGDBnHttdeybt06KioqiAhGjhzJn/70p1KHZvYJJ1EzK1sHHXQQEydOpGPHjqxZs4ZOnTrx/e9/nylTfItuKw9OomZW1nbbbTcmTZpEnz59WLFiBQCzZs0qaUxmdZxEzazs7bjjjtx2220ceuih7LHHHowdO7bUIZkB0KbUAZiZFaJjx45cffXV1NbW0rZt21KHYwb4TNTMWhFJTqBWVpxEzczMMnISNTMzy8hJ1MxavYULF7LXXnsV3P7LX/7yRmV1X8Zx8cUXf2Y91+WXX555nwC/+c1vePHFF5vVJyJYuHAhEydObLB++vTpnHjiic3a5pZM0jhJcyW9JOka5XyDgaQxks6Q9C+S/i6pVtI36vV/RNIKSQ8Vsj8nUTPb6syYMWOjssmTJzN+/Hg+/vhjxo0bx+TJkzdqk5tEs8iSREeNGsWTTz7Jm2++yZlnnsnixYs3KYbmktRqJqBK+jJwKLAPsBdwIMl3Xdc5DvgD8CYwArirgc2MB4YWuk8nUTPboixYsID99tuPmTNnMnfuXAYMGEBlZSX77LMPr732GgCdOnXaqN+QIUPo2bMn48ePp3fv3gwZMuQz9WPGjOGjjz6isrKSM844A4D169dz1lln0b9/f4499lg++ugjAObPn8/AgQM54IADOOyww3j55ZeZMWMGU6dO5fzzz6eyspL58+dzyy23cOCBB7Lvvvty6qmnsnr16o3iuv7665kyZQoTJkzgiiuuYJdddsl77JIGSHpK0nOSZkjaPS1/QlJlTrsnJe0rqaOkCZKeSfsMSutHSJoq6TGgwVtESTpC0nRJ90l6WdLkurM+SQsldU+XqyRNT5cvlnS7pL9IekPSKemZ45z0DHBTZ40F0AFoB7QH2gLvpvveHmgXETURsTAiZgMbNtpAxJ+AlYXvMaLsHgcccECYmRXq9ddfj/79+8fLL78clZWVMWvWrIiIGD16dNx5550REbFmzZpYvXp1RER07Nhxo21Mnjw5xo0bF//93/8dP/3pT2Py5Mkbtcnt9/rrr0dFRUU899xzERFx2mmnxaRJkyIi4l//9V/j1VdfjYiIp59+Oo488siIiBg+fHjce++9n2xj6dKlnyxfcMEFcc0112y0z1GjRsWkSZPixz/+cYwcOTIWL178mfrHH388vvrVrwZQDWwPtIlkKPpo4H/T5eHA1enyF4HqdPlyYEi63AV4FehIcpa2CNgh8rxOA0cA7wM9SU7IngK+ktYtBLqny1XA9HT5YuDJNLntC6wGjk/rHgC+3sB+zgdmNfC4Jk9cPwNWpLFdllN+CnBJvbYTgW/kObaH8h177qPJ03RJE4ATgSURsdEFAElHAA8Cr6dF90fEJWndQOCXQAVwa0Rc2dT+zMyyqKmpYdCgQdx///3sueeeABxyyCFcdtllLFq0iFNOOYV+/frl7X/66acjiYsvvpjvf//7DV4Tra9v375UVlYCcMABB7Bw4UJWrVrFjBkzOO200z5pl+87UV944QUuvPBCVqxYwapVqzjuuOM2anP99dfzxhtvUFtby0UXXdRUSJ2B2yX1Izkrqzuzuxf4kaTzgf8kSR4AxwInSfpeut4B6J0uT4uI5U3s75mIWAQgaRbQhyRJNubhiFgnaQ5JbngkLZ+T9v+MiBhPMsTaJEm7AXuQJHaAaZIOi4i/AAOB/ylkO81RyHDuxHTnjflLRFSmj7oEWgFcBxwP7AmcLmnPTQnWzCyfzp0707t3b5588tPX8G9+85tMnTqVz33uc5xwwgk89thjefvXzT+pm1iUMx8lr/bt23+yXFFRQW1tLRs2bKBLly7MmjXrk8dLL73UYP8RI0Zw7bXXMmfOHMaOHcvHH3/cYFx9+vRhxIgRTcYDXAo8np7wfI0kKRIRq4FpwCDg34C6C74CTs15/e4dEXXBfljA/nLfHazn0xv41PJpfunQUJ+I2ACsi0/frWyggRsASTpf0qwGHtc0EM/JwNMRsSoiVgEPA4ekdQOAZwo4pmZpMolGxBNAU+9GGjIAmBcRCyJiLXA3yS/QzKzo2rVrxwMPPMAdd9zBXXcl80UWLFjAF77wBc477zwGDRrE7NmzN2kfbdu2Zd26dY222X777enbty/33nsvkFwye/755wHYbrvtWLny08ttK1euZOedd2bdunUNTmTKoDNQN/NoRL26W4FrgJkR8V5a9ijw7ZxrmfsVIwiS4dwD0uVTN2VDETE+J8nnPs5roPmbwOGS2qTXVw8HXpLUH3g5ItZvSiwNKdbEokMkPS/p4TRYgF2At3LaLErLGiTpbEnVkqpramqKFJaZbU06duzIQw89xFVXXcXUqVO555572GuvvaisrOSFF15g2LBhm7T9s88+m3322eeTiUX5TJ48mdtuu419992X/v378+CDDwIwePBgxo8fz3777cf8+fO59NJLOeiggzj00EP50pe+tEmxpcYBV0h6jnpndRHxLPABnx3SvJRkyHe2pLnpejH8GPilpGqSM9SWch8wn2Ro+Hng+Yj4LcmIaN2wMZIOlLQIOA24KT32urq/kAx/HyVpkaSNx9hzqJBxf0l9SC6yNnRNdHtgQ0SsknQC8MuI6Jd+9mZgRIxM2w0FDoqI0U3tr6qqKqqrq5uMy8zMEpKejYiqRur/CZgOfCkdSt1qSJoGDIuIt4u97U0+E42ID9KxZyLi90DbdGrzYqBXTtOefDrMYGZmLUTSMOBvwAVbWwIFiIhjNkcChSJ8i4ukzwPvRkRIGkCSmJeRTDHuJ6kvSfIcDHxzU/dnZmbNExF3AHdk6Stpb2BSveI1EXHQJge2BSjkIy5TSD4z0z0dQx5LOm06Im4EvgF8S1It8BEwOJ1tVStpNMmF6wpgQkTMbWAXZmZWpiJiDlBZ6jjKVUHXRFuar4mamTVPU9dEbfPwbf/MzMwychI1MzPLyEnUzMwsIydRMzOzjJxEzczMMnISNTMzy8hJ1MzMLCMnUTMzs4ycRM3MzDJyEjUzM8vISdTMzCwjJ1EzM7OMnETNzMwychI1MzPLyEnUzMwsoyaTqKQJkpZIeiFP/RmSZkuaI2mGpH1z6ham5bMk+QtCzcxsi1LImehEYGAj9a8Dh0fE3sClwM316o+MiEp/WayZmW1p2jTVICKekNSnkfoZOatPAz2LEJeZmVnZK/Y10TOBh3PWA/iDpGclnd1YR0lnS6qWVF1TU1PksMzMzIqvyTPRQkk6kiSJfiWn+CsRsVjSjsA0SS9HxBMN9Y+Im0mHgquqqqJYcZmZmW0uRTkTlbQPcCswKCKW1ZVHxOL05xLgAWBAMfZnZmZWDjY5iUrqDdwPDI2IV3PKO0rarm4ZOBZocIavmZlZa9TkcK6kKcARQHdJi4CxQFuAiLgRuAjoBlwvCaA2nYm7E/BAWtYGuCsiHtkMx2BmZlYShczOPb2J+pHAyAbKFwD7btzDzMxsy+A7FpmZmWXkJGpmZpaRk6iZmVlGTqJmZmYZOYmamZll5CRqZmaWkZOomZlZRk6iZmZmGTmJmpmZZeQkamZmlpGTqJmZWUZOomZmZhk5iZqZmWXkJGpmZpaRk6iZmVlGTqJmZmYZFZREJU2QtETSC3nqJekaSfMkzZa0f07dcEmvpY/hxQrczMys1Ao9E50IDGyk/nigX/o4G7gBQNIOwFjgIGAAMFZS16zBmpmZlZOCkmhEPAEsb6TJIOCOSDwNdJG0M3AcMC0ilkfEe8A0Gk/GZmZmrUaxronuAryVs74oLctXvhFJZ0uqllRdU1NTpLDMzMw2n7KZWBQRN0dEVURU9ejRo9ThmJmZNalYSXQx0CtnvWdalq/czMys1StWEp0KDEtn6R4MvB8RbwOPAsdK6ppOKDo2LTMzM2v12hTSSNIU4Aigu6RFJDNu2wJExI3A74ETgHnAauA/0rrlki4FZqabuiQiGpugZGZm1moUlEQj4vQm6gM4N0/dBGBC80MzMzMrb2UzscjMzKy1cRI1MzPLyEnUzMwsIydRMzOzjJxEzczMMnISNTMzy8hJ1MzMLCMnUTMzs4ycRM3MzDJyEjUzM8vISdTMzCwjJ1EzM7OMnETNzMwychI1MzPLyEnUzMwsIydRMzOzjApKopIGSnpF0jxJYxqov0rSrPTxqqQVOXXrc+qmFjF2MzOzkmrTVANJFcB1wDHAImCmpKkR8WJdm4j4fzntvw3sl7OJjyKismgRm5mZlYlCzkQHAPMiYkFErAXuBgY10v50YEoxgjMzMytnhSTRXYC3ctYXpWUbkbQr0Bd4LKe4g6RqSU9L+nq+nUg6O21XXVNTU0BYZmZmpVXsiUWDgfsiYn1O2a4RUQV8E7ha0j831DEibo6Iqoio6tGjR5HDMjMzK75CkuhioFfOes+0rCGDqTeUGxGL058LgOl89nqpmZlZq1VIEp0J9JPUV1I7kkS50SxbSV8CugJP5ZR1ldQ+Xe4OHAq8WL+vmZlZa9Tk7NyIqJU0GngUqAAmRMRcSZcA1RFRl1AHA3dHROR03wO4SdIGkoR9Ze6sXjMzs9ZMn8155aGqqiqqq6tLHYaZWash6dl0/om1IN+xyMzMLCMnUTMzs4ycRM3MzDJyEjUzM8vISdTMzCwjJ1EzM7OMnETNzMwychI1MzPLyEnUzMwsIydRMzOzjJxEzczMMnISNTMzy8hJ1MzMLCMnUTMzs4ycRM3MzDIqKIlKGijpFUnzJI1poH6EpBpJs9LHyJy64ZJeSx/Dixm8mZlZKbVpqoGkCuA64BhgETBT0tSIeLFe019HxOh6fXcAxgJVQADPpn3fK0r0ZmZmJVTImegAYF5ELIiItcDdwKACt38cMC0ilqeJcxowMFuoZmZm5aWQJLoL8FbO+qK0rL5TJc2WdJ+kXs3si6SzJVVLqq6pqSkgLDMzs9Iq1sSi3wJ9ImIfkrPN25u7gYi4OSKqIqKqR48eRQrLzMxs8ykkiS4GeuWs90zLPhERyyJiTbp6K3BAoX3NzMxaq0KS6Eygn6S+ktoBg4GpuQ0k7ZyzehLwUrr8KHCspK6SugLHpmVmZmatXpOzcyOiVtJokuRXAUyIiLmSLgGqI2IqcJ6kk4BaYDkwIu27XNKlJIkY4JKIWL4ZjsPMzKzFKSJKHcNGqqqqorq6utRhmJm1GpKejYiqUsextfEdi8zMzDJyEjUzM8vISdTMzCwjJ1EzM7OMnETNzMwychI1MzPLyEnUzMwsIydRMzOzjJxEzczMMnISNTMzy8hJ1MzMLCMnUTMzs4ycRM3MzDJyEjUzM8vISdTMzCwjJ1EzM7OMCkqikgZKekXSPEljGqj/L0kvSpot6U+Sds2pWy9pVvqYWszgzczMSqlNUw0kVQDXAccAi4CZkqZGxIs5zZ4DqiJitaRvAeOAf0/rPoqIyuKGbWZmVnqFnIkOAOZFxIKIWAvcDQzKbRARj0fE6nT1aaBnccM0MzMrP4Uk0V2At3LWF6Vl+ZwJPJyz3kFStaSnJX09XydJZ6ftqmtqagoIy8zMrLSaHM5tDklDgCrg8JziXSNisaQvAI9JmhMR8+v3jYibgZsBqqqqophxmZmZbQ6FnIkuBnrlrPdMyz5D0tHABcBJEbGmrjwiFqc/FwDTgf02IV4zM7OyUUgSnQn0k9RXUjtgMPCZWbaS9gNuIkmgS3LKu0pqny53Bw4FcickmZmZtVpNDudGRK2k0cCjQAUwISLmSroEqI6IqcB4oBNwrySANyPiJGAP4CZJG0gS9pX1ZvWamZm1Wooov8uPVVVVUV1dXeowzMxaDUnPRkRVqePY2viORWZmZhk5iZqZmWXkJGpmZpaRk6iZmVlGTqJmZmYZOYmamZll5CRqZmaWkZOomZlZRk6iZmZmGTmJmpmZZeQkamZmlpGTqJmZWUZOomZmZhk5iZqZmWXkJGpmZpaRk6iZmVlGBSVRSQMlvSJpnqQxDdS3l/TrtP5vkvrk1P0gLX9F0nFFjN3MzKykmkyikiqA64DjgT2B0yXtWa/ZmcB7EbEbcBXw07TvnsBgoD8wELg+3Z6ZmVmr16aANgOAeRGxAEDS3cAg4MWcNoOAi9Pl+4BrJSktvzsi1gCvS5qXbu+p4oRffo44otQRNG769FJHYFsz/3/YlqaQ4dxdgLdy1helZQ22iYha4H2gW4F9AZB0tqRqSdU1NTWFRW9mZlZChZyJtoiIuBm4GaCqqipKHE5mfidrlp//P2xLU8iZ6GKgV856z7SswTaS2gCdgWUF9jUzM2uVCkmiM4F+kvpKakcyUWhqvTZTgeHp8jeAxyIi0vLB6ezdvkA/4JnihG5mZlZaTQ7nRkStpNHAo0AFMCEi5kq6BKiOiKnAbcCkdOLQcpJES9ruHpJJSLXAuRGxfjMdi5mZWYtScsJYXqqqqqK6urrUYZiZtRqSno2IqlLHsbXxHYvMzMwychI1MzPLyEnUzMwsIydRMzOzjMpyYpGklcArpY4jo+7A0lIHsQkcf2k5/tJqzfHvHhHblTqIrU3Z3LGonlda6ywzSdWtNXZw/KXm+EurNccvyR9pKAEP55qZmWXkJGpmZpZRuSbRm0sdwCZozbGD4y81x19arTn+1hx7q1WWE4vMzMxag3I9EzUzMyt7TqJmZmYZlUUSlbSDpGmSXkt/dm2gTaWkpyTNlTRb0r+XItaceAZKekXSPEljGqhvL+nXaf3fJPUpQZh5FRD/f0l6MX2u/yRp11LEmU9T8ee0O1VSSCqrjy0UEr+kf0t/B3Ml3dXSMeZTwN9Ob0mPS3ou/fs5oRRx5iNpgqQlkl7IUy9J16THN1vS/i0dYz4FxH5GGvMcSTMk7dvSMW51IqLkD2AcMCZdHgP8tIE2XwT6pcv/BLwNdClRvBXAfOALQDvgeWDPem3OAW5MlwcDvy7189zM+I8Etk2Xv9Xa4k/bbQc8ATwNVJU67mY+//2A54Cu6fqOpY67GbHfDHwrXd4TWFjquOvF9y/A/sALeepPAB4GBBwM/K3UMTcj9i/n/M0cX06xb6mPsjgTBQYBt6fLtwNfr98gIl6NiNfS5X8AS4AeLRVgPQOAeRGxICLWAneTHEOu3GO6DzhKklowxsY0GX9EPB4Rq9PVp4GeLRxjYwp5/gEuBX4KfNySwRWgkPjPAq6LiPcAImJJC8eYTyGxB7B9utwZ+EcLxtekiHiC5HuP8xkE3BGJp4EuknZumega11TsETGj7m+G8vu/3SKVSxLdKSLeTpffAXZqrLGkASTvgudv7sDy2AV4K2d9UVrWYJuIqAXeB7q1SHRNKyT+XGeSvDMvF03Gnw7B9YqI37VkYAUq5Pn/IvBFSX+V9LSkgS0WXeMKif1iYIikRcDvgW+3TGhF09z/j3JVbv+3W6QWu+2fpD8Cn2+g6oLclYgISXk/d5O+I5wEDI+IDcWN0uqTNASoAg4vdSyFkrQN8AtgRIlD2RRtSIZ0jyA5m3hC0t4RsaKUQRXodGBiRPxc0iHAJEl7+f+15Ug6kiSJfqXUsWzpWiyJRsTR+eokvStp54h4O02SDQ5dSdoe+B1wQTrMUiqLgV456z3TsobaLJLUhmRYa1nLhNekQuJH0tEkb3IOj4g1LRRbIZqKfztgL2B6OoL+eWCqpJMiohzuL1rI87+I5HrWOuB1Sa+SJNWZLRNiXoXEfiYwECAinpLUgeTG7uUyJN2Ugv4/ypWkfYBbgeMjolxec7ZY5TKcOxUYni4PBx6s30BSO+ABkmsV97VgbA2ZCfST1DeNazDJMeTKPaZvAI9FRLnc2aLJ+CXtB9wEnFRG1+PqNBp/RLwfEd0jok9E9CG5NlQuCRQK+/v5DclZKJK6kwzvLmjBGPMpJPY3gaMAJO0BdABqWjTKTTMVGJbO0j0YeD/nclNZk9QbuB8YGhGvljqerUKpZzaleaUb8CfgNeCPwA5peRVwa7o8BFgHzMp5VJYw5hOAV0muy16Qll1C8mINyQvHvcA84BngC6V+npsZ/x+Bd3Oe66mljrk58ddrO50ymp1b4PMvkiHpF4E5wOBSx9yM2PcE/koyc3cWcGypY64X/xSS2f3rSM74zwRGAaNynvvr0uObU05/OwXEfivwXs7/bXWpY97SH77tn5mZWUblMpxrZmbW6jiJmpmZZeQkamZmlpGTqJmZWUZOomZmZhk5iZqZmWXkJGpmZpbR/wd9ZUXHUdrhmAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 4\n",
"pp = 65/11, satellite_part = 16\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 241/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -65/11\n",
"Satellite part = -12\n",
"Sigma = -197/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 65/11\n",
"Satellite part = 16\n",
"Sigma = 241/11\n",
"\n",
"[0, 0, 4, 4] 4\n",
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEICAYAAABF82P+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlAklEQVR4nO3de3hU9b3v8feXcNMQEgIiily0IlQEAga8oBhUKl6hqFQqN6t1a2v1PLvV6qZWejzWVtrdU/ep26p1ByS2gAWlXo7g1hyxeMOKgCJSIF6oSoAQCPck3/PHDOkYVpJJZjJrQj6v55mHmVmX32eGzPrO+q3frGXujoiISG1twg4gIiLpSQVCREQCqUCIiEggFQgREQmkAiEiIoFUIEREJJAKRAtkZqea2Qozs7CzhMXMfm1mNzdi/ulm9lpzZgqDmfU1MzeztmFnkSOPCkSaMbOKmFu1me2NeXxtdLZ7gV+5u5tZBzP7g5l9bGa7zGylmV3ciPZeqNXmATNbHeeyp5jZM2ZWambbzexFM+vfiLZviRa6/WZWWGtaezN7ysxKohvAglqL/wr4NzNrH2976cLMHjGzddH/3+mNXLbEzC5MUo7Qiku03d0xf3ePpTqDNEwFIs24e6dDN+AT4PKY54rM7DhgNPB0dJG2wKfAeUA28BNgvpn1jbO9i2u1uRxYEGfcHGAx0B84FngLeCbOZQH+Afwv4PE6pr8GTAa+CMj9OfAhcEUj2kupeja87wHfA/6WwjjpaEjM394NYYeRw6lAtDxjgL+5+z4Ad9/t7jPdvcTdq939WWATcHpjVxwtKucCc2Kee9bM7gya393fcvc/uPt2dz8I/Abob2Zd42nP3Re6+9PAtoBpB9z9f7v7a0BVHasoBi6Np63azOy3Zvapme00s3fM7Nzo8z3MbE/sazCzYdG9pHbRx98xs7VmVhbda+oTM6+b2ffNbD2wvo7X/Tt3/29gXyMzPwH0Bv4S/dZ9R8zka83sEzPbamYzYpZpY2Z3mtkGM9tmZvPNLDc6+dXovzui6zvLzL5mZi9H591qZkVmltOYnHLkUIFoeQYB6+qaaGbHAqcA7zdh3VOBZe5ecugJd7/M3X8R5/KjgC/c/bANfjNZCwxp4rJvA3lALvAksMDMOrr7F0QKz8SYeacAf3L3g2Y2Dvg3YAJwDLAM+GOtdY8HzgBObWK2QO4+ha/uVT4QM/kcIntyFwA/NbOvR5//QTTPecDxQBnwu+i0UdF/c6Lrex0w4P7ovF8HegEz68pkZqvMbEcdt4caeEmvmtkXZrYw3j1eSS0ViJYnB9gVNCH6DbcImO3uHzZh3VOBwqaEMrMTiGx4/rUpyzfRLiLvR6O5+1x33+bule7+a6ADkQ0swGwiXVuYWQYwCXgiOu0m4H53X+vulcDPgbzYvYjo9O3uvrcp2ZroZ+6+193fI9KFdahw3gTMcPfP3H0/kY39VXV1f7n73919qbvvd/dS4N+JFJdA7j7Y3XPquH2vnrznAX2BAUS6Gp/Vgfb0owLR8pQBWbWfNLM2RDZiB4BbGrtSMzsH6AE81YRljwGWAA+5e+1v080pC9jRlAXN7EfRbqJyM9tB5PhNt+jkZ4BTzexEIl165e7+VnRaH+C3h74lA9uJfOvuGbP6T5uSKUGxx2n2AJ2i9/sAi2LyriXSZXds0ErM7Fgz+5OZbTazncBc/vm+JI27vxrtRtwB3AacSGSPRdKICkTLs4pIF1INMzPgD0Q+9FdGjwc01jRgobtXNGYhM+tCpDgsdvf7mtBuIr5O5Ntyo0SPN9xBpBupi7vnAOVENvREj+/MJ7IXMYV/7j1AZOP/L7W+KR/l7stj5mnOUyQ3dt2fAhfXytvR3TfXsa6fR58f5O6dibwHdQ6nNrP3a42Ci7093IicXl87Eg4ViJZnKTDMzDrGPPefRDaWlwd1a9QxTDR2+lFENpaFAdOKzWxmHct1Bl4E/uruhx3INrMCM6tzg2ZmbaOvIwPIMLOOsd0MFhnCe+h1to9Oj92InAe8EE/WWrKASqAUaGtmPwU615pnDjCdyCip2ALxMHCXmQ2MtpltZlfH0WYNiwzh7Uhkg9gu+rraRKfV+54BXwInNaK5h4H7DnWBmdkx0eMoEHn91bXWlwVUAOVm1hO4vb6Vu/vA2FFwtW43BS1jZgPNLM/MMsysE/BrYDORvRtJIyoQLYy7fwm8DIwDiH7w/4XIAdcvrNZvJsysF5G++vp+2zCeSFfNKwHTegF/rWO5bwLDgetqfXPsHbPs8jqWhciQ3L3AnUS+qe6NPnfIuuhzPYkUor1EukywyHDfU/nncN+GssZ6Efi/wEfAx0RGE32lW8jd/0pk4/k3d/845vlFwC+BP0W7YNYAcf/uJGpJ9LWcDTwSvX/ogHFD79n9wE+iXUY/iqOt3xIZirzEzHYBbxA5gI677wHuA/4aXd+ZwM+AYUT2qJ4DFjbytcXjWGAesBPYSORYxGVN3POVZmS6YFDLY2anEjmQOsIb+A80s8nAQHe/qwntnADMd/ezm5jzMWCBu7/YlOUbWPevgQ3u/lD0cUJZ62jjZeBJd0/Zj7ia8z0TaSwVCJEAZjacSHdeL3cPHDUmcqRTF5NILWY2G3gJ+B8qDtKaaQ9CREQCaQ9CREQChfLLxW7dunnfvn3DaFpEpMV65513trr7MalqL5QC0bdvX1asWBFG0yIiLZaZfdzwXMmjLiYREQmkAiEiIoFUIEREJJAKhIiIBFKBEBGRQEkpEGY21iIXYf+71XF5ShERaVkSLhDRK279jsgZLU8FJkVPJiciIi1YMn4HMQL4u7tvBDCzPxE5FfUHSVh3WiooSHwdxcWJr0OkNdHnLvWS0cXUk6+eS/8zvnr5RQDM7EYzW2FmK0pLS5PQrIiINKeU/ZLa3R8hcnEU8vPzW/QZAvUtRCT19LlLvWTsQWwmchWsQ06IPiciIi1YMgrE20A/MzvRzNoD1xC5xKGIiLRgCXcxuXulmd1C5Dq/GcDj7v5+wslERCRUSTkG4e7PA88nY10iIpIe9EtqEREJpAIhIiKBVCBERCSQCoSIiARSgRARkUAqECIiEkgFQkREAqlAiIhIIBUIEREJpAIhIiKBVCBERCSQCoSIiARSgRARkUAqECIiEkgFQkREAqlAiIhIIBUIEREJpAIhIiKBVCBERCSQCoSIiARSgRARkUAqECIiEkgFQkREAqlAiIhIoIQKhJldbWbvm1m1meUnK5SIiIQv0T2INcAE4NUkZBERkTTSNpGF3X0tgJklJ42IiKSNlB2DMLMbzWyFma0oLS1NVbMiItJEDe5BmNlLQI+ASTPc/Zl4G3L3R4BHAPLz8z3uhCIiEooGC4S7X5iKICIikl40zFVERAIlOsz1m2b2GXAW8JyZvZicWCIiErZERzEtAhYlKYuIiKQRdTGJiEggFQgREQmkAiEiIoFUIEREJJAKhIiIBFKBEBGRQCoQIiISSAVCREQCqUCIiEggFQgREQmkAiEiIoFUIEREJJAKhIiIBFKBEBGRQCoQIiISSAVCREQCqUCIiEggFQgREQmkAiEiIoFUIEREJJAKhIiIBFKBEBGRQCoQIiISSAVCREQCJVQgzGyWmX1oZqvMbJGZ5SQpl4iIhCzRPYilwGnuPhj4CLgr8UgiIpIO2iaysLsviXn4BnBVYnFaj4KCsBNEFBeHnUDSnf5WW69kHoP4DvBCXRPN7EYzW2FmK0pLS5PYrIiINAdz9/pnMHsJ6BEwaYa7PxOdZwaQD0zwhlYI5Ofn+4oVK5oQV0Sk9TKzd9w9P1XtNdjF5O4X1jfdzKYDlwEXxFMcRESkZUjoGISZjQXuAM5z9z3JiSQiIukg0WMQ/wfIApaa2UozezgJmUREJA0kOorp5GQFERGR9KJfUouISCAVCBERCaQCISIigVQgREQkkAqESJorKSnhtNNOi3v+s88++7DnDv1EaebMmV95HOvnP/95k9sEePrpp/nggw8atYy7U1JSQmFhYeD04uJiLrvsskat8wh3enTE6EozWxw7wcyuMbMZZjbAzF43s/1m9qNa8zxuZlvMbE08jalAiBxhli9ffthzRUVFzJo1i3379vHAAw9QVFR02DyxBaIpmlIgbrrpJl577TU++eQTrr/+ejZv3pxQhsaqrKxMaXtJUO3uedHbFbWmXQz8X2A7cCvwq4DlC4Gx8TamAiHSgmzcuJGhQ4fy9ttv8/777zNixAjy8vIYPHgw69evB6BTp06HLTd58mROOOEEZs2aRe/evZk8efJXpt95553s3buXvLw8rr32WgCqqqr47ne/y8CBA/nGN77B3r17AdiwYQNjx47l9NNP59xzz+XDDz9k+fLlLF68mNtvv528vDw2bNjAo48+yvDhwxkyZAhXXnkle/Yc/lvahx56iD/+8Y88/vjj3H///fTs2bPO1/7WW29x1llnMXToUM4++2zWrVsHwKhRo1i5cmXNfOeccw7vvfceu3fv5jvf+Q4jRoxg6NChPPPMMwAUFhZyxRVXcP7553PBBRcEtlVcXExBQQFXXXUVAwYM4Nprr63Z6+rbty9bt24FYMWKFRREz2Y4c+ZMpk2bxrnnnkufPn1YuHAhd9xxB4MGDWLs2LEcPHiwzteWKDMzIA/4m7tvcfe3gcMadPdXiRSQ+Lh7ym+nn366i0h8Nm3a5AMHDvQPP/zQ8/LyfOXKle7ufsstt/jcuXPd3X3//v2+Z88ed3fPzMw8bB1FRUX+wAMP+I9//GP/5S9/6UVFRYfNE7vcpk2bPCMjw9999113d7/66qv9iSeecHf3888/3z/66CN3d3/jjTd89OjR7u4+bdo0X7BgQc06tm7dWnN/xowZ/uCDDx7W5k033eRPPPGE/+xnP/MbbrjBN2/e/JXpr7zyil966aXu7l5eXu4HDx50d/elS5f6hAkT3N29sLDQb7vtNnd3X7dunR/avtx11101mcvKyrxfv35eUVHh//Vf/+U9e/b0bdu2HZYntt3OnTv7p59+6lVVVX7mmWf6smXL3N29T58+Xlpa6u7ub7/9tp933nnu7n7PPff4yJEj/cCBA75y5Uo/6qij/Pnnn3d39/Hjx/uiRYsOa+eBBx7wIUOGHHb7wQ9+EJgLcGAFkbNnj/foNhUYBszxmO0sMBP4kdfa/gJ9gTW1nw+6JfRDORFJjdLSUsaNG8fChQs59dRTATjrrLO47777+Oyzz5gwYQL9+vWrc/lJkyZhZsycOZM77rgj8BhEbSeeeCJ5eXkAnH766ZSUlFBRUcHy5cu5+uqra+bbv39/4PJr1qzhJz/5CTt27KCiooKLLrrosHkeeughPv74YyorK/npT39ab57y8nKmTZvG+vXrMbOab+RXX3019957L7NmzeLxxx9n+vTpACxZsoTFixfzq19Felr27dvHJ598AsCYMWPIzc2tt70RI0ZwwgknAJCXl0dJSQnnnHNOvctcfPHFtGvXjkGDBlFVVcXYsZHenEGDBlFSUnLY/Lfffju33357veusZZW755vZScDLZrba3TcQ6Taq82zaTaUCIdICZGdn07t3b1577bWaAvHtb3+bM844g+eee45LLrmE3//+95x//vmBy0d6IP55kPrQ4/p06NCh5n5GRgZ79+6lurqanJycr3Tp1GX69Ok8/fTTDBkyhMLCQooDLuhgZvTt27dmo16fu+++m9GjR7No0SJKSkpqunaOPvpoxowZwzPPPMP8+fN55513gEjvyJ///Gf69+//lfW8+eabZGZmNthe7dd/6HhF27Ztqa6uBiJFJ2iZNm3a0K5du5r3uU2bNoHHO2bNmhV4PGjUqFE8+OCDQbEORl/bRjMrBoYCG4BvAFc2+KIaSccgRFqA9u3bs2jRIubMmcOTTz4JRI5HnHTSSdx6662MGzeOVatWJdRGu3btGuwn79y5MyeeeCILFiwAIhvh9957D4CsrCx27dpVM++uXbs47rjjOHjwYOBGsLHKy8trjlHUHvV0ww03cOuttzJ8+HC6dOkCwEUXXcR//Md/1OwtvfvuuwlngMgxiENF6M9//nNC67r99ttZuXLlYbeg4lBWVgZgAGbWDRgJfGBm2UBbd9+WUJgAKhAiLURmZibPPvssv/nNb1i8eDHz58/ntNNOIy8vjzVr1jB16tSE1n/jjTcyePDgmoPUdSkqKuIPf/gDQ4YMYeDAgTUHf6+55hpmzZrF0KFD2bBhA/feey9nnHEGI0eOZMCAAQllA7jjjju46667GDp06GHfxk8//XQ6d+7MddddV/Pc3XffzcGDBxk8eDADBw7k7rvvTjgDwD333MNtt91Gfn4+GRkZSVlnPNauXQvwdTN7D3gF+IW7fwCMAV46NJ+Z9TCzz4B/BX5iZp+ZWefotD8CrwP9o89fX1+bDV4wqDnogkEikkz/+Mc/KCgo4MMPP6RNmyP3e2/QBYPM7DHgMXd/I9ntHbnvpIi0CnPmzOGMM87gvvvuO6KLQ13c/YbmKA6gPQgRacVWr17NlClTvvJchw4dePPNN0NKVL+0u+SoiMiRatCgQXGNyGqtWt/+mIiIxEUFQkREAqlAiIhIIBUIEREJpAIhkkY++OAD7r//ftauXRvX+ZJEmpMKhEgaefjhh5k7dy6TJ0/m5ZdfDjuOtHIqECJpYvPmzbz++uv07t2bjIwMBg0aFHYkaeVUIETSxFNPPQXA9u3bKSgooHv37iEnktYuoQJhZvea2aro9VGXmNnxyQom0prs2bOHBQsWkJubS3V1dYMnzBNJhUT3IGa5+2B3zwOeBeq/4oeIBFq6dCn79u1j37599OnTh8GDB4cdSSSxAuHuO2MeZhK5HJ6INIK7M3v2bDIzM9mzZw/XXXddXBf0EWluCZ+LyczuA6YC5cDoeua7EbgRoHfv3ok2K3LEePfdd/n000/p0qUL7s4FF1wQdiQRII49CDN7yczWBNzGAbj7DHfvBRQBt9S1Hnd/xN3z3T3/mGOOSd4rEGnhioqKyMjIoKysjIkTJ9KxY8ewI4kAcexBuPuFca6rCHgeuCehRCKtyOeff86yZcvo2rUrW7duZcKECWFHEqmR6CimfjEPxwEfJhZHpHVZuHAh7k5ZWRkjR47k+OM1EFDSR6LHIH5hZv2BauBj4KbEI4m0Dvv27WP+/Pl06dKFsrKywy5cIxK2hAqEu1+ZrCAirc3LL7/M7t27MTN69uzJsGHDwo4k8hX6JbVICNydwsJCMjMz2b17N9OnT9fQVkk7KhAiIVi9ejWbNm2iY8eOdOjQgTFjxoQdSeQwKhAiIXjyyScxM7Zv386VV15JZmZm2JFEDqMCIZJiW7Zs4ZVXXqFr164AXHXVVSEnEgmmAiGSYosXL6a6upodO3Zwxhln0KtXr7AjiQRSgRBJoQMHDlBUVEROTg6VlZUa2ippTQVCJIWKi4upqKigsrKSY489luHDh4cdSaROKhAiKXJoaGvHjh2pqKhg2rRptGmjj6CkL/11iqTI2rVrWb9+PUcffTTt2rVj7NixYUcSqZcKhEiKxA5tHT9+PFlZWWFHEqmXCoRICmzbto0lS5aQm5sLwMSJE0NOJNIwFQiRFDg0tHXXrl0MGzaMvn37hh1JpEEqECLN7ODBg8ydO5ecnBwOHDjA1KlTw44kEhcVCJFmtmzZMnbu3El1dTVdu3blzDPPDDuSSFxUIESaWWFhIR06dGDnzp1MnTqVjIyMsCOJxEUFQqQZrVu3jrVr19KpUyfatWvHpZdeGnYkkbipQIg0o3nz5tUMbb388svJzs4OO5JI3FQgRJpJWVkZzz//PLm5ubi7hrZKi6MCIdJMnnvuOSorK6moqGDQoEGcfPLJYUcSaRQVCJFmUFlZyZw5c8jOzmb//v1MmzYt7EgijaYCIdIMli9fTllZGQBdunRh5MiRIScSaTwVCJFmMHv2bNq3b095eTlTpkyhbdu2YUcSaTQVCJEk27hxI6tWrSIrK4uMjAwNbZUWSwVCJMnmzZsHRE7QN3bs2JoT9Im0NEkpEGb2QzNzM+uWjPWJtFQ7d+5k8eLFdO3aFYBJkyaFnEik6RIuEGbWC/gG8EnicURathdeeIHKykp2797NgAED6N+/f9iRRJosGUfOfgPcATyThHVJihUUhJ0gorg47ASJq6qqorCwkKysLHbt2sW0adMwsyavT/83EraE9iDMbByw2d3fi2PeG81shZmtKC0tTaRZkbT05ptvsnXrVtq0aUNWVhajRo0KO5JIQhrcgzCzl4AeAZNmAP9GpHupQe7+CPAIQH5+vjciozQjfTtMnjlz5tCuXTvKy8u5+eabad++fULr0/+NhK3BAuHuFwY9b2aDgBOB96K70ScAfzOzEe7+RVJTiqS5kpIS3nnnHbp168b27du54oorwo4kkrAmH4Nw99VA90OPzawEyHf3rUnIJdKiPPXUUwBs376dCy+8kG7dNKBPWj79DkIkQRUVFSxcuJDc3Fyqq6s1tFWOGEn7/b+7903WukRakhdffJGDBw+yd+9evva1rzFw4MCwI4kkhfYgRBJQXV1NYWEhnTp1Yu/evVx33XUJDW0VSScqECIJeOedd/jyyy9p27YtmZmZFKTLjxdEkkAFQiQBTzzxBBkZGezYsYNJkybRoUOHsCOJJI0KhEgTbd68mddff52cnBzMjG9+85thRxJJKhUIkSaKHdpaUFBA9+7dG1hCpGVRgRBpgj179rBgwYKaoa3f/va3w44kknS6zJVIEyxdupR9+/aRkZFBnz59GDJkSNiRRJJOexAijeTuzJ49m8zMTPbs2cP06dM1tFWOSCoQIo307rvv8umnn9KhQweOOuooLrww8HRlIi2eCoRIIxUVFZGRkUFZWRkTJ06kY8eOYUcSaRYqECKN8Pnnn7Ns2TK6dOmCmTFhwoSwI4k0GxUIkUZYuHAh7k5ZWRlnn302xx9/fNiRRJqNCoRInPbt28f8+fPp0qULVVVVTJkyJexIIs1Kw1xF4vTyyy+ze/duzIyePXsybNiwsCOJNCvtQYjEwd0pLCwkMzOT3bt3a2irtAoqECJxWL16NZs2baJjx4506NCBMWPGhB1JpNmpQIjEoaioCDNj+/btXHnllWRmZoYdSaTZqUCINGDLli0UFxfTtWtXAK666qqQE4mkhgqESAMWL15MdXU1O3bsYMSIEfTq1SvsSCIpoQIhUo8DBw5QVFRETk4OlZWVTJ06NexIIimjAiFSj+LiYioqKqisrKR79+4MHz487EgiKaMCIVKHQ0NbO3bsSEVFBdOnT6dNG31kpPXQX7tIHdauXcv69es5+uijadeuHWPHjg07kkhKqUCI1OHJJ5+sGdo6fvx4srKywo4kklIJFQgzm2lmm81sZfR2SbKCiYRp27ZtLFmypGZo68SJE0NOJJJ6yTgX02/c/VdJWI9I2jg0tHXnzp0MGzaMvn37hh1JJOXUxSRSy8GDB2uGth44cEBDW6XVSkaBuMXMVpnZ42bWpa6ZzOxGM1thZitKS0uT0KxI81i2bBnl5eVUV1fTtWtXzjzzzLAjiYSiwQJhZi+Z2ZqA2zjgP4GvAXnA58Cv61qPuz/i7vnunn/MMcckK79I0hUWFtKhQwd27tzJ1KlTycjICDuSSCgaPAbh7nFdkd3MHgWeTTiRSIjWrVvH2rVr6dq1K1VVVVx66aVhRxIJTaKjmI6LefhNYE1icUTCNW/evJqhrZdffjnZ2dlhRxIJTaKjmB4wszzAgRLgXxINJBKWsrIynn/+eXJzc9m2bZuGtkqrl1CBcHddlFeOGM899xyVlZVUVFQwaNAgTj755LAjiYRKw1xFgMrKSubMmUN2djb79+/X0FYRVCBEAFi+fDllZWUA5OTkcM4554ScSCR8KhAiwOzZs2nfvj3l5eVMmTKFtm2TcZIBkZZNBUJavY0bN7Jq1SqysrLIyMjgsssuCzuSSFpQgZBWb968eQBs376dsWPHkpubG3IikfSgAiGt2s6dO1m8eDFdu3bF3Zk0aVLYkUTShgqEtGovvPAClZWV7N69mwEDBtC/f/+wI4mkDRUIaRU2btzI008/TUVFRc1zVVVVFBYWkpWVxb59+5g2bRpmFmJKkfSioRrSKqxdu5Y777yT3NxcJkyYwNVXX83mzZvZunUr2dnZZGVlMWrUqLBjiqQVFQhpFTIzM8nJySErK4t58+Yxb968mmtNl5eXc/PNN9O+ffuwY4qkFXUxSauQmZmJmdG+fXt69OhB9+7dcXdyc3PZv38/lZWV7Ny5M+yYImlFBUJahczMzK88btOmDdnZ2ZgZ3bp149FHH+Wiiy7i/vvvZ+PGjSGlFEkvKhDSKmRmZuLudU7r0aMH2dnZLFq0iPHjx/OXv/wlxQlF0o8KhLQK9RWIQ9q0aUNVVRWjRo1i9OjRKUomkr50kFpahczMTKqqquqcfuDAAUpLS/nWt77FD3/4Q52LSQQVCGklOnbsCIC7H/Zbh927d7Nz505+/OMfM3HiRP0WQiRKBUJaBTOr2YuI3TsoKyvD3fntb3/LyJEjQ0wokn50DEJajU6dOlFZWQlE9iS2bNlCZmYmhYWFKg4iAVQgpNXo1KkTVVVVVFdX88UXX3DyySczd+5c+vXrF3Y0kbSkAiGtxqHLiX7xxRcUFBTw2GOPccwxx4QdSyRt6RiEtBqdO3dm27ZtfO973+P73/8+GRkZYUcSSWsqENJqnHvuuRQUFOiKcSJxUoGQVmPcuHFhRxBpUXQMQkREAiVcIMzsB2b2oZm9b2YPJCOUiIiEL6EuJjMbDYwDhrj7fjPrnpxYIiIStkSPQdwM/MLd9wO4+5bEI0lrVFAQdoL0U1wcdgJp7RLtYjoFONfM3jSz/2dmw+ua0cxuNLMVZraitLQ0wWZFRKS5NbgHYWYvAT0CJs2ILp8LnAkMB+ab2UkecF5ld38EeAQgPz+//vMuS6ujb8si6afBAuHuF9Y1zcxuBhZGC8JbZlYNdAO0iyAi0sIl2sX0NDAawMxOAdoDWxNcp4iIpIFED1I/DjxuZmuAA8C0oO4lERFpeRIqEO5+AJicpCwiIpJG9EtqEREJpAIhIiKBVCBERCSQCoSIiASyMAYdmdkuYF3KG06ebrTs4bwtOX9Lzg7KH7aWnr+/u2elqrGwrgexzt3zQ2o7YWa2QvnD0ZKzg/KH7UjIn8r21MUkIiKBVCBERCRQWAXikZDaTRblD09Lzg7KHzblb4RQDlKLiEj6UxeTiIgEUoEQEZFAKSkQZpZrZkvNbH303y4B8+SZ2etm9r6ZrTKzb6UiW33MbKyZrTOzv5vZnQHTO5jZvOj0N82sbwgxA8WR/V/N7IPoe/3fZtYnjJx1aSh/zHxXmpmbWVoNXYwnv5lNjP4fvG9mT6Y6Y33i+PvpbWavmNm70b+hS8LIGcTMHjezLdGzTAdNNzN7MPraVpnZsFRnrE8c+a+N5l5tZsvNbEizhXH3Zr8BDwB3Ru/fCfwyYJ5TgH7R+8cDnwM5qchXR+YMYANwEpHrXLwHnFprnu8BD0fvXwPMCytvE7KPBo6O3r85XbLHmz86XxbwKvAGkB927ka+//2Ad4Eu0cfdw87dyPyPADdH758KlISdOybbKGAYsKaO6ZcALwBG5GqYb4aduZH5z475u7m4OfOnqotpHDA7en82ML72DO7+kbuvj97/B7AFOCZF+YKMAP7u7hs9clrzPxF5HbFiX9dTwAVmZinMWJcGs7v7K+6+J/rwDeCEFGesTzzvPcC9wC+BfakMF4d48n8X+J27lwG4+5YUZ6xPPPkd6By9nw38I4X56uXurwLb65llHDDHI94AcszsuNSka1hD+d19+aG/G5r5s5uqAnGsu38evf8FcGx9M5vZCCLfXDY0d7B69AQ+jXn8WfS5wHncvRIoB7qmJF394ske63oi36jSRYP5o90Cvdz9uVQGi1M87/8pwClm9lcze8PMxqYsXcPiyT8TmGxmnwHPAz9ITbSkaOznI50162c3aafaMLOXgB4Bk2bEPnB3N7M6x9ZGK/kTRK5OV52sfBLMzCYD+cB5YWeJl5m1Af4dmB5ylES0JdLNVEDkG+CrZjbI3XeEGaoRJgGF7v5rMzsLeMLMTtNnNnXMbDSRAnFOc7WRtALh7hfWNc3MvjSz49z982gBCNydNrPOwHPAjOiuX5g2A71iHp8QfS5ons/MrC2RXe1tqYlXr3iyY2YXEing57n7/hRli0dD+bOA04DiaI9eD2CxmV3h7ik9V00d4nn/PyPSd3wQ2GRmHxEpGG+nJmK94sl/PTAWwN1fN7OORE6El05dZXWJ6/ORzsxsMPAYcLG7N9s2J1VdTIuBadH704Bnas9gZu2BRUT6Bp9KUa76vA30M7MTo9muIfI6YsW+rquAlz165ChkDWY3s6HA74Er0qz/GxrI7+7l7t7N3fu6e18i/bDpUhwgvr+dp4nsPWBm3Yh0OW1MYcb6xJP/E+ACADP7OtARKE1pyqZbDEyNjmY6EyiP6QJPe2bWG1gITHH3j5q1sRQdle8K/DewHngJyI0+nw88Fr0/GTgIrIy55aUiXz25LwE+InIsZEb0uf9JZGMEkQ/FAuDvwFvASWHmbWT2l4AvY97rxWFnbkz+WvMWk0ajmOJ8/41IN9kHwGrgmrAzNzL/qcBfiYxwWgl8I+zMMdn/SGQU5EEie2rXAzcBN8W897+LvrbVafi301D+x4CymM/uiubKolNtiIhIIP2SWkREAqlAiIhIIBUIEREJpAIhIiKBVCBERCSQCoSIiARSgRARkUD/H+X/HR5/WmHkAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 5\n",
"pp = -61/11, satellite_part = -12\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -193/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjdElEQVR4nO3deZhU5Zn+8e9N0wgoi6wSFdD8jAsCTWgxrizGiEaRMXFiAkYTFZmMiZmJMhhFQIKJYCaJM5rEqEER10SUGLOYUWKIUWwEd1BRIhqXRtlU9n5+f9Sh0zS9VDddVU2f+3NddVFVZ3mfKrrOXec9p96jiMDMzNKnVaELMDOzwnAAmJmllAPAzCylHABmZinlADAzSykHgJlZSjkAckjSHpJelNSr0LWkkaQfSvq3Bsx/rqQFuaypECT1lRSSWhe6FmteHACNJOl3kj5Mblskba7y+GfJbOOAxyLi7WSZSyU9L2m9pNclXdqA9oZLek7SGknvS5orad8sl91D0s2S/p60vUTSyY18rR8mr/W5LJf9lKQHJJVL+kDSHyQd3IC2L5JUJmmTpFnVprWR9CtJK5IN3LBqi18LfFdSm2zbay4k3ShpmaQKSec2cNkVkj7bRHUULDySdj+q8nd3U75raOkcAI0UESdHxF4RsRcwB5ix/XFEjE9mGw/MrrKYgK8CewMjgYsknZVlky8CJ0VEZ+ATwCvAT7NctjWwEhgKdAKuAO6R1Debhau+1uT1Pg7cm2XbnYF5wMFAT2Ah8ECWywL8A/gecEst0xcAY4F3aqj7bWApMKoB7eVVHRvWZ4BvAE/nsZzmaGCVv73zC11MS+MAyBFJvYEDgSe3PxcRMyLi6YjYGhHLyGwIj8lmfRHxbkT8o8pT24D/V6W9iZIerGXZjyJiSkSsiIiKiHgQeB0Y3IjX1Rc4DritynMPSppYS9sLI+LmiPggIrYAPwIOltQ1m/Yi4r6IuB94v4ZpmyPixxGxgMz7UZP5wOezaas6ST+RtFLSOkmLJB2XPL+PpI+rvgZJn072coqTx1+X9JKk1cleT58q84akf5f0Cpkgr+l1Xx8R/wdsbGDNs4HewG+Sb80TqkweI+kNSaskXV5lmVbJ38/yZO/yHkldksmPJf+uSdZ3lKRPSnokmXeVpDmSOjekTmseHAC50x94LSK21jRRkshsSF/IdoWSektaA2wALgFmbJ8WET+IiFOzXE9P4FMNabuKrwJ/iYgVVdo+NSJ+kOXyxwPvRMROG/QceQkY2MhlnwJKgC7AHcC9ktpGxDtkguVfq8x7NnBXRGyRdDrwXeAMoDvwF+DOauseDRwJHNbI2moUEWcDbwCnJd+aZ1SZfCyZPbETgCslHZo8/82knqFk9i5XA9cn045P/u2crO9vZPZkv5/MeyiwPzCltpokPZt0XdZ0u6Gel/SYpHck3ZftHqtlzwGQO52B9XVMn0Lm/f9ltiuMiDeSLqBuZLpxlja0qOQb6hzg1oho8PJkAmBWI5ZD0n5kNiz/2ZjlG2k9mf+LBouI2yPi/WSP7YfAHmQ2oAC3kul6QlIR8GX+2d03Hvh+RLyUfAG4GiipuheQTP8gIjY0prZGmhoRGyLiGTJdTNuDcTxweUS8GRGbyPxtfrG27qmIeDUiHo6ITRFRDvw3mfCoUUQMiIjOtdy+UUe9Q4G+wCFkugIfLMSxiJbMAdAAksZUOSD1u3pmXw10qGU9F5HZkH4++cA1SER8QGYD9EBDPhCSWpHZSG0GLmpou5KOBfYBftWIZbsDfwRuiIjq34ZzqQOwpjELSrok6cZZm+x5dSITvpDpvjtM0gHAicDaiFiYTOsD/GT7t1zgAzLfmqsetF/ZmJp2UdXjJB8DeyX3+wBzq9T7EpkutZ41rURST0l3SXpL0jrgdv75vjSZiHgs6eZbA1wMHEBmj8OaiAOgASJiTpUDUvWdRfMscED1DbSkrwMTgRMi4s1dKKc10APomM3MSZfTzWQ+1F9I+uMb6hzgvoj4sCELSdqbzMZ/XkRMb0S7u+JQMt92GyTp759Apptn72TPay2ZDTkRsRG4h8xewNnseLB/JXBhtW+67SLi8Srz5HIY3oaueyVwcrV620bEW7Ws6+rk+f4R0ZHMe6DaVi7pBe14FlnV289qW64GUVc71nAOgBxJNu6vAkO2PydpDJkPz4kR8Vr1ZSTNlzSlpvVJOkPSwckBu+5kdrsXJ3sDSJoiaX4dJf2UzMbwtJq6HVTzaZRVp7cjszGc1cC6OwJ/AP4aETsdKJY0TFKtGyxJrSW1BYqAIkltq4aqMqe4tk0etkmmV91IDAV+V2X+WmutpgOwFSgHWku6kp3D9jbgXDJnGVUNgJ8Bl0nql7TZSdKZWbRZSZlTXNuS2eAVJ6+rVTKtzvcMeJfMCQjZ+hkwfXsXlaTuyXEMyLz+imrr6wB8CKxV5lTkOk9njoh+Vc8iq3YbX9MykvpJKpFUJGkv4IfAW2T2TqyJOABy6+dkvh1u9z2gK/BULd+A9gf+Wsu69gV+T6ZP+zkyH8p/yWbZ5IN9IZkDmu9UaXtMMn3/KuutzWgyXSmP1jCtrrr/BTgC+Fq1b369qyz7eC3LQuZYxwYye01jk/tXVJm+LHluXzJBs4FMlwbK/ADvMOD+LGut6g9k3u+Xgb+TORtnh26biPgrmf+HpyPi71WenwtcA9yVdJE8D2T9u4vEH5PXcjRwY3J/+wHZ+t6z7wNXJF06l2TR1k/InKr7R0nrgSfIHKAmIj4GpgN/Tdb3GWAq8Gkye0S/Be5r4GvLRk/gbmAd8BqZYwGnNnLP1WohXxAmdyTtASwm093zdj3z7gfcExFHN7KtJUk7DT67RtJYoF9EXNaIZXe17puAeyPiD41Zvp51/xBYHhE3JI93qdZa2ngEuCMi8vYjpVy+Z5YuDgCzRpJ0BPAwsH9E1HXGl1mz5C4gs0aQdCvwJ+Db3vjb7sp7AGZmKeU9ADOzlMrJr+q6desWffv2zcWqzcxapEWLFq2KiO75bDMnAdC3b1/KyspysWozsxZJ0t/rn6tpuQvIzCylHABmZinlADAzSykHgJlZSjkAzMxSKqsAkNRZmYtvL03GRz8q14WZmVluZXsa6E+A30fEFyW1AdrnsCYzM8uDegNAUicyw9CeC5kLcZO5opRZ1oYNK3QFzcv8+YWuwCy7LqADyFwU4peSFku6SdKe1WeSNE5SmaSy8vLyJi/UzMyaVr2DwUkqJXOBiGMi4klJPwHWRcSk2pYpLS0N/xLYzCx7khZFRGk+28xmD+BN4M2IeDJ5/CsyVwMyM7PdWL0BEBHvACslHZw8dQLwYk6rMmuE3//+96xZs6bQZZjtNrL9HcA3gTmSniVzXdmrc1aRWSNdffXVnHbaadx///1s27at0OWYNXtZBUBELImI0ogYEBGjI2J1rgsza6i9996biooKpk2bxpgxY3juubqucW9m/iWwtRi9evWiqKiIXr16sXLlSr72ta8xefJkVq1aVejSzJolB4C1GPvuuy+bN29GEl26dKFHjx489NBDjB49mrvuuostW7YUukSzZsUBYC3G/vvvz+bN//yNYlFREfvssw/t2rXj2muv5Utf+hJPP/10ASs0a14cANZi9OjRg9atd/5xe9u2benVqxfl5eWMGzeOiRMn8u677xagQrPmxQFgLUa3bt0oKiqqdXrnzp3p2bMnjzzyCKNGjWLhwoV5rM6s+XEAWIvRrVu3eufZuHEj27Zto7S0lAMOOCAPVZk1Xzm5KLxZIXTt2pWtW7fWOK2iooL33nuP9u3bM336dE466SQk5blCs+bFAWAtRseOHWnVqhUVFRW0arXjzu3bb7/N4MGDueaaa+jSpUuBKjRrXhwA1mJIolu3bmzevJm2bduybds2ysvLK08LXbp0KRUVFYUu06zZ8DEAa1F69uzJ5s2bWb16NeXl5Zx55pn07t2bDRs2sGnTJq655hrqGwHXLC0cANaifOITn+Ddd9+le/fu3HzzzUyYMIGrrrqKzZs306VLFx555BEee+yxQpdp1iw4AKxFGTp0KN/5zne4++67GTBgAACHHXYYX/nKV1i1ahUdO3Zk2rRprF+/vsCVmhWeA8BalBNPPJELLriANm3a7PD8hRdeSPfu3amoqGDt2rVcd911BarQrPlwAFgqtG/fnqlTp/LRRx/RtWtX5s6d62EhLPUcAJYaQ4YM4dRTT+X999+nffv2TJ48mY0bNxa6LLOCcQBYqvzHf/wHe+21F61bt+btt9/mpptuKnRJZgXjALBU6dSpE1dccQVr166la9eu3HrrrSxbtqzQZZkVhAPAUmfEiBEcd9xxrF69muLiYiZPnlzrEBJmLZkDwFJHEt/97ncpLi6mffv2vPrqq9x5552FLsss7xwAlko9evTgO9/5DqtXr6ZLly5cf/31rFy5stBlmeWVA8BSa/To0QwcOJB169YREUybNs3DRFiqOAAstVq1asWVV15JRNC5c2cWLVrEb37zm0KXZZY3DgBLtb59+zJ+/HhWrVrF3nvvzYwZMygvLy90WWZ54QCw1Bs7diwHHnggGzZsYPPmzR4x1FIjqwCQtELSc5KWSCrLdVFm+VRcXLzDiKGPPvqoRwy1VGjIHsDwiCiJiNKcVWNWIIceeihjxoypHDH0qquuYt26dYUuyyyn3AVklhg3bhw9evSgoqKCdevWecRQa/GyDYAA/ihpkaRxNc0gaZykMkllPohmu6P27dszZcqUHUYMLStzj6e1XNkGwLER8WngZODfJR1ffYaIuDEiSiOitHv37k1apFm+VB0xdM8992TKlCkeMdRarKwCICLeSv59D5gLDMllUWaFtH3E0KKiIt555x1+8YtfFLoks5yoNwAk7Smpw/b7wOeA53NdmFmhdOrUiUmTJrFu3Tq6du3K7NmzPWKotUjZ7AH0BBZIegZYCPw2In6f27LMCmv48OGVI4a2bt2aK6+80iOGWotTbwBExGsRMTC59YuI6fkozKyQto8Y2qZNG48Yai2WTwM1q0XVEUO7du3qEUOtxXEAmNXh9NNPp6SkpHLE0KlTp3qYCGsxHABmddg+YihA586dWbx4MfPmzStwVWZNwwFgVo8+ffpw4YUXVo4YOnPmTI8Yai2CA8AsC2PHjuWTn/xk5YihP/jBD9wVZLs9B4BZFoqLi5k6dWrliKHz58/nz3/+c6HLMtslDgCzLB166KGMHTu2csTQadOmecRQ2605AMwaYNy4cfTs2ZNt27axbt06fvzjHxe6JLNGcwCYNUC7du2YMmUKH3/8MV27dmXevHkeMdR2Ww4AswY64ogjOO2003j//fcrh5DesGFDocsyazAHgFkjfPvb36ZDhw4eMdR2aw4As0bo1KkTV1xxBevWraNbt27Mnj2bpUuXFrosswZxAJg10vDhwxk6dCgffPABbdq04corr2TLli2FLsssaw4As0aSxMSJE2nTpg3t2rXjtdde44477ih0WWZZcwCY7YIePXpwySWXVI4Y+tOf/pQ33nij0GWZZcUBYLaLRo0aRUlJCWvWrKkcMbSioqLQZZnVywFgtotatWrF5MmTkUTnzp1ZsmSJRwy13YIDwKwJ9O7dm/Hjx1eOGHrttdfy3nvvFbosszo5AMyayJgxYzxiqO1WHABmTaS4uJirrrqqcsTQP//5zzz66KOFLsusVg4AsyZ0yCGHcPbZZ1eOGPq9732PtWvXFrossxo5AMya2AUXXFA5Yuj69es9Yqg1Ww4AsybWrl07pk6dWjli6G9+8xsWLlxY6LLMduIAMMuB0tJSRo0aVTli6NSpUz1iqDU7WQeApCJJiyU9mMuCzFqKqiOGvvvuu9x4442FLslsBw3ZA7gYeClXhZi1NB07dmTSpEmVI4befvvtvPSSP0LWfLTOZiZJ+wGfB6YD/5nTiqxJDRtW6Aoy5s8vdAWFMWzYMIYOHcqCBQto06YNkydPZs6cOZx4YnGhSwPS+/9iGdnuAfwYmADUOsCJpHGSyiSVlZeXN0VtZrs9SVx22WWVI4YuX76c22+/vdBlmQGg+n6pKOlU4JSI+IakYcAlEXFqXcuUlpaGr5Nq9k/3338/06ZNo1u3bqxdu5a7776bPn36FLosa0YkLYqI0ny2mc0ewDHAKEkrgLuAEZL8FcasAUaNGsWgQYN455132LhxI08//XShSzKrPwAi4rKI2C8i+gJnAY9ExNicV2bWgmwfMbR///787//+L6NHjy50SWbZHQQ2s123//77u//fmpUGBUBEzAfm56QSMzPLK/8S2MwspRwAZmYp5QAwM0spB4CZWUo5AMwKbMWKFRx++OFZz3/00Ufv9Nz2H3ROmTJlh8dVXX311Y1uEzI/ZnvxxRcbtExEsGLFCmbNmlXj9Pnz53PqqXX+rjRVJG2TtCS5zas27SxJl0s6RNLfJG2SdEm1eW6R9J6k57NpzwFgtpt5/PHHd3puzpw5zJw5k40bNzJjxgzmzJmz0zxVA6AxGhMA48ePZ8GCBbzxxhucd955vPXWW7tUQ0Nt3bo1r+01gQ0RUZLcRlWbdjLwe+AD4FvAtTUsPwsYmW1jDgCzZuS1115j0KBBPPXUU7zwwgsMGTKEkpISBgwYwCuvvALAXnvttdNyY8eOZb/99mPmzJn07t2bsWN3/K3mxIkT2bBhAyUlJYwZMwaAbdu2ccEFF9CvXz8+97nPVV6vYPny5YwcOZLBgwdz3HHHsXTpUh5//HHmzZvHpZdeSklJCcuXL+cXv/gFRxxxBAMHDuQLX/gCH3/88U513XDDDdx5553ccsstfP/732ffffet9bUvXLiQo446ikGDBnH00UezbNkyAI4//niWLFlSOd+xxx7LM888w0cffcTXv/51hgwZwqBBg3jggQcAmDVrFqNGjWLEiBGccMIJNbY1f/58hg0bxhe/+EUOOeQQxowZU7nX1LdvX1atWgVAWVkZw5IRFadMmcI555zDcccdR58+fbjvvvuYMGEC/fv3Z+TIkWzZsqXW17arJAkoAZ6OiPci4ilgpwYj4jEyAZGdiGjy2+DBg8PMsvP6669Hv379YunSpVFSUhJLliyJiIiLLroobr/99oiI2LRpU3z88ccREbHnnnvutI45c+bEjBkz4r/+67/immuuiTlz5uw0T9XlXn/99SgqKorFixdHRMSZZ54Zs2fPjoiIESNGxMsvvxwREU888UQMHz48IiLOOeecuPfeeyvXsWrVqsr7l19+eVx33XU7tTl+/PiYPXt2TJ06Nc4///x46623dpj+6KOPxuc///mIiFi7dm1s2bIlIiIefvjhOOOMMyIiYtasWXHxxRdHRMSyZcti+/blsssuq6x59erVcdBBB8WHH34Yv/zlL2PfffeN999/f6d6qrbbsWPHWLlyZWzbti0+85nPxF/+8peIiOjTp0+Ul5dHRMRTTz0VQ4cOjYiIyZMnxzHHHBObN2+OJUuWRLt27eKhhx6KiIjRo0fH3Llzd2pnxowZMXDgwJ1u3/zmN3eaFygDtib/PgGMjmSbCnwauC2qbGeBKWTGZqPa832B56s/X9PNvwQ2awbKy8s5/fTTue+++zjssMMAOOqoo5g+fTpvvvkmZ5xxBgcddFCty3/5y19GElOmTGHChAk1HgOo7oADDqCkpASAwYMHs2LFCj788EMef/xxzjzzzMr5Nm3aVOPyzz//PFdccQVr1qzhww8/5KSTTtppnhtuuIG///3vbN26lSuvvLLOetauXcs555zDK6+8gqTKb9Rnnnkm06ZNY+bMmdxyyy2ce+65APzxj39k3rx5XHttpidk48aNvPHGGwCceOKJdOnSpc72hgwZwn777QdASUkJK1as4Nhjj61zmZNPPpni4mL69+/Ptm3bGDky09vSv39/VqxYsdP8l156KZdeemmd66ymT0S8JelA4BFJz0XEcjLdOr9ryIqy4QAwawY6depE7969WbBgQWUAfOUrX+HII4/kt7/9Laeccgo///nPGTFiRI3LZ3oI/nkQePvjuuyxxx6V94uKitiwYQMVFRV07tx5hy6X2px77rncf//9DBw4kFmzZjG/hosLSKJv376VG+26TJo0ieHDhzN37lxWrFhR2fXSvn17TjzxRB544AHuueceFi1aBGR6L379619z8MEH77CeJ598kj333LPe9qq//u3HC1q3bk1FRWbk+40bN9a4TKtWrSguLq58n1u1alXj8YaZM2fWeDzm+OOP57rrrtvp+Yh4K/n3NUnzgUHAcuBzwBfqfVEN5GMAZs1AmzZtmDt3Lrfddht33HEHkDkecOCBB/Ktb32L008/nWeffXaX2iguLq63n7pjx44ccMAB3HvvvUBmI/vMM88A0KFDB9avX1857/r16+nVqxdbtmypcSPXUGvXrq08RlD9rKHzzz+fb33rWxxxxBHsvffeAJx00kn8z//8T+XezuLFi3e5BsgcA9geMr/+9a93aV2XXnopS5Ys2elW08YfKJK0B4CkbmRGYn5RUiegdUS8v0vF1MABYNZM7Lnnnjz44IP86Ec/Yt68edxzzz0cfvjhlJSU8Pzzz/PVr351l9Y/btw4BgwYUHkQuDZz5szh5ptvZuDAgfTr16/y4OpZZ53FzJkzGTRoEMuXL2fatGkceeSRHHPMMRxyyCG7VBvAhAkTuOyyyxg0aNBO36YHDx5Mx44d+drXvlb53KRJk9iyZQsDBgygX79+TJo0aZdrAJg8eTIXX3wxpaWlFBUVNck6s9QWKJP0DPAo8IOIeBE4EfjT9pkk7SPpTTJXZ7xC0puSOibT7gT+BhycPH9eXQ3We0GYxvAFYcysKf3jH/9g2LBhLF26lFatWub31touCCPpJuCmiHiiqdtsme+kmbUYt912G0ceeSTTp09vsRv/ukTE+bnY+IP3AMysBXvuuec4++yzd3hujz324MknnyxQRbUrxCUhfRaQmbVY/fv3z+qMprRK3/6UmZkBDgAzs9RyAJiZpZQDwMwspRwAZmYp5QAwM0spB4CZWUo5AMzMUqreAJDUVtJCSc9IekHS1HwUZmZmuZXNL4E3ASMi4kNJxcACSb/L1dgUZmaWH/UGQHKpsg+Th8XJrekHEDIzs7zK6hiApCJJS4D3gIcjYqeRlCSNk1Qmqay8vLyJyzQzs6aWVQBExLaIKAH2A4ZIOryGeW6MiNKIKO3evXsTl2lmZk2tQWcBRcQaMleqGZmTaszMLG+yOQuou6TOyf12ZC5PtjTHdZmZWY5lcxZQL+BWSUVkAuOeiHgwt2WZmVmuZXMW0LPAoDzUYmZmeeRfApuZpZQDwMwspRwAZmYp5QAwM0spB4CZWUo5AMzMUsoBYGaWUg4AM7OUcgCYmaWUA8DMLKUcAGZmKeUAMDNLKQeAmVlKOQDMzFLKAWBmllIOADOzlHIAmJmllAPAzCylHABmZinlADAzSykHgJlZSjkAzMxSygFgZpZSDgAzs5SqNwAk7S/pUUkvSnpB0sX5KMzMzHKrdRbzbAW+ExFPS+oALJL0cES8mOPazMwsh+oNgIh4G3g7ub9e0kvAvoADoBbDhhW6gn+aP7/QFVhz1lz+Vv13WhgNOgYgqS8wCHiyhmnjJJVJKisvL2+i8szMLFcUEdnNKO0F/BmYHhH31TVvaWlplJWVNUF5ZmbpIGlRRJTms82s9gAkFQO/BubUt/E3M7PdQzZnAQm4GXgpIv479yWZmVk+ZLMHcAxwNjBC0pLkdkqO6zIzsxzL5iygBYDyUIuZmeWRfwlsZpZSDgAzs5RyAJiZpZQDwMwspRwAZmYp5QAwM0spB4CZWUo5AMzMUsoBYGaWUg4AM7OUcgCYmaWUA8DMLKUcAGZmKeUAMDNLKQeAmVlKOQDMzFLKAWBmllIOADOzlHIAmJmllAPAzCylHABmZinlADAzSykHgJlZSjkAzMxSqt4AkHSLpPckPZ+PgszMLD+y2QOYBYzMcR1mZpZn9QZARDwGfJCHWszMLI+a7BiApHGSyiSVlZeXN9VqzcwsR5osACLixogojYjS7t27N9VqzcwsR3wWkJlZSjkAzMxSKpvTQO8E/gYcLOlNSeflviwzM8u11vXNEBFfzkchZmaWX+4CMjNLKQeAmVlKOQDMzFLKAWBmllIOADOzlHIAmJmllAPAzCylHABmZinlADAzSykHgJlZSjkAzMxSygFgZpZSDgAzs5RyAJiZpZQDwMwspRwAZmYp5QAwM0spB4CZWUo5AMzMUsoBYGaWUg4AM7OUcgCYmaWUA8DMLKUcAGZmKZVVAEgaKWmZpFclTcx1UWZmlnv1BoCkIuB64GTgMODLkg7LdWFmZpZbrbOYZwjwakS8BiDpLuB04MVcFlYow4bt+jrmz9/1dZilSVN87sCfvYbKpgtoX2BllcdvJs/tQNI4SWWSysrLy5uqPjMzy5Fs9gCyEhE3AjcClJaWRlOtN9/8DcIs//y5K4xs9gDeAvav8ni/5DkzM9uNZRMATwEHSTpAUhvgLGBebssyM7Ncq7cLKCK2SroI+ANQBNwSES/kvDIzM8uprI4BRMRDwEM5rsXMzPLIvwQ2M0spB4CZWUo5AMzMUsoBYGaWUopo+t9sSVoPLGvyFedHN2BVoYvYBa6/sFx/Ye3O9R8cER3y2WCT/RK4mmURUZqjdeeUpLLdtXZw/YXm+gtrd65fUlm+23QXkJlZSjkAzMxSKlcBcGOO1psPu3Pt4PoLzfUX1u5cf95rz8lBYDMza/7cBWRmllIOADOzlGqSAJDURdLDkl5J/t27hnlKJP1N0guSnpX0paZou7Hqu9C9pD0k3Z1Mf1JS3wKUWass6v9PSS8m7/X/SepTiDprU1/9Veb7gqSQ1KxO7cumfkn/mvwfvCDpjnzXWJss/nZ6S3pU0uLk7+eUQtRZG0m3SHpP0vO1TJek65LX96ykT+e7xtpkUfuYpObnJD0uaWBOC4qIXb4BM4CJyf2JwDU1zPMp4KDk/ieAt4HOTdF+I+otApYDBwJtgGeAw6rN8w3gZ8n9s4C7C1HrLtQ/HGif3P+33a3+ZL4OwGPAE0Bpoetu4Pt/ELAY2Dt53KPQdTeg9huBf0vuHwasKHTd1eo7Hvg08Hwt008BfgcI+AzwZKFrbkDtR1f5mzk517U3VRfQ6cCtyf1bgdHVZ4iIlyPileT+P4D3gO5N1H5DVV7oPiI2A9svdF9V1df0K+AEScpjjXWpt/6IeDQiPk4ePkHmSm7NRTbvP8A04BpgYz6Ly0I29V8AXB8RqwEi4r0811ibbGoPoGNyvxPwjzzWV6+IeAz4oI5ZTgdui4wngM6SeuWnurrVV3tEPL79b4Y8fG6bKgB6RsTbyf13gJ51zSxpCJlvH8ubqP2GyuZC95XzRMRWYC3QNS/V1S+b+qs6j8w3ouai3vqT3fb9I+K3+SwsS9m8/58CPiXpr5KekDQyb9XVLZvapwBjJb1J5jog38xPaU2moZ+P5irnn9ush4KQ9CdgnxomXV71QUSEpFrPLU2SeDZwTkRUZNu+NY6ksUApMLTQtWRLUivgv4FzC1zKrmhNphtoGJlvcY9J6h8RawpZVJa+DMyKiB9KOgqYLelwf17zR9JwMgFwbC7byToAIuKztU2T9K6kXhHxdrKBr3F3V1JH4LfA5cmuWaFkc6H77fO8Kak1mV3h9/NTXr2yqR9JnyUT0EMjYlOeastGffV3AA4H5ie9bvsA8ySNioi8j5dSg2ze/zfJ9N9uAV6X9DKZQHgqPyXWKpvazwNGAkTE3yS1JTPIWnPpxqpPVp+P5krSAOAm4OSIyOk2p6m6gOYB5yT3zwEeqD5DckH5uWT65n7VRO02VjYXuq/6mr4IPBLJkZlmoN76JQ0Cfg6Makb9z9vVWX9ErI2IbhHRNyL6kukLbS4bf8ju7+d+Mt/+kdSNTJfQa3mssTbZ1P4GcAKApEOBtkB5XqvcNfOAryZnA30GWFuli7pZk9QbuA84OyJeznmDTXRkuyvwf8ArwJ+ALsnzpcBNyf2xwBZgSZVbSS6PcNdT8ynAy2SOQ1yePHcVmQ0NZP7o7wVeBRYCBxaq1kbW/yfg3Srv9bxC19yQ+qvNO59mdBZQlu+/yHRjvQg8B5xV6JobUPthwF/JnCG0BPhcoWuuVv+dZM4i3EJmT+s8YDwwvsp7f33y+p5rTn87WdR+E7C6yue2LJf1eCgIM7OU8i+BzcxSygFgZpZSDgAzs5RyAJiZpZQDwMwspRwAZmYp5QAwM0up/w8GCsR7fAy5LQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEICAYAAADC9PcJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsD0lEQVR4nO3de5hU1Z3v//eH+/0iEFRAwWu8AtriNUFFEfCCE3PmaDRqJhlPJjHJOXPG/Ewyv8QxmUyiJ5NJnmPG4aDHmPES48SxUbxFQaKooVFQwKBEUCAoDXRzv/M9f+zdWLZd3dXdRe/qrs/reeqhau21an+q6O761lp7VykiMDMzs/LVKesAZmZmli0XA2ZmZmXOxYCZmVmZczFgZmZW5lwMmJmZlTkXA2ZmZmXOxUAJk9Rd0hJJh2SdpRxJ+omkv2lG/+slvXAgM2VB0khJIalL1lnM7MBwMZARSU9I2pJedkvalXP7zrTbDcCciFiTjrlJ0iJJmyUtl3RTM/Z3nqQ3JNVKWi/pEUnDChzbXdJdkt5N971A0uQWPtYt6WN9o8Cxx0h6VFK1pA2SnpJ0bDP2faOkKkk7Jd1Tb1s3SQ9LWpG+2J1bb/j/Ar4tqVuh+ysFRXjOVki6oEhZMisk0v1uzfm5m97WGczaCxcDGYmIyRHRJyL6APcBt9Xdjogvp92+DPwqZ5iAa4GBwCTgRklXFrjLJcBFETEAOBR4G/jXAsd2AVYC44H+wN8DD0kaWcjg3MeaPt65wG8K3PcAoBI4FhgK/AF4tMCxAH8GfgDcnWf7C8A1wPsN5F4D/BG4rBn7a1N5XmQH0LrnrCMZnfOz96Wsw5iVKhcDJUrSYcARwCt1bRFxW0S8GhF7ImIpyR/4swu5v4j4ICL+nNO0FzgqZ383S3osz9itEXFLRKyIiH0R8RiwHDi1BY9rJPAp4N6ctsck3Zxn33+IiLsiYkNE7AZ+ChwraVAh+4uI30bEfwLrG9i2KyL+JSJeIHk+GjIbuLiQfdUn6WeSVkraJGm+pE+l7QdL2pb7GCSdkr6T75re/itJb0qqSd/ZH57TNyR9VdLbJEVd/cfV4udM0q+Aw4AZ6bvpb+ZsvlrSe5LWSfpOzphO6c/Pn9JZp4ckHZRunpP+W5ve35mSjpT0XNp3naT7JA0o8Gk1swPAxUDpOgl4JyL2NLRRkkheVBcXeoeSDpNUC2wH/g64rW5bRPwoIi4p8H6GAsc0Z985rgV+HxErcvZ9SUT8qMDxnwbej4iPvbgfIG8Co1s4dh4wBjgIuB/4jaQeEfE+SZHxlzl9Pw88GBG7JU0Fvg18BhgC/B54oN59Xw6cDhxfQI6Cn7OI+DzwHnBp+m76tpzN55DMNkwAvivpuLT9a2me8SSzTjXAHTn7BhiQ3t9LJDNc/5T2PQ4YAdySL5Ok19PlrYYuv2jiIc2R9L6k3xY6k2VWjlwMlK4BwOZGtt9C8v/3fwu9w4h4L10mGEwy1f/H5oZK37neB/wyIpo9nqQYuKcF45A0nORF5m9bMr6FNpP8XzRbRPx7RKxPZ3J+AnQneTEF+CXJ8gSSOgNX8eGS0JeBf4qIN9Ni8IfAmNzZgXT7hojY3liGIj9n/xAR2yNiIbCQD4ukLwPfiYhVEbGT5Gfzs/mOE4iIZRHxTETsjIhq4J9JCokGRcTJETEgz+UrjeQdD4wEPkmyXPRYFscumLUHLgbakKSrcw5meqKJ7jVA3zz3cyPJi+rF6R/fZomIDSQvRo8254+jpE4kL1i7gBubu19J5wAHAw+3YOwQ4GngFxFR/13ygdQXqG3JQEl/l071b0xnZPqTFGKQLPEcL2kUcCGwMSL+kG47HPhZ3btfYAPJu+ncAz5XFrD/Yj9nucdVbAP65OR9JCfvmyTLLkPz5Boq6UFJqyVtAv6dD5+XoomIOelSUC3wDWAUyUyEmdXjYqANRcR9OQczNXU0/uvAqPov1pL+CrgZmBARq1oRpwvwCaBfIZ3TZYm7SP7AX5GuRTfXdcBvI2JLcwZJGkjyolYZEf/Ygv22xnEk74KbJT0+4JskSwED0xmZjSQv6kTEDuAhktmBz/PRA0VXAv+t3jvgnhExN6dPo1832srnrLlfZboSmFwvb4+IWJ3nvn6Ytp8UEf1IngPlu3NJi/XRs1FyL3fmG9eAaGw/ZuXMxUCJSl/olwHj6tokXU3yh/TCiHin/hhJsyXd0tD9SfqMpGPTg72GkEzNvpbOEiDpFkmzG4n0ryQvjJc2NDWthk/Ny93ek+SF8Z5m5u4HPAW8GBEfO8hQ0rmS8r54SeoiqQfQGegsqUdugaXktMke6c1u6fbcF4zxwBM5/fNmracvsAeoBrpI+i4fL7zuBa4nOVshtxi4E/iWpBPSffaX9F8K2GddxlY9Z8AHJAevFupO4B/rljEkDUmPe4Dk8e+rd399gS3ARiWntzZ6imxEnJB7Nkq9y5cbGiPpBEljJHWW1Af4CbCaZNbCzOpxMVDa/o3kXWOdHwCDgHl53hmNAF7Mc1/DgCdJ1sDfIPkD/ReFjE3/yP83koPh3s/Z99Xp9hE595vP5STT7bMa2NZY7r8ATgO+UO8d4WE5Y+fmGQvJsRHbSWZTrkmv/33O9qVp2zCSF9DtJNPeKPmwp+OB/ywwa66nSJ7vt4B3gR3Um9qPiBdJ/h9ejYh3c9ofAX4MPJhOoy8CCv5cB1r/nP0T8PfptP/fFbC/n5Gcyvi0pM3AyyQHNxIR24B/BF5M7+8M4B+AU0hmSh4HftuMx1aoocCvgU3AOyTHDlzSwhktsw5PEc2dEbS2Iqk78BrJksCaJvoOBx6KiLNauK8F6X6afZS+pGuAEyLiWy0Y29rc04HfRMRTLRnfxH3/BPhTRPwivd2qrHn28Rxwf0S02QfiHMjnzMzaJxcDZhmRdBrwDDAiIho7c8TM7IDyMoFZBiT9Evgd8N9dCJhZ1jwzYGZmVuY8M2BmZlbmSvLTuAYPHhwjR47MOoaZWbsxf/78dRExJOsc1j6VZDEwcuRIqqqqso5hZtZuSHq36V5mDfMygZmZWZlzMWBmZlbmXAyYmZmVORcDZmZmZc7FgJmZWZlrshiQNELSLElL0q8S/UYDfSTp55KWSXpd0ik5266T9HZ6ua7YD8DMzMxap5BTC/cA/zMiXpXUF5gv6ZmIWJLTZzJwdHo5neTrbk+XdBDwPaCC5LvE50uqjIiaoj4KMzMza7Emi4H02/LWpNc3S3qT5Otec4uBqcC9kXy28cuSBqRf/3ou8ExEbACQ9AwwCXigqI/CCnbuuVknsHI2e3bWCcysIc06ZkDSSGAs8Eq9TcP46He1r0rb8rU3dN83SKqSVFVdXd2cWGZmZtYKBX8CoaQ+wH+QfMvapmIHiYhpwDSAiooKf3vSAeJ3ZmZmVl9BMwOSupIUAvdFxG8b6LIaGJFze3jalq/dzMzMSkQhZxMIuAt4MyL+OU+3SuDa9KyCM4CN6bEGTwETJQ2UNBCYmLaZmZlZiShkmeBs4PPAG5IWpG3fBg4DiIg7gZnAFGAZsA34Qrptg6TvA/PScbfWHUxoZmZmpaGQswleANREnwC+mmfb3cDdLUpnZmZmB5w/gdDMzKzMuRgwMzMrcy4GzMzMypyLATMzszLnYsDMzKzMuRgwMzMrcy4GzMzMypyLATMzszLnYsDMzKzMuRgwMzMrcy4GzMzMypyLATMzszLnYsDMzKzMuRgwMzMrcy4GzMzMypyLATMzszLXpakOku4GLgHWRsSJDWy/Cbg65/6OA4ZExAZJK4DNwF5gT0RUFCu4mZmZFUchMwP3AJPybYyI2yNiTESMAb4FPB8RG3K6nJdudyFgZmZWgposBiJiDrChqX6pq4AHWpXIzMzM2lTRjhmQ1ItkBuE/cpoDeFrSfEk3NDH+BklVkqqqq6uLFcvMzMyaUMwDCC8FXqy3RHBORJwCTAa+KunT+QZHxLSIqIiIiiFDhhQxlpmZmTWmmMXAldRbIoiI1em/a4FHgHFF3J+ZmZkVQVGKAUn9gfHAozltvSX1rbsOTAQWFWN/ZmZmVjyFnFr4AHAuMFjSKuB7QFeAiLgz7fYXwNMRsTVn6FDgEUl1+7k/Ip4sXnQzMzMrhiaLgYi4qoA+95Ccgpjb9g4wuqXBzMzMrG34EwjNzMzKnIsBMzOzMudiwMzMrMy5GDAzMytzLgbMzMzKnIsBMzOzMudiwMzMrMy5GDAzMytzLgbMzMzKnIsBMzOzMudiwMzMrMy5GDAzMytzLgbMzNrYihUrOPHEEwvuf9ZZZ32sLSIAuOWWW/KOk/TtnOsjJTXra+QlXS7p+GaOUbqv6/NsP1fSY825z45M0pOSaus/J5JGSXpF0jJJv5bULWfbIZKebmL8jenYkDS4qRwuBszMStzcuXM/1nbfffdx++23s2PHDm677TaAgxoY+u0G2prjcqBZxQBwJ3AOcJikuyQNa2WGZpHU5Lfxlpjbgc830P5j4KcRcRRQA3wxZ9sk4Kkmxr8IXAC8W0gIFwNmZhl65513GDt2LPPmzWPx4sWMGzeOMWPGcPLJJ/P2228D0KdPn4+Nu+aaaxg+fDi33347hx12GMCG3O2SfgT0lLRA0n1pc2dJ/0fSYklPS+qZ9j0yfYc5X9LvJX1S0lnAZcDt6X0cKemvJc2TtFDSf0jq1cBD+gpwFfBXwLciYnW+xy5pnKSXJL0maa6kY9P2OZLG5PR7QdJoSb0l3S3pD+mYqen26yVVSnoOeDbPvs6VNFvSw5L+KOk+SUq3rah79yypQtLs9Potkn6ZPifvSvqMpNskvZE+X13zPbZCRcSzwOZ6WQWcDzycNv2SpDCrMwl4It/4tP21iFhRaA4XA2ZmGVm6dClXXHEF99xzD6eddhp33nkn3/jGN1iwYAFVVVUMHz4879j777+fVatWcdNNN/Hee+9BvZmBiLgZ2B4RYyLi6rT5aOCOiDgBqAWuSNunAV+LiFOBvwN+ERFzgUrgpvQ+/gT8NiJOi4jRwJt89N1qnf8NPADcDfyjpEMbeQr+CHwqIsYC3wV+mLbfBVwPIOkYoEdELAS+AzwXEeOA80gKld7pmFOAz0bE+Eb2Nxb47ySzHUcAZzfSt86RJC/MlwH/DsyKiJOA7cDF9TtLuiktnupffl7AvuoMAmojYk96exUwLL3/zsCxEbGkGffXpCaLgbQKW5tvrSmttjbmPODv5mybJGlpum5xczGDm5m1Z9XV1UydOpX77ruP0aNHA3DmmWfywx/+kB//+Me8++679OzZM+/4q666iptuuokePXrwzW9+E+rNDOSxPCIWpNfnAyMl9QHOAn4jaQHwb8AhecafmL5LfgO4GjihgT5fAV4A3ouIv46IPzeSp3+630XAT3Pu7zfAJek7778C7knbJwI3pzlnAz2Aw9Jtz0REU8/BHyJiVUTsAxYAI5voD/BEROwG3gA6A0+m7W80ND4ibk+Lp/qXrxewr0KcDrxSpPvar5CZgXtIpiQa8/ucB3wr7K9e7gAmk1RhVzX3QBQzs46qf//+HHbYYbzwwgv72z73uc9RWVlJz549mTJlCs8991ze8ekMd6MHEDZgZ871vUAXkteB2novXMflGX8PcGP6zvgfSF6MPyISKyLingLyfJ/knfaJwKV19xcR24BngKnAXwJ1yxwCrsjJeVhEvJlu21rA/hp6/AB7+PD1sP5j2plm2gfsjrojN2Ffzvj9ijQzsB4YkHP8w3CgbrllMh8WJEXTZDEQEXMorOKsbxywLCLeiYhdwIMk/7FmZmWvW7duPPLII9x7773cf//9QHL8wBFHHMHXv/51pk6dyuuvv97a3exual07IjYByyX9F9h/NsDodPNmoG9O977AmvQ+r6b1+vPhi9z19bZNB34OzIuImrTtKeBrOWv9Y4uQAWAFcGp6/YpG+jWpGDMDacExC/hs2nQd8Gh6fQLwu9ZkbEixjhk4Mz2g5AlJddM8w4CVOX32r3k0RNINkqokVVVXVxcplplZ6erduzePPfYYP/3pT6msrOShhx7ixBNPZMyYMSxatIhrr722tbuYBryecwBhPlcDX5S0EFjMh2/cHgRuSg/WOxL4/0mmqF8kWe9vrduAf5L0GvXeZUfEfGAT8H9zmr8PdCV5TIvT28XwD8DPJFWRzBi0GUm/J1kWmSBplaSL0k3/H/C3kpaRHENwl6QhwI6I2NzUeElfl7SKZFbhdUnTG83x4YxHo2FHAo+lUzn1t/UD9kXEFklTgJ9FxNGSPgtMiogvpf0+D5weETc2tb+KioqoqqpqMpeZmSUkzY+IiqxzFEt64OFs4JPpFH3Zk3QNMDwiflTs+271zEBEbIqILen1mUDX9BSN1cCInK65ax5mZmYNknQtyQzEd1wIfCgi/v1AFALQwMEPzSXpYOCDiAhJ40gKjPUkp60cLWkUSRFwJfC51u7PzMw6toi4F7i3JWMlnQT8ql7zzog4vdXBOrAmiwFJDwDnAoPT9YfvkazZEBF3khzg8DeS9pCcd3llevDDHkk3khzw0Rm4OyIWH5BHYWZmBkTEG8CYrHO0NwUdM9DWfMyAmVnzdLRjBqxt+RMIzczMypyLATMzszLnYsDMzKzMuRgwMzMrcy4GzMzMylyrP2fAzMwaFhF84QtfoG/fvlx++eVMmDAh60hmDXIxYGZ2gLz11lssWZJ87fyiRYs4//zz93/boFkp8TKBmdkBMmvWLOo+y2XixIkuBKxkuRgwMzsAIoIZM2bQr18/JHHhhRdmHcksLxcDZmYHwLJly6iurqZLly50796dMWPGZB3JLC8XA2ZmB8Dzzz9PRFBTU8PEiRPp0sWHaFnpcjFgZlZkEUFlZSV9+/ZFEhMnTsw6klmjXAyYmRXZ8uXLef/99+natSvdunXzEoGVPBcDZmZFNnv2bPbt20dNTQ0XXHAB3bp1yzqSWaNcDJiZFVH9JYKLLroo60hmTWqyGJB0t6S1khbl2X61pNclvSFprqTROdtWpO0LJFUVM7iZWSl69913+fOf/0z37t3p2rUrp5xyStaRzJpUyMzAPcCkRrYvB8ZHxEnA94Fp9bafFxFjIqKiZRHNzNqP559/fv8SwXnnneclAmsXmiwGImIOsKGR7XMjoia9+TIwvEjZzMzanbolAoDJkydnnMasMMU+ZuCLwBM5twN4WtJ8STc0NlDSDZKqJFVVV1cXOZaZ2YG3cuVKVq5cSffu3encuTOnnnpq1pHMClK0T8GQdB5JMXBOTvM5EbFa0ieAZyT9MZ1p+JiImEa6xFBRURHFymVm1lbqPmiotraW888/n+7du2cdyawgRZkZkHQyMB2YGhHr69ojYnX671rgEWBcMfZnZlaKKisr6d27N/v27fMSgbUrrS4GJB0G/Bb4fES8ldPeW1LfuuvARKDBMxLMzNq71atXs3z5cnr06EHnzp057bTTso5kVrAmlwkkPQCcCwyWtAr4HtAVICLuBL4LDAJ+kX495570zIGhwCNpWxfg/oh48gA8BjOzzM2Zk6yAbty4kfHjx9OjR4+ME5kVrsliICKuamL7l4AvNdD+DjD64yPMzDqeyspKevXqxY4dO7xEYO2OP4HQzKyV1qxZw7Jly+jVqxeSvERg7Y6LATOzVqpbIqitreWcc86hV69eGScyax4XA2ZmrTRjxgx69erFvn37uPjii7OOY9ZsLgbMzFrhgw8+4K233to/GzBunM+gtvbHxYCZWSu88MILRAQbN27krLPOonfv3llHMms2FwNmZq3w6KOP0rNnT/bs2cOUKVOyjmPWIi4GzMxaaO3atbz55pv07t0bSZxxxhlZRzJrERcDZmYt9OKLLwKwadMmTj/99P3fVmjW3rgYMDNroRkzZtCjRw92797tswisXXMxYGbWAuvWrWPRokX06dMHSZx55plZRzJrMRcDZmYtMHfuXCKCTZs2UVFRQb9+/bKOZNZiLgbMzFogd4ngkksuyTqOWau4GDAza6YNGzawcOFC+vTpA+AlAmv3XAyYmTXT3LlzAdi8eTNjx45lwIAB2QYyayUXA2ZmzTRjxgy6devGzp07ueyyy7KOY9ZqLgbMzJqhtraW1157jb59+/osAuswCioGJN0taa2kRXm2S9LPJS2T9LqkU3K2XSfp7fRyXbGCm5ll4aWXXgJgy5YtjB49moMOOijjRGatV+jMwD3ApEa2TwaOTi83AP8KIOkg4HvA6cA44HuSBrY0rJlZ1mbMmEHXrl3ZsWMHl156adZxzIqioGIgIuYAGxrpMhW4NxIvAwMkHQJcBDwTERsiogZ4hsaLCjOzkrVx40aqqqro168fkjj77LOzjmRWFMU6ZmAYsDLn9qq0LV/7x0i6QVKVpKrq6uoixTIzK56XX34ZSJYITjzxRAYNGpRxIrPiKJkDCCNiWkRURETFkCFDso5jZvYxjz/+uJcIrEMqVjGwGhiRc3t42pav3cysXdm8eTOvvPLK/o8dPuecczJOZFY8xSoGKoFr07MKzgA2RsQa4ClgoqSB6YGDE9M2M7N25eWXXyYi2Lp1K8cffzyewbSOpEshnSQ9AJwLDJa0iuQMga4AEXEnMBOYAiwDtgFfSLdtkPR9YF56V7dGRGMHIpqZlaSZM2fSpUsXtm/f7g8asg6noGIgIq5qYnsAX82z7W7g7uZHMzMrDVu3buWll15i4MCBrFu3zksE1uGUzAGEZmal6pVXXiEi2LZtG8ceeyxDhw7NOpJZUbkYMDNrwuOPP06nTp3Ytm2bzyKwDsnFgJlZI7Zt28aLL764/5sJP/3pT2cbyOwAcDFgZtaIefPm7V8iOOqoozjkkEOyjmRWdC4GzMwaMXPmTDp16sTWrVt9FoF1WC4GzMzy2LFjB3PmzGHAgAFI8hKBdVguBszM8pg3bx779u1j+/btjBo1imHDGvxqFbN2z8WAmVkeTzzxBJLYsmWLlwisQ3MxYGbWgB07djB79mwGDBhAp06dGD9+fNaRzA4YFwNmZg2YP38+e/fuZefOnYwYMYIRI0Y0PcisnXIxYGbWgCeffBJIvq3QSwTW0bkYMDOrZ9euXcyaNYuBAwd6icDKgosBM7N6Xn31VXbv3s3OnTs59NBDOfzww7OOZHZAuRgwM6vnySefJCLYsmULU6dORVLWkcwOKBcDZmY5du3axbPPPsvAgQOR5CUCKwsuBszMcixYsIBdu3axe/duDj74YEaNGpV1JLMDrqBiQNIkSUslLZN0cwPbfyppQXp5S1Jtzra9Odsqi5jdzKzonn76aSKCTZs2cemll3qJwMpCl6Y6SOoM3AFcCKwC5kmqjIgldX0i4n/k9P8aMDbnLrZHxJiiJTYzO0B2797N008/zcCBA6mpqeHcc8/NOpJZmyhkZmAcsCwi3omIXcCDwNRG+l8FPFCMcGZmbWnhwoXs3LmTPXv2MGTIEI466qisI5m1iUKKgWHAypzbq9K2j5F0ODAKeC6nuYekKkkvS7o8304k3ZD2q6quri4glplZcT3zzDNeIrCyVOwDCK8EHo6IvTlth0dEBfA54F8kHdnQwIiYFhEVEVExZMiQIscyM2vcnj17eOqpp/afRXDeeedlHcmszRRSDKwGcj+Ue3ja1pArqbdEEBGr03/fAWbz0eMJzMxKwuuvv8727dvZu3cvgwYN4phjjsk6klmbKaQYmAccLWmUpG4kL/gfOytA0ieBgcBLOW0DJXVPrw8GzgaW1B9rZpa13/3ud+zbt4+NGzdyySWXeInAykqTxUBE7AFuBJ4C3gQeiojFkm6VlPvtHVcCD0ZE5LQdB1RJWgjMAn6UexaCmVkp2Lt3L0888cT+7yI4//zzs45k1qaaPLUQICJmAjPrtX233u1bGhg3FzipFfnMzA64RYsWsW3bNvr27Uv//v355Cc/mXUkszblTyA0s7LnJQIrdy4GzKys7du3j8cff5wBAwbQqVMnJkyYkHUkszbnYsDMytrixYvZunUrAP369eO4447LOJFZ23MxYGZl7dlnn2Xfvn3U1tYyZcoUOnXyn0UrP/6pN7OyFRHMnDmT/v37e4nAypqLATMrW0uWLKG2thZJ9O7dmxNPPDHrSGaZcDFgZmXr2WefJSK8RGBlzz/5ZlaWIoLHH398/xLBBRdckHUks8y4GDCzsrR06VJqa2vp1KkTvXr14qST/PloVr5cDJhZWXruuefYu3cvNTU1TJ48mc6dO2cdySwzLgbMrOxEBDNmzPASgVnKxYCZlZ23336b9evX06VLF3r06MHJJ5+cdSSzTLkYMLOyM2vWLPbt20dNTQ0XXXQRXboU9J1tZh2WiwEzKyu5SwSSmDhxYtaRzDLnYsDMysqf/vQn1q5dS5cuXejevTujR4/OOpJZ5goqBiRNkrRU0jJJNzew/XpJ1ZIWpJcv5Wy7TtLb6eW6YoY3M2uu2bNn718iuPDCC+natWvWkcwy1+RCmaTOwB3AhcAqYJ6kyohYUq/rryPixnpjDwK+B1QAAcxPx9YUJb2ZWTNEBJWVlfTr14+tW7d6icAsVcjMwDhgWUS8ExG7gAeBqQXe/0XAMxGxIS0AngEmtSyqmVnrrFixgjVr1tC1a1e6devG2LFjs45kVhIKKQaGAStzbq9K2+q7QtLrkh6WNKKZY5F0g6QqSVXV1dUFxDIza55Zs2YBUFtby4QJE+jWrVvGicxKQ7EOIJwBjIyIk0ne/f+yuXcQEdMioiIiKoYMGVKkWGZmibqzCPr06QPARRddlHEis9JRSDGwGhiRc3t42rZfRKyPiJ3pzenAqYWONTNrC++99x6rV6+me/fudOnShVNPPbXpQWZlopBiYB5wtKRRkroBVwKVuR0kHZJz8zLgzfT6U8BESQMlDQQmpm1mZm3q+eefJyKoqanh/PPP9xKBWY4mzyaIiD2SbiR5Ee8M3B0RiyXdClRFRCXwdUmXAXuADcD16dgNkr5PUlAA3BoRGw7A4zAza1RlZSV9+vRh27ZtTJrk45jNcikiss7wMRUVFVFVVZV1DDPrIFauXMlnPvMZBg0axKZNm3juuefo0aNH1rGKStL8iKjIOoe1T/4EQjPr8J5//nkgOYtg/PjxHa4QMGstFwNm1uFVVlbSu3dvIoIpU6ZkHces5LgYMLMObfXq1SxfvpyePXvSqVMnKio8k25Wn4sBM+vQ5syZQ0RQW1vLpz71KXr27Jl1JLOS42LAzDq0uiWCvXv3eonALA8XA2bWYa1Zs4Zly5bRq1cvOnXqxLhx47KOZFaSXAyYWYf1+9//HkjOIjj77LPp1atXxonMSpOLATPrsCorK+nVq5eXCMya4GLAzDqktWvXsnTp0v1LBGeccUbWkcxKlosBM+uQ6pYINm7cyJlnnknv3r0zTmRWulwMmFmHVFlZSc+ePdmzZ4+XCMya4GLAzDqcdevWsWTJEnr37o0kLxGYNcHFgJl1OHVLBJs2bWLcuHH07ds340Rmpc3FgJl1ODNmzKBHjx7s3r2biy++OOs4ZiXPxYCZdSjr169n0aJF9OnTB0mcddZZWUcyK3kuBsysQ5k7dy4RwebNmzn11FPp169f1pHMSl5BxYCkSZKWSlom6eYGtv+tpCWSXpf0rKTDc7btlbQgvVQWM7yZWX2VlZV0796dXbt2cckll2Qdx6xdaLIYkNQZuAOYDBwPXCXp+HrdXgMqIuJk4GHgtpxt2yNiTHq5rEi5zcw+pqamhoULF+4/YNBLBGaFKWRmYBywLCLeiYhdwIPA1NwOETErIralN18Ghhc3pplZ03KXCMaOHcuAAQOyjmTWLhRSDAwDVubcXpW25fNF4Imc2z0kVUl6WdLl+QZJuiHtV1VdXV1ALDOzj5oxY8b+JYJLL7006zhm7UZRDyCUdA1QAdye03x4RFQAnwP+RdKRDY2NiGkRURERFUOGDClmLDMrAxs3buTVV1+lb9++RISXCMyaoZBiYDUwIuf28LTtIyRdAHwHuCwidta1R8Tq9N93gNnA2FbkNTNrUN0SwZYtWzj55JM56KCDso5k1m4UUgzMA46WNEpSN+BK4CNnBUgaC/wbSSGwNqd9oKTu6fXBwNnAkmKFN7PyExHs3LnzY+2PPfYY3bp1Y8eOHUydOrWBkWaWT5PFQETsAW4EngLeBB6KiMWSbpVUd3bA7UAf4Df1TiE8DqiStBCYBfwoIlwMmFmLLV++nAkTJvCVr3yFmTNnUltby+bNm6mqqqJfv37+oCGzFuhSSKeImAnMrNf23ZzrF+QZNxc4qTUBzcxyDRw4kO3bt7Nw4UKqqqoAGDVq1P4lghNOOIHBgwdnnNKsffEnEJpZuzJgwAC6d+9Ov379GDp0KEOGDGH16tX069ePrVu3snnzZh599FHWrVuXdVSzdqOgmQEzs1IhicMPP5z333+fPn360KlTJwYOHAjAIYccwgcffMAPfvADJHHCCSdw+eWXc9lllyEp4+RmpcvFgJm1O0cccQQrVqygT58+H2nv1KnT/g8a2rdvH/PmzaOmpobJkyfTrVu3DJKatQ9eJjCzdufYY49l165djfZZv349RxxxBNOmTXMhYNYEFwNm1u6MGDGCLl3yT2xWV1czZMgQpk+fzic+8Yk2TGbWPrkYMLN259BDD817DEB1dTWDBw92IWDWDC4GzKzdOfTQQ9m7dy8R8ZH2devWMWjQIKZPn87QoUMzSmfW/rgYMLN2p2/fvvTu3Zs9e/bsb1u3bh0DBw5k+vTpHHzwwRmmM2t/XAyYWbt0+OGHs2PHDuDDQuCuu+7ikEMOyTiZWfvjYsDM2qUjjzySHTt2sG7dOgYMGMD06dNdCJi1kIsBM2uXjj32WNatW0f//v2ZPn06hx56aNaRzNotFwNm1i6NHDmSE044gbvuuothw4ZlHcesXfMnEJpZuzRu3DgeeughunfvnnUUs3bPMwNm1i5JciFgViQuBszMzMqciwEzM7MyV1AxIGmSpKWSlkm6uYHt3SX9Ot3+iqSROdu+lbYvlXRREbObmZlZETRZDEjqDNwBTAaOB66SdHy9bl8EaiLiKOCnwI/TsccDVwInAJOAX6T3Z2ZmZiWikLMJxgHLIuIdAEkPAlOBJTl9pgK3pNcfBv63km8RmQo8GBE7geWSlqX391Jx4peec8/NOkHjZs/OOoGVM/9+mJWmQpYJhgErc26vStsa7BMRe4CNwKACxwIg6QZJVZKqqqurC0tvZmZmrVYynzMQEdOAaQAVFRXRRPeS5XcWZvn598OsNBUyM7AaGJFze3ja1mAfSV2A/sD6AseamZlZhgopBuYBR0saJakbyQGBlfX6VALXpdc/CzwXyReNVwJXpmcbjAKOBv5QnOhmZmZWDE0uE0TEHkk3Ak8BnYG7I2KxpFuBqoioBO4CfpUeILiBpGAg7fcQycGGe4CvRsTeA/RYzMzMrAWUvIEvLRUVFVFVVZV1DDOzdkPS/IioyDqHtU/+BEIzM7My52LAzMyszLkYMDMzK3MuBszMzMpcSR5AKGkzsDTrHC00GFiXdYhWcP5sOX+22nP+YyOib9YhrH0qmU8grGdpez0qVlJVe80Ozp81589We84vyadgWYt5mcDMzKzMuRgwMzMrc6VaDEzLOkArtOfs4PxZc/5stef87Tm7ZawkDyA0MzOztlOqMwNmZmbWRlwMmJmZlbmSKAYkHSTpGUlvp/8ObKDPGEkvSVos6XVJ/zWLrDl5JklaKmmZpJsb2N5d0q/T7a9IGplBzLwKyP+3kpakz/Wzkg7PImc+TeXP6XeFpJBUUqeLFZJf0l+m/weLJd3f1hnzKeBn5zBJsyS9lv78TMkiZz6S7pa0VtKiPNsl6efp43td0iltnTGfArJfnWZ+Q9JcSaPbOqO1UxGR+QW4Dbg5vX4z8OMG+hwDHJ1ePxRYAwzIKG9n4E/AEUA3YCFwfL0+XwHuTK9fCfw66+e5mfnPA3ql1/+mveVP+/UF5gAvAxVZ527m83808BowML39iaxzNyP7NOBv0uvHAyuyzl0v36eBU4BFebZPAZ4ABJwBvJJ15mZkPyvnZ2ZyKWX3pbQvJTEzAEwFfple/yVwef0OEfFWRLydXv8zsBYY0lYB6xkHLIuIdyJiF/AgyWPIlfuYHgYmSFIbZmxMk/kjYlZEbEtvvgwMb+OMjSnk+Qf4PvBjYEdbhitAIfn/GrgjImoAImJtG2fMp5DsAfRLr/cH/tyG+ZoUEXOADY10mQrcG4mXgQGSDmmbdI1rKntEzK37maH0fm+thJVKMTA0Itak198HhjbWWdI4knclfzrQwfIYBqzMub0qbWuwT0TsATYCg9okXdMKyZ/riyTvlEpFk/nTqd0REfF4WwYrUCHP/zHAMZJelPSypEltlq5xhWS/BbhG0ipgJvC1tolWNM39/ShVpfZ7ayWszT6OWNLvgIMb2PSd3BsREZLynu+YVui/Aq6LiH3FTWn1SboGqADGZ52lUJI6Af8MXJ9xlNboQrJUcC7Ju7s5kk6KiNosQxXoKuCeiPiJpDOBX0k60b+vbUfSeSTFwDlZZ7H2oc2KgYi4IN82SR9IOiQi1qQv9g1OiUrqBzwOfCedvsvKamBEzu3haVtDfVZJ6kIyXbq+beI1qZD8SLqApFgbHxE72yhbIZrK3xc4EZidrswcDFRKuiwiSuHz2wt5/leRrPfuBpZLeoukOJjXNhHzKiT7F4FJABHxkqQeJF8AVCpLHU0p6PejVEk6GZgOTI6IUvmbYyWuVJYJKoHr0uvXAY/W7yCpG/AIyVrew22YrSHzgKMljUpzXUnyGHLlPqbPAs9FRKl8wlOT+SWNBf4NuKyE1qvrNJo/IjZGxOCIGBkRI0nWTkulEIDCfn7+k2RWAEmDSZYN3mnDjPkUkv09YAKApOOAHkB1m6ZsnUrg2vSsgjOAjTnLmCVN0mHAb4HPR8RbWeexdiTrIxjT18dBwLPA28DvgIPS9gpgenr9GmA3sCDnMibDzFOAt0iOW/hO2nYryYsOJH8AfwMsA/4AHJH189zM/L8DPsh5riuzztyc/PX6zqaEziYo8PkXyVLHEuAN4MqsMzcj+/HAiyRnGiwAJmaduV7+B0jORtpNMgPzReDLwJdznvs70sf3Rin97BSQfTpQk/N7W5V1Zl/ax8UfR2xmZlbmSmWZwMzMzDLiYsDMzKzMuRgwMzMrcy4GzMzMypyLATMzszLnYsDMzKzMuRgwMzMrc/8PczNtv9FgxIoAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 5\n",
"pp = 61/11, satellite_part = 12\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 193/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -61/11\n",
"Satellite part = -12\n",
"Sigma = -193/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 61/11\n",
"Satellite part = 12\n",
"Sigma = 193/11\n",
"\n",
"[0, 0, 5, 5] 0\n",
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEICAYAAABvQ5JRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlf0lEQVR4nO3deXxU9b3/8dcnCWEJARJRtIjiLqAQJIK7uKCCC1WhSkHAar221yv3cX+tFy+10uu1vZV6W7t4W+rCIliXAuJWxYWfKBWNioCIKBoVXEhIiAQC2T73jxnSELJMMpNzJsn7+XjMIzNn+75nkpnPnO/55hxzd0RERIKSEnYAERHpWFR4REQkUCo8IiISKBUeEREJlAqPiIgESoVHREQCpcLTBpnZQDPLMzMLO0tYzOxuM/tBM5afamavtmamMJhZfzNzM0sLO4tIrFR4koyZlda6VZtZWa3HE6OL3QH8yt3dzDqb2f1m9qmZ7TCz1WY2uhntPVunzXIzWxvjusea2RNmVmBmRWb2nJkd14y2b4oW0D1mNqfOvHQze9zM8qMfrCPrrP4r4D/MLD3W9pKFmc02sw+iv9+pzVw338zOT1CO0IqWmaWa2X+Z2RfRv9t3zKxX0DkkHCo8Scbdu++9AZ8Bl9aatsDMDgHOAZZEV0kDPgfOBnoCPwEeNbP+MbY3uk6bK4HHYozbC1gKHAf0Ad4AnohxXYAvgP8CHmhg/qvAJOCrenJ/CWwALmtGe4Fq5AP9XeCHwNsBxkk2PwNOA04FegDXALtDTSSBUeFpe0YBb7v7bgB33+nuM909392r3f0p4BNgWHM3HC1WZwLzak17ysym17e8u7/h7ve7e5G7VwC/Bo4zswNiac/dF7n7EmBbPfPK3f037v4qUNXAJpYDF8fSVl1mdo+ZfW5m35jZW2Z2ZnT6wWa2q/ZzMLOTont1naKPv2dm75tZcXQv7/Bay7qZ/bOZfQh82MDz/oO7v0gzP2jNbD5wGPBkdO/0llqzJ5rZZ2ZWaGYzaq2TYmbTzWyTmW0zs0fNLDs6+5Xoz+3R7Z1qZkeZ2UvRZQvNbEGi90TMLAv4V+D77v6pR6zb+zct7Z8KT9tzIvBBQzPNrA9wLPBeC7Y9GVjh7vl7J7j7Je7+3zGufxbwlbvvV0hayfvAkBau+yaQA2QDC4HHzKyLu39FpKB9p9ay1wB/cfcKMxsL/AdwBXAgsAJ4uM62vw2MAAa2MFu93P0a9t0LvqvW7DOI7HmeB/zUzAZEp/9LNM/ZwLeAYuAP0XlnRX/2im7v74ABv4guOwDoB8xsKJOZrTGz7Q3c7m1gtROBSmCcmX1lZhvN7J+b8VJIG6fC0/b0AnbUNyP6jXwBMNfdN7Rg25OBOS0JZWaHEvlA+7eWrN9CO4i8Hs3m7g+5+zZ3r3T3u4HORD64AeYS6eLDzFKBCcD86LwbgV+4+/vuXgn8HMipvdcTnV/k7mUtydZCP3P3Mnd/l0hX3t6CfCMww903u/seIkVkXEPdgO7+kbsvc/c97l4A/A+RolUvdx/s7r0auP2wgdUOJdItfCxwBDAOmGlmo1rwvKUNUuFpe4qBzLoTzSyFyIdjOXBTczdqZmcABwOPt2DdA4HngXvdve63/9aUCWxvyYpm9qNod1mJmW0n8kHYOzr7CWCgmR1BpGuzxN3fiM47HLhn77d6oIjIXkLfWpv/vCWZ4lT7ONguoHv0/uHA4lp53yfSddmnvo2YWR8z+4uZbTGzb4CH+Mfrkih7C/J/RovlGuAvwJgEtyNJSoWn7VlD5JtiDTMz4H4iHyZXRo+3NNcUYJG7lzZnpWh//fPAUne/swXtxmMAkW/3zRI9nnMLke60LHfvBZQQKSBEjzU8SmSv5xr+sbcDkaLyT3W+2Xd195W1lmnNU743d9ufA6Pr5O3i7lsa2NbPo9NPdPceRF6DBoftm9l7tu+oyNq3Pzaw2pp6notOk9+BqPC0PcuAk8ysS61p/0vkQ/jS+rp3GhiOXHt+VyIfwnPqmbfczGY2sF4P4DngNXffbwCCmY00swY/UMwsLfo8UoFUM+tSuwvIIkPF9z7P9Oj82h+CZwPPxpK1jkwixxgKgDQz+ymRkVW1zQOmEhk1V7vw/BG41cwGRdvsaWbjY2izhkWGinch8oHeKfq8UqLzGn3NgK+BI5vR3B+BO/d2BZrZgdHjVBB5/tV1tpcJlAIlZtYX+HFjG3f3QbVHRda53djAOpuIHBubEf0dDwCuBp5qxvOSNkyFp41x96+Bl4CxANEPlH8icqD8K6vzPz9m1o/IsZDG/jfn20S6rF6uZ14/4LUG1rscOBm4ts433cNqrbuygXUhMvS7DJhO5Jt1WXTaXh9Ep/UlUuDKiHQdYZFh5QP5x7DyprLW9hzwN2Aj8CmR0WX7dI+5+2tEPpTfdvdPa01fDPwS+Eu0K2odEPP/TUU9H30upwGzo/f3Huhv6jX7BfCTaNfZj2Jo6x4iQ96fN7MdwOtEBj7g7ruAO4HXots7hcgw55OI7AE+DSxq5nOL1QQiv8tt0XZui470kw7AdCG4tsfMBhI5AD7cm/gFmtkkYJC739qCdg4FHnX301qY8z7gMXd/riXrN7Htu4FN7n5v9HFcWRto4yVgobvfl6htxtBmq71mIslChUekHmZ2MpFuzX7uXu8oQhFpGXW1idRhZnOBF4B/VdERSTzt8YiISKC0xyMiIoEK5VTqvXv39v79+4fRtIhIm/XWW28VuvuBYeeIVyiFp3///uTl5YXRtIhIm2Vmnza9VPJTV5uIiARKhUdERAKlwiMiIoFS4RERkUCp8IiISKASUnjM7CIz+8DMPrIGLpMsIiICCSg80Ss0/oHIGXoHAhOiJ7EUERHZTyL+j2c48JG7fwxgZn8hcsr+9QnYdlIaOTL+bSxfHv82RDoSve/aj0R0tfVl32uZbGbfywADYGY3mFmemeUVFBQkoFkREWmLAjtzgbvPJnLRK3Jzc9v0mUn1rUkkeHrftR+J2OPZQuSqiXsdGp0mIiKyn0QUnjeBY8zsCDNLJ3Lt9KUJ2K6IiLRDcXe1uXulmd1E5Dr2qcAD7v5e3MlERKRdSsgxHnd/BngmEdsSEZH2TWcuEBGRQKnwiIhIoFR4REQkUCo8IiISKBUeEREJlAqPiIgESoVHREQCpcIjIiKBUuEREZFAqfCIiEigVHhERCRQKjwiIhIoFR4REQmUCo+IiARKhUdERAKlwiMiIoFS4RERkUCp8IiISKBUeEREJFAqPCIiEigVHhERCZQKj4iIBEqFR0REAqXCIyIigYqr8JjZeDN7z8yqzSw3UaFERKT9inePZx1wBfBKArKIiEgHkBbPyu7+PoCZJSaNiIi0e4Ed4zGzG8wsz8zyCgoKgmpWRESSTJN7PGb2AnBwPbNmuPsTsTbk7rOB2QC5ubkec0IREWlXmiw87n5+EEFERKRj0HBqEREJVLzDqS83s83AqcDTZvZcYmKJiEh7Fe+otsXA4gRlERGRDkBdbSIiEigVHhERCZQKj4iIBEqFR0REAqXCIyIigVLhERGRQKnwiIhIoFR4REQkUCo8IiISKBUeEREJlAqPiIgESoVHREQCpcIjIiKBUuEREZFAqfCIiEigVHhERCRQKjwiIhIoFR4REQmUCo+IiARKhUdERAKlwiMiIoFS4RERkUCp8IiISKBUeEREJFBxFR4zm2VmG8xsjZktNrNeCcolIiLtVLx7PMuAE9x9MLARuDX+SCIi0p6lxbOyuz9f6+HrwLj44nQcI0eGnSBi+fKwE0iy09+qJFoij/F8D3i2oZlmdoOZ5ZlZXkFBQQKbFRGRtsTcvfEFzF4ADq5n1gx3fyK6zAwgF7jCm9ogkJub63l5eS2IKyLScZnZW+6eG3aOeDXZ1ebu5zc238ymApcA58VSdEREpGOL6xiPmV0E3AKc7e67EhNJRETas3iP8fweyASWmdlqM/tjAjKJiEg7Fu+otqMTFURERDoGnblAREQCpcIjIiKBUuEREZFAqfCIiEigVHhEOqj8/HxOOOGEmJc/7bTT9pu291/3Zs6cuc/j2n7+85+3uE2AJUuWsH79+mat4+7k5+czZ86ceucvX76cSy65pFnbbM/M7DAze97M3jez9WbWv9a8q81shpkdb2Z/N7M9ZvajOus/YGZbzWxdLO2p8IhITFauXLnftAULFjBr1ix2797NXXfdxYIFC/ZbpnbhaYmWFJ4bb7yRV199lc8++4zrrruOLVu2xJWhuSorKwNtLwHmAbPcfQAwHNhaa95o4G9AEXAz8Kt61p8DXBRrYyo8IsLHH3/M0KFDefPNN3nvvfcYPnw4OTk5DB48mA8//BCA7t2777fepEmTOPTQQ5k1axaHHXYYkyZN2mf+9OnTKSsrIycnh4kTJwJQVVXF97//fQYNGsQFF1xAWVkZAJs2beKiiy5i2LBhnHnmmWzYsIGVK1eydOlSfvzjH5OTk8OmTZv485//zMknn8yQIUO48sor2bVr//9dv/fee3n44Yd54IEH+MUvfkHfvn0bfO5vvPEGp556KkOHDuW0007jgw8+AOCss85i9erVNcudccYZvPvuu+zcuZPvfe97DB8+nKFDh/LEE08AMGfOHC677DLOPfdczjvvvHrbWr58OSNHjmTcuHEcf/zxTJw4sWYvsX///hQWFgKQl5fHyOjZWWfOnMmUKVM488wzAU40syvM7C4zW2tmfzOzTg0+uRiY2UAgzd2XAbh76d4TApiZATnA2+6+1d3fBCrqbsPdXyFSmGLj7oHfhg0b5iISrk8++cQHDRrkGzZs8JycHF+9erW7u990003+0EMPubv7nj17fNeuXe7unpGRsd82FixY4HfddZf/+7//u//yl7/0BQsW7LdM7fU++eQTT01N9Xfeecfd3cePH+/z5893d/dzzz3XN27c6O7ur7/+up9zzjnu7j5lyhR/7LHHarZRWFhYc3/GjBn+29/+dr82b7zxRp8/f77/7Gc/8+uvv963bNmyz/yXX37ZL774Ynd3Lykp8YqKCnd3X7ZsmV9xxRXu7j5nzhyfNm2au7t/8MEHvvdz69Zbb63JXFxc7Mccc4yXlpb6gw8+6H379vVt27btl6d2uz169PDPP//cq6qq/JRTTvEVK1a4u/vhhx/uBQUF7u7+5ptv+tlnn+3u7rfffruffvrpXl5e7sB7wC5gtEcK1mLg217nMxb4MbC6nttv61n228BTwCLgHWAWkBqddxIwr87yM4Ef1bOd/sC6utPru8X1D6Qi0rYVFBQwduxYFi1axMCBAwE49dRTufPOO9m8eTNXXHEFxxxzTIPrT5gwATNj5syZ3HLLLfUe46nriCOOICcnB4Bhw4aRn59PaWkpK1euZPz48TXL7dmzp971161bx09+8hO2b99OaWkpF1544X7L3HvvvXz66adUVlby05/+tNE8JSUlTJkyhQ8//BAzo6Ii8oV+/Pjx3HHHHcyaNYsHHniAqVOnAvD888+zdOlSfvWrSI/T7t27+eyzzwAYNWoU2dnZjbY3fPhwDj30UABycnLIz8/njDPOaHSd0aNH06lTJ4AyIJVI1xfAWiIf+Ptw91lECkgs0oAzgaHAZ8AjwFTgfiLdZw1edaClVHhEOrCePXty2GGH8eqrr9YUnu9+97uMGDGCp59+mjFjxvCnP/2Jc889t971Iz0x/xhcsPdxYzp37lxzPzU1lbKyMqqrq+nVq9c+XVsNmTp1KkuWLGHIkCHMmTOH5fVcqMfM6N+/f02xaMxtt93GOeecw+LFi8nPz6/p4urWrRujRo3iiSee4NFHH+Wtt94CIr1Ef/3rXznuuOP22c6qVavIyMhosr26z3/v8aC0tDSqq6uBSDFraB2gwv9R4aup53PczH4MTKyn+Vfc/eY60zYDq9394+i6S4BTiBSeC4Arm3xSzaRjPCIdWHp6OosXL2bevHksXLgQiBzvOfLII7n55psZO3Ysa9asiauNTp061exFNKRHjx4cccQRPPbYY0Dkw/3dd98FIDMzkx07dtQsu2PHDg455BAqKirqHczQXCUlJTXHgOqOgrv++uu5+eabOfnkk8nKygLgwgsv5He/+13N3t0777wTdwaIHOPZW9z++te/xrUtd5/l7jn13OoWHYA3gV5mdmD08bnAejPrSeTYz7a4wtRDhUekg8vIyOCpp57i17/+NUuXLuXRRx/lhBNOICcnh3Xr1jF58uS4tn/DDTcwePDgmsEFDVmwYAH3338/Q4YMYdCgQTUH7a+++mpmzZrF0KFD2bRpE3fccQcjRozg9NNP5/jjj48rG8Att9zCrbfeytChQ/cbjTZs2DB69OjBtddeWzPttttuo6KigsGDBzNo0CBuu+22uDMA3H777UybNo3c3FxSU1MTss1YuHsV8CPgRTNbCxjwZ2AU8MLe5czsYDPbDPwb8BMz22xmPaLzHgb+DhwXnX5dY202eSG41qALwYlIW/DFF18wcuRINmzYQEpK+N/Tg7wQnJndB9zn7q8netvhv5IiIklo3rx5jBgxgjvvvDMpik7Q3P361ig6oD0eEZGEW7t2Lddcc80+0zp37syqVavi2m6HufS1iIg0z4knnhjTCL2OquPtP4qISKhUeEREJFAqPCIiEigVHhERCZQGF4h0AIsWLaKgoIDLL7+cgw46KOw40sFpj0ekndu9eze/+c1vmD17NmPHjmXr1q1NryTSirTHI9LOvfTSS5SVlZGZmUlWVhYHHnhg0yuJtCLt8Yi0Y+7Ogw8+SLdu3di5cydTp06N6QzSIq0prsJjZneY2RozWx29Xve3EhVMROK3du1a8vPz6dKlC507d2bUqFFhRxKJe49nlrsPdvccIlewa/yKSyISqAULFpCSkkJRURHjxo2jW7duYUcSia/wuPs3tR5mAMGf+E1E6rV161Zefvnlmitijhs3LuREIhFxDy4wszuByUAJcE4jy90A3ABw2GGHxdusiDRhyZIlVFdXs337dk455ZSayy2LhK3JPR4ze8HM1tVzGwvg7jPcvR+wALipoe24+2x3z3X3XI2qEWld5eXlLFy4kKysLCorK/c7U7JImJrc43H382Pc1gLgGeD2uBKJSNyWL1/Ozp076d69O3369CE3t82fSV/akXhHtR1T6+FYYEN8cUQkXnuHUHft2pXS0lKmTp3aIS9kJskr3mM8/21mxwHVwKfAjfFHEpF4rF+/no8++ojs7GwqKyu56KKLwo4kso+4Co+7X5moICKSGA8//DBmRlFREVdddRXdu3cPO5LIPrT/LdKOFBYWsmzZMg444ABAQ6glOanwiLQjS5cupbq6mpKSEoYNG0b//v3DjiSyHxUekXaivLychx56iJ49e1JRUcHkyZPDjiRSLxUekXZixYoVlJaWUl1dTe/evRkxYkTYkUTqpcIj0g64O3PnzqVz587s2LGDKVOmkJqaGnYskXqp8Ii0Axs3buT9998nIyODtLQ0xowZE3YkkQap8Ii0A4888kjNEOpLL72UHj16hB1JpEEqPCJtXHFxMc888wzZ2dm4O1dddVXYkUQapcIj0sY9/fTTVFVVsWPHDgYPHsxRRx0VdiSRRqnwiLRhlZWVzJs3jx49elBeXq4h1NImqPCItGGvvfYaxcXFAGRlZXH66aeHnEikaSo8Im3YvHnzSE9P55tvvmHy5MmkpcV9bUeRVqfCI9JGbdq0iTVr1pCZmUlqaioXX3xx2JFEYqLCI9JG1R5CPWbMGLKyssKOJBITFR6RNqikpIQnn3xSQ6ilTVLhEWmDnn32WSorKyktLWXAgAEce+yxYUcSiZkKj0gbU1VVxdy5c8nMzGTPnj1MmTIFMws7lkjMVHhE2phVq1ZRWFhISkoKmZmZnHXWWWFHEmkWFR6RNmbu3Ll06tSJ7du3M2nSJDp16hR2JJFmUeERaUPy8/N5++236dmzJ6mpqVx22WVhRxJpNhUekTbkscceA2Dbtm2MGjWK3r17h5xIpPlUeETaiB07drB48eKaIdQTJkwIO5JIi6jwiLQRzz33HBUVFZSVlXH00UczcODAsCOJtIgKj0gbUF1dzZw5c+jevTtlZWVce+21GkItbVZCCo+Z/T8zczNTh7NIK8jLy+Prr78mLS2NjIwMRo4cGXYkkRaLu/CYWT/gAuCz+OOISH3mz59PWloaxcXFfPe73yU9PT3sSCItlohzqP8auAV4IgHbkoAlyxfn5cvDTpB89v5u9uzZzLp1r9OpU28qKrYxZ863WbgwuBz63UiixbXHY2ZjgS3u/m4My95gZnlmlldQUBBPsyIdytatjwNQUVFEr14jSU8/KOREIvExd298AbMXgIPrmTUD+A/gAncvMbN8INfdC5tqNDc31/Py8loQV6Rj2bVrFxdccAEZGRkUFRVx3333MWTIkLBjSUjM7C13zw07R7ya7Gpz9/Prm25mJwJHAO9GR9ccCrxtZsPd/auEphTpoJYtW8aePXtITU3l8MMPZ/DgwWFHEolbi4/xuPtaoGafvzl7PCLSNHfnwQcfJCMjg507d2oItbQb+j8ekST19ttvs2XLFtLT0+natSvnnXde2JFEEiJhhcfd+2tvRyRxFixYQGpqKsXFxVx11VV06dIl7EgiCaE9HpEk9OWXX7JixQqysrIwM6644oqwI4kkjAqPSBJatGgR7k5xcTFnnHEGhxxySNiRRBJGhUckyezevZtHHnmE7OxsqqqqmDhxYtiRRBIqEWcuEJEEevHFFykrKyMlJYW+ffty0kknhR1JJKG0xyOSRPYOoe7WrZuGUEu7pcIjkkTWrFnDp59+SpcuXejcuTOjRo0KO5JIwqnwiCSRhQsXkpKSQlFREVdeeSXdunULO5JIwqnwiCSJrVu38vLLL5OdnQ3AuHHjQk4k0jpUeESSxJIlS6iurmb79u2ccsop9OvXL+xIIq1ChUckCZSXl7Nw4UKysrKorKxk0qRJYUcSaTUqPCJJYPny5ezcuZPKykr69OnDySefHHYkkVajwiMSsr1DqLt27UppaSlTp04lJUVvTWm/9NctErL169fz0Ucf0bVrVzp16sSFF14YdiSRVqXCIxKyhx9+GDOjqKiIyy+/nMzMzLAjibQqFR6REBUWFrJs2TIOOOAAAMaPHx9yIpHWp8IjEqKlS5dSVVVFSUkJJ510Ev379w87kkirU+ERCUl5eTkPPfQQvXr1oqKigilTpoQdSSQQKjwiIVmxYgWlpaVUV1fTu3dvRowYEXYkkUCo8IiEwN2ZO3cu6enp7NixgylTppCamhp2LJFAqPCIhGDjxo28//77dO/enbS0NEaPHh12JJHAqPCIhOCRRx6pGUJ96aWX0rNnz7AjiQRGhUckYMXFxTzzzDNkZ2fj7nznO98JO5JIoFR4RAL29NNPU1VVxY4dOzjxxBM5+uijw44kEigVHpEAVVZWMm/ePHr06EF5ebmGUEuHFFfhMbOZZrbFzFZHb2MSFUykPXrttdcoLi4GICsri9NPPz3kRCLBS0vANn7t7r9KwHZE2r158+aRnp5OSUkJ06ZNIy0tEW9BkbZFXW0iAdm0aRNr1qwhMzOT1NRULrnkkrAjiYQiEYXnJjNbY2YPmFlWQwuZ2Q1mlmdmeQUFBQloVqRt2TuEetu2bYwePZqsrAbfLiLtWpOFx8xeMLN19dzGAv8LHAXkAF8Cdze0HXef7e657p574IEHJiq/SJtQUlLCk08+SXZ2NgATJkwIOZFIeJrsYHb382PZkJn9GXgq7kQi7dCzzz5LZWUlO3fuZMCAARx77LFhRxIJTbyj2g6p9fByYF18cUTan6qqKubOnUtmZia7d+9mypQpmFnYsURCE++QmrvMLAdwIB/4p3gDibQ3q1atorCwkJ49e5KZmclZZ50VdiSRUMVVeNz9mkQFEWmv5s6dS6dOndi+fTs//OEP6dSpU9iRREKl4dQirSg/P5+3336bnj17kpqaymWXXRZ2JJHQqfCItKLHH38cgG3btnH++efTu3fvkBOJhE+FR6SVlJaWsmjRopqzUGsItUiECo9IK/nb3/5GRUUFZWVlHHXUUQwaNCjsSCJJQYVHpBVUV1czZ84cunfvTllZGddee62GUItEqfCItIK8vDy+/vpr0tLSyMjIYOTIkWFHEkkaKjwirWD+/PmkpaWxfft2JkyYQOfOncOOJJI0VHhE4rBixQpeeeUVKisra6Zt3ryZ119/nV69emFmXH755SEmFEk+uhiISByWLl3KM888Q9++fZk8eTKXXHJJzRDqoqIiRo4cyUEHHRRySpHkosIjEodevXqRmZlJVVUV99xzD7///e+pqqoiOzuboqIiJk6cGHZEkaSjwiMSh6ysLKqqqujWrRvdunWjsrKSsrKymq63bdu2UVFRodPkiNSiYzwicejVqxdVVVU1j9PS0sjMzKRr16507tyZ6dOnM3r0aObMmUNRUVGISUWShwqPSBy6d+9OamrqftPNjKysLPr06QPAPffcwyWXXEJ+fn7ACUWSjwqPSBwyMjJISWn8bWRmpKSkMHnyZA4//PCAkokkLx3jEYlDU4Xnm2++oaysjDvuuIMxY8YEmEwkeanwiMQhIyOjwXmFhYV07tyZ2bNnk5OTE1wokSSnwiMSh4yMDNx9n2nuztatW/nWt77F7373O/r16xdSOpHkpGM8InHo3r37Po+rq6v58ssvycnJYe7cuSo6IvXQHo9IHDIyMmqGU5eXl1NYWMjYsWOZPn066enpIacTSU4qPCJx6Nq1K1VVVezatYvt27czbdo0rrnmGl0CQaQRKjwicUhJSaFbt27s3LmTu+++W5c/EImBCo9InMaPH88FF1zAgAEDwo4i0iao8IjEadq0aWFHEGlTNKpNREQCFXfhMbN/MbMNZvaemd2ViFAiItJ+xdXVZmbnAGOBIe6+x8x0xSsREWlUvMd4fgD8t7vvAXD3rfFHko5Ig8H2t3x52AlEWke8XW3HAmea2Soz+/9mdnJDC5rZDWaWZ2Z5BQUFcTYrIiJtVZN7PGb2AnBwPbNmRNfPBk4BTgYeNbMjve7JqwB3nw3MBsjNzd1vvnRs+nYv0nE0WXjc/fyG5pnZD4BF0ULzhplVA70B7dKIiEi94u1qWwKcA2BmxwLpQGGc2xQRkXYs3sEFDwAPmNk6oByYUl83m4iIyF5xFR53LwcmJSiLiIh0ADpzgYiIBEqFR0REAqXCIyIigVLhERGRQFkYg9DMbAfwQeANJ05v2vaw8bacvy1nB+UPW1vPf5y7Z4YdIl5hXY/nA3fPDantuJlZnvKHoy1nB+UPW3vIH3aGRFBXm4iIBEqFR0REAhVW4ZkdUruJovzhacvZQfnDpvxJIJTBBSIi0nGpq01ERAKlwiMiIoEKpPCYWbaZLTOzD6M/s+pZJsfM/m5m75nZGjO7KohsjTGzi8zsAzP7yMym1zO/s5k9Ep2/ysz6hxCzXjFk/zczWx99rV80s8PDyNmQpvLXWu5KM3MzS6ohsrHkN7PvRH8H75nZwqAzNiaGv5/DzOxlM3sn+jc0Joyc9TGzB8xsa/Ss+fXNNzP7bfS5rTGzk4LO2JgY8k+M5l5rZivNbEjQGePm7q1+A+4CpkfvTwd+Wc8yxwLHRO9/C/gS6BVEvgYypwKbgCOJXGfoXWBgnWV+CPwxev9q4JGw8rYg+zlAt+j9HyRL9ljzR5fLBF4BXgdyw87dzNf/GOAdICv6+KCwczcz/2zgB9H7A4H8sHPXynYWcBKwroH5Y4BnASNy9eRVYWduZv7Tav3djE62/LHcgupqGwvMjd6fC3y77gLuvtHdP4ze/wLYChwYUL76DAc+cvePPXL5h78QeR611X5ejwPnmZkFmLEhTWZ395fdfVf04evAoQFnbEwsrz3AHcAvgd1BhotBLPm/D/zB3YsB3H1rwBkbE0t+B3pE7/cEvggwX6Pc/RWgqJFFxgLzPOJ1oJeZHRJMuqY1ld/dV+79uyH53rsxCarw9HH3L6P3vwL6NLawmQ0n8k1rU2sHa0Rf4PNajzdHp9W7jLtXAiXAAYGka1ws2Wu7jsg3wGTRZP5o90g/d386yGAxiuX1PxY41sxeM7PXzeyiwNI1LZb8M4FJZrYZeAb4l2CiJURz3x/JLNneuzFJ2ClzzOwF4OB6Zs2o/cDd3cwaHMMd/eYxn8jVTKsTlU/qZ2aTgFzg7LCzxMrMUoD/AaaGHCUeaUS620YS+cb6ipmd6O7bwwzVDBOAOe5+t5mdCsw3sxP0ng2OmZ1DpPCcEXaW5kpY4XH38xuaZ2Zfm9kh7v5ltLDU261gZj2Ap4EZ0V3gMG0B+tV6fGh0Wn3LbDazNCJdDtuCideoWLJjZucT+WJwtrvvCShbLJrKnwmcACyP9mweDCw1s8vcPRnOZRXL67+ZSN98BfCJmW0kUojeDCZio2LJfx1wEYC7/93MuhA5AWcydRk2JKb3RzIzs8HAfcBod0+Gz5xmCaqrbSkwJXp/CvBE3QXMLB1YTKTv9fGAcjXmTeAYMzsimu1qIs+jttrPaxzwkkeP+IWsyexmNhT4E3BZkh1fgCbyu3uJu/d29/7u3p9IP3eyFB2I7W9nCZG9HcysN5Gut48DzNiYWPJ/BpwHYGYDgC5AQaApW24pMDk6uu0UoKTWoYCkZ2aHAYuAa9x9Y9h5WiSIEQxEjnu8CHwIvABkR6fnAvdF708CKoDVtW45YY68IDL6ZSORY00zotP+k8iHHETebI8BHwFvAEeGmbeZ2V8Avq71Wi8NO3Nz8tdZdjlJNKotxtffiHQXrgfWAleHnbmZ+QcCrxEZ8bYauCDszLWyP0xkVGwFkT3L64AbgRtrvfZ/iD63tUn4t9NU/vuA4lrv3bywMzf3plPmiIhIoHTmAhERCZQKj4iIBEqFR0REAqXCIyIigVLhERGRQKnwiIhIoFR4REQkUP8HlTPjdhVykcEAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 6\n",
"pp = -61/11, satellite_part = -12\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -193/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEICAYAAAB8lNKlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAj0UlEQVR4nO3deZhUhZ3u8e9LsxllkcUNJOi9uGGkiS3GLeIat9FEJNFxQ00YJ0GdZxIJXkVBg04k6sR54q4hKHFLRLkajRrlGlTQVlEQt6CgIGqzSrNoA7/7xzmQoummq5tTXd3N+3meeqiqs71VdNVbZ6lTigjMzMyy0qrYAczMrGVxsZiZWaZcLGZmlikXi5mZZcrFYmZmmXKxmJlZplwsBSSpnaRZknYudpatkaQbJP17PcYfImlKITMVg6TekkJS62Jnsa2Di6WBJD0pqTK9VEn6Ouf2beloQ4EXImJBOs2lkmZKWi7pI0mX1mN5R0iaIWmppEWSJkrqkee07STdLWluuuzpko5v4GOtTB/rjDyn3UPSY5IqJC2W9FdJe9Zj2cMklUv6StK4asPaSvqTpDnpG+fAapP/Bvg/ktrmu7ymQtIdkt6TtE7SkHpOO0fS0RnlKFopSSqR9CtJn6Z/t29I6tzYOaz+XCwNFBHHR8R2EbEdMAG4fv3tiLgwHe1C4N6cyQScA2wPHAcMk3R6noucBXwvIjoDuwAfALfmOW1r4BPgcKATcAXwkKTe+Uyc+1jTx/sS8HCey+4MTAL2BHYEXgEey3NagE+BXwH31DJ8CnAW8FkNuRcA7wIn12N5jWozb9hvAj8FXm/EOE3NaOBg4CCgI3A2sLqoiSwvLpYCkdQL2B2Ytv6+iLg+Il6PiDUR8R7JG+wh+cwvIj6PiE9z7loL/O+c5Y2Q9Hgt066IiFERMSci1kXE48BHwP4NeFy9gcOA8Tn3PS5pRC3LfiUi7o6IxRFRBdwE7Cmpaz7Li4hHIuJRYFENw76OiP+OiCkkz0dNJgMn5rOs6iT9VtInkr6U9Jqkw9L7d5K0MvcxSPp2ulbWJr19vqR3JC1J19K+mTNuSPqZpA9IPiDU9Lh/FxF/o55vpJLuBXoB/zdduxyeM/hMSR9LWijp8pxpWqV/P7PTteGHJHVJB7+Q/rs0nd9Bkv6XpOfScRdKmpD1moSk7YH/AH4SEXMjMTMiXCzNgIulcL4FfBgRa2oaKEkkb9Bv5ztDSb0kLQVWAb8Arl8/LCL+KyJOynM+OwJ71GfZOc4B/h4Rc3KWfVJE/Fee038X+CwiNimKAnkH6NfAaV8FSoEuwB+BhyW1j4jPSArrhznjng08EBFVkk4B/g9wKtAd+Dtwf7V5fx84ENingdlqFBFnAx8D/5KuYV6fM/hQkjXHo4ArJe2d3n9RmudwkrXhJcDv0mHfTf/tnM7vZZI17+vScfcGdgVG1ZZJ0lvpJtyaLrfUMtm3gDXAaZI+k/S+pJ/V46mwInKxFE5nYPlmho8ief5/n+8MI+LjdFNYN5LNWe/WN1T6iXoC8IeIqPf0JMUyrgHTIaknyRvWfzZk+gZaTvJ/UW8RcV9ELErXMG8A2pG8MQP8gWQTHJJKgDP452bPC4HrIuKd9IPFtUBp7lpLOnxxRKxqSLYGGh0RqyLiTZJNbesL90Lg8oiYFxFfkfxtnlbbZrqI+EdEPBMRX0VEBXAjSSnVKCL2i4jOtVx+WstkPUk22+4B7AacBoySdEwDHrc1MhdLPUg6M2cH9pN1jL4E6FDLfIaRvEGfmL6Q6yUiFpO8sT1Wn52qklqRvPl9DQyr73IlHQrsBPypAdN2B54GbomI6p/eC6kDsLQhE0r6Rbo5a1m6ptiJpNQh2Yy5j6TdgGOAZRHxSjrsm8Bv138qBxaTfMrPPdjik4Zk2kK5+6FWAtul178JTMzJ+w7JpsUda5qJpB0lPSBpvqQvgfv45/OSlfWFe3Vahm8BDwAnZLwcKwAXSz1ExIScndh1HVX1FrBb9Td+SecDI4CjImLeFsRpDexAslOzTummt7tJ3iwGpfs76utc4JGIqKzPROn28qeBSRExpgHL3RJ7k3w6r5d0f8pwks1d26dristICoJ0W/9DJGstZ7PxQRqfAP9W7ZP5NhHxUs44hTyteH3n/QlwfLW87SNifi3zuja9/1sR0ZHkOVBtM5f0tjY+qjD3clstk71Vw2PxqdibCRdLgaSl8Q9gwPr7JJ1J8qI8JiI+rD6NpMmSRtU0P0mnStoz3dHanWTzwxvp2guSRkmavJlIt5K8yf5LTZtfVPPhurnDtyF5kx1Xz9wdgb8CL0bEJjv4JQ2UVOsbhqTWktoDJUCJpPa5Za3kUOr26c226fDcN7nDgSdzxq81azUdSLbxVwCtJV3JpiU+HhhCctRZbrHcBlwmqW+6zE6SBuexzA2UHErdnuQNu036uFqlwzb7nAGfkxw4kq/bgDHrN9VJ6p7uJ4Lk8a+rNr8OQCWwTMkh75s9bD4i+uYeVVjtcmEt08wm2Td1efp/vDdwOlDjASrWtLhYCut2kk+z6/0K6Aq8Wssntl2BF2uZVw/gKZJ9BjNIXuw/yGfa9A3j30h2RH+Ws+wz0+G75sy3Nt8n2aT0fA3DNpf7B8ABwHnVPqn2ypn2pVqmhWRf0iqStbyz0utX5Ax/L72vB0mBrSLZtIOSL6buAzyaZ9ZcfyV5vt8H5pIcnbXR5quIeJHk/+H1iJibc/9E4NfAA+mmoplA3t8bSj2dPpaDgTvS6+t3pNf1nF0HXJFu2vpFHsv6Lckh4U9LWg5MJTmwgIhYCYwBXkzn9x2Sw4C/TbIG9wTwSD0fW77OIPm/XJQuZ2R6pJw1cQr/0FfBSGoHvEGy2WtBHeP2BB6KiIMbuKzp6XLqfbSVpLOAvhFxWQOm3dLcdwEPR8RfGzJ9HfO+AZgdEbekt7coay3LeA74Y0TcldU881hmwZ4zsyy4WMwaSNIBwDPArhGxuSMAzbYq3hRm1gCS/gA8C/yHS8VsY15jMTOzTHmNxczMMlWQM5Z269YtevfuXYhZm5m1SK+99trCiOhe7BxZKEix9O7dm/Ly8kLM2sysRZI0t+6xmgdvCjMzs0y5WMzMLFMuFjMzy5SLxczMMuViMTOzTOVVLJI6S/qTpHfT36c4qNDBzMysecr3cOPfAk9FxGmS2gLfKGAmMzNrxuosFkmdSE7XPQQgIr4m+QVCs7wNHFjsBE3L5MnFTmBWOPlsCtuN5Md+fi/pDUl3Sdq2+kiShkoql1ReUVGReVAzM2se6jwJpaQykh/+OSQipkn6LfBlRIysbZqysrLwN+/NzPIn6bWIKCt2jizks8YyD5gXEdPS238i+fU4MzOzTdRZLBHxGfCJpD3Tu44CZhU0lVkTsXz5cp566imqqqqKHcWs2cj3eywXARMkvUXyu+nXFiyRWROyYMEChg8fzumnn87rr79e7DhmzUJexRIR0yOiLCL2i4jvR8SSQgczawq6detG+/bt+eKLLxg6dCgjRozg888/L3YssybN37w324zOnTsTEXTs2JEdd9yR5557jh/84AeMHz+er7/2UfdmNXGxmG1Gq1at6NKlC1VVVbRq1Yodd9yR7bbbjptvvplBgwYxdepU/PPeZhtzsZjVYYcddtho7aRdu3bsvPPOfPnllwwbNoyf//znzJ8/v4gJzZoWF4tZHXbZZZcajwpbv3nsxRdfZNCgQdx5552sXr26CAnNmhYXi1kddt1111r3p7Rq1YoddtiBTp06ceutt3LaaaexcOHCRk5o1rS4WMzqsMsuu2x2P0pEUFlZSUlJCUcffTSdOnVqxHRmTU++Zzc222p169aN1q1rfql8/fXXLFy4kN13352rr76avffeu5HTmTU9LhazOnTt2hVJNQ777LPPOOecc7j44otp06ZNIycza5pcLGZ16NatG+vWrdtwe/Xq1SxZsoQ2bdqwzTbbMHPmTEpKSoqY0Kxp8T4Wszp06dKFtWvXsm7dOj7//HNWrlzJsGHDNnxx8q233uLRRx8tdkyzJsPFYlaHNm3a0KFDB+bPn8/BBx/MxIkTGTJkCBdddBGLFi2iS5cu3HDDDT7Vi1nKxWKWh0GDBnHDDTdw0003scMOOwDwox/9iD322IMVK1ZQVVXFtdde62/hm+FiMcvLsGHDOOqoozbaid+6dWtGjx5NVVUV22+/PVOmTOG5554rYkqzpsHFYrYF9thjD4YMGcLixYvp1KkTv/rVr1i2bFmxY5kVlYvFbAtdcMEF7LTTTlRVVVFZWckNN9xQ7EhmReViMdtC7du35+qrr2bVqlV07dqVJ554gmnTptU9oVkL5WIxy0D//v059dRTWbRoEdtttx2jRo1i5cqVxY5lVhQuFrOMXHTRRXTq1IlWrVpRUVHBbbfdVuxIZkXhYjHLSIcOHbjyyiv58ssv6datG/fffz+zZs0qdiyzRudiMcvQYYcdxlFHHcXixYtp27YtI0eO9E8Y21bHxWKWIUkMHz6cdu3asc022zB37lzuu+++Yscya1QuFrOMdevWjeHDh7NkyRK6du3K7bffzpw5c4ody6zRuFjMCuCkk06irKyMpUuXIolRo0ZtdIZks5bMxWJWAJIYOXIkrVq1omPHjsyYMYOJEycWO5ZZo8irWCTNkTRD0nRJ5YUOZdYS9OzZc6MzIN9444189tlnxY5lVnD1WWM5IiJKI6KsYGnMWpgf/vCH7LnnnlRWVlJVVcV1113nMyBbi+dNYWYFtP4MyGvXrt1wBuRnn3222LHMCirfYgngaUmvSRpa0wiShkoql1ReUVGRXUKzZq5Pnz4MGTKERYsW0alTJ6699lqWLl1a7FhmBZNvsRwaEd8Gjgd+Jum71UeIiDsioiwiyrp3755pSLPm7vzzz2eXXXbxGZBtq5BXsUTE/PTfL4CJwIBChjJraaqfAfkvf/kLU6dOLXYss4Kos1gkbSupw/rrwLHAzEIHM2tpSktLNzoD8ujRo1mxYkWxY5llLp81lh2BKZLeBF4BnoiIpwoby6xluuiii+jcubPPgGwtWp3FEhEfRkS/9NI3IsY0RjCzlqj6GZAfeOABZs70BgBrWXy4sVkjO/TQQzn66KNZvHgx7dq146qrrvIZkK1FcbGYNTJJXHrppbRv35727dszd+5cxo8fX+xYZplxsZgVQfUzIN9555189NFHxY5llgkXi1mRnHjiiRxwwAEsXbqUVq1aMWrUKNauXVvsWGZbzMViViS5Z0Du0KEDM2fO9BmQrUVwsZgVUY8ePTY6A/JNN93EggULih3LbIu4WMyKLPcMyGvWrGHMmDE+A7I1ay4WsyLLPQNy586defnll3nmmWeKHcuswVwsZk1Anz59OO+88zY6A/KSJUuKHcusQVwsZk3EeeedR48ePaiqqmLFihU+A7I1Wy4Wsyaiffv2jB49esMZkJ988klefvnlYscyqzcXi1kTUlpayqBBg1i4cKHPgGzNlovFrIkZNmwY22+/PZJYuHAht956a7EjmdWLi8WsiVl/BuTly5f7DMjWLLlYzJqg3DMgt2/fniuvvNJnQLZmw8Vi1gRJYvjw4T4DsjVLLhazJqpr16788pe/ZMmSJXTr1o0777yTDz/8sNixzOrkYjFrwk444QQGDBjgMyBbs+JiMWvCJHHFFVdsOAPy22+/zSOPPFLsWGab5WIxa+J69OjBxRdf7DMgW7PhYjFrBgYPHsxee+1FZWUla9eu9RmQrUlzsZg1A61bt96wf2X9GZCffvrpYscyq5GLxayZWH8G5IULF9K5c2euu+46Fi9eXOxYZptwsZg1I+effz49e/bk66+/ZuXKldx4443FjmS2ibyLRVKJpDckPV7IQGZWu3bt2nH11VezatUqunTpwlNPPeUzIFuTU581lkuAdwoVxMzy069fPwYPHsyiRYvYdtttfQZka3Ja5zOSpJ7AicAY4D8LmsgyNXBgsRMkJk8udoKmZUv/X9au/RmzZ/+Ndeu+Zu3aRey3363suusv6j0f/79YIeS7xvLfwHBgXW0jSBoqqVxSeUVFRRbZzKwWJSXb0avXlaxdW0nr1l354osHWbHCZ0C2pkF1HQsv6STghIj4qaSBwC8i4qTNTVNWVhbl5eWZhTSzTUUEI0aM4LnnnqNdu3Z0796dBx98kLZt2xY7mjWApNcioqzYObKQzxrLIcDJkuYADwBHSrqvoKnMrE7rz4C8zTbbsGrVKhYsWMDcuXOLHcus7mKJiMsiomdE9AZOB56LiLMKnszM6tS1a1euuOIKysrKuP/+++nTp0+xI5nlt/PezJquY489lmOPPbbYMcw2qFexRMRkYHJBkpiZWYvgb96bmVmmXCxmZpYpF4uZmWXKxWJmZplysZi1UHPmzGHffffNe/yDDz54k/vWf4F61KhRG93Ode211zZ4mQCPPvoos2bNqtc0EcGcOXMYN25cjcMnT57MSSdt9nvcWxVJvSQ9LekdSbMk9c4ZdrqkyyXtJellSV9J+kW16e+R9IWkvE7v4GIxMwBeeumlTe6bMGECY8eOZfXq1Vx//fVMmDBhk3Fyi6UhGlIsF154IVOmTOHjjz/mggsuYP78+VuUob7WrFnTqMvLwHhgbETsDQwAvsgZdjzwFLAYuBj4TQ3TjwOOy3dhLhazrcCHH35I//79efXVV3n77bcZMGAApaWl7LfffnzwwQcAbLfddptMd9ZZZ9GzZ0/Gjh1Lr169OOusjb8bPWLECFatWkVpaSlnnnkmAGvXruUnP/kJffv25dhjj2XVqlUAzJ49m+OOO47999+fww47jHfffZeXXnqJSZMmcemll1JaWsrs2bO58847OeCAA+jXrx+DBg1i5cqVm+S65ZZbuP/++7nnnnu47rrr6NGjR62P/ZVXXuGggw6if//+HHzwwbz33nsAfPe732X69Okbxjv00EN58803WbFiBeeffz4DBgygf//+PPbYYwCMGzeOk08+mSOPPJKjjjqqxmVNnjyZgQMHctppp7HXXntx5plnbljL6927NwsXLgSgvLycgemZSEeNGsW5554LsKekuZJOlXS9pBmSnpLUptYHlwdJ+wCtI+IZgIiojIiV6TABpcDrEfFFRLwKVFWfR0S8QFI8+YmIzC/7779/mFlxffTRR9G3b9949913o7S0NKZPnx4REcOGDYv77rsvIiK++uqrWLlyZUREbLvttpvMY8KECXH99dfHL3/5y/j1r38dEyZM2GSc3Ok++uijKCkpiTfeeCMiIgYPHhz33ntvREQceeSR8f7770dExNSpU+OII46IiIhzzz03Hn744Q3zWLhw4Ybrl19+edx8882bLPPCCy+Me++9N0aPHh0//vGPY/78+RsNf/755+PEE0+MiIhly5ZFVVVVREQ888wzceqpp0ZExLhx4+KSSy6JiIj33nsv1r9vXXbZZRsyL1myJPr06ROVlZXx+9//Pnr06BGLFi3aJE/ucjt27BiffPJJrF27Nr7zne/E3//+94iI+OY3vxkVFRUREfHqq6/G4YcfHhERV111VRxyyCEBvAb0A1YCx0dSSBOB70e191jgUmB6DZebaxj3+8DjwCPAG8BYoCQd9m1gfLXxR5GcE7L6fHoDM6vfX9PF37w3a8EqKio45ZRTeOSRR9hnn30AOOiggxgzZgzz5s3j1FNP3expYM444wwkMWrUKIYPH17jPpbqdtttN0pLSwHYf//9mTNnDpWVlbz00ksMHjx4w3hfffVVjdPPnDmTK664gqVLl1JZWcn3vve9Tca55ZZbmDt3LmvWrOHKK6/cbJ5ly5Zx7rnn8sEHHyCJqqrkA/ngwYO55pprGDt2LPfccw9DhgwB4Omnn2bSpEn85jfJFqHVq1fz8ccfA3DMMcfQpUuXzS5vwIAB9OzZE4DS0lLmzJnDoYceutlpjj/+eF588cUAZgAlJJumSG/3rj5+RIwlKYh8tAYOA/oDHwMPAkOAu0k2bz2Z53zy5mIxa8E6depEr169mDJlyoZi+dd//VcOPPBAnnjiCU444QRuv/12jjzyyBqnT7aU/HPn/frbm9OuXbsN10tKSli1ahXr1q2jc+fOG216qs2QIUN49NFH6devH+PGjWNyDT8aI4nevXtvKIPNGTlyJEcccQQTJ05kzpw5GzZBfeMb3+CYY47hscce46GHHuK1114Dkq04f/7zn9lzzz03ms+0adPYdttt61xe9ce/fn9M69atWbcu+eWR1atX1zhNRKyTVBX/bPB11PA+LelS4MwaFv9CRFxc7b55wPSI+DCd9lHgOyTFciwwqM4HVU/ex2LWgrVt25aJEycyfvx4/vjHPwLJ/pbdd9+diy++mFNOOYW33npri5bRpk2bDWsBtenYsSO77bYbDz/8MJC8eb/55psAdOjQgeXLl28Yd/ny5ey8885UVVXVeLBAfS1btmzDPpjqR5H9+Mc/5uKLL+aAAw5g++23B+B73/se//M//7Nh7eyNN97Y4gyQ7GNZX15//vOft2heETE2IkpruFQvFYBXgc6Suqe3jwRmSepEsu9l0RaFqYGLxayF23bbbXn88ce56aabmDRpEg899BD77rsvpaWlzJw5k3POOWeL5j906FD222+/DTvvazNhwgTuvvtu+vXrR9++fTfsFD/99NMZO3Ys/fv3Z/bs2VxzzTUceOCBHHLIIey1115blA1g+PDhXHbZZfTv33+To7n2339/OnbsyHnnnbfhvpEjR1JVVcV+++1H3759GTly5BZnALjqqqu45JJLKCsro6SkJJN55iMi1gK/AP4maQYg4E7gGODZ9eNJ2knSPJJfCb5C0jxJHdNh9wMvkxxgME/SBZtbZp0/9NUQ/qEvM2sOPv30UwYOHMi7775Lq1bF/Zzd2D/0Jeku4K6ImJr1vL3GYmZbpfHjx3PggQcyZsyYopdKMUTEjwtRKuA1FjOzepsxYwZnn332Rve1a9eOadOmNXieLemniX1UmJlZPX3rW9/K6wi3rdXWt/5nZmYF5WIxM7NMuVjMzCxTLhYzM8uUi8XMzDLlYjEzs0y5WMzMLFMuFjMzy1SdxSKpvaRXJL0p6W1JoxsjmJmZNU/5fPP+K+DIiKhMfyJziqQnC3WOGTMza97qLJb0B2cq05tt0kv2JxgzM7MWIa99LJJKJE0HvgCeiYhNzrQmaaikcknlFRUVGcc0M7PmIq9iiYi1EVEK9AQGSNq3hnHuiIiyiCjr3r37JvMwM7OtQ72OCouIpcDzwHEFSWNmZs1ePkeFdZfUOb2+DcnPWb5b4FxmZtZM5XNU2M7AHySVkBTRQxHxeGFjmZlZc5XPUWFvAf0bIYuZmbUA/ua9mZllysViZmaZcrGYmVmmXCxmZpYpF4uZmWXKxWJmZplysZiZWaZcLGZmlikXi5mZZcrFYmZmmXKxmJlZplwsZmaWKReLmZllysViZmaZcrGYmVmmXCxmZpYpF4uZmWXKxWJmZplysZiZWaZcLGZmlikXi5mZZcrFYmZmmXKxmJlZplwsZmaWqTqLRdKukp6XNEvS25IuaYxgZmbWPLXOY5w1wM8j4nVJHYDXJD0TEbMKnM3MzJqhOoslIhYAC9LryyW9A/QAXCy1GDiw2An+afLkYiewpqyp/K3677Rlqdc+Fkm9gf7AtBqGDZVULqm8oqIio3hmZtbcKCLyG1HaDvh/wJiIeGRz45aVlUV5eXkG8czMtg6SXouIsmLnyEJeayyS2gB/BibUVSpmZrZ1y+eoMAF3A+9ExI2Fj2RmZs1ZPmsshwBnA0dKmp5eTihwLjMza6byOSpsCqBGyGJmZi2Av3lvZmaZcrGYmVmmXCxmZpYpF4uZmWXKxWJmZplysZiZWaZcLGZmlikXi5mZZcrFYmZmmXKxmJlZplwsZmaWKReLmZllysViZmaZcrGYmVmmXCxmZpYpF4uZmWXKxWJmZplysZiZWaZcLGZmlikXi5mZZcrFYmZmmXKxmJlZplwsZmaWKReLmZllqs5ikXSPpC8kzWyMQGZm1rzls8YyDjiuwDnMzKyFqLNYIuIFYHEjZDEzsxYgs30skoZKKpdUXlFRkdVszcysmcmsWCLijogoi4iy7t27ZzVbMzNrZnxUmJmZZcrFYmZmmcrncOP7gZeBPSXNk3RB4WOZmVlz1bquESLijMYIYmZmLYM3hZmZWaZcLGZmlikXi5mZZcrFYmZmmXKxmJlZplwsZmaWKReLmZllysViZmaZcrGYmVmmXCxmZpYpF4uZmWXKxWJmZplysZiZWaZcLGZmlikXi5mZZcrFYmZmmXKxmJlZplwsZmaWKReLmZllysViZmaZcrGYmVmmXCxmZpYpF4uZmWXKxWJmZpnKq1gkHSfpPUn/kDSi0KHMzKz5qrNYJJUAvwOOB/YBzpC0T6GDmZlZ89Q6j3EGAP+IiA8BJD0AnALMKmSwYhk4cMvnMXnyls/DbGuSxesO/NprKvLZFNYD+CTn9rz0vo1IGiqpXFJ5RUVFVvnMzKyZyWeNJS8RcQdwB0BZWVlkNd/G5k88Zo3Pr7uWJZ81lvnArjm3e6b3mZmZbSKfYnkV6CNpN0ltgdOBSYWNZWZmzVWdm8IiYo2kYcBfgRLgnoh4u+DJzMysWcprH0tE/AX4S4GzmJlZC+Bv3puZWaZcLGZmlikXi5mZZcrFYmZmmVJE9t9llLQceC/zGTeObsDCYofYAs5fXM5fXM05/54R0aHYIbKQ2Tfvq3kvIsoKNO+CklTeXLOD8xeb8xdXc84vqbzYGbLiTWFmZpYpF4uZmWWqUMVyR4Hm2xiac3Zw/mJz/uJqzvmbc/aNFGTnvZmZbb28KczMzDLlYjEzs0xlUiySukh6RtIH6b/b1zBOqaSXJb0t6S1JP8pi2Q0l6ThJ70n6h6QRNQxvJ+nBdPg0Sb2LELNWeeT/T0mz0uf6b5K+WYyctakrf854gySFpCZ1CGk++SX9MP0/eFvSHxs7Y23y+NvpJel5SW+kfz8nFCNnbSTdI+kLSTNrGS5JN6eP7y1J327sjLXJI/uZaeYZkl6S1K+xM2YiIrb4AlwPjEivjwB+XcM4ewB90uu7AAuAzlksvwF5S4DZwO5AW+BNYJ9q4/wUuC29fjrwYDGybkH+I4BvpNf/vbnlT8frALwATAXKip27ns9/H+ANYPv09g7Fzl2P7HcA/55e3weYU+zc1fJ9F/g2MLOW4ScATwICvgNMK3bmemQ/OOdv5vimlL0+l6w2hZ0C/CG9/gfg+9VHiIj3I+KD9PqnwBdA94yWX18DgH9ExIcR8TXwAMljyJX7mP4EHCVJjZhxc+rMHxHPR8TK9OZUkl/+bCryef4BrgF+DaxuzHB5yCf/T4DfRcQSgIj4opEz1iaf7AF0TK93Aj5txHx1iogXgMWbGeUUYHwkpgKdJe3cOOk2r67sEfHS+r8Zmt7rNm9ZFcuOEbEgvf4ZsOPmRpY0gOTT0uyMll9fPYBPcm7PS++rcZyIWAMsA7o2Srq65ZM/1wUkn+Caijrzp5svdo2IJxozWJ7yef73APaQ9KKkqZKOa7R0m5dP9lHAWZLmkfwO00WNEy0z9X19NFVN7XWbt7xP6SLpWWCnGgZdnnsjIkJSrccwp58c7gXOjYh1+S7fGkbSWUAZcHixs+RLUivgRmBIkaNsidYkm8MGknzqfEHStyJiaTFD5ekMYFxE3CDpIOBeSfv69dp4JB1BUiyHFjtLQ+RdLBFxdG3DJH0uaeeIWJAWR42r/ZI6Ak8Al6erqMUyH9g153bP9L6axpknqTXJJoFFjROvTvnkR9LRJMV/eER81UjZ8lFX/g7AvsDkdOvjTsAkSSdHRFM4n1I+z/88ku3jVcBHkt4nKZpXGydirfLJfgFwHEBEvCypPcnJHZvK5ry65PX6aKok7QfcBRwfEU3lPadestoUNgk4N71+LvBY9REktQUmkmz7/FNGy22oV4E+knZLc51O8hhy5T6m04DnIt2j1gTUmV9Sf+B24OQmtH1/vc3mj4hlEdEtInpHRG+Sbc1NpVQgv7+fR0nWVpDUjWTT2IeNmLE2+WT/GDgKQNLeQHugolFTbplJwDnp0WHfAZblbKpv0iT1Ah4Bzo6I94udp8EyOtKhK/A34APgWaBLen8ZcFd6/SygCpiecykt1lELJEeOvE+yn+fy9L6rSd7AIHkxPQz8A3gF2L1YWRuY/1ng85znelKxM9cnf7VxJ9OEjgrL8/kXyea8WcAM4PRiZ65H9n2AF0mOGJsOHFvszNXy309yVGkVyZrhBcCFwIU5z/3v0sc3oyn97eSR/S5gSc7rtrzYmRty8SldzMwsU/7mvZmZZcrFYmZmmXKxmJlZplwsZmaWKReLmZllysViZmaZcrGYmVmm/j8YI5kGR/2iFAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtX0lEQVR4nO3de3xU9Z3/8deHEMJdQEApQcAttXIRkAAiILcCARTcWrdYVKy6rt3a+rssVtdarda2arv91d26yiJLtVRXqpSIKF4REbCEgoAoCIIC3qKQcAuQkM/vj3NIh1wnyZAzybyfj8c8mPM953vOe4bJfOZ8z5k55u6IiEjqahJ1ABERiZYKgYhIilMhEBFJcSoEIiIpToVARCTFqRCIiKQ4FYIkZmYZZrbZzLpEnSUVmdmvzex7NVj+GjNbcSozRcHMepiZm1nTqLPIqaFCEBEze97MDoa3IjM7FjP9cLjYDcByd/8k7DPLzDaZ2QEz22Fms2qwvTFmttHM8s3sSzNbaGZd4+ybYWaPmtmH4bbXm9mkWj7Wg+Fj3Rhn36+Z2SIzyzOzvWa21MzOqcG2bzKzXDM7ambzysxrZmZ/MrOd4Rvd6DLdfwX8q5k1i3d7ySABz9lOM/tGgrJEVkTMLM3MfmZmH4ev23Vm1q6+czQEKgQRcfdJ7t7a3VsD84H7T0y7+43hYjcCj8d0M+BqoD2QDdxkZtPj3ORmYKK7twO+ArwP/GecfZsCu4BRwGnAj4GnzKxHPJ1jH2v4eFcCC+LcdjsgBzgHOAP4C7Aozr4AHwM/A+ZWMn8FcCXwaQW5PwHeA6bWYHv1qpI32HbU7TlrLH4KXAgMA9oCVwFHIk2UrNxdt4hvwDzgZ2XazgIKgaZV9HsQ+PdabC8D+AWwOabtVmBxDdaxAbisFtvuARwHesS0LQZujbN/B8CB02u43Z8B86qYvxsYXUH77cB/x7mNa4AVMdO/JSig+4G1wMiw/UzgcOxjAM4H8oD0cPpa4F1gH7AU6B6zrAPfJyjmOxL5nBF88CgJX3sHgVvC/zMHZgIfAV8At8f0aRK+frYDXwJPAR3CeR+FfQ+Gt2HA3wGvhst+QfBBqF1NX0vVPI724fb+LpHrbaw37REkr37AB+5eXNFMMzNgJPBOvCs0s7PMLJ/gj/xfgPtPzHP3X7r7xXGu5wzgazXZdoyrgTfcfWfMti9291/G2f8i4FN3/7IW266Nd4H+tey7BhhA8Eb8R2CBmTV390+BZcA/xCx7FfCkuxeZ2TTgX4FvAp2AN4Anyqz7UmAo0DuOHHE/Z+5+FcGb9yUe7MHdHzN7BMFexjjgJ2Z2btj+gzDPKIK9zX3A72K2DcEbfWt3X0WwZ/uLcNlzgW7AXZVlMrMN4ZBmRbeHKunWDygGvmVmn5rZVjP7fnWPP2VFXYl0q3SPYAawuoo+PwXeBjJqsb0OwI+AC2rRNx14GXiklo91G3BNLftmAnuAK2rRt7Z7BOMJCnI827iGmD2CCubvA/qH978NvBneTyMYmhoSTj8PXBfTrwnBHkT3cNqBsafqOQN2At+Ime4RbjMzpu0vwPTw/rvAuJh5XYAigiHFE32r2rO9FFhXm9dEFev8TrjdR4EWwHkEe1zjE7mdxnLTHkE9MrMZMQdMn69m8X1Am0rWcxPBJ+sp7n60pjncfS/we2BRTQ7imVkTgqGDY8BNNd2umY0gGBb5Uy36dgJeBB5y97Kfjk+lNkB+bTqa2b+Y2btmVhDuiZ0GdAxnLwJ6m1lPgmJT4O5/Ced1B3574lMvsJfgU3Tswf1dcWw/0c9Z7HGUw0DrmLwLY/K+SzD8d0Yluc4wsyfNbI+Z7Qf+wN+el0QpDP+9290L3X0D8CQwOcHbaRRUCOqRu8/3vx00re6smw1Az7Jv1GZ2LcF47Dh3312HOE2BzgQH0aoVDkU9SvDHfZm7F9VimzOBZ9z9YE06mVl7gje0HHe/txbbrYtzCfa8asTMRhKMr/8D0N6Dg/QFBG/ouPsRgrH0KwmGhWJPCtgF/JO7t4u5tXD3lTHLVPmzwXV8zmr6k8S7gEll8jZ39z2VrOvnYXs/d29L8BxYZSs3s3fKnHUWe3u4km4bKngs+qnlSqgQJKnwTX4bMOREm5nNIPgjGu/uH5TtY2bLzOyuitZnZt80s3PMrEn4SfHfCHbH94bz7zKzZVVE+k+CN8VL3L2w7MxKTr+Mnd+C4E1xXg1ztyU4WPqmu99awfzRZlbpH7iZNTWz5gTDL2lm1jy2uFpwamzzcLJZOD/2TWkUwVBNtVnLaEMwRp0HNDWzn1C+6D5GMJw0lZMLwcPAbWbWJ9zmaWZ2eRzbPJGxTs8Z8BlwdrzbC/Pea2bdw/V3Co9zQPD4S8qsrw3BgdwCC05hrvI0aHfvE/MBquztxkr6bCc4tnJ7+H98LjCd4MQEKUOFILk9QvBp8YSfAacDayr5RNQNeLOSdXUFXgAOABsJ/jj/Pp6+4R/4PxEc+Pw0ZtszwvndYtZbmUsJhlheq2BeVbn/HhgMfLfMJ8GzYvqurKQvBKe6FhLsRV0Z3v9xzPwtYVtXgjfPQoKhDiz4Il9v4M9xZo21lOD53gp8SHDa4knDOe7+JsH/w1/d/cOY9oXAfcCT4dDJJiDu721Q9+fsF8CPw6Gef4lje78lOF31RTM7AKwmOJCNux8G7gXeDNd3AcHxrfMJ9pCeA56pwWOriSsI/i+/DLdzh7u/coq21aBZeGBFkpCZZQDrCIaBPqlm2UzgKXe/sJbbWh9up8Zn45jZlUAfd7+tFn3rmnsOsMDdl9amfzXr/jWw3d0fCqfrlLWSbbwK/NHd5yRqnXFs85Q9Z9IwqRCIRMTMBgMvAd3c/UDUeSR1aWhIJAJm9nuC03D/l4qARE17BCIiKU57BCIiKS4pf1a2Y8eO3qNHj6hjiIg0GGvXrv3C3TvVpm9SFoIePXqQm5sbdQwRkQbDzD6sfqmKaWhIRCTFqRCIiKQ4FQIRkRSnQiAikuJUCEREUly1hcDMupnZa2a2Ofw52JsrWMbM7EEz22bB1YTOj5k308zeD28zE/0ARESkbuI5fbQY+L/u/lczawOsNbOX3H1zzDKTgF7hbSjBTxYPNbMOwJ1AFsFvga81sxx335fQRyEiIrVWbSEIf/Xyk/D+ATN7l+Ane2MLwTTgMQ9+r2K1mbULf8J3NPBSzG/evwRkU/76q1JPRo+OOoGksmXLok4gFanRMQIz6wEMBN4qM6srJ//W+u6wrbL2itZ9g5nlmlluXl5eTWKJiEgd1OR6ta2Bpwl+LXF/ooO4+2xgNkBWVpZ+Ce8U0ScyESkrrj0CM0snKALz3b2iqwntIbjq0QmZYVtl7SIikiTiOWvoxEXL33X3f6tksRzg6vDsoQuAgvDYwlJggpm1t+Bi2hPCNhERSRLxDA0NJ7hu7sbwcoYA/wqcBeDuDwNLgMkEF1s/DHw3nLfXzO4B1oT97j5x4FhERJJDPGcNrQCsmmUc+H4l8+YCc2uVTkRETjl9s1hEJMWpEIiIpDgVAhGRFKdCICKS4lQIRERSnAqBiEiKUyEQEUlxKgQiIilOhUBEJMWpEIiIpDgVAhGRFKdCICKS4lQIRERSnAqBiEiKUyEQEUlxKgQiIimu2gvTmNlc4GLgc3fvW8H8WcCMmPWdC3QKr062EzgAHAeK3T0rUcFFRCQx4tkjmAdkVzbT3R9w9wHuPgC4DXi9zOUox4TzVQRERJJQtYXA3ZcD8V5n+ArgiTolEhGRepWwYwRm1pJgz+HpmGYHXjSztWZ2QzX9bzCzXDPLzcvLS1QsERGpRiIPFl8CvFlmWGiEu58PTAK+b2YXVdbZ3We7e5a7Z3Xq1CmBsUREpCqJLATTKTMs5O57wn8/BxYCQxK4PRERSYCEFAIzOw0YBSyKaWtlZm1O3AcmAJsSsT0REUmceE4ffQIYDXQ0s93AnUA6gLs/HC7298CL7n4opusZwEIzO7GdP7r7C4mLLiIiiVBtIXD3K+JYZh7BaaaxbR8A/WsbTERE6oe+WSwikuJUCEREUpwKgYhIilMhEBFJcSoEIiIpToVARCTFqRCIiKQ4FQIRkRSnQiAikuJUCEREUpwKgYhIilMhEBFJcSoEUi927txJ3759417+wgsvLNfm7gDcddddJ03H+vnPf17rbQL8+c9/ZvPmzTXq4+7s3LmTefPmVTh/2bJlXHzxxTVaZ2OWnZ1Nu3btyj0nM2bM4JxzzqFv375ce+21FBUVlc4rKiri/PPPB+Daa6+lc+fO5f5vFyxYQJ8+fWjSpAm5ubmn/oE0IioEkpRWrlxZrm3+/Pk88MADHDlyhPvvv5/58+eXWya2ENRGbQrBjTfeyIoVK/joo4+47rrr2LNnT50y1FRxcXG9bq+uZs2axeOPP16ufcaMGbz33nts3LiRwsJC5syZUzpvxYoVDB8+HIBrrrmGF14o/4v2ffv25ZlnnuGiiyq9EKJUQoVA6t0HH3zAwIEDWbNmDe+88w5DhgxhwIABnHfeebz//vsAtG7duly/K6+8kszMTB544AHOOussrrzyypPm33rrrRQWFjJgwABmzJgBwPHjx/nHf/xH+vTpw4QJEygsLARg+/btZGdnM2jQIEaOHMl7773HypUrycnJYdasWQwYMIDt27fzX//1XwwePJj+/ftz2WWXcfjw4XK5HnroIZ544gnmzp3LL37xC7p27VrpY//LX/7CsGHDGDhwIBdeeCFbtmwB4KKLLmL9+vWly40YMYK3336bQ4cOce211zJkyBAGDhzIokXBtZ/mzZvH1KlTGTt2LOPGjatwW8uWLWP06NF861vf4utf/zozZswo3Yvq0aMHX3zxBQC5ubmMHj0aCPa2Zs6cyciRI+nevTvPPPMMt9xyC/369SM7O/ukT+m1NW7cONq0aVOuffLkyZgZZsaQIUPYvXt36bwXXniBSZMmlT5XHTp0KNf/3HPP5ZxzzqlzvpTk7kl3GzRokEvjsmPHDu/Tp4+/9957PmDAAF+/fr27u990003+hz/8wd3djx496ocPH3Z391atWpVbx/z58/3+++/3H/3oR37ffff5/Pnzyy0T22/Hjh2elpbm69atc3f3yy+/3B9//HF3dx87dqxv3brV3d1Xr17tY8aMcXf3mTNn+oIFC0rX8cUXX5Tev/322/3BBx8st80bb7zRH3/8cf/pT3/q119/ve/Zs+ek+a+99ppPmTLF3d0LCgq8qKjI3d1feukl/+Y3v+nu7vPmzfObb77Z3d23bNniJ/4GbrvtttLM+/bt8169evnBgwf9v//7v71r167+5ZdflssTu922bdv6rl27/Pjx437BBRf4G2+84e7u3bt397y8PHd3X7NmjY8aNcrd3e+8804fPny4Hzt2zNevX+8tWrTwJUuWuLv7pZde6gsXLiy3nfvvv9/79+9f7vaDH/ygymwnnpOyjh075gMHDvTly5eXtg0ePNgPHTpUOn3i9VSRUaNG+Zo1ayrddmMF5Hot33PjuULZXOBi4HN3LzfgamajCS5RuSNsesbd7w7nZQO/BdKAOe7+y4RUL2mQ8vLymDZtGs888wy9e/cGYNiwYdx7773s3r2bb37zm/Tq1avS/ldccQVmxl133cUtt9xS4TGCsnr27MmAAQMAGDRoEDt37uTgwYOsXLmSyy+/vHS5o0ePVth/06ZN/PjHPyY/P5+DBw8yceLEcss89NBDfPjhhxQXF/OTn/ykyjwFBQXMnDmT999/HzMr/YR9+eWXc8899/DAAw8wd+5crrnmGgBefPFFcnJy+NWvfgXAkSNH+OijjwAYP358hZ+MYw0ZMoTMzEwABgwYwM6dOxkxYkSVfSZNmkR6ejr9+vXj+PHjZGdnA9CvXz927txZbvlZs2Yxa9asKtdZE//8z//MRRddxMiRIwHYs2cPHTp0oGXLlgnbhpys2kJAcOWx/wAeq2KZN9z9pCM/ZpYG/A4YD+wG1phZjrvXbABWGo3TTjuNs846ixUrVpQWgu985zsMHTqU5557jsmTJ/PII48wduzYCvuHlz0tPVh8YroqGRkZpffT0tIoLCykpKSEdu3anTQUU5lrrrmGP//5z/Tv35958+axbNmyCnP16NGj9M27KnfccQdjxoxh4cKF7Ny5s3RIpmXLlowfP55Fixbx1FNPsXbtWiDYY3/66afLDXm89dZbtGrVqtrtlX38J44nNG3alJKSEiAoLhX1adKkCenp6aXPc5MmTSo8HvHAAw9UeLzmoosu4sEHH6w2Y6yf/vSn5OXl8cgjj5S2vfDCCxUWYEmcao8RuPtyYG8t1j0E2ObuH7j7MeBJYFot1iONRLNmzVi4cCGPPfYYf/zjH4HgeMHZZ5/ND3/4Q6ZNm8aGDRvqtI309PRqx7Hbtm1Lz549WbBgARC82b799tsAtGnThgMHDpQue+DAAbp06UJRUVGFb3Y1VVBQUHoMoexZRtdffz0//OEPGTx4MO3btwdg4sSJ/Pu//3vp3s+6devqnAGCYwQnis3TTz9dp3XNmjWL9evXl7vVtAjMmTOHpUuX8sQTT9Ckyd/emmKPD8ipkaiDxcPM7G0ze97M+oRtXYFdMcvsDtsqZGY3mFmumeXm5eUlKJYkm1atWrF48WJ+85vfkJOTw1NPPUXfvn0ZMGAAmzZt4uqrr67T+m+44QbOO++80oPFlZk/fz6PPvoo/fv3p0+fPqUHYadPn84DDzzAwIED2b59O/fccw9Dhw5l+PDhfP3rX69TNoBbbrmF2267jYEDB5b7dD1o0CDatm3Ld7/73dK2O+64g6KiIs477zz69OnDHXfcUecMAHfeeSc333wzWVlZpKWlJWSd8Ro5ciSXX345r7zyCpmZmSxduhQIzr767LPPGDZsGAMGDODuu+/m+PHjbNu27aTn/oorrmDYsGFs2bKFzMxMHn30UQAWLlxIZmYmq1atYsqUKdqLqAGLZ5zVzHoAiys5RtAWKHH3g2Y2Gfitu/cys28B2e5+fbjcVcBQd7+puu1lZWW5zgOWVPPxxx8zevRo3nvvvZM+EaeyFStW8Ic//IGHH3446ihJz8zWuntWbfrW+dXm7vvd/WB4fwmQbmYdgT1At5hFM8M2ESnjscceY+jQodx7770qAjFGjBihIlAP4jlYXCUzOxP4zN3dzIYQFJcvgXygl5n1JCgA04Hv1HV7Io3R1VdfXethsY0bN3LVVVed1JaRkcFbb72ViGiSAuI5ffQJYDTQ0cx2A3cC6QDu/jDwLeB7ZlYMFALTw3Nai83sJmApwemjc939nVPyKERSWL9+/eI6A0qkMnEdI6hvOkYgIlIzkR4jEBGRhk2FQEQkxakQiIikOBUCEZEUp0IgIpLiVAgk4ebNm8dll13G73//+5N+t0dEkpMKgSSUu7NgwQI+/vhjfv3rX7N9+/aoI4lINer8zWKRWNu2bSMvL4/27duTnp5e42sGi0j90x6BJNSyZctwd/bt28fEiRNp2lSfNUSSnQqBJIy7k5OTQ5s2bTAzJkyYEHUkEYmDCoEkzI4dO/jss89IT0+nWbNmpZeIFJHkpkIgCRM7LDR+/HjS09OjjiQicVAhkIQ4MSzUunVrzExXhxJpQFQIJCE+/PBD9uzZQ0ZGBunp6QwcODDqSCISJxUCSYjXX3+9dFho3LhxNGvWLOpIIhKnaguBmc01s8/NbFMl82eY2QYz22hmK82sf8y8nWH7ejPTBQYasRNnCwEaFhJpYOLZI5gHZFcxfwcwyt37AfcAs8vMH+PuA2p7wQRJfrt27eKjjz4iIyODtLQ0Bg0aFHUkEamBaguBuy8H9lYxf6W77wsnVxNcpF5SyImzhfLz8xkzZgwZGRlRRxKRGkj0MYLrgOdjph140czWmtkNVXU0sxvMLNfMcvPy8hIcS06lE2cLuTuTJk2KOo6I1FDCCoGZjSEoBD+KaR7h7ucDk4Dvm9lFlfV399nunuXuWZ06dUpULDnFdu/ezc6dO2nevDlpaWlkZWkEUKShSUghMLPzgDnANHf/8kS7u+8J//0cWAgMScT2JHm88cYbAOTn5zNq1CiaN28ecSIRqak6FwIzOwt4BrjK3bfGtLcyszYn7gMTgArPPJKGa9GiRbRs2VLDQiINWLU/DWlmTwCjgY5mthu4E0gHcPeHgZ8ApwMPmRlAcXiG0BnAwrCtKfBHd3/hFDwGicjHH3/M9u3b6dixI8eOHWPw4MFRRxKRWqi2ELj7FdXMvx64voL2D4D+5XtIY/HGG2+Uni00YsQIWrRoEXUkEakFfbNYai0nJ4dWrVpx/PhxJk+eHHUcEaklFQKplU8//ZStW7fSsmVLzIwhQ3QegEhDpUIgtbJixQrcnYKCAoYPH06rVq2ijiQitaRCILWSk5NDy5YtKS4u1rCQSAOnQiA19vnnn/Puu+/SqlUrzIwLLrgg6kgiUgcqBFJjscNCF1xwAa1bt446kojUgQqB1FhOTg4tWrSguLiYKVOmRB1HROpIhUBq5IsvvuCdd94pvSTlsGHDoo4kInWkQiA1snLlSgD2799PVlZW6cVoRKThUiGQGlm0aBHNmzfn2LFjXHzxxVHHEZEEUCGQuO3du5eNGzeWDgtdeOGFUUcSkQRQIZC4rVy5EnfnwIEDDBo0iNNOOy3qSCKSACoEErdnn32WjIwMjh49qmEhkUZEhUDikp+fz7p162jTpo2GhUQaGRUCiUvssFD//v1p37591JFEJEFUCCQuscNCU6dOjTqOiCRQXIXAzOaa2edmVuGlJi3woJltM7MNZnZ+zLyZZvZ+eJuZqOBSfwoKCvjrX/9a+p2B4cOHR5xIRBIp3j2CeUB2FfMnAb3C2w3AfwKYWQeCS1sOJbhw/Z1mpjGFBmbVqlWUlJRw8OBB+vXrR4cOHaKOJCIJFFchcPflwN4qFpkGPOaB1UA7M+sCTARecve97r4PeImqC4okocWLF9OsWTOOHDmiYSGRRihRxwi6ArtipneHbZW1l2NmN5hZrpnl5uXlJSiW1NWBAwdYs2YNbdu2BWDEiBERJxKRREuag8XuPtvds9w9q1OnTlHHkdDq1atxdw4dOkTv3r3p2LFj1JFEJMESVQj2AN1ipjPDtsrapYFYvHgxTZs2pbCwUMNCIo1UogpBDnB1ePbQBUCBu38CLAUmmFn78CDxhLBNGoCDBw+yevXq0p+SGDlyZMSJRORUaBrPQmb2BDAa6GhmuwnOBEoHcPeHgSXAZGAbcBj4bjhvr5ndA6wJV3W3u1d10FmSyFtvvYW7c/jwYc455xw6d+4cdSQROQXiKgTufkU18x34fiXz5gJzax5NorZkyRLS0tI4dOgQ06ZNizqOiJwiSXOwWJLLoUOHePPNN2nXrh1mpmEhkUZMhUAqtGbNGkpKSjh8+DC9evXizDPPjDqSiJwiKgRSoRPDQocPH9bZQiKNnAqBlFNYWMgbb7xBu3btAJ0tJNLYqRBIObm5uRw/fpzCwkLOPvtsunat8MvgItJIqBBIOUuWLKFJkyYcOnRIw0IiKUCFQE5y5MgRXn/99dJhoVGjRkUbSEROORUCOcnatWs5fvw4R44coXv37mRmZkYdSUROMRUCOcnzzz8PBD8voWEhkdSgQiCljh07xmuvvUb79u0xMw0LiaQIFQIptXbtWoqLizl69CjdunXjrLPOijqSiNQDFQIptXRp8MOwBw4cYOrUqZhZxIlEpD6oEAgQDAu9/PLLpb8tpGEhkdShQiAArFu3jqKiIoqKiujSpQs9evSIOpKI1BMVAgGCYSF3Z//+/UybNk3DQiIpRIVAKCoq4uWXX6Z9+/Y0adKE0aNHRx1JROpRXIXAzLLNbIuZbTOzWyuY/xszWx/etppZfsy84zHzchKYXRLk7bff5ujRoxQVFdG5c2fOPvvsqCOJSD2q9gplZpYG/A4YD+wG1phZjrtvPrGMu//vmOV/AAyMWUWhuw9IWGJJuKVLl1JSUsKBAwf49re/rWEhkRQTzx7BEGCbu3/g7seAJ4Gqrlt4BfBEIsLJqVdcXMyLL75Ihw4dMDPGjh0bdSQRqWfxFIKuwK6Y6d1hWzlm1h3oCbwa09zczHLNbLWZXVrZRszshnC53Ly8vDhiSSJs2LCBI0eOUFxczOmnn85Xv/rVqCOJSD1L9MHi6cCf3P14TFt3d88CvgP8PzP7u4o6uvtsd89y96xOnTolOJZU5qWXXqKkpISCggIuueQSDQuJpKB4CsEeoFvMdGbYVpHplBkWcvc94b8fAMs4+fiBRKi4uJgXXnih9GwhDQuJpKZ4CsEaoJeZ9TSzZgRv9uXO/jGzrwPtgVUxbe3NLCO83xEYDmwu21eisWnTJg4fPkxJSQkdOnTgnHPOiTqSiESg2kLg7sXATcBS4F3gKXd/x8zuNrPY3ymeDjzp7h7Tdi6Qa2ZvA68Bv4w920ii9fLLL5cOC02ZMkXDQiIpqtrTRwHcfQmwpEzbT8pM31VBv5VAvzrkk1OkpKSEJUuW0K5dOwoKChg3blzUkUQkIvpmcYratGkThw4dwt1p164d5557btSRRCQiKgQp6pVXXikdFpo8ebKGhURSmApBCoodFmrSpAnf+MY3oo4kIhFSIUhB7777Lvv37wegdevW9O7dO+JEIhIlFYIUdGJYKD8/n8mTJ9OkiV4GIqlM7wApxt1ZvHgxp512moaFRARQIUg57733Hvn5+TRp0oRWrVrRt2/fqCOJSMRUCFLMq6++iruzb98+srOzSUtLizqSiERMhSCFuDvPPvts6bDQ+PHjo44kIklAhSCFbN26lb1799KkSRNatGhBv3760reIqBCklFdffbX0bKGJEyfStGlcvzAiIo2cCkGKiD1byMyYMGFC1JFEJEmoEKSIbdu2kZeXR9OmTcnIyKB///5RRxKRJKFCkCJef/11SkpK2LdvHxMmTNCwkIiUUiFIAe5OTk4Obdu21bCQiJQTVyEws2wz22Jm28zs1grmX2NmeWa2PrxdHzNvppm9H95mJjK8xGfHjh18+umnpKen06xZMwYO1NVCReRvqh0fMLM04HfAeGA3sMbMciq40tj/uPtNZfp2AO4EsgAH1oZ99yUkvcRl2bJlpcNCU6ZMIT09PepIIpJE4tkjGAJsc/cP3P0Y8CQwLc71TwRecve94Zv/S0B27aJKbZwYFmrTpg1mxsSJE6OOJCJJJp5C0BXYFTO9O2wr6zIz22BmfzKzbjXsi5ndYGa5Zpabl5cXRyyJx4cffsjHH39MRkYG6enpnH/++VFHEpEkk6iDxc8CPdz9PIJP/b+v6Qrcfba7Z7l7VqdOnRIUS2LPFho7dizNmjWLOpKIJJl4CsEeoFvMdGbYVsrdv3T3o+HkHGBQvH3l1DoxLASQna1ROREpL55CsAboZWY9zawZMB3IiV3AzLrETE4F3g3vLwUmmFl7M2sPTAjbpB7s2rWLXbt2kZGRQVpaGoMGDaq+k4iknGrPGnL3YjO7ieANPA2Y6+7vmNndQK675wA/NLOpQDGwF7gm7LvXzO4hKCYAd7v73lPwOKQCJ4aF8vPzGTt2LBkZGVFHEpEkFNfXS919CbCkTNtPYu7fBtxWSd+5wNw6ZJRaysnJoXXr1hw+fJhJkyZFHUdEkpS+WdxI7dmzhx07dtC8eXPS0tIYPHhw1JFEJEmpEDRSy5cvx90pKChg1KhRNG/ePOpIIpKkVAgaqZycHFq1akVJSYmGhUSkSioEjdAnn3zCtm3baNmyJWamYSERqZIKQSO0fPlyAPLz8xkxYgQtW7aMOJGIJDMVgkbo2WefpWXLlpSUlDBlypSo44hIklMhaGQ+++wztm7dWroXMGTIkIgTiUiyUyFoZFasWFF6ttCFF15Iq1atoo4kIklOhaCRycnJoUWLFhQXF2tYSETiokLQiOTl5bF582ZatWqFmTF06NCoI4lIA6BC0IisWLECgP379zN06NDSXx0VEamKCkEj8uyzz9K8eXOKioo0LCQicVMhaCS+/PJLNm3aROvWrQEYNmxYxIlEpKFQIWgk3nzzTdyd/fv3M3jwYNq2bRt1JBFpIFQIGonYYaGLL7446jgi0oCoEDQCe/fu5e2339awkIjUSlyFwMyyzWyLmW0zs1srmP9/zGyzmW0ws1fMrHvMvONmtj685ZTtK3W3atUqAA4cOMDAgQNp165dtIFEpEGp9gplZpYG/A4YD+wG1phZjrtvjllsHZDl7ofN7HvA/cC3w3mF7j4gsbElVk5ODs2aNePo0aNMnTo16jgi0sDEs0cwBNjm7h+4+zHgSWBa7ALu/pq7Hw4nVwOZiY0plcnPz2fdunW0adMGM9OwkIjUWDyFoCuwK2Z6d9hWmeuA52Omm5tZrpmtNrNLK+tkZjeEy+Xm5eXFEUvgb8NCBw8epH///nTo0CHiRCLS0MR18fp4mdmVQBYwKqa5u7vvMbOzgVfNbKO7by/b191nA7MBsrKyPJG5GrPFixeTnp7OkSNHuOSSS6KOIyINUDx7BHuAbjHTmWHbSczsG8DtwFR3P3qi3d33hP9+ACwDBtYhr8TYv38/ubm5pd8ZGD58eMSJRKQhiqcQrAF6mVlPM2sGTAdOOvvHzAYCjxAUgc9j2tubWUZ4vyMwHIg9yCxxOnr0KO4n7yitWrUKd+fgwYP069eP008/PaJ0ItKQVTs05O7FZnYTsBRIA+a6+ztmdjeQ6+45wANAa2CBmQF85O5TgXOBR8yshKDo/LLM2UYSp5kzZ3LkyBGmTZvGqFGj6NmzJ88995yGhUSkzqzsp8xkkJWV5bm5uVHHSCrXXnstGzZsICy0dOnShU8++YSOHTvyxRdfsGTJEjp16hRxShGJipmtdfes2vTVN4sbiF69epGWlsaZZ57JGWecwcGDB2nevDnHjh2jpKSEp59+mi1btpQbPhIRqU5CzxqSU+erX/0qx48fB8DMyl2Ccs6cOcydO5fTTz+diy++mOnTp+uYgYjERXsEDURmZibp6ekVzmvZsiVdunShc+fOFBQUMHv2bPbsKXdil4hIhVQIGoivfOUr1Q77FBYWUlRUxIMPPsh5551XT8lEpKFTIWggunTpQnFxcaXFoLCwkP3793P//fczatSoCpcREamICkED0axZMzp16sTRo0fLzSssLKSgoID77ruPMWPGRJBORBoyFYIGpEePHhw5cuSkthNF4Je//CVjx46NKJmINGQqBA1Ir169TtojKCwsJD8/n5///OeMGzcuwmQi0pCpEDQgZ599dukxgtgiMH78+IiTiUhDpkLQgGRmZpKWllZaBH72s58xYcKEqGOJSAOnQtCAfOUrX6GoqIj8/HzuuecesrOzo44kIo2AvlncgHTu3JmOHTty8803M2nSpKjjiEgjoULQgDRt2pRFixbRvHnzqKOISCOioaEGRkVARBJNhUBEJMWpEIiIpLi4CoGZZZvZFjPbZma3VjA/w8z+J5z/lpn1iJl3W9i+xcwmJjC7iIgkQLWFwMzSgN8Bk4DewBVm1rvMYtcB+9z9q8BvgPvCvr0JrnHcB8gGHgrXJyIiSSKes4aGANvc/QMAM3sSmMbJF6GfBtwV3v8T8B8WXFNxGvCkux8FdpjZtnB9qxITP/mMHh11gqotWxZ1Akll+vtITvEMDXUFdsVM7w7bKlzG3YuBAuD0OPsCYGY3mFmumeXm5eXFl15EROosab5H4O6zgdkQXLw+4ji1lqqfKETiob+P5BTPHsEeoFvMdGbYVuEyZtYUOA34Ms6+IiISoXgKwRqgl5n1NLNmBAd/c8oskwPMDO9/C3jVg5/JzAGmh2cV9QR6AX9JTHQREUmEaoeG3L3YzG4ClgJpwFx3f8fM7gZy3T0HeBR4PDwYvJegWBAu9xTBgeVi4PvufvwUPRYREakFq+6C6FHIysry3NzcqGOIiDQYZrbW3bNq01ffLBYRSXEqBCIiKU6FQEQkxakQiIikuKQ8WGxmB4AtUeeopY7AF1GHqAPlj5byR6sh5z/H3dvUpmPSfLO4jC21PfodNTPLbajZQfmjpvzRasj5zazWp1pqaEhEJMWpEIiIpLhkLQSzow5QBw05Oyh/1JQ/Wg05f62zJ+XBYhERqT/JukcgIiL1RIVARCTFJUUhMLMOZvaSmb0f/tu+gmUGmNkqM3vHzDaY2bejyBqTJ9vMtpjZNjO7tYL5GWb2P+H8t8ysRwQxKxVH/v9jZpvD5/oVM+seRc7KVJc/ZrnLzMzNLKlOCYwnv5n9Q/h/8I6Z/bG+M1YmjtfOWWb2mpmtC18/k6PIWRkzm2tmn5vZpkrmm5k9GD6+DWZ2fn1nrEwc2WeEmTea2Uoz6x/Xit098htwP3BreP9W4L4Klvka0Cu8/xXgE6BdRHnTgO3A2UAz4G2gd5ll/hl4OLw/HfifqJ/nGuYfA7QM73+voeUPl2sDLAdWA1lR567h898LWAe0D6c7R527BtlnA98L7/cGdkadu0y+i4DzgU2VzJ8MPA8YcAHwVtSZa5D9wpjXzKR4syfFHgHBRe5/H97/PXBp2QXcfau7vx/e/xj4HOhUXwHLGAJsc/cP3P0Y8CTBY4gV+5j+BIwzM6vHjFWpNr+7v+buh8PJ1QRXl0sW8Tz/APcA9wFH6jNcHOLJ/4/A79x9H4C7f17PGSsTT3YH2ob3TwM+rsd81XL35QTXTanMNOAxD6wG2plZl/pJV7Xqsrv7yhOvGWrwd5ssheAMd/8kvP8pcEZVC5vZEIJPI9tPdbBKdAV2xUzvDtsqXMbdi4EC4PR6SVe9ePLHuo7gE1KyqDZ/uDvfzd2fq89gcYrn+f8a8DUze9PMVptZdr2lq1o82e8CrjSz3cAS4Af1Ey1havr3kazi/rutt5+YMLOXgTMrmHV77IS7u5lVek5rWJkfB2a6e0liU0pZZnYlkAWMijpLvMysCfBvwDURR6mLpgTDQ6MJPtUtN7N+7p4fZag4XQHMc/dfm9kwgqsX9tXfa/0xszEEhWBEPMvXWyFw929UNs/MPjOzLu7+SfhGX+FusJm1BZ4Dbg932aKyB+gWM50ZtlW0zG4za0qwi/xl/cSrVjz5MbNvEBTqUe5+tJ6yxaO6/G2AvsCycDTuTCDHzKa6ezJc+i6e5383wfhuEbDDzLYSFIY19ROxUvFkvw7IBnD3VWbWnODH3JJleKs6cf19JCszOw+YA0xy97jec5JlaCgHmBnenwksKruAmTUDFhKM3f2pHrNVZA3Qy8x6hrmmEzyGWLGP6VvAqx4ewUkC1eY3s4HAI8DUJBqfPqHK/O5e4O4d3b2Hu/cgGCtNliIA8b1+/kywN4CZdSQYKvqgHjNWJp7sHwHjAMzsXKA5kFevKesmB7g6PHvoAqAgZug6qZnZWcAzwFXuvjXujlEfBQ/fG08HXgHeB14GOoTtWcCc8P6VQBGwPuY2IMLMk4GtBMcpbg/b7iZ4w4Hgxb8A2Ab8BTg76ue5hvlfBj6Lea5zos5ck/xlll1GEp01FOfzbwTDW5uBjcD0qDPXIHtv4E2CM4rWAxOizlwm/xMEZx0WEex5XQfcCNwY89z/Lnx8G5PptRNH9jnAvpi/29x41qufmBARSXHJMjQkIiIRUSEQEUlxKgQiIilOhUBEJMWpEIiIpDgVAhGRFKdCICKS4v4/tsar1oVt5Y4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 6\n",
"pp = 61/11, satellite_part = 12\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 193/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -61/11\n",
"Satellite part = -12\n",
"Sigma = -193/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 61/11\n",
"Satellite part = 12\n",
"Sigma = 193/11\n",
"\n",
"[0, 0, 6, 6] 0\n",
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEICAYAAAA3PAFIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAk/klEQVR4nO3de3xU9b3u8c83CddASLgobLyALVpBEUqQyhYFK943WLwiCHipl33c7tOe1uqmeujx2Iu0u8fu1t1aqxBELKBc1IrCrmyLlAIiKihIqfGGWiAQwyUQku/5YxZxCJNkkhlmTRbP+/WaFzOzbs8MyTxZa/1mxtwdERGRli4n7AAiIiLpoEITEZFIUKGJiEgkqNBERCQSVGgiIhIJKjQREYkEFVoLZGZ9zWy1mVnYWcJiZj8zs9ubMP8kM1t2JDOFwcx6mZmbWV7YWUTCpkLLMma2K+5SY2Z7426PC2a7H/ipu7uZtTGz35nZ+2ZWYWZrzeziJmzvhTrb3G9mbyW57MlmtsDMtppZmZm9aGanNGHbdwTFvM/MptWZ1trM5ppZafCCPbzO4j8F/s3MWie7vWxhZo+Y2cbg/3dSE5ctNbPz05QjlDI0s2F1fuZ2BTmuyGQOiR4VWpZx9w4HL8AHwD/F3TfTzHoAI4D5wSJ5wIfAuUAn4PvAbDPrleT2Lq6zzeXAnCTjFgILgVOAY4GVwIIklwXYAvxf4LF6pi8DxgOfJsj9CbABGNWE7WVUA0XxBvDPwJoMxska7v6nOj9zlwG7gEUhR5MWToXW8owE1rh7JYC773b3Ke5e6u417v4c8B4wqKkrDkpwGFASd99zZnZ3ovndfaW7/87dy9y9Cvg5cIqZdUlme+7+jLvPB7YnmLbf3f+fuy8DqutZxVLg0mS2VZeZPWRmH5rZ52b2mpkNC+7vbmZ74h+DmX012AttFdy+0czeMbMdwV7piXHzupn9DzPbBGyq53H/yt3/C6hsYuYZwAnAs8FezV1xk8eZ2Qdmts3MJsctk2Nmd5vZZjPbbmazzaxzMPmV4N+dwfrOMrMvmdkfg3m3mdlMMytsSs5mmAjMdffdR3g7EnEqtJbndGBjfRPN7FjgZGB9M9Y9AfiTu5cevMPdL3P3Hye5/DnAp+5+WEEdIe8AZzRz2VXAAKAz8CQwx8zauvunxIry6rh5rweecvcqMxsN/BswBugG/AmYVWfdlwNDgL7NzJaQu1/PoXvtD8ZNPpvYnvLXgfvM7NTg/n8J8pwL/AOwA/hVMO2c4N/CYH1/Bgz4UTDvqcDxwJT6MpnZm2a2s57Lw409JjPLB64Epjf+DIg0TIXW8hQCFYkmBHsQM4Hp7r6hGeueAExrTigzO47YC+W3m7N8M1UQez6azN2fcPft7n7A3X8GtCFWCBB7cR0PYGa5wFhgRjDtNuBH7v6Oux8AfggMiN9LC6aXufve5mRrph+4+153f4PYIc2DRX8bMNndP3L3fcTK6cr6Doe6+1/dfbG773P3rcC/EyvDhNy9v7sX1nP55yRyjwG2Af+d/EMVSUyF1vLsADrWvdPMcoi96O4H7mjqSs3sbKA7MLcZy3YDXgIedve6eytHUkdgZ3MWNLPvBIcNy81sJ7Hzj12DyQuAvmbWm9gh3nJ3XxlMOxF46OBeCFBGbK+mZ9zqP2xOphTFn2fcA3QIrp8IzIvL+w6xQ7jHJlqJmR1rZk+Z2cdm9jnwBF88L0fCRKDE9SnpkgYqtJbnTWKHFGuZmQG/I/YidUVwPqupJgLPuPuupixkZkXEymyhuz/QjO2m4lRieyNNEpwvu4vYYcUidy8EyokVE8H5ydnE9tKu54u9M4iV1a119kTaufvyuHmO5ItzU9f9IXBxnbxt3f3jetb1w+D+0929gNhzUO/bQ8xsfYIRiwcvv24omJkdDwwn7pytSCpUaC3PYuCrZtY27r7/JPbi/k+JDnPVM+w9fno7Yi/u0xJMW2pmU+pZrgB4EXjV3Q8bOGJmw82s3hdgM8sLHkcukGtmbeMPhVnsLQkHH2frYHr8i+u5wAvJZK2jI3AA2Arkmdl9QEGdeUqAScRGUcYX2q+Be8ysX7DNTmZ2VRLbrGWxtyS0JVYUrYLHlRNMa/A5Az4DTmrC5n4NPHDwkKiZdQvOA0Ls8dfUWV9HYiMOy82sJ/Ddhlbu7v3iRyzWudzWSLbrgeXuvrkJj0ekXiq0FsbdPwP+CIwGCF6obiU2wOFTq/OeteCv4AqgofeWXU7s0N3LCaYdD7xaz3LfAAYDN9T5y/yEuGWX17MsxN5isBe4m9iewN7gvoM2Bvf1JFace4kdQsNib1/oyxdvX2gsa7wXiQ0Rfxd4n9how0MOE7r7q8Re7Ne4+/tx988DfgI8FRySWwck/b6/wEvBYxkKPBJcPzhAo7Hn7EfA94NDiN9JYlsPEXtrxUtmVgGsIDZgBXffAzwAvBqs72vAD4CvEttjfR54pomPrSkmoMEgkkamQ9ctj5n1JfZCcGZj5x7MbDzQz93vacZ2jgNmu/vQZuZ8FJjj7i82Z/lG1v0zYLO7PxzcTilrPdv4I/Ckuz+arnUmsc0j9pyJRJ0KTSQBMxtM7PDu8e6ecFSpiGQXHXIUqcPMpgNLgP+pMhNpObSHJiIikaA9NBERiYRQvnKia9eu3qtXrzA2LSLSYr322mvb3L1b2DmyVSiF1qtXL1avXh3GpkVEWiwze7/xuY5eOuQoIiKRoEITEZFIUKGJiEgkqNBERCQSVGgiIhIJaSk0M7vIzDaa2V/N7LBPXRcRETnSUi604Bt9f0XsE8f7AmODD88VERHJmHS8D+1M4K/u/jcAM3uK2FebvJ2GdWel4cNTX8fSpamvQ+Root87aUw6Djn25NDvkvqIQ7+OHgAzu8XMVpvZ6q1bt6ZhsyIiIl/I2CeFuPsjxL7MkOLi4hb9icj6K08k8/R7J41Jxx7ax8S+Zfeg44L7REREMiYdhbYK6GNmvc2sNXAtsa98FxERyZiUDzm6+wEzuwN4EcgFHnP39SknExERaYK0nENz9z8Af0jHukRERJpDnxQiIiKRoEITEZFIUKGJiEgkqNBERCQSVGgiIhIJKjQREYkEFZqIiESCCk1ERCJBhSYiIpGgQhMRkUhQoYmISCSo0EREJBJUaCIiEgkqNBERiQQVmoiIRIIKTUREIkGFJiIikaBCExGRSFChiYhIJKjQREQkElRoIiISCSo0ERGJBBWaiIhEggpNREQiIaVCM7OrzGy9mdWYWXG6QomIiDRVqnto64AxwCtpyCIiItJseaks7O7vAJhZetKIiIg0U8bOoZnZLWa22sxWb926NVObFRGRo0Sje2hmtgTonmDSZHdfkOyG3P0R4BGA4uJiTzqhiIhIEhotNHc/PxNBREREUqFh+yIiEgmpDtv/hpl9BJwFPG9mL6YnloiISNOkOspxHjAvTVlERESaTYccRUQkElRoIiISCSo0ERGJBBWaiIhEggpNREQiQYUmIiKRoEITEZFIUKGJiEgkqNBERCQSVGgiIhIJKjQREYkEFZqIiESCCk1ERCJBhSYiIpGgQhMRkUhQoYmISCSo0EREJBJUaCIiEgkqNBERiQQVmoiIRIIKTUREIkGFJiIikaBCExGRSFChiYhIJKRUaGY21cw2mNmbZjbPzArTlEtERKRJUt1DWwyc5u79gXeBe1KPJCIi0nR5qSzs7i/F3VwBXJlanKPH8OFhJ4hZujTsBJLt9LMqLUU6z6HdCLxQ30Qzu8XMVpvZ6q1bt6ZxsyIiImDu3vAMZkuA7gkmTXb3BcE8k4FiYIw3tkKguLjYV69e3Yy4IiJHLzN7zd2Lw86RrRo95Oju5zc03cwmAZcBX0+mzERERI6ElM6hmdlFwF3Aue6+Jz2RREREmi7Vc2i/BDoCi81srZn9Og2ZREREmizVUY5fTlcQERGRVOiTQkREJBJUaCIiEgkqNBERiQQVmoiIRIIKTUTSqrS0lNNOOy3p+YcOHXrYfQff0jplypRDbsf74Q9/2OxtAsyfP5+33367Scu4O6WlpUybNi3h9KVLl3LZZZc1aZ1RZWYjgtHvBy+VZnZ53PRrzWyymX3FzP5sZvvM7Dt11vGYmf3dzNYls00VmoiEavny5YfdN3PmTKZOnUplZSUPPvggM2fOPGye+EJrjuYU2m233cayZcv44IMPuOmmm/j4449TyhBl7v6yuw9w9wHAecAeIP7zfy8GFgFlwJ3ATxOsZhpwUbLbVKGJyBHzt7/9jYEDB7Jq1SrWr1/PmWeeyYABA+jfvz+bNm0CoEOHDoctN378eI477jimTp3KCSecwPjx4w+Zfvfdd7N3714GDBjAuHHjAKiuruab3/wm/fr144ILLmDv3r0AbN68mYsuuohBgwYxbNgwNmzYwPLly1m4cCHf/e53GTBgAJs3b+a3v/0tgwcP5owzzuCKK65gz57DPyvi4YcfZtasWTz22GP86Ec/omfPnvU+9pUrV3LWWWcxcOBAhg4dysaNGwE455xzWLt2be18Z599Nm+88Qa7d+/mxhtv5Mwzz2TgwIEsWLAAgGnTpjFq1CjOO+88gFMSbcvMhpvZUjObG3yl10wzs2BaqZl1Da4Xm9nS4PoUM5tuZn8ys/fNbIyZPWhmb5nZIjNrVe+Da7orgRcOfgBHkG0AsMbd/+7uq4Cqugu5+yvECi857p7xy6BBg1xEoum9997zfv36+YYNG3zAgAG+du1ad3e/4447/IknnnB393379vmePXvc3T0/P/+wdcycOdMffPBB/973vuc/+clPfObMmYfNE7/ce++957m5uf7666+7u/tVV13lM2bMcHf38847z9999113d1+xYoWPGDHC3d0nTpzoc+bMqV3Htm3baq9PnjzZf/GLXxy2zdtuu81nzJjhP/jBD/zmm2/2jz/++JDpL7/8sl966aXu7l5eXu5VVVXu7r548WIfM2aMu7tPmzbN//Vf/9Xd3Tdu3OgHXw/vueee2sw7duzwPn36+K5du/zxxx/3nj17+vbt2x1Y7QleU4HhQDlwHLEdlT8DZwfTSoGuwfViYGlwfQqwDGgFnEFsD+riYNo84PIE2/kusDbB5ReJcsUt90fgsrjbXwVK6swzBfhOgmV7AesaWv/BS0pvrBYRSWTr1q2MHj2aZ555hr59+wJw1lln8cADD/DRRx8xZswY+vTpU+/yY8eOxcyYMmUKd911V8JzaHX17t2bAQMGADBo0CBKS0vZtWsXy5cv56qrrqqdb9++fQmXX7duHd///vfZuXMnu3bt4sILLzxsnocffpj333+fAwcOcN999zWYp7y8nIkTJ7Jp0ybMjKqq2A7IVVddxf3338/UqVN57LHHmDRpEgAvvfQSCxcu5Kc/jR15q6ys5IMPPgBg5MiRdO7cubGnYKW7fwRgZmuJFcGyRpZ5wd2rzOwtIJfYIUCAt4LlD+HuU4GpjQWJZ2Y9gNOBF+PuvogGvp2luVRoIpJ2nTp14oQTTmDZsmW1hXbdddcxZMgQnn/+eS655BJ+85vfHDyMdpjgaFntoJCDtxvSpk2b2uu5ubns3buXmpoaCgsLDznEV59JkyYxf/58zjjjDKZNm8bSBF/AZmb06tWrtoQacu+99zJixAjmzZtHaWkpw4Mvlmvfvj0jR45kwYIFzJ49m9deew2IHS17+umnOeWUQ48q/uUvfyE/P7/R7QHxTV3NF6/vB/ji9FLbRMu4e42ZVfkXfznUkKAfzOy7wLgE237F3e+sJ9fVwDx3jz+keAFwRX0PpLl0Dk1E0q5169bMmzePkpISnnzySSB2Pu2kk07izjvvZPTo0bz55pspbaNVq1a1ez31KSgooHfv3syZMweIlcYbb7wBQMeOHamoqKidt6Kigh49elBVVZVwEEpTlZeX155jqzsq8uabb+bOO+9k8ODBFBUVAXDhhRfyH//xH7V7o6+//nrKGQKlwKDgekol4u5TPRjoUedSX5kBjAVmHbxhZp2APHffnkqWRFRoInJE5Ofn89xzz/Hzn/+chQsXMnv2bE477TQGDBjAunXrmDBhQkrrv+WWW+jfv3/toJD6zJw5k9/97necccYZ9OvXr3awxbXXXsvUqVMZOHAgmzdv5v7772fIkCH84z/+I1/5yldSygZw1113cc899zBw4EAOHDhwyLRBgwZRUFDADTfcUHvfvffeS1VVFf3796dfv37ce++9KWcI/AB4yMxWE9tzyxgz6wUcD/x33N0jgSVx83Q3s4+AbwPfN7OPzKwgmDaL2PnAU4L7b2pwe8kcm043fcGniBzNtmzZwvDhw9mwYQM5OcnvV0ThCz7N7FHgUXdfke51aw9NRCSDSkpKGDJkCA888ECTyiwq3P3mI1FmoD00EZEWw8ze5vD3a+1z9yFh5Mk2GuUoItJy7G3phxyPpKNvf1dERCJJhSYiIpGgQhMRkUhQoYmISCSo0ESkWdydqVOnsmDBgoSfTC+SaRrlKCLNsn79ep566incnSeffJLf//73YUeSo5wKTUSaZdasWeTl5VFTU8PgwYPDjiOiQ44i0nTbtm1jyZIltV9pEv/1LCJhSanQzOx+M3vTzNaa2Utm9g/pCiYi2WvhwoVUV1dTXl7O4MGDOfHEE8OOJJLyHtpUd+/v7gOA54CGv/FORFq8/fv388QTT1BYWEhVVRXXX3992JFEgBQLzd0/j7uZD2T+gyFFJKNeeeUVKioqqKmpoWvXrpx55plhRxIB0jAoxMweACYA5cCIBua7BbgF4IQTTkh1syISAndn+vTptG3bloqKCm699VZyc3PDjiUCJLGHZmZLzGxdgstoAHef7O7HAzOBO+pbj7s/4u7F7l7crVu39D0CEcmYjRs3smHDBvLz88nLy+Piiy8OO5JIrUb30Nz9/CTXNRP4A/C/U0okIllr1qxZAGzfvp0xY8ZQUFAQciKRL6Q6yrFP3M3RwIbU4ohItiorK2PRokV06dIFgGuuuSbkRCKHSvUc2o/N7BSgBngfuC31SCKSjZ577jmqq6upqKigf//+nHTSSWFHEjlESoXm7lekK4iIZK8DBw4wY8YMOnXqxOeff87EiRPDjiRyGH1SiIg0atmyZezcuROAoqIihg4dGm4gkQRUaCLSqOnTp9OmTRvKy8uZMGECeXn6GFjJPio0EWnQpk2bWLduHR06dCAvL4/LLrss7EgiCanQRKRBc+bMwcwoKyvj0ksvpbCwMOxIIgmp0ESkXuXl5Tz77LN07twZd9dQfclqKjQRqdfzzz9PVVUVu3btom/fvpx88slhRxKplwpNRBKqrq6mpKSEgoIC9u3bp6H6kvVUaCKS0IoVK9i+fTs5OTl06tSJYcOGhR1JpEEqNBFJqKSkhFatWlFeXs64ceNo1apV2JFEGqRCE5HDlJaWsmbNGjp16kROTg6jRo0KO5JIo1RoInKY2bNnA7FP1b/gggtqP5BYJJup0ETkEBUVFcyfP792qP7YsWPDjiSSFBWaiBxi0aJFVFVVsWfPHvr06cOpp54adiSRpKjQRKRWTU0N06dPp0OHDlRWVjJp0iTMLOxYIklRoYlIrVWrVvHZZ5+Rl5dHhw4dGD58eNiRRJKmQhORWiUlJeTl5bFz507GjRtH69atw44kkjQVmogA8OGHH7Jy5UoKCws1VF9aJBWaiAAwd+5cIDZUf8SIERxzzDEhJxJpGhWaiLB7927mzp1bO1T/uuuuCzuSSJOp0ESExYsXs3//fiorK+nduzenn3562JFEmkyFJnKUc3cef/xx8vPz2bNnDzfccIOG6kuLpEITOcqtWbOGLVu20Lp1a9q3b8+IESPCjiTSLCo0kaPcjBkzyM3NZceOHVx99dW0bds27EgizaJCEzmKbdmyhVdffZWioiLMjDFjxoQdSaTZ0lJoZva/zMzNrGs61icimfH0008DsGPHDoYNG0aPHj1CTiTSfCkXmpkdD1wAfJB6HBHJlMrKSubMmUNRURHV1dWMGzcu7EgiKclLwzp+DtwFLEjDuiTDsuWj+pYuDTtB9jnS/zfbty+htHQvOTk5tGp1PN/61kASDW7U/420FCntoZnZaOBjd38jiXlvMbPVZrZ669atqWxWRFLk7nz66TRyctpTU7Ob7t0naqi+tHiN7qGZ2RKge4JJk4F/I3a4sVHu/gjwCEBxcbE3IaMcQfrrO3sdyf+btWvf4JZbPqCoqIjdu6t56aWRtG9/5LYnkgmNFpq7n5/ofjM7HegNvBH8ZXccsMbMznT3T9OaUkTS6sknn8TMKCsrY/z48bRXm0kENPscmru/BdR+eqmZlQLF7r4tDblE5Aj57LPPWLp0KV26dGHbtm1ceeWVYUcSSQu9D03kKDNv3jzcnZ07d3LWWWfRs2fPsCOJpEXaCs3de2nvTCS77du3j1mzZlFYWEh1dTXXX3992JFE0iYdw/ZFpIV4+eWX2bNnDzk5OXTv3p1BgwaFHUkkbXTIUeQo4e5MmzaNdu3asWvXLiZNmkROjl4CJDr00yxylFi/fj2bN2+mXbt2tG7dmgsvvDDsSCJppUITOUrMmjWLnJwcduzYwTe+8Q3y8/PDjiSSVio0kaPAtm3bWLJkCZ07d8bdNVRfIkmFJnIUWLhwITU1NZSXl1NcXEyvXr3CjiSSdio0kYjbv38/TzzxBJ06daKqqkpD9SWyVGgiEffKK69QUVFBTU0N3bp1Y8iQIWFHEjkiVGgiEebuTJ8+nbZt21JRUcHEiRPJzc0NO5bIEaFCE4mwjRs3smHDBvLz88nLy+Piiy8OO5LIEaNCE4mwWbNmAbB9+3ZGjRpFQUFByIlEjhwVmkhElZWVsWjRIrp06QLANddcE3IikSNLhSYSUc899xzV1dVUVFTQv39/TjrppLAjiRxRKjSRCDpw4AAzZsyoHao/ceLEsCOJHHEqNJEIWrZsGTt37gSgsLCQoUOHhhtIJANUaCIRNH36dNq0acPnn3/OhAkTyMvTN0VJ9KnQRCJm06ZNrFu3jg4dOpCXl8dll10WdiSRjFChiUTMnDlzMDPKysq45JJLKCwsDDuSSEao0EQipLy8nGeffbb2U/WvvvrqsCOJZIwKTSRCnn/+eaqqqti1axennnoqp5xyStiRRDJGhSYSEdXV1ZSUlFBQUMC+ffuYNGlS2JFEMkqFJhIRK1asYPv27eTk5FBQUMCwYcPCjiSSUSo0kYgoKSmhVatWlJeXM378eFq1ahV2JJGMUqGJREBpaSlr1qyhU6dO5OTkMGrUqLAjiWRcSoVmZlPM7GMzWxtcLklXMBFJ3uzZs4HYp+qPHDmy9gOJRY4m6fj4gJ+7+0/TsB4RaYaKigrmz59P586d2bFjB9ddd13YkURCoUOOIi3cokWLqKqqYu/evXz5y1/m1FNPDTuSSCjSUWh3mNmbZvaYmRXVN5OZ3WJmq81s9datW9OwWRGpqalh+vTpdOjQgcrKSiZNmoSZhR1LJBSNFpqZLTGzdQkuo4H/BL4EDAA+AX5W33rc/RF3L3b34m7duqUrv8hRbdWqVXz22Wfk5eWRn5/P8OHDw44kEppGz6G5+/nJrMjMfgs8l3IiEUlaSUkJeXl57Ny5k1tvvZXWrVuHHUkkNKmOcuwRd/MbwLrU4ohIsj788ENWrlxJYWGhhuqLkPooxwfNbADgQClwa6qBRCQ5c+fOBaCsrIwRI0ZwzDHHhJxIJFwpFZq7X5+uICKSvN27dzN37lw6d+5MWVmZhuqLoGH7Ii3S4sWL2b9/P5WVlfTu3ZvTTz897EgioVOhibQw7s7jjz9Ofn4+e/bs0VB9kYAKTaSFWbNmDVu2bKF169a0a9eO8847L+xIIllBhSbSwsyYMYPc3Fx27NjBNddcQ9u2bcOOJJIVVGgiLciWLVt49dVXKSoqwswYM2ZM2JFEsoYKTaQFefrppwHYsWMHw4YNo0ePHo0sIXL0UKGJtBCVlZXMmTOHoqIiampqGDduXNiRRLKKCk0kCz399NO88847uHvtfUuWLGHv3r3s37+f4447joEDB4aYUCT7pOP70EQkzR566CF27dpF3759mTRpEueccw7Tpk2jffv27N69m29961saqi9ShwpNJAvl5+fTpk0b3n//fe65557aIuvSpQvV1dWMHDky7IgiWUeHHEWyUIcOHaiurqawsJDu3bvTqlUrCgsLKSsro2fPnmzevPmQw5EiokITyUoFBQVUV1fX3m7Xrh3t2rWjW7dulJaWcuONNzJ27FheeOEFKisrQ0wqkj1UaCJZqFOnTocU2kG5ubkcc8wxHHvssWzZsoXvfe97XHfdddTU1ISQUiS7qNBEslBhYWHCQjvIzKipqaFDhw58+9vfJidHv8oiGhQikoUKCws5cOBAwmnuztatW+nUqRO//OUvOfnkkzOcTiQ76c86kSxUVFSUcA+tpqaGTz/9lC996UvMnDlTZSYSR4UmkoU6dux42GHEAwcO8Mknn3Duuefy6KOP0q1bt5DSiWQnHXIUyUL5+fnk5ubW3t63bx/btm1j4sSJ3HHHHYdME5EYFZpIFsrPz6/9JJCKigp2797Nfffdx+WXXx5uMJEspkITyUIHC2379u3k5uby8MMPM3jw4LBjiWQ1nUMTyULt27enoqKCoqIiZsyYoTITSYL20ESyUPfu3Rk7diy33347nTt3DjuOSIugQhPJQh07dmTy5MlhxxBpUXTIUUREIiHlQjOzfzGzDWa23sweTEcoERGRpkrpkKOZjQBGA2e4+z4zOyY9sURERJom1XNotwM/dvd9AO7+99QjydFo+PCwE2SfpUvDTiDSsqR6yPFkYJiZ/cXM/tvM6h1bbGa3mNlqM1u9devWFDcrIiJyqEb30MxsCdA9waTJwfKdga8Bg4HZZnaSJ/gqXXd/BHgEoLi4WF+1K4fQ3oiIpKrRQnP38+ubZma3A88EBbbSzGqAroB2wUREJKNSPeQ4HxgBYGYnA62BbSmuU0REpMlSHRTyGPCYma0D9gMTEx1uFBEROdJSKjR33w+MT1MWERGRZtMnhYiISCSo0EREJBJUaCIiEgkqNBERiQQLY1CimVUAGzO+4fTpSst+e0JLzt+Ss4Pyh62l5z/F3TuGHSJbhfV9aBvdvTikbafMzFYrfzhacnZQ/rBFIX/YGbKZDjmKiEgkqNBERCQSwiq0R0Labroof3hacnZQ/rApf4SFMihEREQk3XTIUUREIkGFJiIikZCRQjOzzma22Mw2Bf8WJZhngJn92czWm9mbZnZNJrI1xMwuMrONZvZXM7s7wfQ2Zvb7YPpfzKxXCDETSiL7t83s7eC5/i8zOzGMnPVpLH/cfFeYmZtZVg3FTia/mV0d/B+sN7MnM52xIUn8/JxgZi+b2evBz9AlYeRMxMweM7O/B98Ckmi6mdkvgsf2ppl9NdMZG5JE/nFB7rfMbLmZnZHpjFnL3Y/4BXgQuDu4fjfwkwTznAz0Ca7/A/AJUJiJfPVkzgU2AycR+563N4C+deb5Z+DXwfVrgd+HlbcZ2UcA7YPrt2dL9mTzB/N1BF4BVgDFYedu4vPfB3gdKApuHxN27ibmfwS4PbjeFygNO3dctnOArwLr6pl+CfACYMDXgL+EnbmJ+YfG/dxcnG35w7xk6pDjaGB6cH06cHndGdz9XXffFFzfAvwd6JahfImcCfzV3f/msa/JeYrY44gX/7jmAl83M8tgxvo0mt3dX3b3PcHNFcBxGc7YkGSee4D7gZ8AlZkMl4Rk8n8T+JW77wBw979nOGNDksnvQEFwvROwJYP5GuTurwBlDcwyGijxmBVAoZn1yEy6xjWW392XH/y5Ift+d0OVqUI71t0/Ca5/Chzb0Mxmdiaxvww3H+lgDegJfBh3+6PgvoTzuPsBoBzokpF0DUsme7ybiP3Fmi0azR8cJjre3Z/PZLAkJfP8nwycbGavmtkKM7soY+kal0z+KcB4M/sI+APwL5mJlhZN/f3IZtn2uxuqtH30lZktAbonmDQ5/oa7u5nV+16B4C+lGcS+/bomXfkkMTMbDxQD54adJVlmlgP8OzAp5CipyCN22HE4sb+wXzGz0919Z5ihmmAsMM3df2ZmZwEzzOw0/c5mjpmNIFZoZ4edJVukrdDc/fz6ppnZZ2bWw90/CQor4eEVMysAngcmB4cCwvQxcHzc7eOC+xLN85GZ5RE79LI9M/EalEx2zOx8Yn9wnOvu+zKULRmN5e8InAYsDY7wdgcWmtkod8+Gz7pL5vn/iNi5jyrgPTN7l1jBrcpMxAYlk/8m4CIAd/+zmbUl9sG/2XTotD5J/X5kMzPrDzwKXOzu2fCakxUydchxITAxuD4RWFB3BjNrDcwjdmx7boZyNWQV0MfMegfZriX2OOLFP64rgT96cKY2ZI1mN7OBwG+AUVl2/gYaye/u5e7e1d17uXsvYucRsqXMILmfnfnE9s4ws67EDkH+LYMZG5JM/g+ArwOY2alAW2BrRlM230JgQjDa8WtAedwpkaxnZicAzwDXu/u7YefJKpkYeULsvNJ/AZuAJUDn4P5i4NHg+nigClgbdxkQ5ogZYqOh3iV2Lm9ycN//IfbiCbFf4jnAX4GVwElh5m1i9iXAZ3HP9cKwMzclf515l5JFoxyTfP6N2GHTt4G3gGvDztzE/H2BV4mNgFwLXBB25rjss4iNkq4itid8E3AbcFvcc/+r4LG9lYU/O43lfxTYEfe7uzrszNly0UdfiYhIJOiTQkREJBJUaCIiEgkqNBERiQQVmoiIRIIKTUREIkGFJiIikaBCExGRSPj/ecV1XnQ9iCAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 7\n",
"pp = -65/11, satellite_part = -12\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -197/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAEICAYAAADhmdstAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjMklEQVR4nO3de5yd47338c/XJKFyNgmxRYTnQStBUuOQUEIdQm1Rh5YtJErTVG36ctoiVEK1lVS7sdmtEkFT3YKQh1JsUiIlBnFOEIIElXMTycREfs8f9z1jZTKTWTOZNevOzPf9eq1X1lr36bdW1lrfdV33NddSRGBmZpZlWxS7ADMzs/o4rMzMLPMcVmZmlnkOKzMzyzyHlZmZZZ7DyszMMs9hVUCStpT0pqTti11LayTpOkk/bsD6wyVNL2RNxSCpt6SQ1KbYtZg1lsOqkSQ9ImlleqmU9EXO7d+lq40Ano6IT9JtLpb0uqQVkt6XdHEDjneopNckLZO0WNIUSTvkue2Wkm6T9EF67FmSjm7kY12ZPtbX8tx2N0kPSlooaYmkv0ravQHHPldSuaQ1kibWWNZO0r2S5qUfxoNqbP5r4DJJ7fI9XlZIukXSHEnrJA1v4LbzJB3eRHUUJegkfavGa25lWseJzVmHZYfDqpEi4uiI6BARHYBJwLiq2xExMl1tJHBXzmYCzgC6AoOBcyWdkuch3wSOioguwL8A7wD/nee2bYCPgEOAzsDlwD2Seuezce5jTR/vDGBynsfuAkwFdge2A2YCD+a5LcDHwM+BCXUsnw4MBT6tpe5PgNnAcQ04XrPaSAi8ApwDvNSM5WRGRDxT4zV3LLASeLTIpVmROKwKRFIvYBfg+ar7ImJcRLwUEWsjYg7Jh/aB+ewvIv4RER/n3PUl8H9zjneppIfq2PbziBgTEfMiYl1EPAS8D+zTiMfVG/gWcGfOfQ9JurSOY8+MiNsiYklEVAK/BXaXVJrP8SLi/oh4AFhcy7IvIuI/I2I6yfNRm2nAd/I5Vk2Srpf0kaR/SnpR0rfS+3tIWpX7GCR9M209tk1v/0DSW5KWpq3JnXLWDUk/kfQOyZeO2h73TRHxv0BFA2u+C+gF/L+0NXJJzuLTJH0oaZGk0TnbbJG+fuamrfZ7JG2TLn46/XdZur8Bkv6PpCfTdRdJmiSpS0PqbIRhwL0R8XmBj2MZ5bAqnD2B9yJibW0LJYnkQ/+NfHcoqZekZcBq4CJgXNWyiPhVRByb5362A3ZryLFznAE8ExHzco59bET8Ks/tDwY+jYgNwqdA3gL2buS2LwD9gG2APwGTJW0VEZ+ShOD3ctY9HfhzRFRKGgJcBpwAdAeeAe6use/jgf2BPRpZW60i4nTgQ+Bf01bJuJzFB5G0cL8N/EzSN9L7/z2t5xCSVvtS4KZ02cHpv13S/f2dpIfgl+m63wB2BMbUVZOkV9Pu69ouN9f3mCS1B04C7qj/GbCWymFVOF2AFRtZPobk+b893x1GxIdpN2A3kq682Q0tKv3mPwm4IyIavD1JWE1sxHZI6knyIXhBY7ZvpBUk/xcNFhF/jIjFaUv4OmBLkg97SD44hwJIKgFO5asu35HALyPirfTLyi+Afrmtq3T5kohY3ZjaGmlsRKyOiFdIuhmrQnwkMDoi5kfEGpLX5kl1dVFGxLsR8XhErImIhcBvSIKuVhGxV0R0qeNyTh51nwAsAv6W/0O1lsZh1QCSTss52ftIPasvBTrWsZ9zST70v5N+ODRIRCwh+bB8sCEnviVtQfKB+gVwbkOPK+kgoAdwbyO27Q48BtwcETVbGYXUEVjWmA0lXZR25S1PW7SdSb4oQNKFu4eknYEjgOURMTNdthNwfVXrAVhC0hrJHRDzUWNq2kS55/VWAR3S6zsBU3LqfYukW3W72nYiaTtJf5a0QNI/gT/y1fNSCMOAO8OzbrdqDqsGiIhJOSd96xtN9yqwc80wkfQD4FLg2xExfxPKaQNsC3TKZ+W02/E2kg+gE9PzRw01DLg/IlY2ZCNJXUmCampEXNOI426Kb5C0IhokPT91CUlXX9e0RbucJHSIiArgHpLW1emsP5DmI+BHNVoQX4uIGTnrFPKDt6H7/gg4uka9W0XEgjr29Yv0/j0johPJc6C6di7pjVpG9tUcOVvXtjsCg8g5R2qtk8OqQNIgehfYr+o+SaeRvNGPiIj3am4jaZqkMbXtT9IJknZPT4Z3J+l6eTltZSFpjKRpGynpv0k+uP+1tq4n1T70O3f510g+uCc2sO5OwF+BZyNig0EYkgZJqvPDVVIbSVsBJUCJpK1yvwAoGZa/VXqzXbo894PzEOCRnPXrrLWGjsBaYCHQRtLP2PCLwZ3AcJLRhrlh9TtglKQ+6TE7Szo5j2NWUzIsfyuSEGibPq4t0mUbfc6Af5AM7snX74BrqropJXVPz7tB8vjX1dhfR5KRecuV/PnERv8EIyL65I7sq3EZubFtSb4IzIiIuQ14PNYCOawK6/ckb7YqPwdKgRfq+Ga5I/BsHfvagWTY7grgNZIPkO/ms236IfQjksECn+Yc+7R0+Y45+63L8STdaU/VsmxjdX8X2Bc4s8Y36l45286oY1tIzs2tJmmNDk2vX56zfE563w4kobiapFsLJX+MvQfwQJ615voryfP9NvAByai89bruIuJZkv+HlyLig5z7pwDXAn9Ou8leB/L+u7bUY+ljGQjckl6vGuxQ33P2S+DytFvvojyOdT3Jnxc8JmkF8BzJ4A8iYhVwDfBsur8DgLHAN0lamg8D9zfwsTXEGXhghQFyN3DhSNoSeJmky++TetbtCdwTEQMbeaxZ6XEaPMpO0lCgT0SMasS2m1r3rcDkiPhrY7avZ9/XAXMj4ub09ibVWscxngT+FBG3NtU+8zhmwZ4zs6xyWJk1kqR9gceBHSNiYyM/zWwTuRvQrBEk3QE8AfzUQWVWeG5ZmZlZ5rllZWZmmVeQmZS7desWvXv3LsSuzcxapBdffHFRRHQvdh1ZVZCw6t27N+Xl5YXYtZlZiyTpg/rXar3cDWhmZpnnsDIzs8xzWJmZWeY5rMzMLPMcVmZmlnl5hZWkLpLulTQ7/X2fAYUuzMzMrEq+Q9evBx6NiJMktQO2LmBNZmZm66k3rCR1JvlpguEAEfEFyS/NmuVt0KBiV5At06YVuwKzzUs+3YA7k/wA2+2SXpZ0q6T2NVeSNEJSuaTyhQsXNnmhZmbWetU7ka2kMpIfYzswIp6XdD3wz4i4oq5tysrKwjNYmJnlT9KLEVFW7DqyKp+W1XxgfkQ8n96+l+RXQs3MzJpFvWEVEZ8CH0naPb3r28CbBa3KrIWbO3cuM2fOxD/RY5affP/O6t+BSZJeBfoBvyhYRWatwEsvvcTpp5/OBRdcwIIFC4pdjlnm5RVWETErIsoiYq+IOD4ilha6MLOWrFu3bnTu3JkZM2Zw4okncsstt1BRUVHssswyyzNYmBVBaWkpJSUlbLvttnTu3Jk//OEPfPe73+Vvf/ubuwbNauGwMiuCbt26VYdSu3bt6NGjB6tXr+bCCy/knHPOYd68ecUt0CxjHFZmRVBaWsratWvXa0V17NiRHj168NJLL/H973+fG2+8kc8//7yIVZplh8PKrAi23HJLtt56a9auXbve/ZLYdttt6dq1K3feeSdDhgzhiSeecNegtXoOK7Mi2W677fjii9pnLmvbti09evTgyy+/5MILL+T88893YFmr5rAyK5IePXpQWVlZ5/J169bx+eef06lTJwYPHoykZqzOLFscVmZF0rNnzzpbVitXruTTTz/lkEMOYcqUKRxzzDHNXJ1ZtuT7EyFm1sR69uxZa8uqsrKSxYsXc91113H44Ye7RWWGw8qsaLbddlvatPnqLbhs2TJWrFhBaWkp7dq147333nNQmaXcDWhWJFV/GFxZWcknn3xCly5dGDlyJMuWLaO0tJTbbruNuXPnFrtMs0xwWJkVSbdu3Vi9ejWLFy/mzDPPZPLkyfzoRz/igAMOYNmyZZSUlHDllVduMLzdrDVyWJkVyXbbbceQIUOYNGkSP/nJT9hqq62QxOWXX05JSQkdOnTgrbfe4t577y12qWZF57AyK5Itt9ySsWPHsttuu613//bbb8/555/PkiVLKC0t5frrr+fjjz8uUpVm2eCwMsugk046iT59+rBixQrWrVvHz3/+c/9RsLVqDiuzDCopKWHMmDGsW7eOLl268Pzzz/Poo48WuyyzonFYmWXULrvswllnncXixYvp0qULv/rVr1iyZEmxyzIrCoeVWYYNHz6cXr16sWbNGlatWsW4cePcHWitksPKLMPatWvHVVddxZo1aygtLeXxxx9nxowZxS7LrNk5rMwyrm/fvnzve99j0aJFdOzYkbFjx7Jy5cpil2XWrBxWZpuBc845h9LSUiKCpUuXctNNNxW7JLNm5bAy2wy0b9+eK6+8ks8//5zS0lImT57MK6+8UuyyzJqNw8psMzFw4ECOOuoolixZwte+9jWuvPJK1qxZU+yyzJqFw8psM3LRRRex9dZb065dOz766CNuv/32Ypdk1iwcVmabka5duzJq1CiWLVtGt27dmDBhAu+++26xyzIruLzCStI8Sa9JmiWpvNBFmVndjjzySAYMGOCZ2a1VaUjL6tCI6BcRZQWrxszqJYnRo0dXz8w+e/Zsz8xuLZ67Ac02Q9tvvz0//elP15uZfcGCBcUuy6xg8g2rAB6T9KKkEbWtIGmEpHJJ5QsXLmy6Cs2sVieeeCJ9+/b1zOzWKuQbVgdFxDeBo4GfSDq45goRcUtElEVEWffu3Zu0SDPbUNX5qqqZ2WfOnMlf/vKXYpdlVhB5hVVELEj//QyYAuxXyKLMLD+77LILZ599NosWLaJr165ce+21LF68uNhlmTW5esNKUntJHauuA0cCrxe6MDPLz7Bhw9hpp52oqKhg9erVnpndWqR8WlbbAdMlvQLMBB6OCP8KnFlGVM3MXlFRQWlpKU888QTPPvtsscsya1L1hlVEvBcRe6eXPhFxTXMUZmb569u3L6ecckr1zOxXXXUVK1asKHZZZk3GQ9fNWogf//jHdOvWjYhgyZIl/Nd//VexSzJrMg4rsxaiamb2lStX0q1bN+677z5mzZpV7LLMmoTDyqwFGTBgAEcffTSLFy/2zOzWojiszFqYCy+8kPbt29O2bVsWLFjAhAkTil2S2SZzWJm1MFUzsy9fvpzS0lJuv/123nnnnWKXZbZJHFZmLdCRRx7JwIEDPTO7tRgOK7MWSBKXXXYZbdq0oUOHDsyZM4fJkycXuyyzRnNYmbVQNWdmv+GGGzwzu222HFZmLdgJJ5yw3szsV199tadiss2Sw8qsBSspKWHMmDHVM7O/8MILnpndNksOK7MWbuedd2bEiBEsXrzYM7PbZsthZdYKnH766dUzs1dUVHhmdtvsOKzMWoF27doxduxYKioq2GabbXjiiSeYPn16scsyy5vDyqyV6Nu3L6eeeiqLFi2iU6dOnpndNisOK7NWZOTIkXTv3p1169axbNkybrzxxmKXZJYXh5VZK5I7M3tpaSn333+/Z2a3zYLDyqyVOeCAAzjmmGPWm5m9oqKi2GWZbZTDyqwVuvDCC+nQoYNnZrfNhsPKrBXq0qULl112WfXM7BMnTvTM7JZpDiuzVurwww/noIMOYunSpZ6Z3TLPYWXWSkli1KhRtG3btnpm9nvuuafYZZnVymFl1or16NGDCy64oHpm9htvvJH58+cXuyyzDTiszFq5448/nj333JN//vOfnpndMsthZdbKVc3MDsnAi/Lych566KHiFmVWQ95hJalE0suS/Co2a2F69+693szs48ePZ9GiRcUuy6xaQ1pW5wNvFaoQMyuuoUOH0rt3b1avXk1FRQXXXnutuwMtM9rks5KknsB3gGuACwpakTWpQYOKXUFi2rRiV5AtWfx/qZqZffjw4ZSWlvLkk0/yzDPPcPDBBxetPrMq+bas/hO4BFhX1wqSRkgql1S+cOHCpqjNzJpZnz591puZ/eqrr/bM7JYJqq+ZL+lY4JiIOEfSIOCiiDh2Y9uUlZVFeXl5kxVpZs1n1apVnHjiiaxatYpVq1Zx/PHHM3r06GKX1eJJejEiyopdR1bl07I6EDhO0jzgz8Bhkv5Y0KrMrGi23nprxowZw8qVK1m3bh0zZszwzBZWdPWes4qIUcAogJyW1dDClmVmxbT//vtz8sknU1lZyfnnn0+bNnmd3jYrGL8CzaxWl156abFLMKvWoLCKiGnAtIJUYmZmVgfPYGFmZpnnsDIzs8xzWJmZWeY5rMzMLPMcVmaWt3nz5tG3b9+81x84cOAG91VNRFA103ttExP84he/aPQxAR544AHefPPNBm0TEcybN4+JEyfWunzatGkce+xG50NoNSQdKmlWzqVC0vE5y0+RNFrS1yX9XdIaSRfV2McESZ9Jej2fYzqszKxgZsyYscF9kyZNYvz48VRUVDBu3DgmTZq0wTq5YdUYjQmrkSNHMn36dD788EPOOussFixYsEk1tGQR8VRE9IuIfsBhwCrgsZxVjgYeBZYA5wG/rmU3E4HB+R7TYWVmjfLee+/Rv39/XnjhBd544w32228/+vXrx1577cU777wDQIcOHTbYbujQofTs2ZPx48fTq1cvhg5df46BSy+9lNWrV9OvXz9OO+00AL788kt++MMf0qdPH4488khWr14NwNy5cxk8eDD77LMP3/rWt5g9ezYzZsxg6tSpXHzxxfTr14+5c+fyhz/8gX333Ze99967eiqpmm6++WbuvvtuJkyYwC9/+Ut22GGHOh/7zJkzGTBgAP3792fgwIHMmTMHgIMPPphZs2ZVr3fQQQfxyiuv8Pnnn/ODH/yA/fbbj/79+/Pggw8CMHHiRI477jgOO+wwgN1rO5akQZKmSbpX0mxJkyQpXTZPUrf0epmkaen1MZLukPSMpA8knSBpnKTXJD0qqW2dD67hTgIeiYhV6bEF9ANeiojPIuIFoLLmRhHxNEmY5Scimvyyzz77hJm1PO+//3706dMnZs+eHf369YtZs2ZFRMS5554bf/zjHyMiYs2aNbFq1aqIiGjfvv0G+5g0aVKMGzcu/uM//iOuvfbamDRp0gbr5G73/vvvR0lJSbz88ssREXHyySfHXXfdFRERhx12WLz99tsREfHcc8/FoYceGhERw4YNi8mTJ1fvY9GiRdXXR48eHTfccMMGxxw5cmTcddddMXbs2Dj77LNjwYIF6y1/6qmn4jvf+U5ERCxfvjwqKysjIuLxxx+PE044ISIiJk6cGOeff35ERMyZMyeqPgtHjRpVXfPSpUtj1113jZUrV8btt98eO+ywQyxevDiA8qjl8xQYBCwHepI0MP4OHJQumwd0S6+XAdPS62OA6UBbYG+Sls/R6bIpwPG1HOdiYFYtlxtqqytnuyeBY3NufxO4s8Y6Y0hmP6q5bW/g9Y3tv+riGSzMrEEWLlzIkCFDuP/++9ljjz0AGDBgANdccw3z58/nhBNOYNddd61z+1NPPRVJjBkzhksuuSSv38zaeeed6devHwD77LMP8+bNY+XKlcyYMYOTTz65er01a9bUuv3rr7/O5ZdfzrJly1i5ciVHHXXUBuvcfPPNfPDBB6xdu5af/exnG61n+fLlDBs2jHfeeQdJVFYmDYeTTz6Zq6++mvHjxzNhwgSGDx8OwGOPPcbUqVP59a+T3rCKigo+/PBDAI444gi22Wab+p6CmRExH0DSLJIP+en1bPNIRFRKeg0oIemWA3gt3X49ETEeGF9fIbkkbQ/sCfw15+7BwCMN2U8+HFZm1iCdO3emV69eTJ8+vTqs/u3f/o3999+fhx9+mGOOOYbf//73VV1bG0h7sKoHWFTd3pgtt9yy+npJSQmrV69m3bp1dOnSZb1ut7oMHz6cBx54gL333puJEycyrZYfWJNE7969qwNmY6644goOPfRQpkyZwrx58xiU/kDZ1ltvzRFHHMGDDz7IPffcw4svvggkPVj33Xcfu+++fk/f888/T/v27es9HpCbwl/y1Wf3Wr46nbNVbdtExDpJlfHVt4J11PLZL+li4LRajv10RJxXR13fA6ZERG4335HAiXU9kMbyOSsza5B27doxZcoU7rzzTv70pz8ByfmrXXbZhfPOO48hQ4bw6quvbtIx2rZtW91aqUunTp3YeeedmTx5MpAEwiuvvAJAx44d1/sdrhUrVrD99ttTWVlZ64COhlq+fHn1Oa2aowfPPvtszjvvPPbdd1+6du0KwFFHHcWNN95Y3Yp8+eWXN7mG1Dxgn/T6JgVERIyPdNBEjUtdQQVwKnB31Q1JnYE2EbF4U2qpjcPKzBqsffv2PPTQQ/z2t79l6tSp3HPPPfTt25d+/frx+uuvc8YZZ2zS/keMGMFee+1VPcCiLpMmTeK2225j7733pk+fPtUDF0455RTGjx9P//79mTt3LldffTX7778/Bx54IF//+tc3qTaASy65hFGjRtG/f/8Nfj5ln332oVOnTpx55pnV911xxRVUVlay11570adPH6644opNriE1FrheUjlJi6vZSOoN7Aj8LefuI4AnctbpIWk+yS/MXy5pvqRO6bK7Sc6/7Z7ef9ZGj5dPf3FD+ccXzay1+vjjjxk0aBCzZ89miy3ybw+0hB9flHQrcGtEPNfU+3bLysysidx5553sv//+XHPNNQ0KqpYiIs4uRFCBW1ZmZpkg6U02/HukNRGxfzHqyRqPBjQzy4bVm3s3YCG1vnaqmZltdhxWZmaWeQ4rMzPLPIeVmZllnsPKzMwyz2FlZmaZ57AyM7PMc1iZmVnm1RtWkraSNFPSK5LekDS2OQozMzOrks8MFmuAwyJiZfpTyNMlPVKo+Z/MzMxqqjes0h/sWpnebJtemn5CQTMzszrkdc5KUkn6U8qfAY9HxPO1rDNCUrmk8oULFzZxmWZm1prlFVYR8WVE9AN6AvtJ6lvLOrdERFlElHXv3r2JyzQzs9asQaMBI2IZ8BQwuCDVmJmZ1SKf0YDdJXVJr3+N5GeLZxe4LjMzs2r5jAbcHrhDUglJuN0TEQ8VtiwzM7Ov5DMa8FWgfzPUYmZmVivPYGFmZpnnsDIzs8xzWJmZWeY5rMzMLPMcVmZmlnkOKzMzyzyHlZmZZZ7DyszMMs9hZWZmmeewMjOzzHNYmZlZ5jmszMws8xxWZmaWeQ4rMzPLPIeVmZllnsPKzMwyz2FlZmaZ57AyM7PMc1iZmVnmOazMzCzzHFZmZpZ5DiszM8s8h5WZmWWew8rMzDKv3rCStKOkpyS9KekNSec3R2FmZmZV2uSxzlrgwoh4SVJH4EVJj0fEmwWuzczMDMgjrCLiE+CT9PoKSW8BOwAOqzoMGlTsCr4ybVqxK7Asy8pr1a9Tq0+DzllJ6g30B56vZdkISeWSyhcuXNhE5ZmZmYEiIr8VpQ7A34BrIuL+ja1bVlYW5eXlTVCemVnrIOnFiCgrdh1ZlVfLSlJb4D5gUn1BZWZm1tTyGQ0o4DbgrYj4TeFLMjMzW18+LasDgdOBwyTNSi/HFLguMzOzavmMBpwOqBlqMTMzq5VnsDAzs8xzWJmZWeY5rMzMLPMcVmZmlnkOKzMzyzyHlZmZZZ7DyszMMs9hZWZmmeewMjOzzHNYmZlZ5jmszMws8xxWZmaWeQ4rMzPLPIeVmZllnsPKzMwyz2FlZmaZ57AyM7PMc1iZmVnmOazMzCzzHFZmZpZ5DiszM8s8h5WZmWWew8rMzDLPYWVmZplXb1hJmiDpM0mvN0dBZmZmNeXTspoIDC5wHWZmZnWqN6wi4mlgSTPUYmZmVqsmO2claYSkcknlCxcubKrdmpmZNV1YRcQtEVEWEWXdu3dvqt2amZl5NKCZmWWfw8rMzDIvn6HrdwN/B3aXNF/SWYUvy8zM7Ctt6lshIk5tjkLMzMzq4m5AMzPLPIeVmZllnsPKzMwyz2FlZmaZ57AyM7PMc1iZmVnmOazMzCzzHFZmZpZ5DiszM8s8h5WZmWWew8rMzDLPYWVmZpnnsDIzs8xzWJmZWeY5rMzMLPMcVmZmlnkOKzMzyzyHlZmZZZ7DyszMMs9hZWZmmeewMjOzzHNYmZlZ5jmszMws8xxWZmaWeXmFlaTBkuZIelfSpYUuyszMLFe9YSWpBLgJOBrYAzhV0h6FLszMzKxKmzzW2Q94NyLeA5D0Z2AI8GYhCyuWQYM2fR/Tpm36Psxak6Z434Hfey1ZPt2AOwAf5dyen963HkkjJJVLKl+4cGFT1WdmZpZXyyovEXELcAtAWVlZNNV+m5u/mZk1P7/vrD75tKwWADvm3O6Z3mdmZtYs8gmrF4BdJe0sqR1wCjC1sGWZmZl9pd5uwIhYK+lc4K9ACTAhIt4oeGVmZmapvM5ZRcRfgL8UuBYzM7NaeQYLMzPLPIeVmZllnsPKzMwyz2FlZmaZp4im//tdSSuAOU2+4+bRDVhU7CI2gesvLtdfXJtz/btHRMdiF5FVTTaDRQ1zIqKsQPsuKEnlm2vt4PqLzfUX1+Zcv6TyYteQZe4GNDOzzHNYmZlZ5hUqrG4p0H6bw+ZcO7j+YnP9xbU51785115wBRlgYWZm1pTcDWhmZpnnsDIzs8xrkrCStI2kxyW9k/7btZZ1+kn6u6Q3JL0q6ftNcezGkjRY0hxJ70q6tJblW0r6n3T585J6F6HMOuVR/wWS3kyf6/+VtFMx6qxLffXnrHeipJCUqeHI+dQv6Xvp/8Ebkv7U3DXWJY/XTi9JT0l6OX39HFOMOusiaYKkzyS9XsdySbohfXyvSvpmc9dYlzxqPy2t+TVJMyTt3dw1ZlZEbPIFGAdcml6/FLi2lnV2A3ZNr/8L8AnQpSmO34h6S4C5wC5AO+AVYI8a65wD/C69fgrwP8WodRPqPxTYOr3+482t/nS9jsDTwHNAWbHrbuDzvyvwMtA1vb1tsetuQO23AD9Or+8BzCt23TXqOxj4JvB6HcuPAR4BBBwAPF/smhtQ+8Cc18zRWaq92Jem6gYcAtyRXr8DOL7mChHxdkS8k17/GPgM6N5Ex2+o/YB3I+K9iPgC+DPJY8iV+5juBb4tSc1Y48bUW39EPBURq9Kbz5H8wnNW5PP8A1wNXAtUNGdxecin/h8CN0XEUoCI+KyZa6xLPrUH0Cm93hn4uBnrq1dEPA0s2cgqQ4A7I/Ec0EXS9s1T3cbVV3tEzKh6zZC9921RNVVYbRcRn6TXPwW229jKkvYj+VY3t4mO31A7AB/l3J6f3lfrOhGxFlgOlDZLdfXLp/5cZ5F808yKeutPu252jIiHm7OwPOXz/O8G7CbpWUnPSRrcbNVtXD61jwGGSppP8jt2/948pTWZhr4/sipr79uiynu6JUlPAD1qWTQ690ZEhKQ6x8On33DuAoZFxLp8j2+NI2koUAYcUuxa8iVpC+A3wPAil7Ip2pB0BQ4i+Xb8tKQ9I2JZMYvK06nAxIi4TtIA4C5Jff1+bT6SDiUJq4OKXUtW5B1WEXF4Xcsk/UPS9hHxSRpGtXZ5SOoEPAyMTpvnxbIA2DHnds/0vtrWmS+pDUl3yOLmKa9e+dSPpMNJvkwcEhFrmqm2fNRXf0egLzAt7XntAUyVdFxEZGH+tHye//kk5xsqgfclvU0SXi80T4l1yqf2s4DBABHxd0lbkUwQm5WuzPrk9f7IKkl7AbcCR0dEVj5ziq6pugGnAsPS68OAB2uuIKkdMIWkL/neJjpuY70A7Cpp57SuU0geQ67cx3QS8GSkZz0zoN76JfUHfg8cl6HzJVU2Wn9ELI+IbhHROyJ6k/TdZyWoIL/XzwMkrSokdSPpFnyvGWusSz61fwh8G0DSN4CtgIXNWuWmmQqckY4KPABYnnOaItMk9QLuB06PiLeLXU+mNMUoDZJzOf8LvAM8AWyT3l8G3JpeHwpUArNyLv2KNbKEZMTQ2yTnzUan911F8qEIyRt0MvAuMBPYpVi1NrL+J4B/5DzXU4tdc0Pqr7HuNDI0GjDP518kXZlvAq8BpxS75gbUvgfwLMlIwVnAkcWuuUb9d5OMJq4kacGeBYwERuY89zelj++1LL128qj9VmBpzvu2vNg1Z+Xi6ZbMzCzzPIOFmZllnsPKzMwyz2FlZmaZ57AyM7PMc1iZmVnmOazMzCzzHFZmZpZ5/x/oMTLGJInOzwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoPklEQVR4nO3debwWdd3/8dcbDosgiAgSAYIlbiSLnHBH1FTUbtHMO0w2N7JC/f0qTG9STLMSvC3RvN1CEknTcuGnqZlGaoRyuMENN0RUEOMgiCAo2+f3xwx0cTjLdRbOdY7zfj4e14OZ7zLzmYvrzOea+c41o4jAzMyyq0mhAzAzs8JyIjAzyzgnAjOzjHMiMDPLOCcCM7OMcyIwM8s4J4IGTFILSfMldS50LFkk6b8lfbca7UdJenZHxlQIknpICklFhY7FdgwnggKR9KikNelrg6T1OfM3p81GA09HxNK0z1hJL0taLeltSWOrsb6jJL0k6SNJH0p6QFKXPPu2kPRbSe+k654n6YQabuuadFtfyrPv3pIeklQqaYWkxyXtU411j5FUIukzSVPK1DWX9EdJi9Id3aAy3a8F/ktS83zX1xDUwXu2SNLX6iiWgiQRSUeU+cytSeM4rT7jaCycCAokIk6IiJ0jYmdgGjBhy3xEnJ82Ox+YmtNNwAhgV2AwMEbS0DxXOR84PiLaAV8E3gT+J8++RcB7wJHALsBPgHsl9cinc+62pts7E7gvz3W3A6YD+wCdgOeBh/LsC/A+8DNgcgX1zwLDgA/KiXsp8BpwcjXWV68q2MG2o3bvWaMXEc+U+cx9HVgDPFbg0BqmiPCrwC9gCvCzMmV7AOuAokr6TQJuqMH6WgC/AObnlF0CPFyNZbwInFaDdfcANgE9csoeBi7Js397IIDdqrnenwFTKqlfDAwqp3wccEee6xgFPJszfz1JAv0YmAMckZZ/AVibuw3AgUAp0CydPxt4FVgJPA50z2kbwPdJkvnbdfmekXzx2Jx+9tYAF6f/ZwGMBN4FlgPjcvo0ST8/bwEfAvcC7dO6d9O+a9LXIcCXgafStstJvgi1q+5nqZr//3fk+/+YxZePCBquA4CFEbGxvEpJAo4AXsl3gZL2kPQRyR/5j4AJW+oi4pcR8fU8l9MJ2Ls6684xAngmIhblrPvrEfHLPPsPBD6IiA9rsO6aeBXoU8O+s4G+JDvi3wP3SWoZER8AM4D/zGk7HLgnIjZIGgL8F/ANoCPwDHB3mWWfAhwE7J9HHHm/ZxExnGTn/R+RfJuekFN9OMlRxjHA5ZL2S8svSOM5kuRocyXwm5x1Q7Kj3zki/klyZPuLtO1+QDfgiopikvRiekqzvNdNVW2TpNbAN4HfVdU2swqdifyq8IjgTGBWJX1+CrwAtKjB+toDPwYOrkHfZsBfgVtquK0LgFE17NsVWAKcUYO+NT0iOJYkIeezjlHkHBGUU78S6JNOfwv4RzrdlOTU1IB0/lHgnJx+TUiOILqn8wEcvaPeM2AR8LWc+R7pOrvmlD0PDE2nXwWOyanrDGwgOaW4pW9lR7anAHNr8pnIc3uGA28D2lHraOwvHxHUI0ln5gxcPVpF85VAmwqWM4bkm/VJEfFZdeOIiBUk344eqs4gnqQmJKcO1gNjqrteSYeTnBb5Yw36dgT+AtwUEWW/He9IbYCPatJR0o8kvSppVXoktgvQIa1+CNhf0p4kyWZVRDyf1nUHrt/yrRdYQfItOndw/7081l/X71nuOMpaYOeceB/IifdVktN/nSqIq5OkeyQtkfQxcBf/fl92hJHAnZFmBdueE0E9iohp8e8BrKquunkR2LPsjlrS2STnY4+JiMW1CKcI2B1om0/j9FTUb0n+uE+LiA01WOdI4P6IWFOdTpJ2JdmhTY+Iq2uw3trYj+TIq1okHUFyfv0/gV0jGaRfRbJDJyI+JTmXPozkG2vuRQHvAd+JiHY5r50iYmZOm0p3arV8z6q7w3wPOKFMvC0jYkkFy/p5Wn5ARLQleQ9U0cIlvVLOFUBlr7CrqG83YBBwZzW3KVOcCBqodCe/ABiwpUzSmSR/RMdGxMKyfSTNkHRFecuT9A1J+0hqkn5TvI7kcHxFWn+FpBmVhPQ/JDvF/4iIdeUsv7zLL3PrdyLZKU6pZtxtSQZL/xERl5RTP0hShTsuSUWSWpKcfmkqqWVuclVyaWzLdLZ5Wp+7UzqS5FRNlbGW0QbYSDIAXCTpcrZPuneSnE46mW0Twc3ApZJ6pevcRdLpeaxzS4y1es+AfwFfynd9abxXS+qeLr9jOs4ByfZvLrO8NiQDx6uUXMJc6WXQEdEr5wtU2df5lfUlSbIzI+KtamxP5jgRNGy3kHyQt/gZsBswu4JvRN2Af1SwrC4kl86tBl4i+eM8NZ++6R/4d0gGPj/IWfeZaX23nOVW5BSSUyx/K6eusrhPBb4KnFXmm+AeOX1nVtAXkktd15EcRQ1Lp3+SU/96WtaFZOe5juRUB0p+yLc/8GCeseZ6nOT9fgN4B/iUMqdzIuIfJP8P/xsR7+SUPwBcA9yTnjp5Gcj7dxvU/j37BfCT9FTPj/JY3/Ukl6v+RdJqYBbJQDYRsRa4GvhHuryDSca3DiQ5QnoEuL8a21ZdI/AgcZXk02YNl6QWwFyS00BLq2jbFbg3Ig6t4brmpeup9tU4koYBvSLi0hr0rW3ctwP3RcTjNelfxbL/G3grIm5K52sVawXreAr4fUTcXlfLzGOdO+w9s8bJicCsQCR9FXgC6BYRqwsdj2WXTw2ZFYCk35Fchvt/nASs0HxEYGaWcT4iMDPLuAZ5W9kOHTpEjx49Ch2GmVmjMWfOnOUR0bEmfRtkIujRowclJSWFDsPMrNGQ9E7VrcrnU0NmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZV2UikNRN0t8kzU9vB3tROW0kaZKkBUqeJnRgTt1ISW+mr5F1vQFmZlY7+Vw+uhH4YUT8r6Q2wBxJT0TE/Jw2JwA909dBJLcsPkhSe2A8UExy//E5kqZHxMo63QozM6uxKhNBetfLpen0akmvktyyNzcRDOHfTwCaJaldegvfQcATOfe8fwIYzPbPX7V6MmhQoSOwLJsxo9ARWHmqNUYgqQfQD3iuTFUXtr3X+uK0rKLy8pY9WlKJpJLS0tLqhGVmZrVQnefV7gz8ieRuiR/XdSARcStwK0BxcbHvhLeD1Oc3sg0bNrBu3Trats3raZhmViB5HRFIakaSBKZFRHlPE1pC8tSjLbqmZRWVWwY8/fTTHHPMMZx++unccMMNzJo1izVrqvW4YjOrB1Xehjp9fuvvgBUR8X8qaHMSMAY4kWSweFJEDEgHi+eQPJYO4H+B/lvGDCpSXFwcvtdQ47d69WqOPfZYmjVrxrp16ygqKmLTpk307NmTgQMHUlxcTK9evdhpp50KHapZoydpTkQU16RvPqeGDiN5bu5L6eMMAf4L2AMgIm4G/kySBBYAa4Gz0roVkq4CZqf9rqwqCdjnR5s2bTj55JN58MEH6dy5MwCbN2/m/fff5/bbb2fKlCls3ryZ/fbbjyOPPJIDDzyQ/fbbjxYtWhQ4crNsaZAPpvERwefHm2++ybe//W06depEcnC5rc2bN7NmzRo++eQTioqS7yUTJ07kiCOOqO9QzRq12hwR+JfFtkP17NmT/fbbj1WrVpVb36RJE9q2bUvnzp2RxBe/+EX69OlTz1GaZZsTge1wI0aM4NNPP620zapVq2jVqhU33nijrzIyq2dOBLbDDRw4kNatW1eYDNauXcvGjRu58cYb+eIXv1jP0ZmZE4HtcM2bN+db3/oWH330Ubn1K1as4LDDDmPvvfeu38DMDHAisHpyyimnIInNmzdvLdu0aRNLly6lU6dOPPXUU1x88cWsW7eugFGaZZMTgdWLzp07c+ihh7JiRXL1cETwr3/9iy9/+cssW7aMDh068Pe//53Ro0fz4YcfFjhas2xxIrB6c+aZZ7Jp06atSWDgwIFMmzaNMWPGsHz5ctq1a8cbb7zB8OHDefvttwsdrllmOBFYvenfvz8dO3bknXfeYe+99+bqq6+mqKiIs88+m6uvvpqPP/6Yli1b8tFHHzFy5EjmzJlT6JDNMsGJwOpNkyZNGDFiBHvssQfXX389rVq12lo3ePBgbrnllm3afve73+WRRx4pRKhmmeJfFlu92rRpE2vXrqVNmzbl1r/zzjt873vfY/ny5bRt25YVK1bwne98h/POO6/cXyabWcK/LLZGo2nTphUmAYDu3bszdepU9t13X1auXEmHDh24+eabGT9+POvXr6/HSM2yw4nAGpz27dtzyy23cNRRR7F8+XJ23313HnnkEcaMGcPHH9f5ozDMMs+JwBqkli1bcs011zBixAiWLVvGbrvtxty5cxk5ciTvv/9+ocMz+1xxIrAGq0mTJlx44YWMGzeOFStW0KZNG5YuXcqwYcN49dVXCx2e2eeGE4E1aJI47bTTmDRpEp999hlFRUVs3LiRs88+m6effrrQ4Zl9LjgRWKNw6KGHcscdd9CqVSvWr19Pq1at+MEPfsA999xDQ7zyzawxqTIRSJosaZmklyuoHytpXvp6WdKm9BGVSFok6aW0zteDWq3svffeTJ06lW7duvHxxx+z2267MWHCBK699lo2btxY6PDMGq18jgimAIMrqoyIiRHRNyL6ApcCfy/zOMqj0voaXd9qlqtTp07ccccdDBgwYOsVRXfffTdjx45l7dq1hQ7PrFGqMhFExNNAvs8ZPgO4u1YRmVVh55135vrrr+fUU0+ltLSUjh078swzz3DeeeexfPnyQodn1ujU2RiBpFYkRw5/yikO4C+S5kgaXUX/0ZJKJJWUlpbWVVj2OVVUVMS4ceO2uWHdggULGD58OAsXLix0eGaNSl0OFv8H8I8yp4UOj4gDgROA70saWFHniLg1Ioojorhjx451GJZ9XknirLPO4pe//CWrV6+mZcuWfPzxx4wcORLfosQsf3WZCIZS5rRQRCxJ/10GPAAMqMP1mQFw7LHHcttttyGJiKCoqIjvfe97PPzww4UOzaxRqJNEIGkX4EjgoZyy1pLabJkGjgPKvfLIrLZ69+7N1KlT2W233fjkk0/YZZddGD9+PDfffLMvLzWrQj6Xj94N/BPYR9JiSedIOl/S+TnNTgX+EhGf5JR1Ap6V9ALwPPBIRDxWl8Gb5erWrRt33nknvXr12nrDuttuu43LL7/cN6wzq4RvQ22fO59++ilXXHEFTzzxBB07dmT58uX069ePa6+9ll122aXQ4ZntEL4NtVmOli1b8vOf/5xRo0axbNky2rdvzwsvvMCoUaNYsmRJocMza3CcCOxzqUmTJlxwwQVcdtllrFy5ktatW/PBBx8wfPhwXnnllUKHZ9agOBHY59qpp57KDTfcwIYNG2jatCkbN27knHPOYcaMGYUOzazBcCKwz72DDz54mxvWtW7dmh/96EdMmzbNVxSZ4URgGdGzZ0/uuusuunfvvvWGdddddx0TJkzwDess85wILDN23313Jk+ezMEHH8zy5cvp2LEj9957Lz/84Q99eallmhOBZUrr1q351a9+xWmnnUZpaSlFRUXMnz+fzz77rNChmRWME4FlTlFREZdeeikXXXQRO+20EzfddBNt2rQpdFhmBeMflFmmrV+/nubNmxc6DLNa8w/KzGrIScDMicDMLPOcCMzMMs6JwKyMRYsW8ZWvfCXv9oceeuh2ZVvG3q644opt5nP9/Oc/r/E6AR588EHmz59frT4RwaJFi5gyZUq59TNmzODrX/96tZb5eTZ48GDatWtX4Xty4YUXsvPOO29TtnTpUo477rhK+994443stddeSGoQj1d1IjCrpZkzZ25XNm3aNCZOnMinn37KhAkTmDZt2nZtchNBTdQkEZx//vk8++yzvPvuu5xzzjn1fhO+xvbjvbFjxzJ16tRy60pKSli5cuV25Y899hjHH398pf0PO+ww/vrXv9K9e/e6DbiGnAjMKrFw4UL69evH7NmzeeWVVxgwYAB9+/ald+/evPnmmwDbfSMEGDZsGF27dmXixInsscceDBs2bJv6Sy65hHXr1tG3b1/OPPNMADZt2sR5551Hr169OO6441i3bh0Ab731FoMHD6Z///4cccQRvPbaa8ycOZPp06czduxY+vbty1tvvcVtt93GV7/6Vfr06cNpp53G2rVrt4vrpptu4u6772by5Mn84he/oEuXLhVu+/PPP88hhxxCv379OPTQQ3n99dcBGDhwIPPmzdva7vDDD+eFF17gk08+4eyzz2bAgAH069ePhx5KnlM1ZcoUTj75ZI4++miOOeaYctc1Y8YMBg0axDe/+U323XdfzjzzzK1HUT169Nj6rbmkpIRBgwYBydHWyJEjOeKII+jevTv3338/F198MQcccACDBw9mw4YNFW5bvo455phyLy3etGkTY8eOZcKECdvVPfbYY5xwwgmV9u/Xrx89evSodXx1JiIa3Kt///5hVihvv/129OrVK1577bXo27dvzJs3LyIixowZE3fddVdERHz22Wexdu3aiIho3br1dsuYNm1aTJgwIX784x/HNddcE9OmTduuTW6/t99+O5o2bRpz586NiIjTTz89pk6dGhERRx99dLzxxhsRETFr1qw46qijIiJi5MiRcd99921dxvLly7dOjxs3LiZNmrTdOs8///yYOnVq/PSnP41zzz03lixZsk393/72tzjppJMiImLVqlWxYcOGiIh44okn4hvf+EZEREyZMiUuuuiiiIh4/fXXY8vf66WXXro15pUrV0bPnj1jzZo1cccdd0SXLl3iww8/3C6e3PW2bds23nvvvdi0aVMcfPDB8cwzz0RERPfu3aO0tDQiImbPnh1HHnlkRESMHz8+DjvssFi/fn3Mmzcvdtppp/jzn/8cERGnnHJKPPDAA9utZ8KECdGnT5/tXhdccEGlsW15T7b49a9/Hdddd11EbPv/uHHjxujTp0+V/bfI3bbaAkqihvvcoqoShaTJwNeBZRGx3UlMSYNIHlH5dlp0f0RcmdYNBq4HmgK3R8Qv6yR7me1gpaWlDBkyhPvvv5/9998fgEMOOYSrr76axYsX841vfIOePXtW2P+MM85AEldccQUXX3xxXje323PPPenbty8A/fv3Z9GiRaxZs4aZM2dy+umnb21X0a+gX375ZX7yk5/w0UcfsWbNmq2nJ3LddNNNvPPOO2zcuJHLL7+80nhWrVrFyJEjefPNN5G09Rv26aefzlVXXcXEiROZPHkyo0aNAuAvf/kL06dP59prrwWSBwS9++67QPJc6fbt21e6vgEDBtC1a1cA+vbty6JFizj88MMr7XPCCSfQrFkzDjjgADZt2sTgwYMBOOCAA1i0aNF27ceOHcvYsWMrXWZV3n//fe67775y72D73HPPcdBBB9Vq+YVQZSIApgA3AndW0uaZiNhmNERSU+A3wLHAYmC2pOkRUb2TmmYFsMsuu7DHHnvw7LPPbk0E3/72tznooIN45JFHOPHEE7nllls4+uijy+0vCfj3YPGW+cq0aNFi63TTpk1Zt24dmzdvpl27dtuciqnIqFGjePDBB+nTpw9Tpkwpd0cliR49emzdeVfmsssu46ijjuKBBx5g0aJFW0/JtGrVimOPPZaHHnqIe++9lzlz5gDJ2YU//elP7LPPPtss57nnnqN169ZVrq/s9m8ZTygqKmLz5s1AklzK69OkSROaNWu29X1u0qRJueMREydOLHe8ZuDAgUyaNKnKGAHmzp3LggUL2GuvvQBYu3Yte+21FwsWLODRRx/dmowakyrHCCLiaWBFDZY9AFgQEQsjYj1wDzCkBssxq3fNmzfngQce4M477+T3v/89kIwXfOlLX+LCCy9kyJAhvPjii7VaR7Nmzao8j922bVv23HNP7rvvPiDZ2b7wwgsAtGnThtWrV29tu3r1ajp37syGDRvK3dlV16pVq7aOIZS9yujcc8/lwgsv5Ktf/Sq77rorAMcffzw33HDD1qOfuXPn1joGSMYItiSbP/3pT7Va1tixY5k3b952r3yTAMBJJ53EBx98wKJFi1i0aBGtWrViwYIFADz55JN87Wtfq1WMhVBXg8WHSHpB0qOSeqVlXYD3ctosTsvKJWm0pBJJJaWlpXUUllnNtW7dmocffphf/epXTJ8+nXvvvZevfOUr9O3bl5dffpkRI0bUavmjR4+md+/eWweLKzJt2jR++9vf0qdPH3r16rV1EHbo0KFMnDiRfv368dZbb3HVVVdx0EEHcdhhh7HvvvvWKjaAiy++mEsvvZR+/fpt9+26f//+tG3blrPOOmtr2WWXXcaGDRvo3bs3vXr14rLLLqt1DADjx4/noosuori4mKZNm9bJMvN1xBFHcPrpp/Pkk0/StWtXHn/88QrblpaW0rJly20GhyvqP2nSJLp27crixYvp3bs355577g7flsrkda8hST2AhysYI2gLbI6INZJOBK6PiJ6SvgkMjohz03bDgYMiYkxV6/O9hswatvfff59Bgwbx2muv0aSJLz4EuOuuu1i8eDGXXHJJQdZfm3sN5TNGUKmI+Dhn+s+SbpLUAVgCdMtp2jUtM7NG7M4772TcuHFcd911TgI5yl4i3JjUOhFI+gLwr4gISQNITjd9CHwE9JS0J0kCGAp8u7brM7PCGjFiRI1Pi7300ksMHz58m7IWLVrw3HPP1UVoVkP5XD56NzAI6CBpMTAeaAYQETcD3wS+K2kjsA4Yml7TulHSGOBxkstHJ0fEKztkK8ysUTjggAPyugLK6pefR2Bm9jng5xGYmVmNORGYmWWcE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcZVmQgkTZa0TNLLFdSfKelFSS9JmimpT07dorR8niQ/YMDMrAHK54hgCjC4kvq3gSMj4gDgKuDWMvVHRUTfmj4wwczMdqwqH1UZEU9L6lFJ/cyc2VkkD6k3M7NGoq7HCM4BHs2ZD+AvkuZIGl1ZR0mjJZVIKiktLa3jsMzMrCJVHhHkS9JRJIng8JziwyNiiaTdgSckvRYRT5fXPyJuJT2tVFxc3PAepGxm9jlVJ0cEknoDtwNDIuLDLeURsST9dxnwADCgLtZnZmZ1p9aJQNIewP3A8Ih4I6e8taQ2W6aB44ByrzwyM7PCqfLUkKS7gUFAB0mLgfFAM4CIuBm4HNgNuEkSwMb0CqFOwANpWRHw+4h4bAdsg5mZ1UI+Vw2dUUX9ucC55ZQvBPps38PMzBoS/7LYzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMi6vRCBpsqRlksp91KQSkyQtkPSipANz6kZKejN9jayrwM3MrG7ke0QwBRhcSf0JQM/0NRr4HwBJ7UkebXkQyYPrx0vatabBmplZ3csrEUTE08CKSpoMAe6MxCygnaTOwPHAExGxIiJWAk9QeUIxM7N6VldjBF2A93LmF6dlFZVvR9JoSSWSSkpLS+soLDMzq0qDGSyOiFsjojgiijt27FjocMzMMqOuEsESoFvOfNe0rKJyMzNrIOoqEUwHRqRXDx0MrIqIpcDjwHGSdk0HiY9Ly8zMrIEoyqeRpLuBQUAHSYtJrgRqBhARNwN/Bk4EFgBrgbPSuhWSrgJmp4u6MiIqG3Q2M7N6llciiIgzqqgP4PsV1E0GJlc/NDMzqw8NZrDYzMwKw4nAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOOcCMzMMs6JwMws45wIzMwyzonAzCzjnAjMzDLOicDMLOPySgSSBkt6XdICSZeUU/8rSfPS1xuSPsqp25RTN70OYzczszpQ5RPKJDUFfgMcCywGZkuaHhHzt7SJiP+b0/4CoF/OItZFRN86i9jMzOpUPkcEA4AFEbEwItYD9wBDKml/BnB3XQRnZmY7Xj6JoAvwXs784rRsO5K6A3sCT+UUt5RUImmWpFMqWomk0Wm7ktLS0jzCMjOzulDXg8VDgT9GxKacsu4RUQx8G/i1pC+X1zEibo2I4ogo7tixYx2HZWZmFcknESwBuuXMd03LyjOUMqeFImJJ+u9CYAbbjh+YmVmB5ZMIZgM9Je0pqTnJzn67q38k7QvsCvwzp2xXSS3S6Q7AYcD8sn3NzKxwqrxqKCI2ShoDPA40BSZHxCuSrgRKImJLUhgK3BMRkdN9P+AWSZtJks4vc682MjOzwtO2++2Gobi4OEpKSgodhplZoyFpTjoeW23+ZbGZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZZwTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZZwTgZlZxuWVCCQNlvS6pAWSLimnfpSkUknz0te5OXUjJb2ZvkbWZfBmZlZ7VT6hTFJT4DfAscBiYLak6eU8aewPETGmTN/2wHigGAhgTtp3ZZ1Eb2ZmtZbPEcEAYEFELIyI9cA9wJA8l3888ERErEh3/k8Ag2sWqpmZ7Qj5JIIuwHs584vTsrJOk/SipD9K6lbNvkgaLalEUklpaWkeYZmZWV2oq8Hi/wf0iIjeJN/6f1fdBUTErRFRHBHFHTt2rKOwzMysKvkkgiVAt5z5rmnZVhHxYUR8ls7eDvTPt6+ZmRVWPolgNtBT0p6SmgNDgem5DSR1zpk9GXg1nX4cOE7SrpJ2BY5Ly8zMrIGo8qqhiNgoaQzJDrwpMDkiXpF0JVASEdOBCyWdDGwEVgCj0r4rJF1FkkwAroyIFTtgO8zMrIYUEYWOYTvFxcVRUlJS6DDMzBoNSXMiorgmff3LYjOzjHMiMDPLOCcCM7OMcyIwM8s4JwIzs4xzIjAzyzgnAjOzjHMiMDPLOCcCM7OMcyIwM8s4JwIzs4xzIjAzyzgnAjOzjHMiMDPLOCcCM7OMcyIwM8u4vBKBpMGSXpe0QNIl5dT/QNJ8SS9KelJS95y6TZLmpa/pZfuamVlhVfmoSklNgd8AxwKLgdmSpkfE/Jxmc4HiiFgr6bvABOBbad26iOhbt2GbmVldyeeIYACwICIWRsR64B5gSG6DiPhbRKxNZ2cBXes2TDMz21HySQRdgPdy5henZRU5B3g0Z76lpBJJsySdUlEnSaPTdiWlpaV5hGVmZnWhylND1SFpGFAMHJlT3D0ilkj6EvCUpJci4q2yfSPiVuBWSB5eX5dxmZlZxfI5IlgCdMuZ75qWbUPS14BxwMkR8dmW8ohYkv67EJgB9KtFvGZmVsfySQSzgZ6S9pTUHBgKbHP1j6R+wC0kSWBZTvmuklqk0x2Aw4DcQWYzMyuwKk8NRcRGSWOAx4GmwOSIeEXSlUBJREwHJgI7A/dJAng3Ik4G9gNukbSZJOn8sszVRmZmVmCKaHin44uLi6OkpKTQYZiZNRqS5kREcU36+pfFZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnFOBGZmGedEYGaWcU4EZmYZ50RgZpZxTgRmZhnnRGBmlnF5JQJJgyW9LmmBpEvKqW8h6Q9p/XOSeuTUXZqWvy7p+DqM3czM6kCViUBSU+A3wAnA/sAZkvYv0+wcYGVE7AX8Crgm7bs/yTOOewGDgZvS5ZmZWQNR5TOLgQHAgohYCCDpHmAI2z6EfghwRTr9R+BGJQ8vHgLcExGfAW9LWpAu7591E37DM2hQoSOo3IwZhY7Assx/Hw1TPqeGugDv5cwvTsvKbRMRG4FVwG559gVA0mhJJZJKSktL84vezMxqLZ8jgnoREbcCt0Ly8PoCh1NjWf1GYZYP/300TPkcESwBuuXMd03Lym0jqQjYBfgwz75mZlZA+SSC2UBPSXtKak4y+Du9TJvpwMh0+pvAUxERafnQ9KqiPYGewPN1E7qZmdWFKk8NRcRGSWOAx4GmwOSIeEXSlUBJREwHfgtMTQeDV5AkC9J295IMLG8Evh8Rm3bQtpiZWQ0o+eLesBQXF0dJSUmhwzAzazQkzYmI4pr09S+LzcwyzonAzCzjnAjMzDLOicDMLOMa5GCxpNXA64WOo4Y6AMsLHUQtOP7CcvyF1Zjj3yci2tSkY4P5ZXEZr9d09LvQJJU01tjB8Rea4y+sxhy/pBpfaulTQ2ZmGedEYGaWcQ01Edxa6ABqoTHHDo6/0Bx/YTXm+Gsce4McLDYzs/rTUI8IzMysnjgRmJllXINIBJLaS3pC0pvpv7uW06avpH9KekXSi5K+VYhYc+IZLOl1SQskXVJOfQtJf0jrn5PUowBhViiP+H8gaX76Xj8pqXsh4qxIVfHntDtNUkhqUJcE5hO/pP9M/w9ekfT7+o6xInl8dvaQ9DdJc9PPz4mFiLMikiZLWibp5QrqJWlSun0vSjqwvmOsSB6xn5nG/JKkmZL65LXgiCj4C5gAXJJOXwJcU06bvYGe6fQXgaVAuwLF2xR4C/gS0Bx4Adi/TJvvATen00OBPxT6fa5m/EcBrdLp7za2+NN2bYCngVlAcaHjrub73xOYC+yazu9e6LirEfutwHfT6f2BRYWOu0x8A4EDgZcrqD8ReBQQcDDwXKFjrkbsh+Z8Zk7IN/YGcURA8pD736XTvwNOKdsgIt6IiDfT6feBZUDH+gqwjAHAgohYGBHrgXtItiFX7jb9EThGkuoxxspUGX9E/C0i1qazs0ieLtdQ5PP+A1wFXAN8Wp/B5SGf+M8DfhMRKwEiYlk9x1iRfGIPoG06vQvwfj3GV6WIeJrkuSkVGQLcGYlZQDtJnesnuspVFXtEzNzymaEaf7cNJRF0ioil6fQHQKfKGksaQPJt5K0dHVgFugDv5cwvTsvKbRMRG4FVwG71El3V8ok/1zkk35AaiirjTw/nu0XEI/UZWJ7yef/3BvaW9A9JsyQNrrfoKpdP7FcAwyQtBv4MXFA/odWZ6v59NFR5/93W2y0mJP0V+EI5VeNyZyIiJFV4TWuamacCIyNic91GaWVJGgYUA0cWOpZ8SWoCXAeMKnAotVFEcnpoEMm3uqclHRARHxUyqDydAUyJiP+WdAjJ0wu/4r/X+iPpKJJEcHg+7estEUTE1yqqk/QvSZ0jYmm6oy/3MFhSW+ARYFx6yFYoS4BuOfNd07Ly2iyWVERyiPxh/YRXpXziR9LXSBL1kRHxWT3Flo+q4m8DfAWYkZ6N+wIwXdLJEdEQHn2Xz/u/mOT87gbgbUlvkCSG2fUTYoXyif0cYDBARPxTUkuSm7k1lNNbVcnr76OhktQbuB04ISLy2uc0lFND04GR6fRI4KGyDSQ1Bx4gOXf3x3qMrTyzgZ6S9kzjGkqyDblyt+mbwFORjuA0AFXGL6kfcAtwcgM6P71FpfFHxKqI6BARPSKiB8m50oaSBCC/z8+DJEcDSOpAcqpoYT3GWJF8Yn8XOAZA0n5AS6C0XqOsnenAiPTqoYOBVTmnrhs0SXsA9wPDI+KNvDsWehQ83TfuBjwJvAn8FWiflhcDt6fTw4ANwLycV98Cxnwi8AbJOMW4tOxKkh0OJB/++4AFwPPAlwr9Plcz/r8C/8p5r6cXOubqxF+m7Qwa0FVDeb7/Ijm9NR94CRha6JirEfv+wD9IriiaBxxX6JjLxH83yVWHG0iOvM4BzgfOz3nvf5Nu30sN6bOTR+y3Aytz/m5L8lmubzFhZpZxDeXUkJmZFYgTgZlZxjkRmJllnBOBmVnGORGYmWWcE4GZWcY5EZiZZdz/B6Axwh6BT9w1AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 7\n",
"pp = 65/11, satellite_part = 16\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 241/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -65/11\n",
"Satellite part = -12\n",
"Sigma = -197/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 65/11\n",
"Satellite part = 16\n",
"Sigma = 241/11\n",
"\n",
"[0, 0, 7, 7] 4\n",
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAEICAYAAAA0iw9gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhb0lEQVR4nO3de5gU5Z328e/NAKKIjIgcViXgxhMYwTAaDzHiYY0mURKNu2ZF5TUBNVHXK67EiEmMvmoiuqysGE8QFElcTURRo0ZRXqNodDyAoKBBR4VoHBQRRM6/948qsB2mZnqmm+ke5v5cV19U11OHXzczfc/zVHWVIgIzMzPbVLtSF2BmZlauHJJmZmYZHJJmZmYZHJJmZmYZHJJmZmYZHJJmZmYZHJKtkKT+kqolqdS1lIqkaySd1YTlh0t6cnPWVAqS+koKSe1LXYvZlsghWWYkLc95rJf0ac7zk9PFLgOujoiQtJWkCZLekrRM0kuSjmnC/h6ss8/Vkl7Oc93dJd0rqVbSh5IelrRHE/Z9dhr2qyRNqtPWUdIfJNWkITCkzupXAxdJ6pjv/sqFpJskzU//f4c3cd0aSUcWqY6SBaykwyW9IOljSW9IGtnSNZjlwyFZZiJi2w0P4G3g2Jx5UyT1Bg4D7klXaQ+8AxwKdAUuBu6U1DfP/R1TZ58zgbvyLLcSmAbsAfQEngXuzXNdgL8D/xeYmNH+JDAMeK+eut8F5gHHNWF/LaqB8JkF/BB4oQXLKRuSOgBTgRtJfmb/DfgvSQNLWphZPRySrc+/AC9ExEqAiPgkIi6JiJqIWB8R9wNvAoObuuE0WA8BbsuZd7+kC+tbPiKejYgJEfFhRKwBxgJ7SNohn/1FxN0RcQ/wQT1tqyPivyPiSWBdxiZmAN/MZ191SbpW0jtpT+Z5SYek83tJWpH7GiR9Oe0td0ifny7pVUlL0t7zF3KWDUk/kvQ68HrG6x4fEdOBlU2seTLQB7gv7fWPymk+WdLbkhZLGp2zTjtJF0paIOkDSXdK6pY2P5H++1G6vQMl/bOkx9JlF0uaIqmyKXXmoRuwHTA5Es8BrwL9i7wfs4I5JFufLwHzsxol9QR2B+Y2Y9unAn+JiJoNMyLiWxHxqzzX/xrwXkRsEnqbyatAc3sfzwGDSD6wfwfcJalTRLxHEr7/mrPsKcAdEbFG0lDgIuB4YEfgL8Dv62z728BXKPKHfkScwudHF67Kaf4qSY/+CODnkvZK55+T1nMo8E/AEmB82va19N/KdHtPAwKuTJfdC9gFuCSrJkmzJX2U8bg+43X8g+Q9+z+SKiQdCHyBZOTArKw4JFufSmBZfQ1pT2cKcGtEzGvGtk8FJjWnKEk7k3z4/rg56zfTMpL3o8ki4vaI+CAi1kbENcBWJCEDcCvJMC+SKoDvAZPTtjOBKyPi1YhYC1wBDMrtTabtH0bEp82prZl+GRGfRsQskuHcDX88nAmMjoiFEbGKJPC+mzUUHBF/i4hHImJVRNQC/0USsPWKiH0iojLj8cMG6v098HNgFckfGqMj4p2mvmizzc0h2fosAbrUnSmpHckH+Wrg7KZuVNJXgV7AH5qx7o7An4HrI6Jur2pz6gJ81JwVJf1nOmS6VNJHJMfGuqfN9wL9JfUjGd5eGhHPpm1fAK7d0FsCPiTpfe2Us/lSfNjnHrddAWybTn8BmJpT76skw9c969uIpJ6S7pC0SNLHwO189r4UhaQ9gTtI/ijrCAwARklq1tC52ebkkGx9ZpMMp24kScAEkg++E9Ljg011GnB3RCxvykqSticJyGkRcXkz9luIvUh6TU2SHn8cRTKkun1EVAJLScKO9HjvnSS9yVP4rBcJSQCeUafHtHVEzMxZZnPeWqep234HOKZOvZ0iYlHGtq5I538pIrYjeQ8yv2okaa4+f3Z07uOGjNX2Bl6LiIfT4+jzgQeAvM/KNmspDsnW5xHgy5I65cz7DUlgHFvfEF/GVyhy27cmCYxJ9bTNkHRJxnrbAQ8DT0XEJif3SBoiKfNDXVL79HVUABWSOuUOAyr5esuG19kxbc/9wD4UeDCfWuvoAqwFaoH2kn5OciJJrtuA4SRnz+aG5A3ATyUNSPfZVdKJeexzIyVfb+lEEj4d0tfVLm1r8D0D/gHs2oTd3QBcvmE4WNKO6XFVSF7/+jrb6wIsB5ZK2gm4oKGNR8SA3LOj6zzOzFjtRWA3JV8DkaR/Br5F8gegWVlxSLYy6UkPjwFDAdIPvzNITkJ5T3W+UylpF5Jjdw199/HbJMOWj9fTtgvwVMZ63wH2IzkBI7cH0Sdn3ZkZ60LydZVPgQtJeiyfpvM2mJ/O24kkjD8lGT5EyVdh+vPZV2EaqzXXw8BDwGvAWyRnmX5uiDQiniIJkBci4q2c+VOBXwN3pMORc2h6D+jP6Ws5CLgpnd5wEk1j79mVwMXp8Ol/5rGva0m+pvNnScuAZ0hOKiIiVgCXA0+l2zsA+CXwZZKe9QPA3U18bY2KiAXA6cA44GPg/wF/BG4p9r7MCiXfdLn1kdSf5OSS/aOR/0BJw4ABEfHTZuxnZ+DOiDiomXXeAtwVEQ83Z/1Gtn0NsCAirk+fF1Rrxj4eA34XES324b053zMzazqHpFk9JO1HMrS9S0TUezaxmW35PNxqVoekW4FHgfMckGZtm3uSZmZmGdyTNDMzy1CS2+t07949+vbtW4pdm5m1Ws8///ziiNix1HW0JSUJyb59+1JdXV2KXZuZtVqS3mp8KSsmD7eamZllcEiamZllcEiamZllcEiamZllcEiamZllKEpISjpa0nxJf5O0yd0gzMzMWqOCQzK9c/t4kjsh9Ae+l16A28zMrFUrxvck9wf+FhFvAEi6g+Q2Tq8UYdtlaciQwrcxY0bh2zBrS/x7Z6VQjOHWnfj8vfgWpvM+R9JISdWSqmtra4uwWzMzs82rxa64ExE3kdxglqqqqlZ9VXX/NWrW8vx7Z6VQjJ7kIpK7qW+wczrPzMysVStGSD4H7Capn6SOwEnAtCJs18zMrKQKHm6NiLWSzgYeBiqAiRExt+DKzMzMSqwoxyQj4k/An4qxLTMzs3LhK+6YmZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllcEiamZllKCgkJZ0oaa6k9ZKqilWUmZlZOSi0JzkHOB54ogi1mJmZlZX2hawcEa8CSCpONWZmZmWkxY5JShopqVpSdW1tbUvt1szMrNka7UlKehToVU/T6Ii4N98dRcRNwE0AVVVVkXeFZmZmJdJoSEbEkS1RiJmZWbnxV0DMzMwyFPoVkO9IWggcCDwg6eHilGVmZlZ6hZ7dOhWYWqRazMzMyoqHW83MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDI4JM3MzDIUFJKSxkiaJ2m2pKmSKotUl5mZWckV2pN8BNg7IvYBXgN+WnhJZmZm5aF9IStHxJ9znj4DfLewctqOIUNKXUFixoxSV2Dlzj+r1pYV85jk6cCDWY2SRkqqllRdW1tbxN2amZltHoqIhheQHgV61dM0OiLuTZcZDVQBx0djGwSqqqqiurq6GeWambVdkp6PiKpS19GWNDrcGhFHNtQuaTjwLeCIfALSzMystSjomKSko4FRwKERsaI4JZmZmZWHQo9JXgd0AR6R9JKkG4pQk5mZWVko9OzWLxarEDMzs3LjK+6YmZllcEiamZllcEiamZllcEiamZllcEiaWatQU1PD3nvvnffyBx100CbzNnyV+5JLLvnc81xXXHFFs/cJcM899/DKK680aZ2IoKamhkmTJtXbPmPGDL71rW81aZtbMklXSZor6VVJ4yQpp+1CSSdL+pqkFyStlfTdOus/JOkjSfc3ti+HpJltkWbOnLnJvClTpjBmzBhWrlzJVVddxZQpUzZZJjckm6M5IXnmmWfy5JNP8vbbb/P973+fRYsWFVRDU0kq6JsOLUnSQcDBwD7A3sB+wKE5i3wd+DPwNjAc+F09mxkDnJLP/hySZtbqvPHGG+y7774899xzzJ07l/33359Bgwaxzz778PrrrwOw7bbbbrLesGHD2HnnnRkzZgx9+vRh2LBhn2u/8MIL+fTTTxk0aBAnn3wyAOvWrWPEiBEMGDCAo446ik8//RSABQsWcPTRRzN48GAOOeQQ5s2bx8yZM5k2bRoXXHABgwYNYsGCBdx8883st99+DBw4kBNOOIEVKza97sr111/P73//eyZOnMiVV17JTjvtlPnaJe0v6WlJL0qaKWmPdP4TkgblLPekpIGSOkuaKOnZdJ2haftwSdMkPQZMz9jXEEkzJP0hvS3ilA29Nkk1krqn01WSZqTTl0i6VdJfJL0l6fi05/dy2oPrkPni8hNAJ6AjsBXQAfhHuu/tgI4RURsRNRExG1i/yQYipgPL8ttbRIs/Bg8eHGZmTfHmm2/GgAEDYt68eTFo0KB46aWXIiLi7LPPjttvvz0iIlatWhUrVqyIiIjOnTtvso0pU6bEVVddFT/5yU/i17/+dUyZMmWTZXLXe/PNN6OioiJefPHFiIg48cQTY/LkyRERcfjhh8drr70WERHPPPNMHHbYYRERcdppp8Vdd921cRuLFy/eOD169OgYN27cJvs888wzY/LkyfHLX/4yfvCDH8SiRYs+1/7444/HN7/5zQCqge2A9pEMFR8J/DGdPg3473R6d6A6nb4CGJZOV5Lc1rAzSS9rIdAtMj6rgSHAUmBnkk7V08BX07YaoHs6XQXMSKcvAZ5Mw2sgsAI4Jm2bCny7nv1cALxUz2NcRl1XAx+ltV2eM/944NI6y04Cvpvx2u7Peu0bHq2mi21mVltby9ChQ7n77rvp378/AAceeCCXX345Cxcu5Pjjj2e33XbLXP973/sekrjkkksYNWpUvcck6+rXrx+DBg0CYPDgwdTU1LB8+XJmzpzJiSeeuHG5VatW1bv+nDlzuPjii/noo49Yvnw5X//61zdZ5vrrr+ett95i7dq1/PznP2+spK7ArZJ2I+lVbeiZ3QX8TNIFJHdlmpTOPwo4TtJ/ps87AX3S6Uci4sNG9vdsRCwEkPQS0JckBBvyYESskfQyUAE8lM5/OV3/cyJiDMkQaKMkfRHYiyS4Ibni2yER8RfgaOC3+WwnXx5uNbNWo2vXrvTp04cnn/zsM/rf//3fmTZtGltvvTXf+MY3eOyxxzLX33B+x4YTd3LO98i01VZbbZyuqKhg7dq1rF+/nsrKSl566aWNj1dffbXe9YcPH851113Hyy+/zC9+8QtWrlxZb119+/Zl+PDhjdYDXAY8HhF7A8eShB6RXD/7EWAo8K/AhgOuAk6IiEHpo09EbCj2kzz2l5v+6/jsSm1r+SxDOtW3TkSsB9bEZ3+NrKeeK71JuiC9tGndx7h66vkO8ExELI+I5SS3aDwwbdsfeDaP15Q3h6SZtRodO3Zk6tSp3Hbbbfzud8n5GG+88Qa77ror5557LkOHDmX27NkF7aNDhw6sWbOmwWW22247+vXrx1133QUkh61mzZoFQJcuXVi27LPDXcuWLaN3796sWbOm3hOFmqErsOHMnuF12m4BxgHPRcSSdN7DwDk5xxL3LUYRJMOtg9PpEwrZUESMyQnx3Me59Sz+NnCopPbp8c1DgVclDQDmRcS6QmqpyyFpZq1K586duf/++xk7dizTpk3jzjvvZO+992bQoEHMmTOHU089taDtjxw5kn322WfjiTtZpkyZwoQJExg4cCADBgzg3nvvBeCkk05izJgx7LvvvixYsIDLLruMr3zlKxx88MHsueeeBdWWugq4UtKL1OmVRcTzwMd8fsjxMpIh2dmS5qbPi+GXwLWSqkl6mC3lD8ACkqHbWcCsiLgPOIbPhnWRtJ+khcCJwI3pa9/Q9heS4ekjJC2UtOkY+IZl8xmTLzbfdNnMrOkau+mypH8CZgB7pkOdbYakR4BTI+LdYm7XPUkzsy2ApFOBvwKj21pAAkTEvxQ7IKHAW2WZmVl5iIjbgNuas66kLwGT68xeFRFfKbiwVs4haWbWxkXEy8CgUtdRjjzcamZlY+3atTz99NN5fX/RrCU4JM2sLKxevZqLLrqIkSNHMn78eAellQWHpJmV3OrVqxk1ahTTp0+nZ8+e3HzzzcyfP7/UZZk5JM2stFauXMn555/Pk08+Sffu3VmyZAnnnnsue+yxR6lLM/OJO2ZWOitWrODHP/4x1dXV7LDDDtTW1nLeeedxyimn5HXJOLPNzSFpZiXxySef8B//8R/MmjWLbt26sXjxYkaNGsVJJ51U6tLMNnJImlmLW7ZsGeeccw5z586lsrKSDz74gIsuuogTTijoEqBmReeQNLMWtXTpUn74wx/y2muvUVlZyZIlS/jFL37BcccdV+rSzDZR0Ik7ki6TNDu9pcmf0+sGmpnVa8mSJYwcOZLXX3+drl27smTJEi677DIHpJWtQs9uHRMR+0TEIOB+oNG7hZpZ2/TBBx8wYsQIampq6NKlC0uXLuVXv/oVxxxzTKlLM8tU0HBrRHyc87QzyV2yzcw+5/333+eMM87g73//O507d2bZsmVcffXVHHrooaUuzaxBBR+TlHQ5cCqwFDisgeVGAiMB+vTpU+huzayVeO+99xgxYgS1tbVss802fPLJJ4wdO5aDDz641KWZNarR+0lKehToVU/T6Ii4N2e5nwKdIuIXje3U95M0axsWLVrEiBEj+PDDD+nUqRMrV65k3Lhx7L///qUurVVq7H6SVnyN9iQj4sg8tzUF+BPQaEia2ZbvnXfe4Qc/+AEff/wxW221FatXr2b8+PEMHjy41KWZ5a3Qs1t3y3k6FJhXWDlmtiWoqanh9NNPZ9myZXTo0IF169bxm9/8xgFprU6hxyR/JWkPYD3wFnBm4SWZWWu2YMECRowYwapVq6ioqADgxhtvZMCAASWuzKzpCj271ZfHMLON5s+fzxlnnMHatWuRREVFBTfeeKMvVm6tlu8CYmZF8corrzBixAjWrVtHRNCxY0duueUWB6S1ag5JMyvY7NmzGTlyJADr1q1j6623ZsKECXzxi18scWVmhXFImllBXnjhBc466ywqKipYs2YN2267LRMnTqRfv36lLs2sYA5JM2u2Z599lh/96Ed06NCB1atXU1lZyW9/+1tfMMS2GA5JM2uWmTNncs4552y8SED37t2ZOHEiO+20U6lLMysah6SZNdkTTzzBeeedR+fOnVmxYgW9evViwoQJ9O7du9SlmRWVQ9LMmmT69Omcf/75dOnShU8++YSdd96ZW265hR49epS6NLOic0iaWd4eeughfvKTn9C1a1eWLVtG3759ufnmm+nevXupSzPbLBySZpaX++67j4svvpjKykqWLl3Kbrvtxk033US3bt1KXZrZZlPwrbLMbMv3xz/+kSuuuIJu3brx0Ucf0b9/f6677jq6dOlS6tLMNiv3JM2sQXfccQdXXHEFO+ywA0uWLGHgwIFcf/31DkhrExySZm1YRPDUU0+xdu3aetsnT57MmDFj6N69Ox9++CGDBw9m3LhxdO7cuYUrNSsNh6RZG1ZTU8PZZ5/NpZdeyrp16zbOjwgmTJjA2LFj6d69O4sXL+aAAw7g2muvZZtttilhxWYtyyFp1oZNnz6ddu3a8cADD3DllVeyfv16IoIbbriB8ePHs+OOO7J48WIOOeQQrrnmGjp16lTqks1alE/cMWujIoKpU6dSWVnJVlttxdSpU+nQoQNbb701kyZN2hiQhx9+OJdffjkdO3YsdclmLc4hadZGzZs3j9raWnr06IEkevbsyZ133klE0KNHD95//32OPvpoLr30Utq390eFtU3+yTdrox5++GEiAkkAVFRU0Lt3byKC9957j2OPPZaf/exnDkhr03xM0qwNWrduHdOmTaOysvJz8zcEZkTQq1cvKioqSlCdWflwSJq1QbNmzWL58uX1nojTrl07evbsyc0338ykSZNavjizMuKQNGuDHnzwwQbb27dvT48ePfif//kfbr/99haqyqz8OCTN2pjVq1fz0EMPsf322ze43Lp161i/fj1jx45l7ty5LVSdWXnxEXmzNqa6uprVq1dvcjwyIlixYgUff/wxFRUVbLfddgwbNowjjjiCvfbaqzTFmpWYQ9Ksjbnvvvs+d4LO8uXLWb58OZLo1asXJ554IkOGDGHPPffcuJxZW+WQNGtDPvnkEx5//HHatWvHu+++iyT69evH6aefziGHHELfvn0djGY5ihKSks4HrgZ2jIjFxdimmRXfnDlzWL9+PXvuuSfHHnssBx10EL179y51WWZlq+CQlLQLcBTwduHlmNnmNHjwYB555BG6du1a6lLMWoVi9CTHAqOAe4uwLWthQ4aUuoLEjBmlrqD8bJ7/m/ZA0wLS/zfWlhX0FRBJQ4FFETErj2VHSqqWVF1bW1vIbs3MzFqEIqLhBaRHgV71NI0GLgKOioilkmqAqnyOSVZVVUV1dXUzyjUza7skPR8RVaWuoy1pdLg1Io6sb76kLwH9gFnp2XA7Ay9I2j8i3itqlWZmZiXQ7GOSEfEy0GPD86b0JM3MzFoDX5bOzMwsQ9EuJhARfYu1LTMzs3LgnqSZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVkGh6SZmVmGgkJS0iWSFkl6KX18o1iFmZmZlVr7ImxjbERcXYTtmJmZlRUPt5qZmWUoRkieLWm2pImSts9aSNJISdWSqmtra4uwWzMzs81LEdHwAtKjQK96mkYDzwCLgQAuA3pHxOmN7bSqqiqqq6ubXq2ZWRsm6fmIqCp1HW1Jo8ckI+LIfDYk6Wbg/oIrMjMzKxOFnt3aO+fpd4A5hZVjZmZWPgo9u/UqSYNIhltrgDMKLcjMzKxcFBSSEXFKsQoxMzMrN/4KiJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWQaHpJmZWYaCQ1LSOZLmSZor6apiFGVmZlYO2heysqTDgKHAwIhYJalHccoyMzMrvYJCEjgL+FVErAKIiPcLL8naoiFDSl1B+Zkxo9QVmFmhw627A4dI+quk/ydpv6wFJY2UVC2pura2tsDdmpmZbX6N9iQlPQr0qqdpdLp+N+AAYD/gTkm7RkTUXTgibgJuAqiqqtqk3do295rMrBw1GpIRcWRWm6SzgLvTUHxW0nqgO+CuopmZtXqFDrfeAxwGIGl3oCOwuMBtmpmZlYVCT9yZCEyUNAdYDZxW31CrmZlZa1RQSEbEamBYkWoxMzMrK77ijpmZWQaHpJmZWQaHpJmZWQaHpJmZWQaV4mRUScuA+S2+4+LpTuv+qktrrr811w6uv9Rae/17RESXUhfRlhT6FZDmmh8RVSXad8EkVbv+0mjNtYPrL7Utof5S19DWeLjVzMwsg0PSzMwsQ6lC8qYS7bdYXH/ptObawfWXmuu3JinJiTtmZmatgYdbzczMMjgkzczMMrRISErqJukRSa+n/25fzzKDJD0taa6k2ZL+rSVqa4ikoyXNl/Q3SRfW076VpP9N2/8qqW8JyqxXHrX/WNIr6Xs9XdIXSlFnlsbqz1nuBEkhqaxO68+nfkn/mv4fzJX0u5ausSF5/Pz0kfS4pBfTn6FvlKLO+kiaKOn99O5E9bVL0rj0tc2W9OWWrrEhedR/clr3y5JmShrY0jW2KRGx2R/AVcCF6fSFwK/rWWZ3YLd0+p+Ad4HKlqgvo+YKYAGwK8l9MmcB/ess80PghnT6JOB/S1VvM2o/DNgmnT6rXGrPt/50uS7AE8AzQFWp627i+78b8CKwffq8R6nrbmL9NwFnpdP9gZpS151T29eALwNzMtq/ATwICDgA+Gupa25i/Qfl/NwcU271b2mPlhpuHQrcmk7fCny77gIR8VpEvJ5O/x14H9ixheqrz/7A3yLijUhuCXYHyevIlfu6/gAcIUktWGOWRmuPiMcjYkX69Blg5xausSH5vPcAlwG/Bla2ZHF5yKf+EcD4iFgCEBHvt3CNDcmn/gC2S6e7An9vwfoaFBFPAB82sMhQ4LZIPANUSurdMtU1rrH6I2Lmhp8byu93d4vTUiHZMyLeTaffA3o2tLCk/Un+gl2wuQtrwE7AOznPF6bz6l0mItYCS4EdWqS6huVTe67vk/xlXS4arT8dItslIh5oycLylM/7vzuwu6SnJD0j6egWq65x+dR/CTBM0kLgT8A5LVNaUTT196Ocldvv7hanaJelk/Qo0KueptG5TyIiJGV+7yT9i24ycFpErC9WfVY/ScOAKuDQUteSL0ntgP8Chpe4lEK0JxlyHULSE3hC0pci4qNSFtUE3wMmRcQ1kg4EJkva27+zLUfSYSQh+dVS17IlK1pIRsSRWW2S/iGpd0S8m4ZgvUNLkrYDHgBGp8MgpbQI2CXn+c7pvPqWWSipPcmw0wctU16D8qkdSUeS/BFzaESsaqHa8tFY/V2AvYEZ6eh2L2CapOMiohyubZnP+7+Q5FjSGuBNSa+RhOZzLVNig/Kp//vA0QAR8bSkTiQXDy+nYeMsef1+lDNJ+wC3AMdERDl85myxWmq4dRpwWjp9GnBv3QUkdQSmkhwr+EML1dWQ54DdJPVLazuJ5HXkyn1d3wUei4hyuDpDo7VL2he4ETiuzI6HQSP1R8TSiOgeEX0joi/JcZlyCUjI72fnHpJeJJK6kwy/vtGCNTYkn/rfBo4AkLQX0AmobdEqm28acGp6lusBwNKcw0FlT1If4G7glIh4rdT1bPFa4uwgkuN004HXgUeBbun8KuCWdHoYsAZ4KecxqJRnNZGcBfcaybHR0em8S0k+kCH5YLgL+BvwLLBrKettYu2PAv/Iea+nlbrmptRfZ9kZlNHZrXm+/yIZMn4FeBk4qdQ1N7H+/sBTJGe+vgQcVeqac2r/PcnZ8WtIeuzfB84Ezsx578enr+3lMvzZaaz+W4AlOb+71aWueUt++LJ0ZmZmGXzFHTMzswwOSTMzswwOSTMzswwOSTMzswwOSTMzswwOSTMzswwOSTMzswz/H9vC3Ae3zWapAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 8\n",
"pp = -73/11, satellite_part = -8\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -161/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAEICAYAAAAnXE+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgo0lEQVR4nO3dfZyVdZ3/8dcbZoARubFAMhGHyjsGZczRUisxu9GybDVbXVHZ3Fhqrf09Sl13rcR11cLtzke5ZWoqoaWsJmtraiqrRCpjIvfKvUAqQ4qB3M3A5/fHdQ0ehxnmmmHOOQPX+/l4nAfXOdf3uq7PdThz3uf7va5zHUUEZmZmedSj3AWYmZmVi0PQzMxyyyFoZma55RA0M7PccgiamVluOQTNzCy3HIJFJKm3pPmSDih3LXkk6XuSvtyB9mMlTS9mTeUgqVpSSKoody1m3Y1DsJMkPShpQ3prlLS14P5P02bjgCci4uV0mUslzZW0XtIySZd2YHsnS5ojaZ2kv0i6T9KBGZftLekWSSvSbc+SdFon93VDuq9zMi57qKT7JTVIek3SQ5IO68C2L5ZUL2mLpNtazOslaYqk5emb/OgWi/8n8G+SemXdXnch6SZJL0jaLmlsB5ddLuljXVRH2QJU0kcl/UnSXyUtlTSu1DXY3s8h2EkRcVpE7BsR+wKTgYnN9yNifNpsPDCpYDEBFwD7AacCF0s6J+Mm5wOfjIiBwLuBRcB/ZVy2AlgJnAQMAL4J3C2pOsvChfua7u8M4J6M2x4ITAUOA4YAzwD3Z1wW4M/AfwC3tjF/OjAGeKWVul8GFgKf7cD2SmoX4fI88BXgTyUsp9uQVAncB/yM5DX7t8D3JY0qa2G213EIFomkYcB7gKebH4uIiRHxp4hoiogXSMLgxCzri4hXI+LPBQ9tA95XsL3LJT3QxrJvRsSEiFgeEdsj4gFgGXBMJ/arGvgwcEfBYw9IuryNbT8TEbdExGsR0Qj8ADhM0juzbC8i7o2I3wB/aWXe1oj4YURMJ3k+WjMN+HSWbbUk6UeSVqY9kWclfTh9/F2SNhbug6T3p73dyvT+FyUtkPR62vs9uKBtSPonSYtIPsy0tt8/iYhHgc0drHkSMAz4n7TXflnB7PMkvSRpraQrCpbpkb5+lqSjDHdLekc6+4n033Xp+o6X9F5Jj6Vt10qaLGlgR+rM4B1Af2BSJGYCC4ARXbwdyzmHYPEcCSyNiKbWZkoSSZjMy7pCScMkrQM2AZcAE5vnRcR3IuL0jOsZAhzakW0XuAB4MiKWF2z79Ij4TsblPwK8EhE7hVqRLAA623uYCdSSvCHfCdwjqU9EvEISrl8oaHs+8KuIaJR0BvBvwJnAYOBJ4K4W6/4c8AG6+E09Is4HXgI+k/bcJxbM/hBJj/wU4NuSjkgf/2paz0kkowyvAz9J530k/Xdgur4/koxoXJe2PQI4CJjQVk2SZqfD+K3dbmxjP14lec7+XlJPSccDB5P0/M26jEOweAYC63cxfwLJ8/+LrCuMiJfS4dBBJEOaCztaVNpTmQzcHhEdXp4kBG/rxHJIGkry5vr1zizfSetJ/i86LCJ+GRF/SXvu3wN6k4QIwO0kw7BI6gmcy1tD3+OB6yJiQfoh6FqgtrA3mM5/LSI2daa2TroqIjZFxPMkw63NHw7GA1dExKqI2ELy2vx8W0O1EbE4Ih6JiC0R0QB8nyRAWxURR0XEwDZuX9lFvXcB3wa2kHyQuCIiVnZ0p812xSHYAZLOKzg55MF2mr8O9GtjPReThMmn0zedDomI10jehO/vyAkLknqQvFFvBS7u6HYlfQh4FzClE8sOBh4GboyIlr2iYuoHrOvMgpIuSYc030h74ANIPoBAMpQ9QtJw4OPAGxHxTDrvYOBHzb0d4DWS3lPhiUzleDMvPG66Edg3nT4YuK+g3gUkw8tDWluJpCGSfiVptaS/Ar/kreelS0g6HPgVyd9JL6AGuExSp4a2zdriEOyAiJhccIJIe2dXzgaGtwwpSV8ELgdOiYhVu1FOBbA/yXGTdqXDr7eQvLGdlR6f66gLgXsjYkNHFpK0H0kATo2Iazqx3d1xBEmvp0PS43+XkQx57pf2wN8gCTMiYjNwN0lv8HzefgLUSuAfW/R4qiJiRkGbYv58S0fXvRI4rUW9fSJidRvrujZ9/MiI6E/yHKitlUuap7efXVx4+2kbi40EXoyIh9Lj2C8AvwUyn9VsloVDsEjSgFsMHNf8mKTzSN5APh4RS1suI2mapAmtrU/SmZIOS09iGEwyBPVc2itE0gRJ03ZR0n+RBMJnWhuCU+tfMSicX0USCLd1sO7+wEPAHyJip5NnJI2W1OabtqQKSX2AnkBPSX0KP1go+fpHn/Rur3R+4RvyScCDBe3brLWFfkAT0ABUSPo2O3/guAMYS3L2aWEI/hT4V0k16TYHSDo7wzZ3UPL1jz4k4VKZ7lePdN4unzPgVZKTsrL6KXBN83CtpMHpcU1I9n97i/X1AzYAbyj5ms4uv+oTETWFZxe3uI1vY7HngEOUfE1Ckt4LnE7y4dKsyzgEi+tnJL2EZv8BvBOY2cYn4YOAP7SxrgOB35Ec45pD8sb0N1mWTd/c/pHkJI9XCrZ9Xjr/oIL1tuVzJMOKj7cyb1d1/w1wLMkJDoU9gGEFy85oY1lIjn1uIuk9j0mnv1kw/4X0sQNJwnYTyfAeSi5SMAL4TcZaCz1E8ny/CKwgOUvzbUOYEfEHkv+HP0XEioLH7wO+C/wqHS6cS8d7MA+n+3ICcFM63XySSnvP2XXAN9PhzUsybOtHJF9jeVjSeuApkpN2iIiNwDXAH9L1fRC4Cng/Sc/4t8C9Hdy3dkXEEuCLwA3AX4H/A/4buLmrt2X5pvCP6haNpN4kn2hPSb+ztqu2Q4G7I+KETm5rVrqdDp91KWkMUBMR/9qJZXe37puBeyLioc4s3866vwcsiYgb0/u7VWsb23gMuDMiSvbmXMznzCxvHIJmnSTpWOAR4KCI2NWZwGbWTXk41KwTJN0O/B74fw5Asz2Xe4JmZpZb7gmamVluFeXK8IMGDYrq6upirNrMbK/07LPPro2IweWuI2+KEoLV1dXU19cXY9VmZnslSSvab2VdzcOhZmaWWw5BMzPLLYegmZnllkPQzMxyyyFoZma5lSkEJQ2UNEXSwvT31Y4vdmFmZmbFlvUrEj8CfhcRn5fUC9iniDWZmZmVRLshKGkAyU+4jAWIiK0kv0xultno0eWuoHuZNq3cFZgZZBsOHU7yw5q/kPScpJsl9W3ZSNI4SfWS6hsaGrq8UDMzs67W7gW0JdWR/MjmiRHxtKQfAX+NiG+1tUxdXV34ijFmZtlJejYi6spdR95k6QmuAlZFxNPp/SkkvyptZma2R2s3BCPiFWClpMPSh04B5he1KjMzsxLIenboV4HJ6ZmhS4G/L15JZmZmpZEpBCNiFuCxajMz26v4ijFmZpZbDkEzM8sth6CZmeWWQ9DMzHLLIWhmZrnlEDQzs9xyCJqZWW45BM3MLLccgmZmllsOQTMzyy2HoJmZ5ZZD0MzMcsshaGZmueUQNDOz3HIImplZbjkEzcwstxyCZmaWWw5BMzPLLYegmZnllkPQzMxyyyFoZma55RA0M7PccgiamVluOQTNzCy3KrI0krQcWA9sA5oioq6YRZmZmZVCphBMnRwRa4tWiZmZWYl5ONTMzHIrawgG8LCkZyWNa62BpHGS6iXVNzQ0dF2FZmZmRZI1BD8UEe8HTgP+SdJHWjaIiJsioi4i6gYPHtylRZqZmRVDphCMiNXpv2uA+4DjilmUmZlZKbQbgpL6SurXPA18Aphb7MLMzMyKLcvZoUOA+yQ1t78zIn5X1KrMzMxKoN0QjIilwKgS1GJmZlZS/oqEmZnllkPQzMxyyyFoZma55RA0M7PccgiamVluOQTNzCy3HIJmZpZbDkEzM8sth6CZmeWWQ9DMzHLLIWhmZrnlEDQzs9xyCJqZWW45BM3MLLccgmZmllsOQTMzyy2HoJmZ5ZZD0MzMcsshaGZmueUQNDOz3HIImplZbjkEzcwstxyCZmaWWw5BsxyKCFauXMmUKVO48soraWpqKndJZmVRkbWhpJ5APbA6Ik4vXklmVgyNjY3MnTuXJ598kocffphXX32VpqYmqqqqmDBhQrnLMyuLzCEI/DOwAOhfpFrMrIu9/vrrzJw5k0cffZTp06ezbds2tm3bRv/+/RkyZAgbNmxg2LBhSCp3qWZlkSkEJQ0FPg1cA3y9qBVZlxo9utwVJKZNK3cF3Uux/l8igs2bl/DGG0/x+uu/Y+PGFwAh9aRnzwH06FH5tvbvfe9GRo4cWZxizPYAWXuCPwQuA/q11UDSOGAcwLBhw3a7MDPruFWrvs8rr/yCHj1606PHvlRW7o/U9qH/iOCII44oYYVm3Uu7ISjpdGBNRDwraXRb7SLiJuAmgLq6uuiqAm33uAfWPRXr/+UvfxnLt761hKeffppBg/rQq9euz33785+3c//997NmzRre9773UV1dzYEHHkhFRUeOlJjtuRSx67ySdB1wPtAE9CE5JnhvRIxpa5m6urqor6/vyjrNLKNt27Zxxx13cOONN1JVVcWAAQPabLt161befPNNNm3aRGVlMlQaEQwbNoyamhpqamoYPnw41dXVvPOd7/SxwyKS9GxE1JW7jrxpNwTf1jjpCV7S3tmhDkGz8nv++ee59NJLWbduHfvvv/9OAdbY2Mirr75K7969aWxspKqqiqqqKiorK9m8eTMbN26kqamJiooKtm3bRlVVFYcccghHHnkkhx9+OAcffDAHH3ww++yzT5n2cO/iECwPj3mY7aVGjRrF3XffzZVXXsn06dMZNGgQvXr12jF/w4YN1NXVcf7557N48WLmzJnDwoULWbNmDZWVlWzbto0ePXrQu3dvqqqqAFi0aBGzZ89GEj169KCpqYn999+fww8/nCOPPHLHkOq73/1uevbsWa5dN8usQz3BrNwTNOs+IoK77rqLH/7wh/Tu3ZuBAwcC8PLLLzNu3DjGjRv3tvZvvvkmL730EsuWLWPhwoXMmTOHRYsWsXXr1h3BV1lZSVVVFX369GHr1q1s2rSJzZs3U1lZSfN7yvDhwxkxYgQjR46kurqa6upq9ttvPw+ptsE9wfJwCJrlxLx587jkkktYu3Yt+++/P2vXruU73/kOJ598crvLRgRr165l+fLlLFu2jDlz5jB//nxWrlxJjx49iIgdX7zfZ599qKioYNOmTWzatGlHaDY1NdG3b18OPfRQvvGNb3DYYYeVYK/3HA7B8vBwqFlO1NTU8Otf/5qrr76axx57DElUV1dnWlYSgwcPZvDgwRx77LF84QtfAJLjiqtXr2bZsmUsXryY2bNn88ILL+w0pNqrVy8GDhzI9u3bqa+vZ+3atQ5B6xYcgmY50r9/fyZOnMiUKVOYNGkSQ4cO3a31VVZW7hjqLOxRrl+/nhUrVrBixQrmz5/P3LlzWbx4MY2NjVRUVGQOX7Ni83CoWU5FREmPz0UEa9asoaGhgZqaGh8bbMHDoeXhX5Ewy6lSh5AkhgwZwsiRI3fa9vLlyzt0+bYTTjhhp8eaP9A3Xwy8tQ/41157bae3CfCb3/yG+fPnd2iZiGD58uXcdtttrc6fNm0ap5/u3yRoJmmipHmSFki6QQUvFkmXSzpP0kck/UlSk6TPt1j+d5LWSXogy/Ycgma2x5kxY8ZOj02ePJnrr7+ezZs3M3HiRCZPnrxTm8IQ7IzOhOD48eOZPn06L730EhdddBGrV6/erRo6StIec9hL0gnAicBRwEjgWOCkgiafBB4GXgLGAne2sprrSS7wkolD0My6laVLl3L00Uczc+ZM5s2bx3HHHUdtbS1HHXUUixYtAmDffffdabkxY8YwdOhQrr/+eoYNG8aYMW+/qNXll1/Opk2bqK2t5bzzzgOSq+t86Utfoqamhk984hNs2rQJgCVLlnDqqadyzDHH8OEPf5iFCxcyY8YMpk6dyqWXXkptbS1Llizh5z//OcceeyyjRo3irLPOYuPGjTvVdeONN3LXXXdx6623ct1113HggQe2ue+SjpP0R0nPSZoh6bD08Sck1Ra0my5plKS+km6V9Ey6zBnp/LGSpkp6DHi0jW2NljRN0hRJCyVNbu51SVouaVA6XSdpWjo9QdLtkp6UtELSmWnPbU7aA6tsbVsdECRXJusF9AYqgVfTbfcHekVEQ0Qsj4jZwPadVhDxKLA++xYjuvx2zDHHhJlZVsuWLYuamppYuHBh1NbWxqxZsyIi4uKLL45f/vKXERGxZcuW2LhxY0RE9O3bd6d1TJ48OSZOnBj/8i//Et/97ndj8uTJO7UpXG7ZsmXRs2fPeO655yIi4uyzz45JkyZFRMRHP/rRePHFFyMi4qmnnoqTTz45IiIuvPDCuOeee3asY+3atTumr7jiirjhhht22ub48eNj0qRJcdVVV8U//MM/xOrVq982//HHH49Pf/rTQfJ7rf2BikiGcj8G/Hc6fSHww3T6UKA+nb4WGJNODwReBPqS9JJWAe+INt6ngdHAG8BQkg7RH4EPpfOWA4PS6TpgWjo9AZiehtMoYCNwWjrvPuBzrWznUmBWK7cb2qjrP4F1aW3XFDx+JvDvLdreBny+jX17oK19L7ztMd1kM9u7NTQ0cMYZZ3DvvfcyYsQIAI4//niuueYaVq1axZlnnskhhxzS5vLnnnsukpgwYQKXXXZZq8cEWxo+fDi1tbUAHHPMMSxfvpwNGzYwY8YMzj777B3ttmzZ0uryc+fO5Zvf/Cbr1q1jw4YNfPKTn9ypzY033siKFStoamri29/+dnslDQBul3QISa+ouWd1D/AtSZcCXyR58wf4BPBZSZek9/sAzT/j80hEvNbO9p6JiFUAkmYB1SQhtysPRkSjpDlAT+B36eNz0uXfJiKuJxmibJek9wFHkAQzwCOSPhwRTwKnAr/Isp6O8HComXULAwYMYNiwYUyf/tZ78N/93d8xdepUqqqq+NSnPsVjjz3W5vLN5080nxiT5cSf3r1775ju2bMnTU1NbN++nYEDBzJr1qwdtwULFrS6/NixY/nxj3/MnDlzuPLKK9m8eXOrdVVXVzN27Nh26wGuBh6PiJHAZ0hCjYjYCDwCnAF8AWg+4CngrIioTW/DIqK52DczbK8w3bfx1tfmmngrH/q0tkxEbAca461PG9tp5Wt3ki6VNKuV2w2t1PM3wFMRsSEiNgAPAsen844DnsmwTx3iEDSzbqFXr17cd9993HHHHdx5Z3K+w9KlS3nPe97D1772Nc444wxmz569W9uorKyksbFxl2369+/P8OHDueeee4DkkNHzzz8PQL9+/Vi//q3DTevXr+eAAw6gsbGx1RNxOmEA0HzmzNgW824GbgBmRsTr6WMPAV8tOJZ3dFcUQTIcekw6fdburCgiri8I6cLb11pp/hJwkqSK9PjiScACSTXAwojYtju1tMYhaGbdRt++fXnggQf4wQ9+wNSpU7n77rsZOXIktbW1zJ07lwsuuGC31j9u3DiOOuqoHSfGtGXy5MnccsstjBo1ipqaGu6//34AzjnnHK6//nqOPvpolixZwtVXX80HPvABTjzxRA4//PDdqi01EbhO0nO06FVFxLPAX3n7kODVJEOmsyXNS+93hauAH0mqJ+khlsoUYAnJ0OrzwPMR8T/Aabw17IqkYyWtAs4Gfpbue/O8J0mGj0+RtErSzmPUBfxleTOzbqC9L8tLejcwDTg8HYrMDUmPABdExMtdvW73BM3MujlJFwBPA1fkLQABIuLjxQhA8LVDzcy6vYi4A7ijM8tKOhKY1OLhLRHxgd0ubC/gEDQz24tFxBygttx1dFceDjUzs9xyCJqZWW45BM3MLLccgmZmllsOQTMzyy2HoJmZ5ZZD0MzMcsshaGZmudVuCErqk/5q8fOS5km6qhSFmZmZFVuWK8ZsAT4aERvSn7aYLunBiHiqyLWZmZkVVbshmP5g4ob0bmV66/qfnjAzMyuxTMcEJfWUNAtYAzwSEU+30macpHpJ9Q0NDV1cppmZWdfLFIIRsS0iaoGhwHGSRrbS5qaIqIuIusGDB3dxmWZmZl2vQ2eHRsQ64HHg1KJUY2ZmVkJZzg4dLGlgOl0FfBxYWOS6zMzMii7L2aEHALdL6kkSmndHxAPFLcvMzKz4spwdOhs4ugS1mJmZlZSvGGNmZrnlEDQzs9xyCJqZWW45BM3MLLccgmZmllsOQTMzyy2HoJmZ5ZZD0MzMcsshaGZmueUQNDOz3HIImplZbjkEzcwstxyCZmaWWw5BMzPLLYegmZnllkPQzMxyyyFoZma55RA0M7PccgiamVluOQTNzCy3HIJmZpZbDkEzM8sth6CZmeWWQ9DMzHKr3RCUdJCkxyXNlzRP0j+XojAzM7Niq8jQpgn4RkT8SVI/4FlJj0TE/CLXZmZmVlTthmBEvAy8nE6vl7QAOBBwCLZh9OhyV/CWadPKXYF1Z93lterXqZVLh44JSqoGjgaebmXeOEn1kuobGhq6qDwzM7PiUURkayjtC/wfcE1E3LurtnV1dVFfX98F5ZmZ5YOkZyOirtx15E2mnqCkSuC/gcntBaCZmdmeIsvZoQJuARZExPeLX5KZmVlpZOkJngicD3xU0qz09qki12VmZlZ0Wc4OnQ6oBLWYmZmVlK8YY2ZmueUQNDOz3HIImplZbjkEzcwstxyCZmaWWw5BMzPLLYegmZnllkPQzMxyyyFoZma55RA0M7PccgiamVluOQTNzCy3HIJmZpZbDkEzM8sth6CZmeWWQ9DMzHLLIWhmZrnlEDQzs9xyCJqZWW45BM3MLLccgmZmllsOQTMzyy2HoJmZ5ZZD0MzMcqvdEJR0q6Q1kuaWoiAzM7NSydITvA04tch1mJmZlVy7IRgRTwCvlaAWMzOzkuqyY4KSxkmql1Tf0NDQVas1MzMrmi4LwYi4KSLqIqJu8ODBXbVaMzOzovHZoWZmllsOQTMzy60sX5G4C/gjcJikVZIuKn5ZZmZmxVfRXoOIOLcUhZiZmZWah0PNzCy3HIJmZpZbDkEzM8sth6CZmeWWQ9DMzHLLIWhmZrnlEDQzs9xyCJqZWW45BM3MLLccgmZmllsOQTMzyy2HoJmZ5ZZD0MzMcsshaGZmueUQNDOz3HIImplZbjkEzcwstxyCZmaWWw5BMzPLLYegmZnllkPQzMxyyyFoZma55RA0M7PccgiamVluZQpBSadKekHSYkmXF7soMzOzUmg3BCX1BH4CnAaMAM6VNKLYhZmZmRVbRYY2xwGLI2IpgKRfAWcA84tZWLmMHr3765g2bffXYZYnXfF3B/7bs47LMhx6ILCy4P6q9LG3kTROUr2k+oaGhq6qz8zMrGiy9AQziYibgJsA6urqoqvWW2r+JGlWev67s3LJ0hNcDRxUcH9o+piZmdkeLUsIzgQOkTRcUi/gHGBqccsyMzMrvnaHQyOiSdLFwENAT+DWiJhX9MrMzMyKLNMxwYj4X+B/i1yLmZlZSfmKMWZmllsOQTMzyy2HoJmZ5ZZD0MzMcksRXf+9dknrgRe6fMWlMQhYW+4idoPrLy/XX157cv2HRUS/cheRN112xZgWXoiIuiKtu6gk1e+ptYPrLzfXX157cv2S6stdQx55ONTMzHLLIWhmZrlVrBC8qUjrLYU9uXZw/eXm+strT65/T659j1WUE2PMzMz2BB4ONTOz3HIImplZbnVJCEp6h6RHJC1K/92vlTa1kv4oaZ6k2ZL+tiu23VmSTpX0gqTFki5vZX5vSb9O5z8tqboMZbYpQ/1flzQ/fa4flXRwOepsS3v1F7Q7S1JI6lanvWepX9IX0v+DeZLuLHWNbcnw2hkm6XFJz6Wvn0+Vo862SLpV0hpJc9uYL0k3pPs3W9L7S11jWzLUfl5a8xxJMySNKnWNuRMRu30DJgKXp9OXA99tpc2hwCHp9LuBl4GBXbH9TtTbE1gCvAfoBTwPjGjR5ivAT9Ppc4Bfl6PW3aj/ZGCfdPrLe1r9abt+wBPAU0Bduevu4PN/CPAcsF96f/9y192B2m8CvpxOjwCWl7vuFvV9BHg/MLeN+Z8CHgQEfBB4utw1d6D2EwpeM6d1p9r31ltXDYeeAdyeTt8OfK5lg4h4MSIWpdN/BtYAg7to+x11HLA4IpZGxFbgVyT7UKhwn6YAp0hSCWvclXbrj4jHI2JjevcpYGiJa9yVLM8/wNXAd4HNpSwugyz1fwn4SUS8DhARa0pcY1uy1B5A/3R6APDnEtbXroh4AnhtF03OAO6IxFPAQEkHlKa6XWuv9oiY0fyaofv93e6VuioEh0TEy+n0K8CQXTWWdBzJp9AlXbT9jjoQWFlwf1X6WKttIqIJeAN4Z0mqa1+W+gtdRPLJuLtot/50COugiPhtKQvLKMvzfyhwqKQ/SHpK0qklq27XstQ+ARgjaRXJ74h+tTSldZmO/n10V93t73avlPmyaZJ+D7yrlVlXFN6JiJDU5vcu0k9kk4ALI2J71u1b50gaA9QBJ5W7lqwk9QC+D4wtcym7o4JkSHQ0yaf5JyQdGRHryllURucCt0XE9yQdD0ySNNJ/r6Uj6WSSEPxQuWvZ22UOwYj4WFvzJL0q6YCIeDkNuVaHfiT1B34LXJEOU5TLauCggvtD08daa7NKUgXJsNBfSlNeu7LUj6SPkXxIOSkitpSotizaq78fMBKYlo5AvwuYKumzEdEdrq+Y5flfRXI8pxFYJulFklCcWZoS25Sl9ouAUwEi4o+S+pBcmLq7DOm2J9PfR3cl6SjgZuC0iOgu7zl7ra4aDp0KXJhOXwjc37KBpF7AfSRj9VO6aLudNRM4RNLwtK5zSPahUOE+fR54LCK6y5UF2q1f0tHAz4DPdqPjUc12WX9EvBERgyKiOiKqSY6NdJcAhGyvn9+Q9AKRNIhkeHRpCWtsS5baXwJOAZB0BNAHaChplbtnKnBBepboB4E3Cg7XdGuShgH3AudHxIvlricXuuLsGpJjZY8Ci4DfA+9IH68Dbk6nxwCNwKyCW225zggiOYPsRZLjklekj/07yZstJH/49wCLgWeA95Sr1k7W/3vg1YLnemq5a+5I/S3aTqMbnR2a8fkXyZDufGAOcE65a+5A7SOAP5CcOToL+ES5a25R/10kZ5c3kvS4LwLGA+MLnvufpPs3pzu9djLUfjPwesHfbX25a97bb75smpmZ5ZavGGNmZrnlEDQzs9xyCJqZWW45BM3MLLccgmZmllsOQTMzyy2HoJmZ5db/B7Nksx1wX3eKAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEICAYAAAB8lNKlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoq0lEQVR4nO3deZxU9Znv8c+XRYwoi9IaAwiaS1xQltgiKipqUDSJqNEEAwgq4WKCyTWJjI4bozEaGJMbHTQiIgGJRqNoT4xjnIlc44LSjKi4oKgokESaxRZEWZ/7xzkwRdNLdXPoqsbv+/U6L875Lec8VXTVU+d3flVHEYGZmVlWmhU6ADMz27U4sZiZWaacWMzMLFNOLGZmliknFjMzy5QTi5mZZcqJpYhJaiXpdUn7FzqWzyNJt0i6pB7tR0h6ZmfGVAiSukoKSS0KHYs1DU4sBSLpcUlr0mWDpPU5279Jm40Cno6Iv6d9Lpc0X9JqSe9JurwexztJ0quSPpK0QtJMSR3z7NtK0t2S3k+PPU/S6Q18rGvSx/pqnn2/IulRSRWSVkp6QtLB9Tj2GEnlktZJmlqlbjdJf5C0KH3j7F+l+78C/yxpt3yPVwwyeM4WSfpaRrEULClJOlnSf0v6WNK7kkY1dgyfV04sBRIRp0fEnhGxJzADGL9lOyJGp81GA9Nzugm4AGgPDATGSBqc5yFfB06LiHbAl4C3gTvy7NsCWAycCLQFrgYekNQ1n865jzV9vM8BD+Z57HZAGXAwsB/wIvBonn0B/gb8DJhSQ/0zwFDgH9XE/XfgTeDMehyvUdXwht2OHXvOmjxJLYGZwJ0kf7PfAX4pqWdBA/u8iAgvBV6AqcDPqpQdAHwKtKil363AbQ04XivgJuD1nLIrgD/WYx+vAN9qwLG7ApuArjllfwSuyLP/3kAA+9TzuD8DptZSvwToX035VcA9eR5jBPBMzvavSRLyx8Bc4Pi0/IvA2tzHAHwVqABaptsXAW8Aq4AngC45bQP4AcmHg/eyfM5IPshsTv/21gBj0/+zAIYDHwDLgaty+jRL/37eAVYADwB7p3UfpH3XpMsxwJeBv6Rtl5N8sGpX37+lOh7Hfulx98gpmwOcn+VxvFS/+IyleB0BvBsRG6urlCTgeOC1fHco6QBJH5G8afwUGL+lLiJujohv5Lmf/YCv1OfYOS4A/hoRi3KO/Y2IuDnP/icA/4iIFQ04dkO8ATT0U+4coBfJG/vvgAcl7R4R/wBmAd/OaTsMuD8iNkgaBPwzcA5QAvwVuK/Kvs8CjgYOyyOOvJ+ziBhGkgy+GckZ5vic6n4kZ0GnANdKOjQtvzSN50SSs+FVwMScY0OSOPaMiOdJzrxvStseCnQGxtUUk6RX0iHc6pbba3gcH5I8ZxdKai7pGKALyRmq7WyFzmxeajxjGQLMrqXPvwAvA60acLy9gX8C+jagb0vgP4E7G/hYFwIjGti3E7CUBnzqpOFnLANIEnw+xxhBzhlLNfWrgJ7p+neAZ9P15iRDcX3S7ceBi3P6NSM5w+mSbgdw8s56zoBFwNdytrumx+yUU/YiMDhdfwM4Jaduf2ADyRDqlr61nXmfBbzUkL+JOh7HN4EPgY3p8r2sj+Gl+sVnLI1I0pCcC9iP19F8FbBXDfsZQ/LJ/+sRsa6+cUTESuC3wKP1uagqqRnJUMl6YEx9jyupH8kw0B8a0LcE+DNwe0RU/fS+M+0FfNSQjpJ+KukNSZXpmWJboENa/ShwmKQDSZJXZUS8mNZ1AX695VM5sJLkU37uZIvFeRw/6+cs9zrUWmDPnHhn5sT7Bslw5341xLWfpPslLZX0MXAv//O8ZELSIcD9JK+T3YDuwFhJX8/yOFY9J5ZGFBEz4n8uYtc1q+oV4MCqb/ySLiIZzz4lIpbsQDgtgH2BNvk0Tofe7iZ5s/hWRGxowDGHAw9HxJr6dJLUnuQNsiwibmzAcXfEoSRnhvUi6XiS6xPfBtpHMmmikiRBEBGfkVyLGEoyDJY7SWMx8L8jol3O8oWIeC6nTa0/S76Dz1l9f/J8MXB6lXh3j4ilNezr52n5ERHRhuQ5UE07l/RalVmFuctvauh2OPBWRDwREZsjYgHwGJD3bEZrOCeWIpUmjYVAny1lkoaQvCgHRMS7VftImiVpXHX7k3SOpIMlNUs/yf6SZPhhZVo/TtKsWkK6g+RN9psR8Wk1+69uum5u/RdI3mSn1jPuNiQXr5+NiCuqqe8vqcY3QkktJO1OMtzUXNLuuclayVTq3dPN3dL63De5E0mGpuqMtYq9SIZfKoAWkq5l+yQ+jWT47Ey2TSy/Aa6U1D09ZltJ5+VxzC0x7tBzRjJ8dFC+x0vjvVFSl3T/Jel1Ikge/+Yq+9uL5EJ+pZIp77VOm4+I7jkfyKouo2vo9hLQLZ1yLElfBr5B8oHNdjInluJ2J8mn2S1+BuwDzKnhE1tn4Nka9tUR+A9gNfAqyYv97Hz6pm8Y/5vkQvQ/co49JK3vnLPfmpxFMqT0VDV1tcV9NnAUyUXY3E+qB+T0fa6GvpBMjf6U5CxvaLp+dU79grSsI8mb8ackQzso+WLqYcAjecaa6wmS5/st4H3gM6oMX0XEsyT/D/8dEe/nlM8EfgHcnw4Vzad+n7R39Dm7Cbg6Hdr6aR7H+zXJ9OY/S1oNzCaZWEBErAVuBJ5N99eX5PrgV0nO4B4DHq7HY8tLRLxDMrPuVpJZef8PeAiYnPWxbHuK8I2+ipWkViSfvE6J9EuStbTtBDwQEcc28Fjz0uPUe7aVpKFA94i4sgF9dzTuycCDEfFEQ/rXse9bgHci4vZ0e4direEYfwF+FxGN9oa3M58zM3BiMSsYSUcBTwKdI2J1oeMxy4qHwswKQNJvSaZt/x8nFdvV+IzFzMwy5TMWMzPLVFH+DHaHDh2ia9euhQ7DzKzJmDt37vKIKCl0HFCkiaVr166Ul5cXOgwzsyZD0vt1t2ocHgozM7NMObGYmVmmnFjMzCxTTixmZpYpJxYzM8tUnYlFUmdJT0l6Pf356h9V00aSbpW0UMnd3r6aUzdc0tvpMjzrB2BmZsUln+nGG4GfRMR/S9oLmCvpyYh4PafN6UC3dDma5CfWj5a0N3AdUEpy/4W5ksoiYlWmj8LMzIpGnYkl/VXdv6frqyW9QfIT47mJZRAwLZLfh5ktqV36k+P9gSdz7vnxJDCQ7e/fbY2kf/9CR2CfZ7NmFToCawz1usYiqSvQG3ihSlVHtr3XxJK0rKby6vY9SlK5pPKKior6hGVmZkWkPvc735PkRjn/JyI+zjqQiJgETAIoLS31L2PuJP7EWLNVq1bRtm1bmjXznBazHZFXYpHUkiSpzIiI6u72tpTkrnRbdErLlpIMh+WWz2pIoGY724UXXsjKlSs56qijOOGEE+jZsyddunRh2zsVm1ld6kws6f2/7wbeiIhf1tCsDBgj6X6Si/eVEfF3SU8AP5fUPm13KlDvuwyaNYYBAwYwadIknn/+eZ5++mmaNWvGHnvsQd++fenXrx89e/akY8eOTjRmdajzfiyS+gF/5X/ukw7wz8ABABHxmzT5/BvJhfm1wIURUZ72vyhtD3BjRNxTV1ClpaXhH6G0xrZ06VLOPvtsSkpKtg6HrV+/no8//piNGzciibZt23LMMcdw3HHH0aNHD774xS860VhRkDQ3IkoLHQcU6Y2+nFisUC699FLKy8vp0KHDdnURwbp161i9ejWbN29m8+bN9O7dm7vuuqsAkZptq5gSi69SmuUYOnQomzZtqrZOErvvvjslJSXss88+RARnnnlmI0doVvycWMxylJaWss8++/DJJ5/U2Gbz5s0sW7aMkSNH8s1vfrMRozNrGpxYzHI0b96cYcOGsXr16mrrI4IPP/yQ008/ndGjRzdydGZNgxOLWRVnnHEGzZs3Z+PGjdvVffbZZ0QEQ4YM8UV7sxo4sZhV0a5dO0477TRWrFixTfmqVavYuHEju+++O6NGjWLOnDkFitCsuDmxmFXjO9/5DpAMfQFUVlbSsmXLrWUtWrTgBz/4Af/+7/9esBjNipUTi1k1Dj30UA466CA+/vhj1q5dy/r167ntttuYPn361ov7bdu2Zdy4cdxxxx0U47R9s0JxYjGrhiSGDx/O6tWrqays5Oabb+bwww+nc+fOTJs2je7du7Ny5Uo6dOjAXXfdxTXXXMP69esLHbZZUXBiMavBSSedRElJCZdddhn9c+430L59e+644w4GDBjA8uXL2XfffXn88cf5/ve/T2VlZeECNisS/ua9WS0qKytp06ZNtTPANm/ezO23386UKVPo0KEDH330EV/60peYOHEiHTtWe3cIs53G37w3ayLatm1b47TiZs2aMWbMGK699lpWrVpF69at+fDDDxk2bBjz589v5EjNiocTi9kOOuuss7jtttvYsGHD1u+/jBw5kqeeeqrQoZkVhBOLWQb69u3LPffcwx577MH69etp3bo1P/3pT7n33ns9Y8w+d5xYzDLSrVs37r33Xrp06cLHH39Mhw4d+OUvf8n48eOr/Ra/2a7KicUsQ/vuuy9Tpkyhb9++W2eM/f73v+cnP/lJrT9sabYrcWIxy1jr1q351a9+xbnnnsuyZcsoKSnh2Wef5eKLL6aioqLQ4ZntdHUmFklTJC2TVO00F0mXS5qXLvMlbZK0d1q3SNKraZ3nD9vnRosWLbjiiiu47LLLWL58Oe3atWPRokUMGzaMhQsXFjo8s50qnzOWqSS3HK5WREyIiF4R0Yvkfvb/LyJW5jQ5Ka0vivnVZo1FEsOGDWP8+PGsWbOGVq1asWbNGkaMGMELL7xQ6PDMdpo6E0tEPA2srKtd6nzgvh2KyGwXc8oppzB58mSaNWvGpk2baNmyJWPGjKGsrKzQoZntFJldY5G0B8mZzUM5xQH8WdJcSaPq6D9KUrmkco9D267m8MMPZ/r06ey777588skntGvXjnHjxjFx4kQ2b95c6PDMMpXlxftvAs9WGQbrFxFfBU4HfiDphJo6R8SkiCiNiNKSkpIMwzIrDp06dWLatGn06NGDVatWUVJSwt13383VV1/NunXrCh2eWWayTCyDqTIMFhFL03+XATOBPhkez6zJadu2LRMnTuTUU0+loqKCfffdlyeeeIJLLrmEjz76qNDhmWUik8QiqS1wIvBoTllrSXttWQdOBfwDSva516pVK372s58xcuRIli1bxt577838+fO54IILWLx4caHDM9th+Uw3vg94HjhY0hJJF0saLWl0TrOzgT9HRO43wPYDnpH0MvAi8FhE/EeWwZs1Vc2aNeP73/8+48aNo7KyktatW1NRUcGwYcN49dVXCx2e2Q7xz+abFdiLL77Ij3/84623PF63bh033ngjp5xySqFDsybEP5tvZlv16dOH3/72t+y111589tln7LnnnowdO5Zp06b5ByytSXJiMSsCX/7yl5k+fToHHXQQlZWVdOjQgV//+tfcdNNN/gFLa3KcWMyKRElJCZMnT+bYY49l+fLllJSU8NBDD3HZZZf5ByytSXFiMSsirVu35pZbbuHb3/42y5Yto0OHDsyePZuLLrqIZcuWFTo8s7w4sZgVmRYtWjB27Fh+8pOfsGLFCtq0acP777/P0KFDefvttwsdnlmdnFjMipAkhgwZwi233MLatWvZbbfdWLt2LRdeeCGeMWnFzonFrIideOKJTJ48mRYtWrBhwwY++eQTn7VY0XNiMSty3bt3Z/r06XzpS1/i7LPPZvDgwYUOyaxWLQodgJnVrWPHjjzwwAO0aNECSYUOx6xWTixmTUTLli0LHYJZXjwUZmZmmXJiMTOzTDmxmDVxixYt4vDDD8+7/bHHHrtd2ZbfJBs3btw227l+/vOfN/iYAI888givv/56vfpEBIsWLWLq1KnV1s+aNYtvfOMb9drnrkzSf0j6SNIfq5RL0o2S3pL0hqQf5tS1lPTf6foUScskza/S/zxJr0naLKnOH7p0YjH7nHnuuee2K5sxYwYTJkzgs88+Y/z48cyYMWO7NrmJpSEaklhGjx7NM888wwcffMDFF1/M0qVLdyiG+mqCv9M2ARhWTfkIoDNwSEQcCtyfU9cPeDZdn0pyi/mq5gPnAE/nE4QTi9ku5N1336V3797MmTOH1157jT59+tCrVy969Oix9fsve+6553b9hg4dSqdOnZgwYQIHHHAAQ4cO3ab+iiuu4NNPP6VXr14MGTIEgE2bNvG9732P7t27c+qpp/Lpp58C8M477zBw4ECOPPJIjj/+eN58802ee+45ysrKuPzyy+nVqxfvvPMOd911F0cddRQ9e/bkW9/6FmvXrt0urttvv5377ruPKVOmcNNNN9GxY8caH/uLL77IMcccQ+/evTn22GNZsGABACeccALz5s3b2q5fv368/PLLfPLJJ1x00UX06dOH3r178+ijyX0Kp06dyplnnsnJJ59c460LZs2aRf/+/Tn33HM55JBDGDJkyNazvK5du7J8+XIAysvL6d+/P5CcDQ4fPpzjjz+eLl268PDDDzN27FiOOOIIBg4cyIYNG2p8bPmKiP8CVldTdQlwfURsTtvl/j7QQODxtPxpYGXVzhHxRkQsqE8gRbcceeSRYWb5ee+996J79+7x5ptvRq9evWLevHkRETFmzJi49957IyJi3bp1sXbt2oiIaN269Xb7mDFjRowfPz7+6Z/+KX7xi1/EjBkztmuT2++9996L5s2bx0svvRQREeedd15Mnz49IiJOPvnkeOuttyIiYvbs2XHSSSdFRMTw4cPjwQcf3LqP5cuXb12/6qqr4tZbb93umKNHj47p06fHv/zLv8TIkSNj6dKl29Q/9dRT8fWvfz0iIiorK2PDhg0REfHkk0/GOeecExERU6dOjR/96EcREbFgwYLY8v5y5ZVXbo151apV0a1bt1izZk3cc8890bFjx1ixYsV28eQet02bNrF48eLYtGlT9O3bN/76179GRESXLl2ioqIiIiLmzJkTJ554YkREXHfddXHcccfF+vXrY968efGFL3wh/vSnP0VExFlnnRUzZ87c7jjjx4+Pnj17brdceuml27UFypN/6A/8MXLeU4EVwFVAeZpEuuXUvQjskbPdFZgf1bw3A7OA0urqcpc6pxtLmgJ8A1gWEdsNqkrqT3JL4vfSoocj4vq0biDwa6A5MDkibs4745lZ3ioqKhg0aBAPP/wwhx12GADHHHMMN954I0uWLOGcc86hW7duNfY///zzkcS4ceMYO3ZsXveBOfDAA+nVqxcARx55JIsWLWLNmjU899xznHfeeVvbrVu3rtr+8+fP5+qrr+ajjz5izZo1nHbaadu1uf3223n//ffZuHEj1157ba3xVFZWMnz4cN5++20kbT0DOO+887jhhhuYMGECU6ZMYcSIEQD8+c9/pqysjH/9138F4LPPPuODDz4AYMCAAey99961Hq9Pnz506tQJgF69erFo0SL69etXa5/TTz+dli1bcsQRR7Bp0yYGDkxGnY444ggWLVq0XfvLL7+cyy+/vNZ95qkV8FlElEo6B5gCHC+pI7AyIrY/XdwB+XyPZSrwb8C0Wtr8NSK2uYImqTkwERgALAHmSCqLiPoNsppZndq2bcsBBxzAM888szWxfPe73+Xoo4/mscce44wzzuDOO+/k5JNPrrb/li9dbrl4n8+XMFu1arV1vXnz5nz66ads3ryZdu3abTP0VJMRI0bwyCOP0LNnT6ZOncqsWbOqjatr165bk0FtrrnmGk466SRmzpzJokWLtg5B7bHHHgwYMIBHH32UBx54gLlz5wLJaM1DDz3EwQcfvM1+XnjhBVq3bl3n8ao+/i3XY1q0aMHmzZuBJFlV16dZs2a0bNly6/PcrFmzaq/nTJgwodrrXSeccAK33nprnTHmWAI8nK7PBO5J1wcCT9RnR/mo8xpL1DDmloc+wMKIeDci1pNcLBrUgP2YWR122203Zs6cybRp0/jd734HJNdbDjroIH74wx8yaNAgXnnllR06RsuWLeu8DtCmTRsOPPBAHnzwQSB583755ZcB2GuvvVi9+n+G/1evXs3+++/Phg0bqn3zrK/Kysqt12CqziIbOXIkP/zhDznqqKNo3749AKeddhq33Xbb1rOzl156aYdjgOQay5bk9dBDD+3Qvi6//HLmzZu33VLPpALwCHBSun4i8Fa6vvX6Spayunh/jKSXJT0uqXta1hFYnNNmSVpWLUmjJJVLKq+oqMgoLLPPj9atW/PHP/6RX/3qV5SVlfHAAw9w+OGH06tXL+bPn88FF1ywQ/sfNWoUPXr02HrxviYzZszg7rvvpmfPnnTv3n3rRfHBgwczYcIEevfuzTvvvMMNN9zA0UcfzXHHHcchhxyyQ7EBjB07liuvvJLevXtv9+n/yCOPpE2bNlx44YVby6655ho2bNhAjx496N69O9dcc80OxwBw3XXX8aMf/YjS0lKaN2+eyT7zJemvwIPAKZKWSNoyvngz8C1JrwI3ASPTUaX/FRFv5vS/D3geODjtf3FafrakJcAxwGOSaj3LUT5jqZK6klwMqu4aSxtgc0SskXQG8OuI6CbpXGBgRIxM2w0Djo6IMXUdr7S0NPzT4GaWlb/97W/079+fN998k2bNds3JsJLmRkSd3zHJad8PGBoRo7OOZYef4Yj4OCLWpOt/AlpK6gAsJZk3vUWntMzMrNFMmzaNo48+mhtvvHGXTSoNERHP7IykAhn8CKWkLwIfRkRI6kOSrFYAHwHdJB1IklAGA9/d0eOZmdXHBRdc0OBhwFdffZVhw7b9vmGrVq144YUXsghtl5XPdOP7SOZFd0jH2K4DWgJExG+Ac4FLJG0EPgUGp3OqN0oaQzLjoDkwJSJe2ymPwsxsJzjiiCPymuFm28rrGktj8zUWM7P6qe81lp3JA45mZpYpJxYzM8uUE4uZmWXKicXMzDLlxGJmZplyYjEzs0w5sZiZWaacWMzMLFNOLGZmliknFjMzy5QTi5mZZcqJxczMMuXEYmZmmXJiMTOzTDmxmJlZpupMLJKmSFomaX4N9UMkvSLpVUnPSeqZU7coLZ8nyTdYMTP7HMjnjGUqMLCW+veAEyPiCOAGYFKV+pMiolex3IDGzMx2rjpvTRwRT0vqWkv9czmbs4FOGcRlZmZNVNbXWC4GHs/ZDuDPkuZKGlVbR0mjJJVLKq+oqMg4LDMzayx1nrHkS9JJJImlX05xv4hYKmlf4ElJb0bE09X1j4hJpMNopaWlkVVcZmbWuDI5Y5HUA5gMDIqIFVvKI2Jp+u8yYCbQJ4vjmZlZ8drhxCLpAOBhYFhEvJVT3lrSXlvWgVOBameWmZnZrqPOoTBJ9wH9gQ6SlgDXAS0BIuI3wLXAPsDtkgA2pjPA9gNmpmUtgN9FxH/shMdgZmZFJJ9ZYefXUT8SGFlN+btAz+17mJnZrszfvDczs0w5sZiZWaacWMzMLFNOLGZmliknFjMzy5QTi5mZZcqJxczMMuXEYmZmmXJiMTOzTDmxmJlZppxYzMwsU04sZmaWKScWMzPLlBOLmZllyonFzMwy5cRiZmaZyiuxSJoiaZmkam8trMStkhZKekXSV3Pqhkt6O12GZxW4mZkVp3zPWKYCA2upPx3oli6jgDsAJO1Ncivjo4E+wHWS2jc0WDMzK355JZaIeBpYWUuTQcC0SMwG2knaHzgNeDIiVkbEKuBJak9QZmbWxGV1jaUjsDhne0laVlP5diSNklQuqbyioiKjsMzMrLEVzcX7iJgUEaURUVpSUlLocMzMrIGySixLgc45253SsprKzcxsF5VVYikDLkhnh/UFKiPi78ATwKmS2qcX7U9Ny8zMbBfVIp9Gku4D+gMdJC0hmenVEiAifgP8CTgDWAisBS5M61ZKugGYk+7q+oiobRKAmZk1cXkllog4v476AH5QQ90UYEr9QzMzs6aoaC7em5nZrsGJxczMMuXEYmZmmXJiMTOzTDmxmJlZppxYzMwsU04sZmaWKScWMzPLlBOLmZllyonFzMwy5cRiZmaZcmIxM7NMObGYmVmmnFjMzCxTTixmZpYpJxYzM8tUXolF0kBJCyQtlHRFNfW/kjQvXd6S9FFO3aacurIMYzczsyJU5x0kJTUHJgIDgCXAHEllEfH6ljYRcVlO+0uB3jm7+DQiemUWsZmZFbV8zlj6AAsj4t2IWA/cDwyqpf35wH1ZBGdmZk1PPomlI7A4Z3tJWrYdSV2AA4G/5BTvLqlc0mxJZ9V0EEmj0nblFRUVeYRlZmbFKOuL94OBP0TEppyyLhFRCnwX+L+Svlxdx4iYFBGlEVFaUlKScVhmZtZY8kksS4HOOdud0rLqDKbKMFhELE3/fReYxbbXX8zMbBeTT2KZA3STdKCk3UiSx3azuyQdArQHns8pay+pVbreATgOeL1qXzMz23XUOSssIjZKGgM8ATQHpkTEa5KuB8ojYkuSGQzcHxGR0/1Q4E5Jm0mS2M25s8nMzGzXo23zQHEoLS2N8vLyQodhZtZkSJqbXs8uOH/z3szMMuXEYmZmmXJiMTOzTDmxmJlZppxYzMwsU04sZmaWKScWMzPLlBOLmZllyonFzMwy5cRiZmaZcmIxM7NMObGYmVmmnFjMzCxTTixmZpYpJxYzM8tUXolF0kBJCyQtlHRFNfUjJFVImpcuI3Pqhkt6O12GZxm8mZkVnzrvICmpOTARGAAsAeZIKqvmTpC/j4gxVfruDVwHlAIBzE37rsokejMzKzr5nLH0ARZGxLsRsR64HxiU5/5PA56MiJVpMnkSGNiwUM3MrCnIJ7F0BBbnbC9Jy6r6lqRXJP1BUud69kXSKEnlksorKiryCMvMzIpRVhfv/x3oGhE9SM5KflvfHUTEpIgojYjSkpKSjMIyM7PGlk9iWQp0ztnulJZtFRErImJdujkZODLfvmZmtmvJJ7HMAbpJOlDSbsBgoCy3gaT9czbPBN5I158ATpXUXlJ74NS0zMzMdlF1zgqLiI2SxpAkhObAlIh4TdL1QHlElAE/lHQmsBFYCYxI+66UdANJcgK4PiJW7oTHYWZmRUIRUegYtlNaWhrl5eWFDsPMrMmQNDciSgsdB/ib92ZmljEnFjMzy5QTi5mZZcqJxczMMuXEYmZmmXJiMTOzTDmxmJlZppxYzMwsU04sZmaWKScWMzPLlBOLmZllyonFzMwy5cRiZmaZcmIxM7NMObGYmVmmnFjMzCxTeSUWSQMlLZC0UNIV1dT/WNLrkl6R9F+SuuTUbZI0L13KqvY1M7NdS523JpbUHJgIDACWAHMklUXE6znNXgJKI2KtpEuA8cB30rpPI6JXtmGbmVmxyueMpQ+wMCLejYj1wP3AoNwGEfFURKxNN2cDnbIN08zMmop8EktHYHHO9pK0rCYXA4/nbO8uqVzSbEln1dRJ0qi0XXlFRUUeYZmZWTGqcyisPiQNBUqBE3OKu0TEUkkHAX+R9GpEvFO1b0RMAiYBlJaWRpZxmZlZ48nnjGUp0Dlnu1Natg1JXwOuAs6MiHVbyiNiafrvu8AsoPcOxGtmZkUun8QyB+gm6UBJuwGDgW1md0nqDdxJklSW5ZS3l9QqXe8AHAfkXvQ3M7NdTJ1DYRGxUdIY4AmgOTAlIl6TdD1QHhFlwARgT+BBSQAfRMSZwKHAnZI2kySxm6vMJjMzs12MIorvckZpaWmUl5cXOgwzsyZD0tyIKC10HOBv3puZWcacWMzMLFNOLGZmliknFjMzy5QTi5mZZcqJxczMMuXEYmZmmXJiMTOzTDmxmJlZppxYzMwsU04sZmaWKScWMzPLlBOLmZllyonFzMwy5cRiZmaZcmIxM7NM5ZVYJA2UtEDSQklXVFPfStLv0/oXJHXNqbsyLV8g6bQMYzczsyJUZ2KR1ByYCJwOHAacL+mwKs0uBlZFxP8CfgX8Iu17GDAY6A4MBG5P92dmZruoOu95D/QBFkbEuwCS7gcGAbn3rh8EjEvX/wD8mySl5fdHxDrgPUkL0/09n034xad//0JHULtZswodgX2e+fXx+ZDPUFhHYHHO9pK0rNo2EbERqAT2ybMvAJJGSSqXVF5RUZFf9GZmVnTyOWNpFBExCZgEUFpaGgUOp8H8icesZn59fD7kc8ayFOics90pLau2jaQWQFtgRZ59zcxsF5JPYpkDdJN0oKTdSC7Gl1VpUwYMT9fPBf4SEZGWD05njR0IdANezCZ0MzMrRnUOhUXERkljgCeA5sCUiHhN0vVAeUSUAXcD09OL8ytJkg9puwdILvRvBH4QEZt20mMxM7MioOTEoriUlpZGeXl5ocMwM2syJM2NiNJCxwH+5r2ZmWXMicXMzDLlxGJmZplyYjEzs0wV5cV7SauBBYWOo4E6AMsLHcQOcPyF5fgLqynHf3BE7FXoIKCIvnlfxYJimd1QX5LKm2rs4PgLzfEXVlOOX1LRTKX1UJiZmWXKicXMzDJVrIllUqED2AFNOXZw/IXm+AurKcdfNLEX5cV7MzNruor1jMXMzJooJxYzM8tUUSQWSXtLelLS2+m/7atp00vS85Jek/SKpO8UItaceAZKWiBpoaQrqqlvJen3af0LkroWIMwa5RH/jyW9nj7X/yWpSyHirEld8ee0+5akkFRUU0jziV/St9P/g9ck/a6xY6xJHn87B0h6StJL6d/PGYWIsyaSpkhaJml+DfWSdGv6+F6R9NXGjrEmecQ+JI35VUnPSerZ2DECEBEFX4DxwBXp+hXAL6pp8xWgW7r+JeDvQLsCxdsceAc4CNgNeBk4rEqb7wO/SdcHA78v9PNcz/hPAvZI1y9pavGn7fYCngZmA6WFjruez3834CWgfbq9b6Hjrkfsk4BL0vXDgEWFjrtKfCcAXwXm11B/BvA4IKAv8EKhY65H7Mfm/M2cXqjYi+KMBRgE/DZd/y1wVtUGEfFWRLydrv8NWAaUNFaAVfQBFkbEuxGxHrif5DHkyn1MfwBOkaRGjLE2dcYfEU9FxNp0czbJ3T+LRT7PP8ANwC+AzxozuDzkE//3gIkRsQogIpY1cow1ySf2ANqk622BvzVifHWKiKdJ7htVk0HAtEjMBtpJ2r9xoqtdXbFHxHNb/mYo4Ou2WBLLfhHx93T9H8B+tTWW1Ifk09I7OzuwGnQEFudsL0nLqm0TERuBSmCfRomubvnEn+tikk9wxaLO+NPhi84R8VhjBpanfJ7/rwBfkfSspNmSBjZadLXLJ/ZxwFBJS4A/AZc2TmiZqe/ro1gV7HXbaD/pIuk/gS9WU3VV7kZEhKQa50CnnxymA8MjYnO2UVpVkoYCpcCJhY4lX5KaAb8ERhQ4lB3RgmQ4rD/Jp86nJR0RER8VMqg8nQ9MjYhbJB1DcnfZw/16bTySTiJJLP0KcfxGSywR8bWa6iR9KGn/iPh7mjiqPe2X1AZ4DLgqPUUtlKVA55ztTmlZdW2WSGpBMiSwonHCq1M+8SPpaySJ/8SIWNdIseWjrvj3Ag4HZqWjj18EyiSdGRHF8HtK+Tz/S0jGxzcA70l6iyTRzGmcEGuUT+wXAwMBIuJ5SbuT/LhjsQzn1SWv10exktQDmAycHhEFec8plqGwMmB4uj4ceLRqA0m7ATNJxj7/0IixVWcO0E3SgWlcg0keQ67cx3Qu8JdIr6gVgTrjl9QbuBM4s4jG97eoNf6IqIyIDhHRNSK6kow1F0tSgfz+fh4hOVtBUgeSobF3GzHGmuQT+wfAKQCSDgV2ByoaNcodUwZckM4O6wtU5gzVFzVJBwAPA8Mi4q2CBVLoWQ7pe+0+wH8BbwP/CeydlpcCk9P1ocAGYF7O0quAMZ8BvEVyneeqtOx6kjcwSF5MDwILgReBgwr9PNcz/v8EPsx5rssKHXN94q/SdhZFNCssz+dfJMN5rwOvAoMLHXM9Yj8MeJZkxtg84NRCx1wl/vtIZpVuIDkzvBgYDYzOee4npo/v1WL628kj9snAqpzXbXkh4vRPupiZWaaKZSjMzMx2EU4sZmaWKScWMzPLlBOLmZllyonFzMwy5cRiZmaZcmIxM7NM/X8m47OIlFvxAwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 8\n",
"pp = 73/11, satellite_part = 12\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 205/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -73/11\n",
"Satellite part = -8\n",
"Sigma = -161/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 73/11\n",
"Satellite part = 12\n",
"Sigma = 205/11\n",
"\n",
"[0, 0, 8, 8] 4\n",
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAEICAYAAAAeO/7PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfdUlEQVR4nO3deZRdZZ3u8e9DKhMQCCFAlMwyNEkIBRQoLGiCIBfoq1EUGyQCrRdELrrusgmDsenYzIma1nW1vTRwGQwqoRlKVCYxFyFGKCRkgIQwJBACoZjCkMpk/e4fe1c4qdRwqs7Je2p4PmudlX32fve7f/ukqp6z3733OYoIzMzMLJ0dKl2AmZlZb+PwNTMzS8zha2ZmlpjD18zMLDGHr5mZWWIOXzMzs8Qcvt2QpHGS6iSp0rVUiqQfSvpmB9qfLenR7VlTJUgaLSkkVVW6FjMrnsO3i5H0QcGjUVJDwfMz8maXAz+IiJDUX9INklZKel/SAkkndWB7v2+2zY2SFhW57n6S7pFUL+ltSfdL2r8D274gfxOxQdJNzZb1k3SHpBV5uExqtvoPgO9K6lfs9roKSddJWpb//57dwXVXSDq+THVULLglfVbS4vxnbp6kcalrMKskh28XExE7Nz2Al4HPFsybLeljwLHA3fkqVcArwDHArsD3gNsljS5yeyc12+Y8YE6R5Q4GaoH9gb2Ax4F7ilwXYDVwBXBjK8sfBaYAr7dQ92vAUuBzHdheUm2E2tPA+cBfE5bTZUjaF5gNnEf2M/QboNZH79abOHy7n88Af42I9QAR8WFETI+IFRHRGBH3Ai8Bh3a04zywjwZuKZh3r6RLWmofEY9HxA0R8XZEbAJmAftL2r2Y7UXEnRFxN/BWC8s2RsS/R8SjwN9a6WIu8A/FbKs5ST+W9Iqk9yQ9KenofP4wSesK90HSIfnRfd/8+dckPSvpnfxof1RB25D0PyUtB5a3st8/jYg/AOs7WPOtwEjgN/kR40UFi8+Q9LKkNyVNK1hnB0mXSHpB0luSbpc0JF/8SP7vu3l/R0j6hKSH87ZvSpotaXBH6izCfwP+FBGPRsRm4Fpgb7I3kGa9gsO3+zkQWNbaQkl7AfsBSzrR95lkfxRXNM2IiP8eEdcUuf7fA69HxDZhup08CxzUyXWfAKqBIcBtwBxJAyLidbJQ/3JB268Cv4qITZImA98FTgH2AP4E/LJZ358HPgmUdSg1Ir7K1qMhMwoWH0U2AnEccJmkA/L538rrOQb4OPAO8NN82d/n/w7O+/szIODqvO0BwAhgems1SVoo6d1WHj9rY3fUbFrAhLZfAbOew+Hb/QwG3m9pQX5kNhu4OSKWdqLvM4GbOlOUpOFkf9S/05n1O+l9stejwyLiFxHxVkRsjogfAv3JwgvgZrLhbiT1AU4Hbs2XnQdcHRHP5kdtVwHVhUe/+fK3I6KhM7V10vcjoiEiniYb1m56U3IeMC0iVkXEBrIg/VJrQ7wR8XxEPBgRGyKiHvgRbRyRRsTEiBjcyuP8VlZ7CDhG0qT8nP13gX7Ajp3ZcbPuyOHb/bwDDGo+U9IOZAGxEbigo51KOgoYBtzRiXX3AB4AfhYRzY8Ct6dBwLudWVHShfnQ8VpJ75KdLx+aL74HGCdpDNkw/9qIeDxfNgr4cdPRHfA22VHb3gXdv9KZmkpUeF58HbBzPj0KuKug3mfJhvH3aqkTSXtJ+pWkVyW9B/yCj16XssjfGJ4F/G/gtbz/Z4BV5dyOWVfm8O1+FpINK28hScANZH9Qv5iff+2os4A7I+KDjqwkaTey4K2NiCs7sd1SHEB2lNch+fndi8iGlneLiMHAWvKh0Px8+u1kR79f5aOjXsiC9RvNjvAGRsS8gjbb86vCOtr3K8BJzeodEBGvttLXVfn8AyNiF7LXoNVb2iQtaXa1fOHj563uRMQdETEhInYH/hUYTXYqwKxXcPh2Pw8Ch0gaUDDvP8iC6LMtDXW2cqtO4fKBZEF0UwvL5kqa3sp6uwD3A49FxDYXZeXDiq2GhaSqfD/6AH0kDSgcDlV2G1XTfvbLlxcGwTHA74uptZlBwGagHqiSdBmwS7M2twBnk11NXRi+PwculTQ+3+aukk4tYptbKLuNagBZqPXN92uHfFmbrxmwBhjbgc39HLiyaVhc0h75eWvI9r+xWX+DgA+AtZL2Bqa21XlEjC+8Wr7Z47zW1pN0qKQ++ajJdWRv3jpzqsSsW3L4djMRsQZ4GJgMkP9R/QbZxUOvq9k9wZJGkJ0bbeve3c+TDd/+sYVlI4DHWlnvC8BhwD81O+IZWbDuvFbWhey2qAbgErIjrIZ8XpNl+by9yUK+gWwYFWW3XI3jo1uu2qu10P3AfcBzwEqyq463GiqOiMfIgumvEbGyYP5dZFfn/iofll0MFH1fde6BfF+OJAueBj66+Km91+xq4Hv5MPKFRWzrx2S3gz0g6X1gPtnFYETEOuBK4LG8v08B3wcOIRsJ+C1wZwf3rVg/JvuZW0Z2KuWc7bQdsy5JEdtzhMy2B2UfSHAzcHi08x8oaQowPiIu7cR2hgO3R8SRnazzemBORNzfmfXb6fuHwAsR8bP8eUm1trKNh4HbIuL6cvVZxDa322tmZl2Hw9esBZIOIxviHxERLV5dbmbWWR52NmtG0s1kt8P8LwevmW0PPvI1MzNLzEe+ZmZmiVXkg8yHDh0ao0ePrsSmzcy6rSeffPLNiNij0nVY6SoSvqNHj6aurq4SmzYz67YkrWy/lXUHHnY2MzNLzOFrZmaWmMPXzMwsMYevmZlZYg5fMzOzxMoSvpJOlLRM0vOStvl2GzMzM/tIyeErqQ/wU7JvdhkHnJ5/8L+ZmZm1oBz3+R4OPB8RLwJI+hXZ1909U4a+u6RJk0rvY+7c0vsw6038e2c9STmGnfdm6+9CXZXP24qkcyXVSaqrr68vw2bNzMy6p2SfcBUR15F9cTg1NTXd+tsc/O7ZLD3/3llPUo4j31eBEQXPh+fzzMzMrAXlCN8ngH0ljZHUDzgNqC1Dv2ZmZj1SycPOEbFZ0gXA/UAf4MaIWFJyZWZmZj1UWc75RsTvgN+Voy8zM7Oezp9wZWZmlpjD18zMLDGHr5mZWWIOXzMzs8QcvmZmZok5fM3MzBJz+JqZmSXm8DUzM0vM4WtmZpaYw9fMzCwxh6+ZmVliDl8zM7PEHL5mZmaJOXzNzMwSc/iamZkl5vA1MzNLzOFrZmaWmMPXzMwsMYevmZlZYg5fMzOzxBy+ZmZmiTl8zczMEnP4mpmZJebwNTMzS6yk8JV0qqQlkhol1ZSrKDMzs56s1CPfxcApwCNlqMXMzKxXqCpl5Yh4FkBSeaoxMzPrBZKd85V0rqQ6SXX19fWpNmtmZtbltHvkK+khYFgLi6ZFxD3FbigirgOuA6ipqYmiKzQzM+th2g3fiDg+RSFmZma9hW81MjMzS6zUW42+IGkVcATwW0n3l6csMzOznqvUq53vAu4qUy1mZma9goedzczMEnP4mpmZJebwNTMzS8zha2ZmlpjD18zMLDGHr5mZWWIOXzMzs8QcvmZmZok5fM3MzBJz+JqZmSXm8DUzM0vM4WtmZpaYw9fMzCwxh6+ZmVliDl8zM7PEHL5mZmaJOXzNzMwSc/iamZkl5vA1MzNLzOFrZmaWmMPXzMwsMYevmZlZYg5fMzOzxBy+ZpbUmjVrqK2t5bLLLmPt2rWVLsesIqpKWVnSTOCzwEbgBeCfIuLdMtRlZj3E3/72N5YuXcq8efO47777WLlyJZLYuHEjU6dOrXR5ZhVRUvgCDwKXRsRmSdcClwIXl16WmXVn77//Pk899RQPP/wwc+fOpaGhgcbGRnbeeWeGDRvGxo0biQgGDRpU6VLNKqKk8I2IBwqezge+VFo5vcekSZWuIDN3bqUrsK6umJ/ViGDDhlW899583nnnfj78cCEgIqCqajA77LB1yG7evI6dd67u0O+Bf1atJyn1yLfQ14Bft7ZQ0rnAuQAjR44s42bNrNLeeOM2XnnlWqS+7LDDjlRV7YHU+iUljY3r2WmniQkrNOtaFBFtN5AeAoa1sGhaRNyTt5kG1ACnRHsdAjU1NVFXV9eJcs2sK/rggw+4+uqrue+++xgyZAgDBgxos/3q1as54IADOProo9lnn30YPXo0I0aMoF+/fokq7p4kPRkRNZWuw0rXbvi224F0NvAN4LiIWFfMOg5fs54nIqitreWaa65BErvvvnurbTdv3swHH3zAunXrqKqqQhKNjY3svffeHHDAARx44IGMHTuWUaNGsddeeyEp4Z50XQ7fnqOk8JV0IvAj4JiIqC92PYevWc/1wgsvcOGFF/LKK6+w55570qdPn62WNzY2snr1avr378+mTZsYMGAAAwcOpF+/fmzYsIF169axadMmqqqqaGxspG/fvnziE59gwoQJjBs3jtGjRzNq1KheebGWw7fnKDV8nwf6A2/ls+ZHxHntrefwNevZ1q1bx4wZM/jNb37DbrvtxsCBA7cs+/DDDxk0aBAXX3wxL7zwAosWLeLZZ5/ltdde2xK4jY2N7LjjjgwcOJAddtiBdevW0dDQQETQp08fNm/ezJAhQ9h///2ZOHHilqHr4cOH07dv3wru+fbl8O05Sh527gyHr1nPFxHcd999XH755UQEQ4cOBeDNN9/kuOOO44orrtiq/fr163n55ZdZuXIlS5cuZfHixSxbtowPP/yQqqqqLUfDAwcOZODAgWzevHlLKPft25eIICIYMWIE48aN48ADD2TMmDGMGjWKPfbYo0cMXTt8ew6Hr5ltVytXrmTq1Km8+OKL7LnnnqxZs4apU6dy2mmntbtuRPDOO++wcuVKXnrpJRYvXsySJUtYsWIFAJK2Gbpev349DQ0NWw1d9+/fn3322Yfzzz+fww47bDvv8fbj8O05ynmrkZnZNkaNGsUtt9zCrFmzmDNnDhHB2LFji1pXEkOGDGHIkCEcfPDBnHLKKUD2qVmrV69m5cqVLF++nMWLF7N06VLWrFmzJXAl0a9fP3bccUcAnnzySVatWtWtw9d6DoevmW13AwYM4NJLL+Xwww9n1qxZRYdva/r06cOIESMYMWIERx111Jb5DQ0NrFy5khUrVrBs2TIWLVrE8uXLaWhooF+/fowZM6bUXTErCw87m1lSEZH0/GtE8Pbbb/Pqq68yfvz4ba6+7k487Nxz+FuNzCyp1Bc+Nd1zPHHixG2Cd8WKFUyYMKHovo488sht5jUdwEyfPn2r54WuuuqqTm8T4O677+aZZ57p0DrKjM4/i6Gl5ZMk3duhTnswSddKWpw//rHZstMkTZP0d5L+LGmDpAubtblR0huSFhezPYevmVmR5s2bt8282bNnM3PmTNavX8+MGTOYPXv2Nm0Kw7czOhO+wM+Bo4CRkm6QtHdJRXSQpG5zWlPSPwCHANXAJ4ELJe1S0OQk4D7gbeDbwA9a6OYm4MRit+nwNTMDXnzxRQ4++GCeeOIJlixZwuGHH051dTUTJ05k+fLlAOy8887brDdlyhSGDx/OzJkzGTlyJFOmTNlq+SWXXEJDQwPV1dWcccYZQHbB2DnnnMP48eM54YQTaGhoALIPKDnxxBM59NBDOfroo7d8FWNtbW3T1y+Ok/QJSedIekLS05L+S9KOLezS+cDpZJ+7f2lEvNravks6PD+ie0rSPEn75/MfkVRd0O5RSQdJ2ik/0ns8X2dyvvxsSbWSHgb+0Mq2JkmaK+kOSUslzVY+HCJphaSh+XSNpLn59HRJN0v6k6SVkk6RNEPSIkn3SSr15u5xwCMRsTkiPgQWkgdpXls18NeIeCMingA2Ne8gIh4hC+fiNN0bl/Jx6KGHhplZpb300ksxfvz4WLp0aVRXV8eCBQsiIuKCCy6IX/ziFxERsWHDhli3bl1EROy0007b9DF79uyYMWNGXHzxxXHttdfG7Nmzt2lTuN5LL70Uffr0iaeeeioiIk499dS49dZbIyLi05/+dDz33HMRETF//vw49thjIyLirLPOijlz5gRQF9mw9u6R/z0FrgC+Fc3+zgL/AUwBLgP+E/h4s+WTgHvz6V2Aqnz6eOC/8umzgH/Pp/cr2P5VwJR8ejDwHLATcDawChjSvJ5m210LDCc7APwzcFS+bAUwNJ+uAebm09OBR4G+wEHAOuCkfNldwOdb2M5UYEELj5+00PYE4DFgR2Ao8CLwz/myQ4BbmrWfDlzYQj+jgcWt7Xvho9sMC5iZbQ/19fVMnjyZO++8k3HjxgFwxBFHcOWVV7Jq1SpOOeUU9t1331bXP/3005HE9OnTueiii1o859vcmDFjqK6uBuDQQw9lxYoVfPDBB8ybN49TTz11S7sNGza01sUESVeQBd/OwP0ttDkfGEUWqv/WTkm7AjdL2hcIspADmAP8i6SpZEfQN+XzTwA+V3DecwDQ9HV1D0ZEe0eAj0fEKgBJC8hC69F21vl9RGyStAjoQzYMDLAoX38rETETmNlOn01tH5B0GDAPqCd7Q/C3fPGJwO+L6acjPOxsZr3arrvuysiRI3n00Y/+9n/lK1+htraWgQMHcvLJJ/Pwww+3un7TBWRNF1wVc0FZ//79t0w3fVxmY2MjgwcPZsGCBVsezz77bGtd3ARcEBEHAt8nC7+t5AfaKyLipnYLgsuBP0bEBOCzTf1F9mU5DwKTgS8DTSe0BXwxIqrzx8iIaCr2wyK2V/iu4m98dNvrZj7Kpeb7tCGvqRHYFB+9y2mkhdtmJU2VtKCFx09aKigirsz35TP5/j2XLzoBeKCldUrh8DWzXq1fv37cdddd3HLLLdx2221Adv537NixfPvb32by5MksXLiwpG307duXTZu2OU24lV122YUxY8YwZ84cIDsl+PTTTwMwaNAg3n///cLmg4DX8nOdZ5RUXGZXoOmc8NnNll0P/AR4IiLeyefdD3yr4FztwWWoAbJh50Pz6S+W0lFEzCx4c1D4+HbztpL6SNo9n54ITAQekLQr2cjBW83XKZXD18x6vZ122ol7772XWbNmUVtby+23386ECROorq5m8eLFnHnmmSX1f+655zJx4sQtF1y1Zvbs2dxwww0cdNBBjB8/nnvuuQeA0047jZkzZ0J+wRXwL8BfyM5TLi2puMwM4GpJT9HsKDIingTeA/5vwezLyYamF0pakj8vh+8DP5ZUx0fDvin0Bf4k6RngOrLz2ZuBzwAPNTWSNEzSKuA7wPckrWq6KlrSL8mGq/fP53+9rQ36QzbMzLqJSnzIhqSPA3OBv8uHfHsNSdcD10fE/HL37SNfMzNrkaQzyY6wp/W24AWIiP+xPYIX/NnOZmbWioi4BbilM+tKOhC4tdnsDRHxyZIL6wEcvmZmVnYRsYjswymsBR52NjMzS8zha2ZmlpjD18zMLDGHr5mZWWIOXzMzs8QcvmZmZok5fM3MzBJz+JqZmSVWUvhKulzSwvxrmh7IPwPUzMzM2lDqke/MiJgYEdXAvcBlpZdkZmbWs5UUvhHxXsHTnYD0X5FkZmbWzZT82c6SrgTOBNYCx7bR7lzgXICRI0eWulkzM7Nuq93v85X0EDCshUXTIuKegnaXAgMi4l/b26i/z9fMrOMq8X2+tn20e+QbEccX2dds4HdAu+FrZmbWm5V6tfO+BU8nA0tLK8fMzKznK/Wc7zWS9gcagZXAeaWXZGZm1rOVFL4R8cVyFWJmZtZb+BOuzMzMEnP4mpmZJebwNTMzS8zha2ZmlpjD18zMLDGHr5mZWWIOXzMzs8QcvmZmZok5fM3MzBJz+JqZmSXm8DUzM0vM4WtmZpaYw9fMzCwxh6+ZmVliDl8zM7PEHL5mZmaJOXzNzMwSc/iamZkl5vA1MzNLzOFrZmaWmMPXzMwsMYevmZlZYg5fMzOzxBy+ZmZmiZUlfCX9s6SQNLQc/ZmZmfVkJYevpBHACcDLpZdjZmbW81WVoY9ZwEXAPWXoyxKbNKnSFWTmzq10BV2P/2/Meq6SjnwlTQZejYini2h7rqQ6SXX19fWlbNbMzKxbU0S03UB6CBjWwqJpwHeBEyJiraQVQE1EvNneRmtqaqKurq4T5ZqZ9V6SnoyImkrXYaVrd9g5Io5vab6kA4ExwNOSAIYDf5V0eES8XtYqzczMepBOn/ONiEXAnk3PO3Lka2Zm1pv5Pl8zM7PEynG1MwARMbpcfZmZmfVkPvI1MzNLzOFrZmaWmMPXzMwsMYevmZlZYg5fMzOzxBy+ZmZmiTl8zczMEnP4mpmZJebwNTMzS8zha2ZmlpjD18zMLDGHr5mZWWIOXzMzs8QcvmZmZok5fM3MzBJz+JqZmSXm8DUzM0vM4WtmZpaYw9fMzCwxh6+ZmVliDl8zM7PEHL5mZmaJOXzNzMwSc/iamZklVlL4Spou6VVJC/LHyeUqzMzMrKeqKkMfsyLiB2Xox8zMrFfwsLOZmVli5QjfCyQtlHSjpN1aayTpXEl1kurq6+vLsFkzM7PuSRHRdgPpIWBYC4umAfOBN4EALgc+FhFfa2+jNTU1UVdX1/Fqzcx6MUlPRkRNpeuw0rV7zjciji+mI0n/CdxbckVmZmY9XKlXO3+s4OkXgMWllWNmZtbzlXq18wxJ1WTDziuAb5RakJmZWU9XUvhGxFfLVYiZmVlv4VuNzMzMEnP4mpmZJebwNTMzS8zha2ZmlpjD18zMLDGHr5mZWWIOXzMzs8QcvmZmZok5fM3MzBJz+JqZmSXm8DUzM0vM4WtmZpaYw9fMzCwxh6+ZmVliDl8zM7PEHL5mZmaJOXzNzMwSc/iamZkl5vA1MzNLzOFrZmaWmMPXzMwsMYevmZlZYg5fMzOzxBy+ZmZmiZUcvpK+JWmppCWSZpSjKDMzs56sqpSVJR0LTAYOiogNkvYsT1lmZmY9V0nhC3wTuCYiNgBExBull2S90aRJla6g65k7t9IVmNn2Uuqw837A0ZL+Iun/STqstYaSzpVUJ6muvr6+xM2amZl1X+0e+Up6CBjWwqJp+fpDgE8BhwG3SxobEdG8cURcB1wHUFNTs81y6918lGdmvUm74RsRx7e2TNI3gTvzsH1cUiMwFPChrZmZWStKHXa+GzgWQNJ+QD/gzRL7NDMz69FKveDqRuBGSYuBjcBZLQ05m5mZ2UdKCt+I2AhMKVMtZmZmvYI/4crMzCwxh6+ZmVliDl8zM7PEHL5mZmaJqRIXJ0t6H1iWfMPlM5TufUtVd66/O9cOrr/Sunv9+0fEoEoXYaUr9VajzloWETUV2nbJJNW5/srozrWD66+0nlB/pWuw8vCws5mZWWIOXzMzs8QqFb7XVWi75eL6K6c71w6uv9Jcv3UJFbngyszMrDfzsLOZmVliDl8zM7PEkoSvpCGSHpS0PP93txbaVEv6s6QlkhZK+scUtbVF0omSlkl6XtIlLSzvL+nX+fK/SBpdgTJbVETt35H0TP5a/0HSqErU2Zr26i9o90VJIalL3T5STP2Svpz/HyyRdFvqGttSxM/PSEl/lPRU/jN0ciXqbImkGyW9kX/bWkvLJekn+b4tlHRI6hrbUkT9Z+R1L5I0T9JBqWu0MoiI7f4AZgCX5NOXANe20GY/YN98+uPAa8DgFPW1UnMf4AVgLNn3FD8NjGvW5nzg5/n0acCvK1VvJ2o/Ftgxn/5mV6m92PrzdoOAR4D5QE2l6+7g678v8BSwW/58z0rX3cH6rwO+mU+PA1ZUuu6C2v4eOARY3Mryk4HfAwI+Bfyl0jV3sP4jC35uTupq9ftR3CPVsPNk4OZ8+mbg880bRMRzEbE8n14NvAHskai+lhwOPB8RL0b21Ym/ItuPQoX7dQdwnCQlrLE17dYeEX+MiHX50/nA8MQ1tqWY1x7gcuBaYH3K4opQTP3nAD+NiHcAIuKNxDW2pZj6A9gln94VWJ2wvjZFxCPA2200mQzcEpn5wGBJH0tTXfvaqz8i5jX93ND1fnetSKnCd6+IeC2ffh3Yq63Gkg4ne8f9wvYurA17A68UPF+Vz2uxTURsBtYCuyeprm3F1F7o62RHAl1Fu/XnQ4UjIuK3KQsrUjGv/37AfpIekzRf0onJqmtfMfVPB6ZIWgX8DvhWmtLKoqO/H11ZV/vdtSKV7eMlJT0EDGth0bTCJxERklq9vyl/B3orcFZENJarPmuZpClADXBMpWsplqQdgB8BZ1e4lFJUkQ09TyI7cnlE0oER8W4li+qA04GbIuKHko4AbpU0wb+z6Ug6lix8j6p0LdZxZQvfiDi+tWWS1kj6WES8lodri0NsknYBfgtMy4eDKulVYETB8+H5vJbarJJURTb89laa8tpUTO1IOp7szdExEbEhUW3FaK/+QcAEYG4+yj8MqJX0uYjoCp99W8zrv4rsXN0m4CVJz5GF8RNpSmxTMfV/HTgRICL+LGkA2ZcWdKXh89YU9fvRlUmaCFwPnBQRXeFvjnVQqmHnWuCsfPos4J7mDST1A+4iOxdzR6K62vIEsK+kMXltp5HtR6HC/foS8HBEdIVPLWm3dkkHA/8H+FwXO98I7dQfEWsjYmhEjI6I0WTnvbpK8EJxPzt3kx31Imko2TD0iwlrbEsx9b8MHAcg6QBgAFCftMrOqwXOzK96/hSwtuC0WJcnaSRwJ/DViHiu0vVYJ6W4qovsPOgfgOXAQ8CQfH4NcH0+PQXYBCwoeFRX8mo0sqsinyM79zwtn/dvZH/oIfuDMwd4HngcGFvJejtY+0PAmoLXurbSNXek/mZt59KFrnYu8vUX2dD5M8Ai4LRK19zB+scBj5FdCb0AOKHSNRfU/kuyuyU2kY0wfB04Dziv4LX/ab5vi7rgz0579V8PvFPwu1tX6Zr96PjDHy9pZmaWmD/hyszMLDGHr5mZWWIOXzMzs8QcvmZmZok5fM3MzBJz+JqZmSXm8DUzM0vs/wMBJBkrK8zbygAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 9\n",
"pp = -85/11, satellite_part = -4\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -129/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdcAAAEICAYAAAAN7L47AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiE0lEQVR4nO3de5xVdb3/8debAeQiN2U0Uwk6mSdAHHXypJVimIEdtaPHczAJOSpoZuapNNTyhx21hKOp/SxDLS9hpR4MDmVeMn5eSGNUFEREUQqUZLiKIAjM5/fHWuB2mGHWHtaePQPv5+OxH6y91net9VmbPfu913ddtiICMzMzy0+7chdgZma2s3G4mpmZ5czhamZmljOHq5mZWc4crmZmZjlzuJqZmeXM4VpCknaTNFfSPuWuZVck6VpJXy2i/ShJT5SypnKQ1FdSSGpf7lrMdhUO12aS9ICkd9LHRknvFTy/OW02BngsIpak81wkaY6kNZJel3RREes7RtJsSaskLZd0v6R9M867m6TbJP01XfcsScOaua3vpNs6O+O8H5c0RVKtpBWSHpR0YBHrPl9SjaQNkm6vN62jpPskLUzDY3C92f8buFRSx6zray0kTZT0sqQ6SaOKnHehpGNzqqNswSzphPTv5R1JMyT1b+kazJrL4dpMETEsInaPiN2BScD4Lc8j4ty02bnAXQWzCRgJ9AKGAudLGp5xlXOBL0RET+DDwCvATzPO2x5YBBwN9AC+C9wjqW+WmQu3Nd3eGcC9GdfdE5gKHAjsDfwFmJJxXoA3gSuBnzcy/QlgBPD3BupeAswDTixifS1qO6H1PHAe8GwLltNqSDqA5O/qXJL30P8CU733bW2Fw7VEJPUBPgo8vWVcRIyPiGcjYlNEvEwSMp/OsryIeCsi3iwYtRn4WMH6xkqa1si8ayNiXEQsjIi6iJgGvA4c1ozt6gt8FrizYNw0SWMbWfdfIuK2iFgRERuBHwEHStozy/oiYnJE/BZY3sC09yLi+oh4guT1aMh04ItZ1lWfpBskLZL0tqRnJH02Hf8hSesKt0HSoeneeYf0+ZmSXpK0Mt1b/0hB25D0NUmvkHxJami7b4qIPwLri6z5LqAP8L/pHt/FBZNPl/Q3ScskXVYwT7v0/bMg7RW5R9Ie6eTH0n9Xpcs7QtI/SHo0bbtM0iRJPYupM4MvAI9HxBMRsQm4BtiX5AuiWavncC2dg4DX0g+GbUgSSUi9mHWBkvpIWgW8C3wbGL9lWkT8MCL+OeNy9gY+Xsy6C4wk+dBbWLDuf46IH2ac/yjg7xGxTViWyEvAwc2cdyZQBewB3A3cK6lTRPydJLT/raDtV4BfR8RGSScBlwInA5XA48Cv6i37S8A/Abl2dUbEV4C/ASekPQ3jCyZ/hqQHYQhwuaRPpOO/ntZzNEmvyErgpnTaUem/PdPl/ZmkB+YHadtPAPsD4xqrSdIL6eGMhh4/2c7mqN6wgIHbfwXMWgeHa+n0BNZsZ/o4ktf/F1kXGBF/S7uFe5N07c4rtqh0z2oScEdEFD0/Sbje3oz5kLQfyYf2N5szfzOtIfm/KFpE/DIilqc9DdcCu5GEE8AdJN3RSKoATuP9QwDnAj+IiJfSL1dXA1WFe6/p9BUR8W5zamumKyLi3Yh4nqTbecuXjnOByyJicURsIHlv/mtjXbAR8WpEPBwRGyKiFriO7exRRsSgiOjZyOO8RmZ7BDha0uD0mPmlQEegS3M23KylOVyLIOn0gpN6Hmii+UqgWyPLOZ8kpL6YfpgVJSJWkHy4TynmGJSkdiQB8B5wfrHrlfQZ4EPAfc2YtxJ4CPhJRNTfiyulbsCq5swo6dtp1+7qtMegB8kXG0i69PtL6gd8HlgdEX9Jp30EuGHL3hmwgmSvq/AEtEXNqWkHFR6XXgfsng5/BLi/oN6XSLrZ925oIZL2lvRrSW9Iehv4Je+/LrlIv/idAfxfYEm6/LnA4jzXY1YqDtciRMSkghN7mjrb9gWgX/3wk3QmMBYYEhE78kHRHtgL6J6lcdoNfRvJB+Yp6fHPYp0BTI6Id4qZSVIvkmCdGhFXNWO9O+ITJHtpRUmPr15M0vXbK+0xWE3aVRkR64F7SPZev8IHT1xbBJxTbw+tc0TMKGhTyp+jKnbZi4Bh9ertFBFvNLKsq9PxB0VEd5LXQA20A0DSi/rg2eaFj5sbmy8i7ouIgRGxJ/B/gL4kXfVmrZ7DtUTS4HwVOHzLOEmnk3wwfT4iXqs/j6TpksY1tDxJJ0s6MD35pJKkK+65dC8WSeMkTd9OST8lCZoTGuqKVMOXshRO70wSNLcXWXd34EHgyYjY5qSntNuv0TCQ1F5SJ6ACqJDUqfALi5LLjDqlTzum0ws/6I8GHiho32it9XQDNgG1QHtJl7PtF5k7gVEkZyMXhuvNwCWSBqTr7CHp1Azr3ErJZUadSEKrQ7pd7dJp233NgLdITqbL6mbgqi3d1pIq0+PGkGx/Xb3ldQPeAVYruRxsu5eURcSAwrPN6z3ObWw+SYdJqkjf7xNJvpw151CGWYtzuJbWz0j2ara4EtgTmNnIN/f9gScbWda+wB9IjiHOJvnA+5cs86YfmueQnJzz94J1n55O379guY35Ekn36p8amLa9uv8F+CTwH/X2WPoUzDujkXkhObb8Lsne/oh0+LsF019Ox+1LEuLvknRzouTmHf2B32astdCDJK/3fOCvJGftfqArNyKeJPl/eDYi/low/n6Ss1t/nXabzgEyX1eceijdliNJguVd3j+5qKnX7AfAd9Nu3m9nWNcNJJdLPSRpDfAUyclWRMQ64CrgyXR5nwKuAA4l2ZP/HTC5yG3L6gaS99zLJIdZRpdoPWa5k38svXQk7QY8R9IFvKSJtvsB90TEkc1c16x0PUWfhStpBDAgIi5pxrw7WvetwL0R8WBz5m9i2dcCCyLiJ+nzHaq1kXU8CtwdEbfmtcwM6yzZa2Zm+XC4mjWTpE8CDwP7R8T2zgw3s12Mu4XNmkHSHSSXi1zoYDWz+rznamZmljPvuZqZmeWsJDfB7t27d/Tt27cUizYz2yk988wzyyKistx1WD5KEq59+/alpqamFIs2M9spSfpr062srXC3sJmZWc4crmZmZjlzuJqZmeXM4WpmZpYzh6uZmVnOMoWrpJ6S7pM0L/19yyNKXZiZmVlblfVSnBuAP0TEv0rqCHQpYU1mZmZtWpPhKqkHyU9djQKIiPeA90pblu1sBg8udwWty/Tp5a7AzEopS7dwP5IfTP6FpOck3Sqpa/1GksZIqpFUU1tbm3uhZmZmbUWTN+6XVE3y48mfjoinJd0AvB0R32tsnurq6vAdmszMspP0TERUl7sOy0eWPdfFwOKIeDp9fh9waOlKMjMza9uaDNeI+DuwSNKB6aghwNySVmVmZtaGZT1b+OvApPRM4deA/yhdSWZmZm1bpnCNiFmAjwWYmZll4Ds0mZmZ5czhamZmljOHq5mZWc4crmZmZjlzuJqZmeXM4WpmZpYzh6uZmVnOHK5mZmY5c7iamZnlzOFqZmaWM4ermZlZzhyuZmZmOXO4mpmZ5czhamZmljOHq5mZWc4crmZmZjlzuJqZmeXM4WpmZpYzh6uZmVnOHK5mZmY5c7iamZnlzOFqZmaWM4ermZlZzhyuZmZmOWufpZGkhcAaYDOwKSKqS1mUmZlZW5YpXFPHRMSyklViZma2k3C3sJmZWc6yhmsAD0l6RtKYhhpIGiOpRlJNbW1tfhWamZm1MVnD9TMRcSgwDPiapKPqN4iIiRFRHRHVlZWVuRZpZmbWlmQK14h4I/13KXA/cHgpizIzM2vLmgxXSV0lddsyDBwHzCl1YWZmZm1VlrOF9wbul7Sl/d0R8YeSVmVmZtaGNRmuEfEacHAL1GJmZrZT8KU4ZmZmOXO4mpmZ5czhamZmljOHq5mZWc4crmZmZjlzuJqZmeXM4WpmZpYzh6uZmVnOHK5mZmY5c7iamZnlzOFqZmaWM4ermZlZzhyuZmZmOXO4mpmZ5czhamZmljOHq5mZWc4crmZmZjlzuJqZmeXM4WpmZpYzh6uZmVnOHK5mZmY5c7iamZnlzOFqZmaWM4ermZlZzjKHq6QKSc9JmlbKgszMzNq6YvZcvwG8VKpCzMzMdhbtszSStB/wReAq4JslrchyNXhwuStITJ9e7gpaF/+/mO3csu65Xg9cDNQ11kDSGEk1kmpqa2vzqM3MzKxNanLPVdI/A0sj4hlJgxtrFxETgYkA1dXVkVeBtmO8Z9I6+f/FbOeWZc/108CJkhYCvwY+J+mXJa3KzMysDWsyXCPikojYLyL6AsOBRyNiRMkrMzMza6N8nauZmVnOMp0tvEVETAeml6QSMzOznYT3XM3MzHLmcDUzM8uZw9XMzCxnDlczM7OcOVzNbKe1cOFCBg4cmLn9kUceuc24iOSeOOPGjfvA80JXX311s9cJ8Nvf/hagUzHzKNFX0qhGpg/2D628T9I1kuakj3+vN224pMsk/aOkP0vaIOnb9dr8XNJSSXOyrM/hamaWmjFjxjbjJk2axIQJE1i/fj3jx49n0qRJ27QpDNfmSMO1c5Gz3Qx8Bugj6TZJ++5QEUWSVNTVJuUk6YvAoUAV8E/AtyV1L2gyDPgDsAK4APjvBhZzOzA06zodrma2S3jttdc45JBDmDlzJi+++CKHH344VVVVDBo0iFdeeQWA3XfffZv5RowYwX777ceECRPo06cPI0Z88B46Y8eO5d1336WqqorTTz8dgM2bNzN69GgGDBjAcccdx7vvvgvAggULGDp0KIcddhif/exnmTdvHjNmzGDq1KkA+0maJekfJI2WNFPS85L+R1KXBjbpPOA04Ezgkoh4o7Ftl3R4ukf2nKQZkg5Mxz8mqaqg3ROSDpbUNd1T+0s6z0np9FGSpkp6FPhjI+saLGm6pPskzZM0SZLSaQsl9U6HqyVNT4fHSbpD0uOS/irpZEnjJc2W9AdJHRrbtoz6A49FxKaIWAu8QBqUaW1VwLMRsTQiZgIb6y8gIh4jCd9sIiL3x2GHHRZmZuX2+uuvx4ABA2LevHlRVVUVs2bNioiI888/P375y19GRMSGDRti3bp1ERHRtWvXbZYxadKkGD9+fHznO9+Ja665JiZNmrRNm8L5Xn/99aioqIjnnnsuIiJOPfXUuOuuuyIi4nOf+1zMnz8/IiKeeuqpOOaYYyIi4owzzghgQaSfocCeBcNXAl+Pep+zwE+BEcDlwC3Ah+tNHwxMS4e7A+3T4WOB/0mHzwCuT4c/DtSkw1cDI9LhnsB8oCswClgM7FG/nnrrXQ3sR7ID92fgM+m0hUDvdLgamJ4OjwOeADoABwPrgGHptPuBLzWwnouAWQ08bmyg7XHAk0AXoDfwGvCtdNqhwJ312o8Dvt3AcvoCcxrb9sJHm9mtNzNrjtraWk466SQmT55M//79ATjiiCO46qqrWLx4MSeffDIHHHBAo/OfdtppSGLcuHFcfPHFDR5zra9fv35UVVUBcNhhh7Fw4ULeeecdZsyYwamnnrq13YYNGxpbxEBJV5IE2+7Agw20OQ/4CElofr+JknoAd0g6AAiSEAO4F/iepItI9oBvT8cfR3JP+S3HHTsBfdLhhyOiqT24v0TEYgBJs0hC6Ykm5nkgIjZKmg1UkHTTAsxO5/+AiJgATGhimVvaPiTpk8AMoJYk8Denk4cCD2RZTjHcLWxmO7UePXrQp08fnnji/c/2L3/5y0ydOpXOnTtz/PHH8+ijjzY6f9qjufWEpi3Pt2e33XbbOlxRUcGmTZuoq6ujZ8+ezJo1a+vjpZdeamwRtwPnR8RBwBU0cLJTuqO8MCJub7Ig+C/gTxExEDhhy/IiYh3wMHAS8G/AlgPKAk6JiKr00ScithS7NsP6Cr81bOb9uwFu4v3cqb9NG9Ka6oCN8f63mDoauJugpIvSbvT6jxsbKigirkq35fPp9s1PJx0HPJRhm4ricDWznVrHjh25//77ufPOO7n77ruB5PjrRz/6US644AJOOukkXnjhhR1aR4cOHdi4cZvDdB/QvXt3+vXrx7333gskh+Sef/55ALp16wYf/DzuBixJjzWevkPFJXoAW47Jjqo37VbgRmBmRKxMxz0IfL3gWOkhOdQASbfwYenwKTuyoIiYUBD+hY8L6reVVCFpz3R4EDAIeEhSD5I9/+U7UktDHK5mttPr2rUr06ZN40c/+hFTp07lnnvuYeDAgVRVVTFnzhxGjhy5Q8sfM2YMgwYN2npCU2MmTZrEbbfdxsEHH8yAAQOYMmUKAMOHDwf4UHry0D8A3wOeJjlOOG+HikuMB34g6Tnq7QVGxDPA28AvCkb/F0nX8QuSXkyf5+EK4AZJNbzfLdsSOgCPS5pL8rvjIyJiE/B54JEtjSR9SNJi4JvAdyUt3nJWsaRfkXQnH5iOP2t7K1SW4wfFqq6ujpqamtyXa2a2s5L0TERUl2G9Hyb5QZZ/TLtkdxmSbgVujYin8l6291zNzHZRkkaS7CFftqsFK0BEnF2KYIUif3LOzMx2HhFxJ3Bnc+aVdBBwV73RGyLin3a4sJ2Aw9XMzIoWEbNJbr5gDXC3sJm1ebNnz2blypVNNzRrIQ5XM2vTHnroIUaNGsU555zDqlWryl2OGeBwNbM27He/+x2XXnopvXr14sUXX+TOO5t1+NAsdw5XM2uTpkyZwuWXX06vXr1YvXo1hxxyCGeccUa5yzIDfEKTmbVB9957Lz/84Q/Zc889WbFiBQcddBA33njjljsdmZWdw9XM2pRJkyZx3XXXbQ3WqqoqbrjhBrp27Vru0sy2criaWZsQEdx+++38+Mc/prKykuXLl/PJT36S6667js6di/2dcbPScriaWasXEdxyyy387Gc/2xqsRxxxBBMmTKBTp21+MMas7Jo8oUlSp/TX6J+X9KKkK1qiMDMzSIL1Jz/5CTfffDO9e/dm2bJlHH300Vx77bUOVmu1suy5bgA+FxHvpD9/9ISkB0p1P0Yzsy0iguuvv5677rqLyspKli1bxrHHHsuVV15Jhw4dml6AWZk0Ga7pD9a+kz7tkD7y/ykdM7MCdXV1TJgwgd/85jfstdde1NbWMmzYMMaNG0f79j6iZa1bputc0x+anQUsBR6OiKcbaDNGUo2kmtra2pzLNLNdyebNm7n66qu3BuvSpUs58cQTueKKKxys1iZkCteI2BwRVcB+wOGSBjbQZmJEVEdEdWVlZc5lmtmuYtOmTXz/+99n8uTJW4P11FNP5Xvf+x4VFRXlLs8sk6Lu0BQRq4A/AUNLUo2Z7dI2bdrE5ZdfzrRp07Z2BX/5y19m7NixtGvnG8pZ25HlbOFKST3T4c7A54F5Ja7LzHYx7733HpdccgkPPvggvXv3pra2lpEjR/Ktb30LSeUuz6woWQ5e7APcIamCJIzviYhppS3LzHYlGzZs4Dvf+Q6PP/741sttzj77bM4991wHq7VJWc4WfgE4pAVqMbNd0Pr167nooouYMWPG1mA977zzOPPMMx2s1mb5tDszK5t169bxn//5n9TU1GztCr7wwgsZOXJkuUsz2yEOVzMri7Vr1/KNb3yDWbNmseeee7Js2TIuvvhihg8fXu7SzHaYw9XMWtyaNWs4//zzmTt3Lr169WL58uVceumlnHLKKeUuzSwXDlcza1GrV6/mvPPOY/78+fTo0YMVK1Ywbtw4TjjhhHKXZpYbh6uZtZgVK1bw1a9+lddff50ePXqwatUqrrrqKoYO9aXztnNxuJpZi1i+fDnnnHMOixYtolu3bqxevZprrrmGIUOGlLs0s9w5XM2s5JYuXcqYMWNYsmQJXbt2Zc2aNVx77bUcddRR5S7NrCQcrmZWUkuWLGHMmDHU1tbSpUsX1q5dy/XXX8+RRx5Z7tLMSsbhamYl88YbbzB69GhWrlxJp06dWL9+PT/+8Y85/PDDy12aWUk5XM2sJBYtWsRZZ53FmjVr6NixIxs3buSmm27i0EMPLXdpZiXncDWz3C1cuJDRo0ezdu1aOnTowObNm/npT3/KoEGDyl2aWYvwbziZWdHmz5/PkiVLGpz26quvcuaZZ7Ju3bqtv786ceJEB6vtUhyuZla0yy+/nFGjRvHmm29+YPzLL7/M2WefzXvvvYckKioquOWWW+jfv3+ZKjUrD4ermRVl0aJFLFiwgLfffpvRo0fz1ltvATB37lxGjx7N5s2biQg6duzIrbfeyoEHHljmis1ansPVzIryyCOPEBH07t2b5cuXM3r0aB599FHGjBkDwObNm+ncuTO33XYbH/vYx8pcrVl5OFzNLLOIYPLkyXTv3h2AyspKli5dyoUXXkhFRQUbN26kW7du/OIXv6Bfv35lrtasfHy2sJll9sorr/DWW2+x1157bR1XWVlJXV0dK1eupFevXtxyyy3su+++ZazSrPy852pmmT388MPU1dUh6QPj27VrR11dHd27d6dbt25lqs6s9XC4mlkmdXV1TJkyhZ49ezY4vXfv3ixYsICvfe1rrFmzpmWLM2tlHK5mlsmcOXNYtWoVnTt3bnC6JPbee2/mzZvHBRdcwNq1a1u4QrPWw+FqZpk88MADRMR229TV1dGhQwdmzJjBxIkTW6gys9bHJzSZWZM2btzI73//e/bYY48Gp61atYqIQBKf+tSnGDZsmH/1xnZpDlcza9Kzzz7L+vXrt16Cs2HDBlauXEm7du3o0KEDQ4YM4Qtf+ALV1dV06dKlzNWalZ/D1cyaNG3aNNavX8+SJUuoqKigS5cunHzyyQwZMoSqqio6duxY7hLNWpUmw1XS/sCdwN5AABMj4oZSF2ZmrUNEMHPmTPbZZx+OP/54Bg8ezIABA7belN/MtpVlz3UT8K2IeFZSN+AZSQ9HxNwS12ZmrYAk7r77bnr16rXN9a1m1rAmwzUilgBL0uE1kl4C9gUcro0YPLjcFbxv+vRyV2CtWfb36rYnMuXJ71Pb2RR1KY6kvsAhwNMNTBsjqUZSTW1tbU7lmZmZtT1q6rq1rQ2l3YH/B1wVEZO317a6ujpqampyKM/MbNcg6ZmIqC53HZaPTHuukjoA/wNMaipYzczMdnVNhquSMxhuA16KiOtKX5KZmVnblmXP9dPAV4DPSZqVPo4vcV1mZmZtVpazhZ8AfP69mZlZRr5xv5mZWc4crmZmZjlzuJqZmeXM4WpmZpYzh6uZmVnOHK5mZmY5c7iamZnlzOFqZmaWM4ermZlZzhyuZmZmOXO4mpmZ5czhamZmljOHq5mZWc4crmZmZjlzuJqZmeXM4WpmZpYzh6uZmVnOHK5mZmY5c7iamZnlzOFqZmaWM4ermZlZzhyuZmZmOXO4mpmZ5czhamZmlrMmw1XSzyUtlTSnJQoyMzNr67Lsud4ODC1xHWZmZjuNJsM1Ih4DVrRALWZmZjuF3I65ShojqUZSTW1tbV6LNTMza3NyC9eImBgR1RFRXVlZmddizczM2hyfLWxmZpYzh6uZmVnOslyK8yvgz8CBkhZLOqv0ZZmZmbVd7ZtqEBGntUQhZmZmOwt3C5uZmeXM4WpmZpYzh6uZmVnOHK5mZmY5c7iamZnlzOFqZmaWM4ermZlZzhyuZmZmOXO4mpmZ5czhamZmljOHq5mZWc4crmZmZjlzuJqZmeXM4WpmZpYzh6uZmVnOHK5mZmY5c7iamZnlzOFqZmaWM4ermZlZzhyuZmZmOXO4mpmZ5czhamZmljOHq5mZWc4crmZmZjnLFK6Shkp6WdKrksaWuigzM7O2rMlwlVQB3AQMA/oDp0nqX+rCzMzM2qr2GdocDrwaEa8BSPo1cBIwt5SFlcvgwTu+jOnTd3wZZruSPP7uwH971npk6RbeF1hU8HxxOu4DJI2RVCOppra2Nq/6zMzM2pwse66ZRMREYCJAdXV15LXcluZvvmYtz393trPJsuf6BrB/wfP90nFmZmbWgCzhOhM4QFI/SR2B4cDU0pZlZmbWdjXZLRwRmySdDzwIVAA/j4gXS16ZmZlZG5XpmGtE/B74fYlrMTMz2yn4Dk1mZmY5c7iamZnlzOFqZmaWM4ermZlZzhSR//0eJK0BXs59wS2jN7Cs3EXsANdfXq6/vNpy/QdGRLdyF2H5yO0OTfW8HBHVJVp2SUmqaau1g+svN9dfXm25fkk15a7B8uNuYTMzs5w5XM3MzHJWqnCdWKLltoS2XDu4/nJz/eXVlutvy7VbPSU5ocnMzGxX5m5hMzOznDlczczMcpZLuEraQ9LDkl5J/+3VQJsqSX+W9KKkFyT9ex7rbi5JQyW9LOlVSWMbmL6bpN+k05+W1LcMZTYqQ/3flDQ3fa3/KOkj5aizMU3VX9DuFEkhqVVdXpGlfkn/lv4fvCjp7pausTEZ3jt9JP1J0nPp++f4ctTZGEk/l7RU0pxGpkvSjen2vSDp0JausTEZaj89rXm2pBmSDm7pGi0nEbHDD2A8MDYdHgtc00CbjwMHpMMfBpYAPfNYfzPqrQAWAB8FOgLPA/3rtTkPuDkdHg78phy17kD9xwBd0uGvtrX603bdgMeAp4Dqctdd5Ot/APAc0Ct9vle56y6i9onAV9Ph/sDCctddr76jgEOBOY1MPx54ABDwKeDpctdcRO1HFrxnhrWm2v0o7pFXt/BJwB3p8B3Al+o3iIj5EfFKOvwmsBSozGn9xToceDUiXouI94Bfk2xDocJtug8YIkktWOP2NFl/RPwpItalT58C9mvhGrcny+sP8F/ANcD6liwugyz1jwZuioiVABGxtIVrbEyW2gPong73AN5swfqaFBGPASu20+Qk4M5IPAX0lLRPy1S3fU3VHhEztrxnaH1/t1aEvMJ174hYkg7/Hdh7e40lHU7yrXlBTusv1r7AooLni9NxDbaJiE3AamDPFqmuaVnqL3QWyTf51qLJ+tOuvP0j4nctWVhGWV7/jwMfl/SkpKckDW2x6rYvS+3jgBGSFpP8jvPXW6a03BT799Fatba/WytC5tsfSnoE+FADky4rfBIRIanR63vSb5B3AWdERF3W9VvzSBoBVANHl7uWrCS1A64DRpW5lB3RnqRreDDJ3sdjkg6KiFXlLCqj04DbI+JaSUcAd0ka6L/XliPpGJJw/Uy5a7HmyRyuEXFsY9MkvSVpn4hYkoZng11gkroDvwMuS7tryuUNYP+C5/ul4xpqs1hSe5LuseUtU16TstSPpGNJvvwcHREbWqi2LJqqvxswEJie9sR/CJgq6cSIaA33X83y+i8mOV62EXhd0nySsJ3ZMiU2KkvtZwFDASLiz5I6kdwQv7V0bTcl099HayVpEHArMCwiWstnjhUpr27hqcAZ6fAZwJT6DSR1BO4nORZyX07rba6ZwAGS+qV1DSfZhkKF2/SvwKMR0VruuNFk/ZIOAX4GnNiKjvdtsd36I2J1RPSOiL4R0Zfk2FNrCVbI9v75LcleK5J6k3QTv9aCNTYmS+1/A4YASPoE0AmobdEqd8xUYGR61vCngNUFh61aNUl9gMnAVyJifrnrsR2Qx1lRJMci/wi8AjwC7JGOrwZuTYdHABuBWQWPqnKdyUVyRuF8kuO+l6Xjvk/yIQ7JB8q9wKvAX4CPlqvWZtb/CPBWwWs9tdw1F1N/vbbTaUVnC2d8/UXStT0XmA0ML3fNRdTeH3iS5EziWcBx5a65Xv2/IrnaYCNJD8FZwLnAuQWv/U3p9s1uTe+dDLXfCqws+LutKXfNfjTv4dsfmpmZ5cx3aDIzM8uZw9XMzCxnDlczM7OcOVzNzMxy5nA1MzPLmcPVzMwsZw5XMzOznP1/MyCfSdmL5zUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAEICAYAAADMa/SXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAof0lEQVR4nO3de5xVdb3/8ddbxpFEQAg0AxT0kCkmIBNkmaKm4CXpaB4xESSV8GTW73T0aGqhphZUpoYVRwlF0rzLyUzJJFNCGRIVyQsocsli5BbIdfDz+2MtcDPMZc+F2XtY7+fjsR+s9b2s9dmbPfuz13d991qKCMzMzLJqt0IHYGZmVkhOhGZmlmlOhGZmlmlOhGZmlmlOhGZmlmlOhGZmlmlOhEVM0h6S5knar9CxZJGkH0u6qB7tz5P07M6MqRAkdZcUkkoKHYvZzuBEWCCSHpe0Nn1slrQpZ/0XabNRwDMR8W7a51JJcyWtkfS2pEvrsb9jJb0iaZWk5ZIeltQlz757SLpD0jvpvudIOqmBz3Vt+lxfybPvJyQ9KqlC0gpJT0g6uB77vlhSuaSNkiZVqSuV9ICkhekH/cAq3X8EfEdSab77KwZN8JotlPSFJoqlYElU0hfTv5e1kmZIOrS5Y7CWwYmwQCLipIjYKyL2AqYAY7euR8TotNloYHJONwHDgQ7AYOBiSUPz3OU8YFBE7A18HHgT+HmefUuAxcAxQHvgKuA+Sd3z6Zz7XNPnOwO4P8997w1MBQ4G9gVeAB7Nsy/A34HvAxNrqH8WGAb8o5q43wVeA06rx/6aVQ0JZm8a95q1eJJ6kvxdjSZ5Pf4PmOqjWqtWRPhR4AcwCfh+lbL9gfVASS39bgFubcD+9gBuBObllF0O/LYe23gZOKMB++4ObAG655T9Frg8z/4dgQA+Ws/9fh+YVEv9EmBgNeVXAr/Kcx/nAc/mrN9M8gXiX8Bs4PNp+ceAdbnPATgCqAB2T9e/CvwNWAk8ARyQ0zaAr5N8mXm7KV8zki9eH6TvvbXAZen/WQAjgEXAe8CVOX12S98/C4DlwH1Ax7RuUdp3bfo4EjgI+GPa9j2ShLV3fd9LdTyPi4HHqsS4Hji+Kffjx67x8BFh8foU8FZEVFZXKUnA54FX892gpP0lrSL5QPhvYOzWuoj4QUScmud29gU+UZ995xgO/DkiFubs+9SI+EGe/Y8G/hERyxuw74b4G9C7gX1nAX1IEtGvgfsltY6IfwDTgf/IaXsucG9EbJY0BPgOcDrQGfgzcE+VbX8JGADkM9yX92sWEeeSJK8vRnIEPzan+iiSo8zjge9KOiQt/0YazzEkow0rgfE5+4Yk0e0VEX8hGdm4MW17CNANGFNTTJJeTof0q3vcVsvTUZVlAYfV/gpYFjkRFq+9gTW11I8h+f/7Vb4bjIhFkQyNdiIZ3nytvkFJ2p3kG/ydEVHv/iSJcFID+iGpK8kH7H81pH8DrSH5v6i3iLg7IpZHRGVE/JjkSHzrubo7SYZkkdQKOJsPh8FHAzdGxN/SL0I3AH0kHZCz+RsjYkVErK8thiZ+za6JiPUR8RLwEh9+QRhNcoS4JCI2krw3v1zTMGREzI+IaRGxMSIqgJ+QJNFqRcThEbF3DY//rKHbH4BjJA1Mz/F+BygF9mzIE7ddmxNhM5J0Ts6EkcfraL4SaFvDdi4mSSinpB889RIRK0g+iB+tzzkTSbuRfFhvIhl6qhdJR5EMCz7QgL6dgSeB2yKi6tHRztQWWNWQjpL+W9LfJK1Oj8Tbk3wJgeSc3aGSegAnAKsj4oW07gDg5q1HPcAKkqOZ3MlNi/PYf1O/ZrnnUdcBe+XE+3BOvH8jGf7et4a49pV0r6Slkv4F3M2Hr0uTSL+kjQB+Brybbn8eyRC42XacCJtRREyJDyeN1DXr8mWgR9VEJemrJOdjjo+IxvxRlwD7AO3yaZwOxd5B8uF2RkRsbsA+RwAPRcTa+nSS1IHkA31qRFzfgP02xiEkRz/1IunzJOfX/gPokB6JryYdrouIDSTn0oaRDIvmTopaDHytypHPRyJiRk6bWm8b08jXrL63pFkMnFQl3tYRsbSGbd2Qln8qItqRvAaqph0Akl6tMus49/GLmvpFxAMRcVhEfBT4Hsm5zln1fG6WAU6ERSpNcvOB/lvLJJ1D8iFyQkS8VbWPpOmSxlS3PUmnSzpY0m7pkcJPgBfTo0MkjZE0vZaQfk6SFL5Y3XBcDT8/yK3/CElSmFTPuNuRTBZ5LiIur6Z+oKQaP7gllUhqDbQCWklqnfvlQslPQ1qnq6Vpfe6H8jHA4znta4y1irZAJckEmBJJ32XHLx13kUywOY3tE+EvgCsk9Ur32V7SmXnsc2uMjXrNgH8CB+a7vzTe67cO3UrqnJ7nhOT5f1Ble21JJs6sVvITnlp/BhQRvXK+QFZ9jK6pn6R+klql7/cJJF8KGjKcb7s4J8Li9kuSo4Wtvg98FJhVwzfibsBzNWyrC/B7knNer5B8OP17Pn3TD7ivkUz8+EfOvs9J67vlbLcmXyIZYny6mrra4v534NPAyCpHAvvn9J1RQ19IzoWuJzmKHpYuX5VT/3pa1oUkeawnGepDyYUMDgUeyTPWXE+QvN5vAO8AG6gynBkRz5H8P/w1It7JKX8Y+CFwbzp0OBfI+3ebNP41uxG4Kh3q/O889nczyc81npS0BphJMpGHiFgHXA88l27vM8A1JLNkVwOPAQ/V47nVx80k77nXSU41XLiT9mMtnCJ8Y95iJWkP4EWSYdB362jbFbgvIj7bwH3NSfdT79mYkoYBvSLiigb0bWzctwP3R8QTDelfx7Z/DCyIiNvS9UbFWsM+/gj8OiJub6pt5rHPnfaambVEToRmBSLp08A0oFtE1DZD2Mx2Ig+NmhWApDtJpvh/y0nQrLB8RGhmZpnmI0IzM8u0orwAbadOnaJ79+6FDsPMrMWYPXv2exHRudBxtERFmQi7d+9OeXl5ocMwM2sxJL1TdyurjodGzcws05wIzcws05wIzcws05wIzcws05wIzcws0+pMhJK6SXpa0rz0dijfrKaNJN0iab6Su0kfkVM3QtKb6WNEUz8BMzOzxsjn5xOVwLcj4q+S2gKzJU2LiHk5bU4CeqaPASS37BkgqSPJfcDKSO4/NlvS1IhY2aTPwszMrIHqTITpXQ/eTZfXSPobyS1rchPhEOCuSK7XNlPS3uktbAYC03LueTcNGAw05x3GLcfAgYWOwLJs+vRCR2C2o3qdI5TUHegLPF+lqgvb32ttSVpWU3l12x4lqVxSeUVFRX3CMjMza7C8rywjaS/gQZKr5f+rqQOJiAkkd5GmrKzMVwLfSfyNfNewadMmNm7cSNu2bQsdilmLl9cRoaTdSZLglIio7m7SS0nuer1V17SspnIza4Rp06YxcOBAzjrrLMaPH88LL7zA+++/X+iwzFqkOm/DJEnAncCKiPhWDW1OAS4GTiaZLHNLRPRPJ8vMBrbOIv0r0G/rOcOalJWVha81alazlStXMmjQIFq3bs26desoKSlhy5YtHHzwwRxzzDEcccQR9OrVi9atWxc6VGsmkmZHRFmh42iJ8hka/RxwLvCKpDlp2XeA/QEi4hfA70iS4HxgHTAyrVsh6TpgVtrv2rqSoJnVrUOHDgwaNIgnnniC/fbbD4APPviAxYsXM2HCBFq1akVEcOihh3L00UfTr18/PvnJT1JaWlrgyM2KT1HemNdHhGZ1mzt3LiNHjmTfffclGbjZ3pYtW1i7du22I8bddtuNn/70p/Tv378A0drO5iPChvOVZcxaqF69etGjRw/WrFlTbX2rVq1o3779tiPGbt260atXr+YM0axFcCI0a6EkMWLECNatW1dru5UrV9K+fXtuvfVW2rRp00zRmbUcToRmLdhxxx3HHnvswaZNm6qtX7t2LQA/+9nP2GeffZozNLMWw4nQrAX7yEc+wumnn86KFdXPQVu1ahXHHnssBx10UDNHZtZyOBGatXBnnHEGkMwa3aqyspJ3332Xfffdl8cee4wrr7ySjRs3FipEs6LmRGjWwh1wwAEcccQRrFq1CkgS4rJlyzjooINYtmwZnTt35sknn+Siiy7a1sbMPuREaLYLGDZsGJs3byYi+Mc//sEJJ5zAlClTuPDCC6moqKBjx47MnTuX4cOHs3jx4ro3aJYhToRmu4AjjzyS9u3bs3jxYg4//HDGjBlDSUkJF110Eddccw2rVq2iTZs2VFRUcO655/Lyyy8XOmSzouFEaLYLKCkp4ZxzzqF79+7cdNNN211a7Ytf/CLjx49n8+bN7LbbbkQEF154IU899VQBIzYrHr6yjNkuorKykg0bNrDXXntVW79gwQK+/vWvs3LlStq2bcvKlSu55JJLGD58eLVXprGWxVeWaTgfEZrtIkpKSmpMggAHHXQQd999NwceeCCrVq2iU6dO3Hzzzdxwww1UVlY2Y6RmxcWJ0CxDOnXqxO23385RRx3Fe++9xz777MNDDz3Et771Ld/GyTLLidAsY9q0acOPfvQjzjrrLJYtW0anTp14/vnnGTlyJMuWLSt0eGbNzonQLINKSkq49NJLufTSS1m+fDnt2rVj0aJFDBs2jDfffLPQ4Zk1KydCs4ySxNlnn82Pf/xj1q1bR2lpKevWreO8885j5syZhQ7PrNk4EZpl3DHHHMPtt99OSUkJlZWVlJaW8o1vfIOHHnqo0KGZNYs6E6GkiZKWSZpbQ/2lkuakj7mStkjqmNYtlPRKWuffQ5gVqV69ejF58mT2228/3n//fTp06MD3v/99brnllu2uYWq2K8rniHASMLimyogYFxF9IqIPcAXwp4jIvRT+sWm9f99iVsS6dOnCpEmT6N27N8uXL2efffZh0qRJXHHFFWzYsKHQ4ZntNHUmwoh4Bqj+Hi87Ohu4p1ERmVnBtG/fnvHjx3PKKadQUVFB586deeqppxg9ejQrV64sdHhmO0WTnSOUtCfJkeODOcUBPClptqRRdfQfJalcUnlFRUVThWVm9VRaWso111zDqFGjeO+99+jQoQPz5s1j+PDhLFq0qNDhmTW5ppws80XguSrDokdFxBHAScDXJR1dU+eImBARZRFR1rlz5yYMy8zqSxJf+9rXuPbaa1m9ejV77rkny5cv59xzz+Wll14qdHhmTaopE+FQqgyLRsTS9N9lwMNA/ybcn5ntZKeccgq33XYbW7Zs2XY90lGjRvHkk08WODKzptMkiVBSe+AY4NGcsjaS2m5dBk4Eqp15ambFq6ysjDvvvJN27dqxfv162rZtyxVXXMGvfvUrivGi/Wb1lc/PJ+4B/gIcLGmJpPMljZY0OqfZvwNPRkTuxQr3BZ6V9BLwAvBYRPy+KYM3s+Zx4IEHMnnyZHr27Mnq1avp1KkTt956K9dffz2bN28udHhmjeLbMJlZ3tatW8dVV13Fn/70Jzp37kxFRQUDBgxg7Nixtd75wnY+34ap4XxlGTPL25577snYsWM5++yzqaiooFOnTsyaNYuRI0fyz3/+s9DhmTWIE6GZ1UtJSQnf/va3ueyyy7ZdsHvx4sUMGzaM119/vdDhmdWbE6GZ1ZskzjrrLH7yk5+wfv16dt99dzZs2MDIkSN57rnnCh2eWb04EZpZgx199NHccccdlJaWUllZSevWrfnmN7/Jgw8+6Bml1mI4EZpZoxxyyCHbLti9Zs0aOnbsyA033MDNN9/Mli1bCh2eWZ2cCM2s0T7+8Y8zadIkjjjiCJYvX07nzp2ZPHkyl19+OZWVlYUOz6xWToRm1iTatWvHrbfeyqmnnsqyZcto1aoVr776Kps2bSp0aGa1ciI0syZTWlrKmDFjuOiii9hrr70YP348e+65Z6HDMquVf1BvZjvFpk2bKC0tLXQYmeEf1DecjwjNbKdwErSWwonQzMwyzYnQzMwyzYnQzJrNwoULOeyww/Ju/9nPfnaHsq3zGsaMGbPdeq4bbrihwfsEeOSRR5g3b169+kQECxcuZNKkSdXWT58+nVNPPbVe29yVSfq9pFWSflul/HhJf5U0R9Kzkv4tp24/SU/W0f9iSfMlhaRO+cTiRGhmRWvGjBk7lE2ZMoVx48axYcMGxo4dy5QpU3Zok5sIG6IhiXD06NE8++yzLFq0iPPPP5+lS5c2KoYMGAecW035z4FzIqIP8Gvgqpy6wcATdfR/DvgC8E6+gTgRmllBvPXWW/Tt25dZs2bx6quv0r9/f/r06cPhhx/Om2++CVDtrZ2GDRtG165dGTduHPvvvz/Dhg3brv7yyy9n/fr19OnTh3POOQeALVu2cOGFF9KrVy9OPPFE1q9fD8CCBQsYPHgw/fr14/Of/zyvvfYaM2bMYOrUqVx66aX06dOHBQsW8L//+798+tOfpnfv3pxxxhmsW7duh7huu+027rnnHiZOnMiNN95Ily5danzuL7zwAkceeSR9+/bls5/97LaLlR999NHMmTNnW7ujjjqKl156iffff5+vfvWr9O/fn759+/Loo8k90CdNmsRpp53GcccdB3BwdfuSNFDSdEkPSHpN0hRJSusWbj1qklQmaXq6PEbSnZL+LOkdSadLGivplfRIbPcan1yeIuIpYE11VUC7dLk98PecusHA47X1j4gXI2JhfYMpuke/fv3CzHY9b7/9dvTq1Stee+216NOnT8yZMyciIi6++OK4++67IyJi48aNsW7duoiIaNOmzQ7bmDJlSowdOzb+53/+J374wx/GlClTdmiT2+/tt9+OVq1axYsvvhgREWeeeWZMnjw5IiKOO+64eOONNyIiYubMmXHsscdGRMSIESPi/vvv37aN9957b9vylVdeGbfccssO+xw9enRMnjw5rrnmmrjgggti6dKl29U//fTTccopp0RExOrVq2Pz5s0RETFt2rQ4/fTTIyJi0qRJ8c1vfjMiIl5//fXY+ll4xRVXbIt55cqV0bNnz1i7dm386le/ii5dusTy5csDKI9qPk+BgcBqoCvJwc9fgKPSuoVAp3S5DJieLo8BngV2B3oD64CT0rqHgS9Vs59LgTnVPG6pLq6c2H5bpezzwHJgCTAPaJeWtwLm1NU/p27bc6vrUVJXopQ0ETgVWBYROwy0SxoIPAq8nRY9FBHXpnWDgZvTJ3B7RPygrv2Z2a6toqKCIUOG8NBDD3HooYcCcOSRR3L99dezZMkSTj/9dHr27Flj/7PPPhtJjBkzhssuuyyvi3v36NGDPn36ANCvXz8WLlzI2rVrmTFjBmeeeea2dhs3bqy2/9y5c7nqqqtYtWoVa9euZdCgQTu0ue2223jnnXeorKzku9/9bq3xrF69mhEjRvDmm28iic2bNwNw5plnct111zFu3DgmTpzIeeedB8CTTz7J1KlT+dGPfgTAhg0bWLRoEQAnnHACHTt2rOsleCEilgBImgN0J0l0tXk8IjZLeoXkM/z3afkraf/tRMQ4kuHKxvp/wMkR8bykS4GfABcAA4Dnm2D7O6gzEQKTgJ8Bd9XS5s8Rsd1ZYEmtgPHACSSZfZakqRFRv4F3M9ultG/fnv33359nn312WyL8yle+woABA3jsscc4+eST+eUvf7l1uG8H6ajetskyW9drs8cee2xbbtWqFevXr+eDDz5g77333m4osibnnXcejzzyCL1792bSpElMnz692ri6d+++LXnV5uqrr+bYY4/l4YcfZuHChQwcOBBIbnx8wgkn8Oijj3Lfffcxe/ZsIBm5e/DBBzn44O1HP59//nnatGlT5/6A3Ay/hQ8/+yv58BRZ6+r6RMQHkjbHh984PqCa3JEmrXOq2fczEXFJPkFK6gz0joitCe83fJiAT8pZblJ1niOMiGeAFQ3Ydn9gfkS8FRGbgHuBIQ3YjpntQkpLS3n44Ye56667+PWvfw0k5wsPPPBALrnkEoYMGcLLL7/cqH3svvvu246yatKuXTt69OjB/fffDyTJ5qWXXgKgbdu2rFnz4emnNWvWsN9++7F58+ZqJ+fU1+rVq7edQ6w6y/SCCy7gkksu4dOf/jQdOnQAYNCgQdx6663bjn5ffPHFRseQWgj0S5fPaMyGImJcRPSp5pFXEkytBNpL+kS6fgLwt3T5eOAPjYmxJk01WeZISS9JelxSr7SsC7A4p82StKxakkZJKpdUXlFR0URhmVkxatOmDb/97W+56aabmDp1Kvfddx+HHXYYffr0Ye7cuQwfPrxR2x81ahSHH374tskyNZkyZQp33HEHvXv3plevXtsmoQwdOpRx48bRt29fFixYwHXXXceAAQP43Oc+xyc/+clGxQZw2WWXccUVV9C3b98d7s7Rr18/2rVrx8iRI7eVXX311WzevJnDDz+cXr16cfXVVzc6htQ1wM2SykmOFJuNpD8D9wPHS1oiaVBEVAIXAg9KeolkVuil6ZHihohYU1v/tPwSSUtIzom+LOn2OmPJZ3xdUneSE5LVnSNsB3wQEWslnQzcHBE9JX0ZGBwRF6TtzgUGRMTFde3P1xo1s6z6+9//zsCBA3nttdfYbbf8j1V25WuNShoGdN1Z80wafUQYEf+KiLXp8u+A3dPpuEuBbjlNu6ZlZmZWjbvuuosBAwZw/fXX1ysJ7uoi4u6dOdkyn8kytZL0MeCfERGS+pMk1+XAKqCnpB4kCXAo8JXG7s/MbFc1fPjwxgwLfySdEZprY0QMaFxUu758fj5xD8lvNTql467fI/ltCRHxC+DLwEWSKoH1wNB0dlGlpItJrgLQCpgYEa/ulGdhZmbrd9Wh0Z3N9yM0M9sF7MrnCHc2D0KbmVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmmORGamVmm1ZkIJU2UtEzS3Brqz5H0sqRXJM2Q1DunbmFaPkeSbzBoZmZFJ58jwknA4Frq3waOiYhPAdcBE6rUHxsRfXzDSDMzK0YldTWIiGckda+lfkbO6kygaxPEZWZm1iya+hzh+cDjOesBPClptqRRtXWUNEpSuaTyioqKJg7LzMysenUeEeZL0rEkifConOKjImKppH2AaZJei4hnqusfERNIh1XLysqiqeIyMzOrTZMcEUo6HLgdGBIRy7eWR8TS9N9lwMNA/6bYn5mZWVNpdCKUtD/wEHBuRLyRU95GUtuty8CJQLUzT83MzAqlzqFRSfcAA4FOkpYA3wN2B4iIXwDfBT4K3CYJoDKdIbov8HBaVgL8OiJ+vxOeg5mZWYPlM2v07DrqLwAuqKb8LaD3jj3MzMyKh68sY2ZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmeZEaGZmmZZXIpQ0UdIySXNrqJekWyTNl/SypCNy6kZIejN9jGiqwM3MzJpCvkeEk4DBtdSfBPRMH6OAnwNI6gh8DxgA9Ae+J6lDQ4M1MzNranklwoh4BlhRS5MhwF2RmAnsLWk/YBAwLSJWRMRKYBq1J1QzM7Nm1VTnCLsAi3PWl6RlNZXvQNIoSeWSyisqKpooLDMzs9oVzWSZiJgQEWURUda5c+dCh2NmZhnRVIlwKdAtZ71rWlZTuZmZWVFoqkQ4FRiezh79DLA6It4FngBOlNQhnSRzYlpmZmZWFEryaSTpHmAg0EnSEpKZoLsDRMQvgN8BJwPzgXXAyLRuhaTrgFnppq6NiNom3ZiZmTWrvBJhRJxdR30AX6+hbiIwsf6hmZmZ7XxFM1nGzMysEJwIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws05wIzcws0/JKhJIGS3pd0nxJl1dTf5OkOenjDUmrcuq25NRNbcLYzczMGq3OO9RLagWMB04AlgCzJE2NiHlb20TE/8tp/w2gb84m1kdEnyaL2MzMrAnlc0TYH5gfEW9FxCbgXmBILe3PBu5piuDMzMx2tnwSYRdgcc76krRsB5IOAHoAf8wpbi2pXNJMSV+qaSeSRqXtyisqKvIIy8zMrPGaerLMUOCBiNiSU3ZARJQBXwF+Kumg6jpGxISIKIuIss6dOzdxWGZmZtXLJxEuBbrlrHdNy6ozlCrDohGxNP33LWA6258/NDMzK6h8EuEsoKekHpJKSZLdDrM/JX0S6AD8Jaesg6Q90uVOwOeAeVX7mpmZFUqds0YjolLSxcATQCtgYkS8KulaoDwitibFocC9ERE53Q8BfinpA5Kk+4Pc2aZmZmaFpu3zVnEoKyuL8vLyQodhZtZiSJqdzsewevKVZczMLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNPySoSSBkt6XdJ8SZdXU3+epApJc9LHBTl1IyS9mT5GNGXwZmZmjVXnHeoltQLGAycAS4BZkqZWc6f530TExVX6dgS+B5QBAcxO+65skujNzMwaKZ8jwv7A/Ih4KyI2AfcCQ/Lc/iBgWkSsSJPfNGBww0I1MzNrevkkwi7A4pz1JWlZVWdIelnSA5K61bMvkkZJKpdUXlFRkUdYZmZmjddUk2X+D+geEYeTHPXdWd8NRMSEiCiLiLLOnTs3UVhmZma1yycRLgW65ax3Tcu2iYjlEbExXb0d6JdvXzMzs0LKJxHOAnpK6iGpFBgKTM1tIGm/nNXTgL+ly08AJ0rqIKkDcGJaZmZmVhTqnDUaEZWSLiZJYK2AiRHxqqRrgfKImApcIuk0oBJYAZyX9l0h6TqSZApwbUSs2AnPw8zMrEEUEYWOYQdlZWVRXl5e6DDMzFoMSbMjoqzQcbREvrKMmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllmhOhmZllWl6JUNJgSa9Lmi/p8mrq/0vSPEkvS3pK0gE5dVskzUkfU5syeDMzs8YqqauBpFbAeOAEYAkwS9LUiJiX0+xFoCwi1km6CBgLnJXWrY+IPk0btpmZWdPI54iwPzA/It6KiE3AvcCQ3AYR8XRErEtXZwJdmzZMMzOznSOfRNgFWJyzviQtq8n5wOM5660llUuaKelLNXWSNCptV15RUZFHWGZmZo1X59BofUgaBpQBx+QUHxARSyUdCPxR0isRsaBq34iYAEwAKCsri6aMy8zMrCb5HBEuBbrlrHdNy7Yj6QvAlcBpEbFxa3lELE3/fQuYDvRtRLxmZmZNKp9EOAvoKamHpFJgKLDd7E9JfYFfkiTBZTnlHSTtkS53Aj4H5E6yMTMzK6g6h0YjolLSxcATQCtgYkS8KulaoDwipgLjgL2A+yUBLIqI04BDgF9K+oAk6f6gymxTMzOzglJE8Z2OKysri/Ly8kKHYWbWYkiaHRFlhY6jJfKVZczMLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNOcCM3MLNPySoSSBkt6XdJ8SZdXU7+HpN+k9c9L6p5Td0Va/rqkQU0Yu5mZWaPVmQgltQLGAycBhwJnSzq0SrPzgZUR8W/ATcAP076HAkOBXsBg4LZ0e2ZmZkWhJI82/YH5EfEWgKR7gSHAvJw2Q4Ax6fIDwM8kKS2/NyI2Am9Lmp9u7y9NE37xGTiw0BHUbvr0QkdgWea/DytG+QyNdgEW56wvScuqbRMRlcBq4KN59gVA0ihJ5ZLKKyoq8ovezMyskfI5ImwWETEBmABQVlYWBQ6nwfyN0qxm/vuwYpTPEeFSoFvOete0rNo2kkqA9sDyPPuamZkVTD6JcBbQU1IPSaUkk1+mVmkzFRiRLn8Z+GNERFo+NJ1V2gPoCbzQNKGbmZk1Xp1DoxFRKeli4AmgFTAxIl6VdC1QHhFTgTuAyelkmBUkyZK03X0kE2sqga9HxJad9FzMzMzqTcmBW3EpKyuL8vLyQodhZtZiSJodEWWFjqMl8pVlzMws05wIzcws05wIzcws05wIzcws04pysoykNcDrhY6jgToB7xU6iEZw/IXl+AurJcd/cES0LXQQLVHRXFmmitdb6uwnSeUtNXZw/IXm+AurJccvyVPtG8hDo2ZmlmlOhGZmlmnFmggnFDqARmjJsYPjLzTHX1gtOf6WHHtBFeVkGTMzs+ZSrEeEZmZmzcKJ0MzMMq0oEqGkjpKmSXoz/bdDNW36SPqLpFclvSzprELEmhPPYEmvS5ov6fJq6veQ9Ju0/nlJ3QsQZo3yiP+/JM1LX+unJB1QiDhrUlf8Oe3OkBSSimpKfD7xS/qP9P/gVUm/bu4Ya5LHe2d/SU9LejF9/5xciDhrImmipGWS5tZQL0m3pM/vZUlHNHeMNckj9nPSmF+RNENS7+aOsUWKiII/gLHA5eny5cAPq2nzCaBnuvxx4F1g7wLF2wpYABwIlAIvAYdWafOfwC/S5aHAbwr9Otcz/mOBPdPli1pa/Gm7tsAzwEygrNBx1/P17wm8CHRI1/cpdNz1iH0CcFG6fCiwsNBxV4nvaOAIYG4N9ScDjwMCPgM8X+iY6xH7Z3PeMycVU+zF/CiKI0JgCHBnunwn8KWqDSLijYh4M13+O7AM6NxcAVbRH5gfEW9FxCbgXpLnkCv3OT0AHC9JzRhjbeqMPyKejoh16epMoGszx1ibfF5/gOuAHwIbmjO4POQT/4XA+IhYCRARy5o5xprkE3sA7dLl9sDfmzG+OkXEMyT3Ta3JEOCuSMwE9pa0X/NEV7u6Yo+IGVvfMxTf323RKpZEuG9EvJsu/wPYt7bGkvqTfBtdsLMDq0EXYHHO+pK0rNo2EVEJrAY+2izR1S2f+HOdT/INuVjUGX86nNUtIh5rzsDylM/r/wngE5KekzRT0uBmi652+cQ+BhgmaQnwO+AbzRNak6nv30exKra/26LVbJdYk/QH4GPVVF2ZuxIRIanG33Sk38wmAyMi4oOmjdKqkjQMKAOOKXQs+ZK0G/AT4LwCh9IYJSTDowNJvtU/I+lTEbGqkEHl6WxgUkT8WNKRwGRJh/nvtflIOpYkER5V6FhagmZLhBHxhZrqJP1T0n4R8W6a6KodBpLUDngMuDIdsiiUpUC3nPWuaVl1bZZIKiEZIlrePOHVKZ/4kfQFki8qx0TExmaKLR91xd8WOAyYno5GfwyYKum0iCiG6zHm8/ovITm/sxl4W9IbJIlxVvOEWKN8Yj8fGAwQEX+R1JrkYtbFMrxbl7z+PoqVpMOB24GTIqJYPnOKWrEMjU4FRqTLI4BHqzaQVAo8TDJ2/0AzxladWUBPST3SuIaSPIdcuc/py8AfIz2DXQTqjF9SX+CXwGlFdH5qq1rjj4jVEdEpIrpHRHeScyXFkgQhv/fPIyRHg0jqRDJU+lYzxliTfGJfBBwPIOkQoDVQ0axRNs5UYHg6e/QzwOqcUzdFTdL+wEPAuRHxRqHjaTEKPVsnzQ0fBZ4C3gT+AHRMy8uA29PlYcBmYE7Oo08BYz4ZeIPkPOWVadm1JB+4kPzx3w/MB14ADiz061zP+P8A/DPntZ5a6JjrE3+VttMpolmjeb7+IhnenQe8AgwtdMz1iP1Q4DmSGaVzgBMLHXOV+O8hmXW+meTI+3xgNDA657Ufnz6/V4rpvZNH7LcDK3P+bssLHXNLePgSa2ZmlmnFMjRqZmZWEE6EZmaWaU6EZmaWaU6EZmaWaU6EZmaWaU6EZmaWaU6EZmaWaf8fTRz/38kTG3kAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 9\n",
"pp = 85/11, satellite_part = 8\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 173/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -85/11\n",
"Satellite part = -4\n",
"Sigma = -129/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 85/11\n",
"Satellite part = 8\n",
"Sigma = 173/11\n",
"\n",
"[0, 0, 9, 9] 4\n",
"\n",
"\n",
"\n",
"########## T(2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAEICAYAAABYjV1lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfGUlEQVR4nO3deZhU9Z3v8fenu0FAEYiAKMhmkBFEUVsTjYk4ehN1Rkk0yY0Rl4nPGJNrkrlJNCoZh4xjFklikueaMYx6wahxuxq5ZlFRue6BNkEWFdkaxYhpFxBlkaa/949zWou2u6u6q7qq+/B5PU89VJ31ew7d/anf72yKCMzMzCy7qipdgJmZmXUth72ZmVnGOezNzMwyzmFvZmaWcQ57MzOzjHPYm5mZZZzDvgeQNEFSnSRVupZKkfQTSV/pwPTnSnqsK2uqBEmjJYWkmkrXYmY9h8O+wiS9nfNqkrQl5/OZ6WRXAD+OiJC0m6TrJa2VtEnSIkkndWB9f2ixznclLSlw3gMk3SOpQdIbku6TNL4D674w/dKyTdLsFuN6S7pTUn0aZlNazP5j4DJJvQtdX3chaZak5en/77kdnLde0gklqqNiXxTy7QNJ/1PSeklvSbpB0m7lrtEsyxz2FRYRezS/gBeBU3KG3SxpH+A44LfpLDXAS8CxwADgu8DtkkYXuL6TWqzzCeCOAssdCMwFxgN7AwuAewqcF+CvwH8AN7Qx/jFgGrC+lbpfAZ4HTu3A+sqqnRB9Bvgq8OcyltPdtLkPJH0KuAQ4HhgFjAW+V9bqzDLOYd/9/TfgzxGxFSAi3omIGRFRHxFNEXEvsAY4vKMLTr8gfBy4MWfYvZIuaW36iFgQEddHxBsRsR24Ghgvaa9C1hcRd0XEb4HXWxn3bkT8LCIeA3a0sYj5wD8Usq6WJP1c0ktpy/FpSR9Phw+TtDl3GyQdlvZe9Eo/f0nSc5LeTHszRuVMG5L+h6QVwIo2tvuaiHgQ2NrBmn8NjAT+b9oLc3HO6DMlvSjpNUnTc+apknSJpFWSXpd0u6QPpaMfSf/dkC7vKEn7S3oonfY1STdLGtiROguRZx+cA1wfEcsi4k2SnqxzS12D2a7MYd/9TQKWtzVS0t7AAcCyTiz7bODRiKhvHhAR/xgRPyxw/k8A6yPiA+HdRZ4DDunkvAuBycCHgFuAOyT1iYj1JF8iPp8z7VnArRGxXdJU4DLgNGAI8CjwmxbL/jTwEWBCJ2trVUScxc69PVfljD6GpIfleOBySQemw7+W1nMssC/wJnBNOu4T6b8D0+U9CQj4QTrtgcB+wIy2apK0WNKGNl6/7OSmTiRp+Td7Bti70C+RZpafw777Gwhsam1E2vK8GZgTEc93YtlnA7M7U5SkESQh8s3OzN9Jm0j2R4dFxE0R8XpENEbET4DdSMISYA7J4QMkVQNnAL9Ox10A/CAinouIRuD7wOTc1n06/o2I2NKZ2jrpexGxJSKeIQnH5i9BFwDTI2JdRGwjCe7PtnWIISJWRsQDEbEtIhqAn5J8UWhVRBwcEQPbeH21k9uyB7Ax53Pz+/6dXJ6ZteCw7/7epJU/epKqSALpXeDCji5U0jHAMODOTsw7BLgf+GVEtGzldqX+wIbOzCjp22lX/EZJG0jOdxicjr4HmCBpDMlhk40RsSAdNwr4eXPrFXiDpDU8PGfxL3WmpiLlntewmSQwIan37px6nyM5LLJ3awuRtLekWyW9LOkt4Cbe3y/l8jawZ87n5vetfsk1s45z2Hd/i0m66d8jScD1JH/AT0+Pn3fUOcBdEfF2R2aSNIgk6OdGxJWdWG8xDmTn7t6CpMfnLybpqh8UEQNJWo8CSM+HuJ2kdX8W77fqIQnyL7dowfaNiCdypunKR0d2dNkvASe1qLdPRLzcxrK+nw6fFBF7kuyDNi/xlLRMO1/Nkfu6toO1NlvGzodnDgFeLePhIbPMc9h3fw8Ah0nqkzPsP0mC75TWuo7buHQtd3xfkuCb3cq4+ZJmtDHfnsB9wOMR8YGT+CRNkdRmOEmqSbejGqiW1Ce3e1nJZYXN29k7HZ8bPMcCfyik1hb6A41AA1Aj6XJ2bklCcpLiuSRn++eG/bXApZImpuscIOlzBazzPUouK+xDEqK90u2qSse1u8+AV0nOTi/UtcCVzYcZJA1JzzuAZPubWiyvP0nLeqOk4cBF7S08IibmXs3R4nVBW/O1tw9I9v15Su4nMZDkCpPZHdhmM8vDYd/NRcSrwEPAVID0j/iXSU42W68W1+RL2o+k+7O9a+c/TdId/nAr4/YDHm9jvs8ARwD/1KJFNzJn3ifamBeSP+JbSC6zmpa+/27O+OXpsOEkXyq2kHRLo+QSxAm8fwlivlpz3Qf8EXgBWEtyRvhOXe8R8ThJEP45ItbmDL8b+BFwa9rNvRQo+L4GqfvTbTkamJW+bz5ZLt8++wHw3bRb/tsFrOvnJJdH3i9pE/AUycmDRMRm4Erg8XR5HyW5xO0wkp6O3wF3dXDbCtXmPoiIPwJXkfw8vkjyf/RvXVSH2S5JEV3ZA2mlIGkCyUlkR0ae/zBJ04CJEXFpJ9YzArg9Io7uZJ3XAXdExH2dmT/Psn8CrIqIX6afi6q1jXU8BNwSEdeVapkFrLPL9pmZWTOHvRkg6QiSQyb7RYRPDDOzTHE3vu3yJM0B5gH/4qA3syxyy97MzCzj3LI3MzPLuIo8JnPw4MExevToSqzazKzHevrpp1+LiCGVrsN6noqE/ejRo6mrq6vEqs3MeixJa/NPZfZB7sY3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnEOezMzs4wrSdhLOlHSckkrJX3gaWhmZmZWOUWHvaRq4BqSJ4FNAM5IH9xiZmZm3UAprrM/ElgZEasBJN1K8jjWZ0uw7G5pypTilzF/fvHLMNuV+PfOrPNK0Y0/nJ2fDb4uHbYTSedLqpNU19DQUILVmpmZWSHKdge9iJgFzAKora3t0U/fcevArPz8e2fWeaVo2b8M7JfzeUQ6zMzMzLqBUoT9QmCcpDGSegNfAOaWYLlmZmZWAkV340dEo6QLgfuAauCGiFhWdGVmZmZWEiU5Zh8Rvwd+X4plmZmZWWn5DnpmZmYZ57A3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnEOezMzs4xz2JuZmWWcw97MzCzjHPZmZmYZ57A3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnEOezMzs4xz2JuZmWWcw97MzCzjHPZmZmYZ57A3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnEOezMzs4xz2JuZmWWcw97MzCzjigp7SZ+TtExSk6TaUhVlZmZmpVNsy34pcBrwSAlqMTMzsy5QU8zMEfEcgKTSVGNmZmYlV7Zj9pLOl1Qnqa6hoaFcqzUzM9vl5W3ZS5oHDGtl1PSIuKfQFUXELGAWQG1tbRRcoZmZmRUlb9hHxAnlKMTMzMy6hi+9MzMzy7hiL737jKR1wFHA7yTdV5qyzMzMrFSKPRv/buDuEtViZmZmXcDd+GZmZhnnsDczM8s4h72ZmVnGOezNzMwyzmFvZmaWcQ57MzOzjHPYm5mZZZzD3szMLOMc9mZmZhnnsDczM8s4h72ZmVnGOezNzMwyzmFvZmaWcQ57MzOzjHPYm5mZZZzD3szMLOMc9mZmZhnnsDczM8s4h72ZmVnGOezNzMwyzmFvZmaWcQ57MzOzjHPYm5mZZVxNpQswMytWRLBy5UqefPJJGhoa+Na3vlXpksy6laLCXtJM4BTgXWAV8E8RsaEEdZmZtWvLli0sWrSI+fPn8+CDD7Jp0ybeeecdJkyYUOnSzLqdYlv2DwCXRkSjpB8BlwLfKb4sM7MPWr9+PQsWLOD+++9n4cKFSKKpqYkBAwYwdOhQGhoaOOiggypdplm3U1TYR8T9OR+fAj5bXDm7jilTKl1BYv78Sldg3V0lf1YjdrB583Ns3PgEkybdx9q1a6mqqqJXr17stddeVFdX7zR9Y2MjEydOrFC1Zt1XKY/Zfwm4ra2Rks4HzgcYOXJkCVdrZlm1atU3efPNeVRV9WX48P4MGzYMSW1OX1NTw5gxY8pYoVnPoIhofwJpHjCslVHTI+KedJrpQC1wWuRbIFBbWxt1dXWdKNfMdiUvvvgiF110EatWrWLo0KEfaMm3Nv1xxx3H4Ycfzv7778+oUaPYZ599qKrKxoVHkp6OiNpK12E9T96wz7sA6Vzgy8DxEbG5kHkc9mZWqG3btvGzn/2M22+/nYEDB9KvX792p3377bfZtm0bvXr1IiKoqqpi7NixTJw4kQkTJjBmzBhGjx7NgAEDyrgVpeGwt84qKuwlnQj8FDg2IhoKnc9hb2Yd9fDDD3P55Zezfft2Bg8e/IHu/HfeeYe33nqL6upqGhsb6devH/369aOqqootW7awZcsWduzYQa9evWhsbGTPPfdk/PjxTJo0iXHjxjF69GhGjhxJ7969K7SF+TnsrbOKDfuVwG7A6+mgpyLignzzOezNrDNefvllvvOd7/D8888zZMgQamreP+1o/fr1nHLKKXzsYx9jxYoVLF68mBdeeIGNGzdSXV3Njh07qKqqom/fvvTt25empiY2b97M5s2bqampQRI7duxg+PDhHHjggUyaNImxY8cyatSovOcKlIvD3jqr6G78znDYm1lnvfvuu1xzzTXcdNNN7Lnnnuyxxx4AvPrqq1xxxRV86lOf2mn6jRs3snbtWtasWcOzzz7L0qVLWbNmDTt27EAS27dvZ7fddqNfv3707t2bbdu2sWXLlp0OBVRXV/PhD3+YCRMm7HQooH///mXddoe9dZbD3sx6pMcee4zp06ezdetWhgwZwmuvvcacOXMYP3583nmbmppYv3499fX1rF69miVLlvDcc8/xyiuvUF1dTUSwY8cO+vbtu9OhgM2bNxMR1NTUsH37dgYNGsTEiRO57LLLGDp0aJdvs8PeOsu3yzWzHumYY47htttu49JLL2Xx4sVIYtSoUQXNW1VVxb777su+++7L0Ucf/d7wrVu38tJLL1FfX8/y5ctZsmQJK1asYNOmTVRXV9PU1ER1dTV9+vRh0KBBNDY28uijj/LOO+901WaalYRb9mbWozU2NvKrX/2KBQsWMGfOnC5Zx4YNG6ivr2fNmjUsW7aMZcuWsWbNmvda+fPnz6dXr15dsu5cbtlbZznszSwTIqKsJ9E1NTXxyiuv8Pbbbxd06KAUHPbWWdm404SZ7fLKfbZ8VVUVw4cPbzXo6+vrO3SP/txDCc2aG2IzZszY6XMuSZflvB8taWnBK03m+bSkDj05SInR6T1WWhs/RdK9HVlmlkn6o6QNLfeJpDGS/iRppaTbJPXOGbePpPvzzH9hOm9IGpyvDoe9mVmFPfHEEx8YdvPNNzNz5ky2bt3KVVddxc0339zarJe1NrADPg109DGB1wLHACMlXS9peJE1dIiknnau2UzgrFaG/wi4OiI+DLwJnJcz7kTgvjzzPw6cAKwtpAiHvZlZF1q9ejWHHnooCxcuZNmyZRx55JFMnjyZgw8+mBUrVgC8d/lgrmnTpjFixAhmzpzJyJEjmTZt2k7jJf0Q6CtpkaTmbwLVkv5L0jJJ90vqm067f9pCfFrSo5L+TtLRwKnAzHQZ+0v6Z0kLJT0j6f9Iau12hV8FziB5HsqlEfFyW9su6UhJT0r6i6QnJI1Phz8iaXLOdI9JOkTS7pJukLQgnWdqOv5cSXMlPQQ82Ma6pkiaL+lOSc9Lullpd4+k+ubWr6RaSfPT9zMkzUn3yVpJp0m6StKSdH8VfSJGRDwIbGpRq4C/B+5MB80h+eLV7ETgD23Nnw7/S0TUF1qHw97MrIssX76c008/ndmzZ3PEEUdw7bXX8o1vfINFixZRV1fHiBEj2pz3lltuYd26dVx00UW8+OKL3HLLLTuNj4hLgC0RMTkizkwHjwOuiYiJwAbg9HT4LOBrEXE48G3glxHxBDAXuChdxirgrog4IiIOAZ5j59Zms/8F/Aa4AbhS0r7t7ILngY9HxKHA5cD30+HXA+cCSDoA6BMRzwDTgYci4kjgOJIvIrun8xwGfDYijm1nfYcC/0LSWzEW+Fg70zbbnyR4TwVuAh6OiEnAFuAfWk4s6aL0y1HL1y8KWFezvYANEdGYfl4HDE+XXw2Mj4hnO7C8vHpad4iZWY/Q0NDA1KlTueuuu5gwIekpP+qoo7jyyitZt24dp512GuPGjWtz/jPOOANJzJgxg4svvpiI4Mwzz2xz+tSaiFiUvn8aGC1pD+Bo4I6c8xp2a2P+gyT9BzAQ2IP3u5JzfRUYBdRExL/nqWcAMEfSOCCA5pbyHcC/SrqIpIdgdjr8k8Cpkr6dfu4DND8m9YGIeCPP+hZExDoASYuA0cBjeeb5Q0Rsl7QEqAb+mA5fks6/k4iYSdK13lU+Avyp1At1y97MrAsMGDCAkSNH8thj72fNF7/4RebOnUvfvn05+eSTeeihh9qcvzmYm0/QK/AExG0573eQNOiqSFqRk3NeB7Yx/2zgwrRl+z2SsN1JJOojYnYB9VxB0lI+CDileXnpQ9MeAKYCnweaD0MIOD2nzpER8Vw6rpCbGbS2/QCNvJ93LbdpW1pTE7A958mtTbTSIC5Ry/51YGDO+QcjgObDISfx/heOknHYm5l1gd69e3P33Xdz4403vtcFv3r1asaOHcvXv/51pk6dyuLFi4tdzfZ8x5Uj4i1gjaTPwXtn0x+Sjt4E5N7ztz/wSrrMvN0IBRjA+yF2botx1wG/ABZGxJvpsPuAr+Ucaz+0BDUA1AOHp+9Pb2e6vCJiZosvTs2vr3dgGQE8DHw2HXQOcE/6/nhgXjE1tsZhb2bWRXbffXfuvfderr76aubOncvtt9/OQQcdxOTJk1m6dClnn312sauYBSzOOUGvLWcC50l6BlhG0qIGuBW4KD0Zbn/gX0m6kB8nOd5erKuAH0j6Cy1ayRHxNPAW8L9zBl9B0tW/WNKy9HMpfA/4uaQ6khZ/2Uh6lOSwxfGS1klqfnjDd4BvKnmg3F7A9ZKGAFsjYlO++SV9XdI6kl6BxZKua7cO31THzKxnUIZuqpOe2Dcf+Lu0C32XJ2kaMCIifljqZfsEPTMzKytJZwNXAt900L8vIm7qqmU77M3MrKwi4kbgxs7MK2kS8OsWg7dFxEeKLizDHPZmZtZjRMQSYHKl6+hpfIKemZlZxjnszczMMs5hb2ZmlnEOezMzs4xz2JuZmWWcw97MzCzjHPZmZmYZ57A3MzPLuKLCXtIVkhanj/e7P73XsZmZmXUjxbbsZ0bEwRExGbgXuLz4kszMzKyUigr79DnJzXYHyv8IPTMzM2tX0ffGl3QlcDawETiunenOB84HGDlyZLGrNTMzswLlfZ69pHnAsFZGTY+Ie3KmuxToExH/lm+lfp69mVnHZel59lZeeVv2EXFCgcu6Gfg9kDfszczMrHyKPRt/XM7HqcDzxZVjZmZmpVbsMfsfShoPNAFrgQuKL8nMzMxKqaiwj4jTS1WImZmZdQ3fQc/MzCzjHPZmZmYZ57A3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnEOezMzs4xz2JuZmWWcw97MzCzjHPZmZmYZ57A3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnEOezMzs4xz2JuZmWWcw97MzCzjHPZmZmYZ57A3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnEOezMzs4xz2JuZmWVcScJe0rckhaTBpViemZmZlU7RYS9pP+CTwIvFl2NmZmalVlOCZVwNXAzcU4JlWZlNmVLpChLz51e6gu7H/zdmVipFtewlTQVejohnCpj2fEl1kuoaGhqKWa2ZmZl1gCKi/QmkecCwVkZNBy4DPhkRGyXVA7UR8Vq+ldbW1kZdXV0nyjUz23VJejoiaitdh/U8ebvxI+KE1oZLmgSMAZ6RBDAC+LOkIyNifUmrNDMzs07r9DH7iFgCDG3+3JGWvZmZmZWPr7M3MzPLuFKcjQ9ARIwu1bLMzMysdNyyNzMzyziHvZmZWcY57M3MzDLOYW9mZpZxDnszM7OMc9ibmZllnMPezMws4xz2ZmZmGeewNzMzyziHvZmZWcY57M3MzDLOYW9mZpZxDnszM7OMc9ibmZllnMPezMws4xz2ZmZmGeewNzMzyziHvZmZWcY57M3MzDLOYW9mZpZxDnszM7OMc9ibmZllnMPezMws4xz2ZmZmGVdU2EuaIellSYvS18mlKszMzMxKo6YEy7g6In5cguWYmZlZF3A3vpmZWcaVIuwvlLRY0g2SBrU1kaTzJdVJqmtoaCjBas3MzKwQioj2J5DmAcNaGTUdeAp4DQjgCmCfiPhSvpXW1tZGXV1dx6s1M9uFSXo6ImorXYf1PHmP2UfECYUsSNJ/AfcWXZGZmZmVVLFn4++T8/EzwNLiyjEzM7NSK/Zs/KskTSbpxq8HvlxsQWZmZlZaRYV9RJxVqkLMzMysa/jSOzMzs4xz2JuZmWWcw97MzCzjHPZmZmYZ57A3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnEOezMzs4xz2JuZmWWcw97MzCzjHPZmZmYZ57A3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnEOezMzs4xz2JuZmWWcw97MzCzjHPZmZmYZ57A3MzPLOIe9mZlZxjnszczMMs5hb2ZmlnFFh72kr0l6XtIySVeVoigzMzMrnZpiZpZ0HDAVOCQitkkaWpqyzMzMrFSKCnvgK8API2IbQET8rfiSbFc0ZUqlK+h+5s+vdAVmlhXFduMfAHxc0p8k/T9JR7Q1oaTzJdVJqmtoaChytWZmZlaovC17SfOAYa2Mmp7O/yHgo8ARwO2SxkZEtJw4ImYBswBqa2s/MN52bW7Fmpl1nbxhHxEntDVO0leAu9JwXyCpCRgMuOluZmbWTRTbjf9b4DgASQcAvYHXilymmZmZlVCxJ+jdANwgaSnwLnBOa134ZmZmVjlFhX1EvAtMK1EtZmZm1gV8Bz0zM7OMc9ibmZllnMPezMws4xz2ZmZmGadKnDwvaROwvOwrLp3B9OxLDHty/T25dnD9ldbT6x8fEf0rXYT1PMVeetdZyyOitkLrLpqkOtdfGT25dnD9lZaF+itdg/VM7sY3MzPLOIe9mZlZxlUq7GdVaL2l4vorpyfXDq6/0ly/7ZIqcoKemZmZlY+78c3MzDLOYW9mZpZxZQl7SR+S9ICkFem/g1qZZrKkJyUtk7RY0n8vR23tkXSipOWSVkq6pJXxu0m6LR3/J0mjK1Bmqwqo/ZuSnk339YOSRlWizrbkqz9nutMlhaRudTlVIfVL+nz6f7BM0i3lrrE9Bfz8jJT0sKS/pD9DJ1eiztZIukHS39KncbY2XpJ+kW7bYkmHlbvG9hRQ/5lp3UskPSHpkHLXaD1QRHT5C7gKuCR9fwnwo1amOQAYl77fF3gFGFiO+tqouRpYBYwFegPPABNaTPNV4Nr0/ReA2ypVbydqPw7ol77/SnepvdD60+n6A48ATwG1la67g/t/HPAXYFD6eWil6+5g/bOAr6TvJwD1la47p7ZPAIcBS9sYfzLwB0DAR4E/VbrmDtZ/dM7PzUndrX6/uuerXN34U4E56fs5wKdbThARL0TEivT9X4G/AUPKVF9rjgRWRsTqSB7leyvJduTK3a47geMlqYw1tiVv7RHxcERsTj8+BYwoc43tKWTfA1wB/AjYWs7iClBI/f8MXBMRbwJExN/KXGN7Cqk/gD3T9wOAv5axvnZFxCPAG+1MMhW4MRJPAQMl7VOe6vLLV39EPNH8c0P3+921bqpcYb93RLySvl8P7N3exJKOJGlRrOrqwtoxHHgp5/O6dFir00REI7AR2Kss1bWvkNpznUfS0uku8tafdr3uFxG/K2dhBSpk/x8AHCDpcUlPSTqxbNXlV0j9M4BpktYBvwe+Vp7SSqKjvx/dWXf73bVuqmS3y5U0DxjWyqjpuR8iIiS1eb1f+g3718A5EdFUqvqsdZKmAbXAsZWupVCSqoCfAudWuJRi1JB05U8haZk9ImlSRGyoZFEdcAYwOyJ+Iuko4NeSDvLvbPlIOo4k7I+pdC3W/ZUs7CPihLbGSXpV0j4R8Uoa5q12WUraE/gdMD3tXqukl4H9cj6PSIe1Ns06STUk3Zmvl6e8dhVSO5JOIPkydmxEbCtTbYXIV39/4CBgfnrUZBgwV9KpEdEd7h1eyP5fR3KsdTuwRtILJOG/sDwltquQ+s8DTgSIiCcl9SF5yEx3OhzRloJ+P7ozSQcD1wEnRUR3+Jtj3Vy5uvHnAuek788B7mk5gaTewN0kx9LuLFNd7VkIjJM0Jq3tCyTbkSt3uz4LPBQR3eEuRXlrl3Qo8Cvg1G52vBjy1B8RGyNicESMjojRJMctu0vQQ2E/O78ladUjaTBJt/7qMtbYnkLqfxE4HkDSgUAfoKGsVXbeXODs9Kz8jwIbcw4zdnuSRgJ3AWdFxAuVrsd6iHKcBUhyHPtBYAUwD/hQOrwWuC59Pw3YDizKeU2u5NmLJGftvkBy7sD0dNi/kwQLJH/g7gBWAguAsZWst4O1zwNezdnXcytdc0fqbzHtfLrR2fgF7n+RHIp4FlgCfKHSNXew/gnA4yRn6i8CPlnpmnNq/w3J1TzbSXpQzgMuAC7I2ffXpNu2pBv+7OSr/zrgzZzf3bpK1+xX93/5drlmZmYZ5zvomZmZZZzD3szMLOMc9mZmZhnnsDczM8s4h72ZmVnGOezNzMwyzmFvZmaWcf8fBljaQs8wIawAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 7; 2, 11), theta = 10\n",
"pp = -101/11, satellite_part = -4\n",
"\n",
"sigma(T(2, 7; 2, 11)) = -145/11\n",
"\n",
"\n",
"\n",
"########## -T(2, 3; 2, 7; 2, 11) ##########\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAEICAYAAABLWh2RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhuUlEQVR4nO3dfZyVBZ3+8c8FSCAioAyiAqGusqEp2siu1hpp7WptWtlWhpmbwrI+Zf4wn6rFzEr4abr7s1wUVi2tzKD4WeYjJCqSQyKChBiCYiijPIgij373j/uePIxz5twzc86cc+P1fr3Oi3Pux+vczMx17odzjiICMzMzy68u1Q5gZmZmHeMyNzMzyzmXuZmZWc65zM3MzHLOZW5mZpZzLnMzM7Occ5mXkaT3SHpa0t7VzvJuJOlqSf/ehulPl/RwJTNVg6ShkkJSt2pnMbPO4TLPSNLdkl5Pb1slbSl4fEM62VjgoYhYlc5zoaSFkjZIek7ShW1Y30ckPSVpnaRXJU2XtG/Ged8jaYqkFem650s6oZ3P9fX0uT6Vcd6DJP1aUqOkNZLukTSsDes+R1KDpM2Sbm42rrukOyUtT8tqVLPZ/y9wqaTuWddXKyRNlrRE0luSTm/jvMslfbRMOar2QqDUNpD0NUkvSXpN0lRJ7+nsjGa1ymWeUUScEBG7RcRuwG3AxKbHETEunWwc8OOC2QScBvQDjgfOkfSFjKt8GviniOgL7AMsBX6Ucd5uwAvAh4E+wDeAOyQNzTJz4XNNn++jwC8yrrsvMAMYBuwF/AH4dcZ5Af4CfAeYWmT8w8CpwEst5F4F/Ak4sQ3r61StlOSTwFnAHzsxTq0pug0k/RNwMXAc8F5gf+DyTk1nVsNc5mUiaQjJH5i5TcMiYmJE/DEitkXEEpJS+2CW5UXEyxHxl4JB24G/KVjfxZLuKjLvGxExISKWR8RbEXEX8BzwgXY8r6HAPwC3Fgy7S9LFRdb9h4iYEhFrImIr8ANgmKQ9s6wvIqZFxK+AV1sYtyUiro2Ih0m2R0tmAZ/Isq7mJF0n6YV0z2+epH9Ihw+UtLHwOUg6Ij36sEv6+CuSFktamx6NeG/BtCHpbElLSV6UtfS8r4+IB4BNbcz8Y2AI8P/ToyhfLxg9WtLzkl6RdFnBPF3Sn58/p0d97pC0Rzr6ofTfdenyjpJ0gKQH02lfkXSbpL5tyZlFiW3wZWBKRCyKiLXAFcDp5c5gllcu8/J5P7AsIra1NFKSSEpxUdYFShoiaR3wJjAemNg0LiK+HxH/nHE5ewEHtWXdBU4DZkfE8oJ1/3NEfD/j/McAL0XEO8q5QhYDh7Vz3seBEcAewO3ALyT1iIiXSF4kfK5g2i8BP4uIrZJOAi4FPgPUAbOBnzZb9qeAvwOGtzNbiyLiS8DzwCfTIykTC0Z/iOQIyXHAtyS9Lx1+bprnwyRHfdYC16fjjkn/7Zsubw7JEabvpdO+DxgMTCiWSdKC9PRQS7cftvOpHkyy597kSWCvrC8SzXZ2LvPy6QtsaGX8BJLt/T9ZFxgRz6eH2fuTHCr/U1tDpXuOtwG3RESb5ycp85vbMR+SBpGUxAXtmb+dNpD8X7RZRPwkIl5Nj6RcDbyHpAwBbiE5vI+krsApvH1KZRzwvYhYnL6Y+y4wonDvPB2/JiLebE+2dro8It6MiCdJyq/pRc444LKIWBkRm0l+Nj9b7BRARDwbEfdFxOaIaASuIXkh0KKIODQi+ha5ndXO57IbsL7gcdP93u1cntlOxWXeCkmjCy4Cu7vE5Gsp8odF0jkkpfiJ9I9nm0TEGpIy+XVbLkyS1IWkcLYA57R1vZI+BAwE7mzHvHXAvcAPI6L5Xmol9QbWtWdGSePTQ+Xr0yMifUheSEFyimS4pP2AjwHrI+IP6bj3Atc17X0Ca0j2ZgsvWHyhPZk6qPC6go0khQhJ3ukFeReTnLbYq6WFSNpL0s8kvSjpNeAnvL1dOsvrwO4Fj5vut/YC2uxdw2Xeioi4reBCsFJXgy8A9mtetpK+QnrhTkSs7ECcbsAAdvyDVlR6WH8KyR/ok9Pz1231ZWBaRLzelpkk9SMp8hkRcWU71tsR72PHw7GZpOfHv05yKL1fekRkPUkpExGbgDtI9s6/xI4XOr4A/FuzPdCeEfFowTSV/HrCti77BeCEZnl7RMSLRZb13XT4+yNid5JtoGILl7RIO74bovB2Q7H5SljEjqdPDgNe7sTTN2Y1zWVeJmlRPwuMbBomaTTJH8KPRcSy5vNImiVpQkvLk/QZScPSi5XqSA5tPpHupSNpgqRZrUT6EUmxfbKlQ7tq+a1dheN7khTbzW3MvTtwD/BIRLzjIjlJoyQVLR9J3ST1ALoCXSX1KHyBpORtdz3Sh93T8YXF8mHg7oLpi2ZtpjewDWgEukn6Fu984XQryUVXJ7Jjmd8AXCLp4HSdfST9S4Z1/pWSt931ICnJXdLn1SUd1+o2A14mufgyqxuAK5tOA0iqS8/7Q/L832q2vN4ke8brlbw9stW3WEbEwYXvhmh2G1dsvta2Acm2P0PS8PTiu2/QztM/Zjsjl3l5/TfJXluT7wB7Ao8X2TMZDDxSZFn7Ar8jOYz4FMkf2E9nmTf9I/1vJBdzvVSw7tHp+MEFyy3mUySHq2e2MK613J8GjgT+tdke2ZCCeR8tMi8kf6TfJDmacWp6/xsF45ekw/YledHwJslhY5R8WM9w4FcZsxa6h2R7PwOsILmieodD4xHxCMn/wx8jYkXB8OnAVcDP0sPQC4HM7+tP3Zs+l6OByen9povRSm2z7wHfSA+bj8+wrutI3j54r6QNwGMkF+cRERuBK4FH0uX9PclbwI4gOVLxG2BaG59bVkW3QUT8juQC0JkkF/ytAP6jQjnMckcRlTz69+6i5EMsniA5pL6qxLSDgDsi4uh2rmt+up42H2aUdCpwcERc0o55O5r7JuAXEXFPe+YvseyrgT9HxA/Txx3KWmQdDwK3R8RN5VpmhnVWbJuZ2c7BZW6WkaQjgfuAwRHhC6/MrGb4MLtZBpJuAe4HzneRm1mt8Z65mZlZznnP3MzMLOcq8s1I/fv3j6FDh1Zi0WZmO6V58+a9EhF11c5h+VSRMh86dCgNDQ2VWLSZ2U5J0orSU5m1zIfZzczMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznMpW5pL6S7pT0p/T7no+qdDAzMzPLJutb064DfhcRn5XUHdi1gpnMzMysDUqWuaQ+JF9DeDpARGwBtlQ2lu1sRo2qdoLaMmtWtROY2c4ky2H2/YBG4H8kPSHpJkm9mk8kaaykBkkNjY2NZQ9qZmZmLSv5RSuS6oHHgA9GxFxJ1wGvRcQ3i81TX18f/gQ4M7PsJM2LiPpq57B8yrJnvhJYGRFz08d3AkdULpKZmZm1Rckyj4iXgBckDUsHHQc8XdFUZmZmllnWq9nPBW5Lr2RfBvxr5SKZmZlZW2Qq84iYD/hcjpmZWQ3yJ8CZmZnlnMvczMws51zmZmZmOecyNzMzyzmXuZmZWc65zM3MzHLOZW5mZpZzLnMzM7Occ5mbmZnlnMvczMws51zmZmZmOecyNzMzyzmXuZmZWc65zM3MzHLOZW5mZpZzLnMzM7Occ5mbmZnlnMvczMws51zmZmZmOecyNzMzyzmXuZmZWc65zM3MzHLOZW5mZpZzLnMzM7Oc65ZlIknLgQ3AdmBbRNRXMpSZmZlll6nMUx+JiFcqlsTMzMzaxYfZzczMci5rmQdwr6R5ksa2NIGksZIaJDU0NjaWL6GZmZm1KmuZfygijgBOAM6WdEzzCSJickTUR0R9XV1dWUOamZlZcZnKPCJeTP9dDUwHRlYylJmZmWVXsswl9ZLUu+k+8I/AwkoHMzMzs2yyXM2+FzBdUtP0t0fE7yqayszMzDIrWeYRsQw4rBOymJmZWTv4rWlmZmY55zI3MzPLOZe5mZlZzrnMzczMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznXOZmZmY55zI3MzPLOZe5mZlZzrnMzczMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznXOZmZmY55zI3MzPLOZe5mZlZzrnMzczMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznMpe5pK6SnpB0VyUDmZmZWdu0Zc/8q8DiSgUxMzOz9umWZSJJg4BPAFcCF1Q0kZXVqFHVTpCYNavaCWqL/1/MrJyy7plfC3wdeKvYBJLGSmqQ1NDY2FiObGZmZpZByT1zSf8MrI6IeZJGFZsuIiYDkwHq6+ujXAGtY7znVZv8/2Jm5ZRlz/yDwImSlgM/A46V9JOKpjIzM7PMSpZ5RFwSEYMiYijwBeDBiDi14snMzMwsE7/P3MzMLOcyXc3eJCJmAbMqksTMzMzaxXvmZmZmOecyNzMzyzmXuZmZWc65zM3MzHLOZW5m1kbLly/nkEMOyTz90Ucf/Y5hEclna02YMKHofJIuLbg/VNLCNsRE0qckDW/jPErXdXqR8aP8hVtvk/Q7SeuabxNJ+0maK+lZST+X1L1g3N6S7i0x/znpvCGpf6kcLnMzswp79NFH3zHstttuY9KkSWzatImJEycC7NHCrJe2MKwtPgW0qcyBG4APAUMkTZG0bwcztImkNr3LqgZMAr7UwvCrgB9ExN8Aa4EzCsYdD9xTYv5HgI8CK7KEcJmbmXXAsmXLOPzww3n88cdZtGgRI0eOZMSIERx66KEsXboUgN122+0d85166qkMGjSISZMmMWTIEIA1heMlfR/oKWm+pNvSwV0l3ShpkaR7JfVMpz0g3cObJ2m2pL+VdDRwIjApXcYBksZIelzSk5J+KWnXFp7SWcApwFeASyLixWLPXdJISXPSr8d+VNKwdPhDkkYUTPewpMMk9ZI0VdIf0nlOSsefLmmGpAeBB4qsa5SkWZLulPQnSbdJUjpuedPeq6R6SbPS+xMk3ZJukxWSPiNpoqSn0u21S7HnllVEPABsaJZVwLHAnemgW0heWDU5Hri72Pzp8CciYnnWHC5zM7N2WrJkCSeffDI333wzRx55JDfccANf/epXmT9/Pg0NDQwaNKjovLfffjsrV67kwgsv5Pnnn4dme+YRcTHwZkSMiIjR6eADgesj4mBgHXByOnwycG5EfAAYD/wwIh4FZgAXpsv4MzAtIo6MiMNIvtK6cG+xyf8DfgpMBa6UtE8rm+BPwD9ExOHAt4DvpsOnAKcDSDoI6BERTwKXkXyK6EjgIyQvNHql8xwBfDYiPtzK+g4Hzic52rA/yceNl3IASbGeCPwEmBkR7wfeJPk20B1IujB98dP89p8Z1tVkT2BdRGxLH68E9k2X3xUYFhFPt2F5JeXtcIaZWU1obGzkpJNOYtq0aQwfnhzJPuqoo7jyyitZuXIln/nMZzjwwAOLzn/KKacgiQkTJvD1r3+diy66aE3Rid/2XETMT+/PA4ZK2g04GvhFuqMK8J4i8x8i6TtAX2A33j7UW+gs4L1At4j4dok8fYBbJB0IBNC0p/sL4JuSLiTZw785Hf6PJN/1MT593AMYkt6/LyJKbYM/RMRKAEnzgaHAwyXmuTsitkp6CugK/C4d/lQ6/w4iYhLJoe9K+TtgbrkX6j1zM7N26NOnD0OGDOHhh9/uki9+8YvMmDGDnj178vGPf5wHH3yw6PxNxdvaBXAt2FxwfzvJDlkXkr3AEQW39xWZ/2bgnHTP9HKSMt1BJJZHxM0Z8lxBsqd7CPDJpuVFxEbgPuAk4HNA02kCAScX5BwSEYvTcW9kWF9Lzx9gG2/3WfPntDnN9BawNZquPEy+0vsdO7Rl2jN/FehbcP5/ENB0uuIE3n5BUTYuczOzdujevTvTp0/n1ltv5fbbbweS8+f7778/5513HieddBILFizo6Gq2ljqvGxGvAc9J+hf469Xoh6WjNwC9CybvDaxKlzmajuvD2yV1erNxNwH/CTweEWvTYfcA5xac6z68DBkAlgMfSO+f3Mp0JUXEpGYvjJpu57VhGQHMBD6bDvoy8Ov0/nHA/R3J2BKXuZlZO/Xq1Yu77rqLH/zgB8yYMYM77riDQw45hBEjRrBw4UJOO+20jq5iMrCg4AK4YkYDZ0h6ElhEskcMyddWX5hebHYA8E2SQ7yPkJzv7qiJwPckPUGzvdyImAe8BvxPweArSA7FL5C0KH1cDpcD10lqINlj7zSSZpOcVjhO0kpJ/5SOugi4QNKzJOfQp0iqAzZFxIZS80s6T9JKkr36BZJuajXH20ccyqe+vj4aGhrKvlwzs52VpHkRUV/tHOWSXjg3C/jb9BD3u56kU4FBEfH9ci/bF8CZmVlZSToNuBK4wEX+toj4SaWW7TI3M7OyiohbgVvbM6+k9wM/bjZ4c0T8XYeD7cRc5mZmVjMi4ilgRLVz5I0vgDMza0FEMGfOHLZt21Z6YrMqc5mbmTXz1ltvMXHiRMaMGcMVV1zB9u2deoG0WZu5zM3MCmzfvp3vfve73HHHHeyzzz788pe/5LHHHqt2LLNW+Zy5mVlq27ZtfPvb3+Y3v/kNdXV1NDY2Mnr0aI466qhqRzNrlcvczAzYunUr3/rWt7j33nupq6tj9erVjB49mgsuuOCvH71qVqtc5mb2rrdlyxYuvfRSZs6cSf/+/Vm9ejWnn3465557rovccsFlbmbvaps3b+aiiy5i9uzZ9O/fn1deeYUxY8Ywbtw4F7nlhsvczN61Nm3axPjx45kzZw79+/ensbGRs88+m6985SsucsuVkmUuqQfwEMn343YD7oyI/6h0MDOzStq4cSNf+9rXmDdv3l+L/Pzzzy/Hl6OYdbose+abgWMj4vX0a/MelnR3RPi9GmaWS6+//jrnnXceCxYsYI899uCVV17hoosu4vOf/3y1o5m1S8kyT7+X9fX04S7prfxftWZm1gk2bNjA2WefzeLFi+nXrx+vvvoql156KSef3KGvwTarqkwfGiOpq6T5wGrgvoiY28I0YyU1SGpobGwsc0wzs45bv34948aNY/HixfTp04e1a9cyYcIEF7nlXqYyj4jtETGC5EvSR0o6pIVpJkdEfUTU19XVlTmmmVnHrFmzhjFjxrB06VL69OnDunXr+M53vsMnP/nJakcz67A2fZxrRKwDZgLHVySNmVkFNL3dbMWKFfTu3Zv169dz1VVXcfzx/lNmO4eSZS6pTlLf9H5P4GPAnyqcy8ysLFavXs2ZZ57JypUr6dWrFxs2bODqq6/muOOOq3Y0s7LJcjX73sAtkrqSlP8dEXFXZWOZmXXcqlWrGDt2LI2Njey666688cYbXHvttRx99NHVjmZWVlmuZl8AHN4JWczMyubFF1/kzDPPZN26dfTo0YNNmzbxX//1X4wcObLa0czKzp8AZ2Y7neeff54zzzyTDRs20L17d7Zs2cL111/PEUccUe1oZhXhMjezncpzzz3HmDFj2LhxI7vssgvbt2/nhhtu4NBDD612NLOKcZmb2U5j6dKljB07li1bttC1a1cAJk+ezPDhw6uczKyy2vTWNDOzWrVkyRLGjBnD1q1bkUTXrl258cYbXeT2ruAyN7PcW7RoEWeeeSbbt2/nrbfeonv37kyZMoVhw4ZVO5pZp3CZm1muzZ8/n7FjxyKJ7du306tXL6ZOncoBBxxQ7WhmncZlbma5NW/ePM466yy6devG1q1b6d27N1OnTmXo0KHVjmbWqVzmZpZLc+fO5eyzz6Z79+5s3ryZfv36MXXqVAYPHlztaGadzmVuZrnzyCOPcN5559GzZ082bdpEXV0dU6dOZd999612NLOqcJmbWa78/ve/5/zzz6dXr15s3LiRvffemylTpjBw4MBqRzOrGpe5meXGfffdx/jx49l99915/fXXGTx4MDfddBMDBgyodjSzqnKZm1nNmDt3Lps2bWpx3N13380ll1xCnz59eO2119hvv/248cYb2XPPPTs5pVntcZmbWU1Yu3Yt55xzDuPHj2fz5s07jJsxYwbf/OY36devH+vXr2fYsGFMnjyZfv36VSmtWW1xmZtZTZg9ezYRwZw5c7jooovYsmULAHfeeSeXX345/fr1Y926dRx88MH86Ec/ok+fPlVObFY7/NnsZlYTpk+fTs+ePenTpw+zZ8/msssuY8SIEVxzzTXsueeerFmzhhEjRnDdddfRq1evasc1qykuczOrupdffpmFCxcyYMAAJDFw4EAefPBB7r//fgYMGMCrr77KkUceyTXXXEPPnj2rHdes5rjMzazqZs6cCUCXLl3++u/ee+9NRPDyyy9z1FFHMWnSJHr06FHNmGY1y2VuZlU3bdo0dt111x2GSUISEcGAAQPo3r17ldKZ1T5fAGdmVbVixQqee+45evfu3eL4vfbai+nTpzNp0iQiopPTmeWDy9zMquqBBx4gIpDU4viuXbsycOBAfv7zn3Pttde60M1a4DI3s6qJCKZNm8buu+/e6nTbt29HElOnTmX27NmdlM4sP3zO3Myq5plnnmH16tUtfhzrm2++yfr16+nSpQs9e/bk05/+NB/72Mf4wAc+UIWkZrXNZW5mVXPPPff89RB7RLBx40Zee+01unTpQt++ffniF7/Isccey8EHH0y3bv5zZVaMfzvMrCq2b9/OjBkz6Nq1K6tWrUIS++yzD6eccgrHHHMMBx10UNHz6Ga2o5JlLmkwcCuwFxDA5Ii4rtLBzGzntmzZMt544w32228/PvGJT3DMMccwePBgF7hZO2TZM98G/J+I+KOk3sA8SfdFxNMVzmZmO7EDDjiA3/72t/6yFLMyKFnmEbEKWJXe3yBpMbAv4DIvYtSoaid426xZ1U5gtay6P6tdgKTI/XNq1jFtemuapKHA4cDcFsaNldQgqaGxsbFM8czMzKwUZf0ABkm7Ab8HroyIaa1NW19fHw0NDWWIZ2b27iBpXkTUVzuH5VOmPXNJuwC/BG4rVeRmZmbWuUqWuZJLS6cAiyPimspHMjMzs7bIsmf+QeBLwLGS5qe3j1c4l5mZmWWU5Wr2hwG/8dPMzKxG+YtWzMzMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznXOZmZmY55zI3MzPLOZe5mZlZzrnMzczMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznXOZmZmY55zI3MzPLOZe5mZlZzrnMzczMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznXOZmZmY55zI3MzPLOZe5mZlZzpUsc0lTJa2WtLAzApmZmVnbZNkzvxk4vsI5zMzMrJ1KlnlEPASs6YQsZmZm1g5lO2cuaaykBkkNjY2N5VqsmZmZlVC2Mo+IyRFRHxH1dXV15VqsmZmZleCr2c3MzHLOZW5mZpZzWd6a9lNgDjBM0kpJZ1Q+lpmZmWXVrdQEEXFKZwQxMzOz9vFhdjMzs5xzmZuZmeWcy9zMzCznXOZmZmY55zI3MzPLOZe5mZlZzrnMzczMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznXOZmZmY55zI3MzPLOZe5mZlZzrnMzczMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznXOZmZmY55zI3MzPLOZe5mZlZzrnMzczMcs5lbmZmlnOZylzS8ZKWSHpW0sWVDmVmZmbZlSxzSV2B64ETgOHAKZKGVzqYmZmZZdMtwzQjgWcjYhmApJ8BJwFPVzJYtYwa1fFlzJrV8WWYvZuU4/cO/Ltn715ZDrPvC7xQ8HhlOmwHksZKapDU0NjYWK58ZmZmVkKWPfNMImIyMBmgvr4+yrXczuZX9madz793Zh2TZc/8RWBwweNB6TAzMzOrAVnK/HHgQEn7SeoOfAGYUdlYZmZmllXJw+wRsU3SOcA9QFdgakQsqngyMzMzyyTTOfOI+C3w2wpnMTMzs3bwJ8CZmZnlnMvczMws51zmZmZmOecyNzMzyzlFlP/zXSRtAJaUfcGdoz/wSrVDdIDzV5fzV1ee8w+LiN7VDmH5VLZPgGtmSUTUV2jZFSWpIa/ZwfmrzfmrK8/5JTVUO4Pllw+zm5mZ5ZzL3MzMLOcqVeaTK7TczpDn7OD81eb81ZXn/HnOblVWkQvgzMzMrPP4MLuZmVnOuczNzMxyrixlLmkPSfdJWpr+26+FaUZImiNpkaQFkj5fjnW3l6TjJS2R9Kyki1sY/x5JP0/Hz5U0tAoxi8qQ/wJJT6fb+gFJ761GzmJK5S+Y7mRJIamm3m6UJb+kz6X/B4sk3d7ZGYvJ8LMzRNJMSU+kPz8fr0bOYiRNlbRa0sIi4yXpP9Pnt0DSEZ2dsZgM2UenmZ+S9Kikwzo7o+VURHT4BkwELk7vXwxc1cI0BwEHpvf3AVYBfcux/nbk7Qr8Gdgf6A48CQxvNs1ZwA3p/S8AP69G1g7k/wiwa3r/3/OWP52uN/AQ8BhQX+3cbdz+BwJPAP3SxwOqnbsN2ScD/57eHw4sr3buZvmOAY4AFhYZ/3HgbkDA3wNzq525DdmPLviZOaGWsvtW27dyHWY/CbglvX8L8KnmE0TEMxGxNL3/F2A1UFem9bfVSODZiFgWEVuAn5E8h0KFz+lO4DhJ6sSMrSmZPyJmRsTG9OFjwKBOztiaLNsf4ArgKmBTZ4bLIEv+McD1EbEWICJWd3LGYrJkD2D39H4f4C+dmK+kiHgIWNPKJCcBt0biMaCvpL07J13rSmWPiEebfmaovd9bq2HlKvO9ImJVev8lYK/WJpY0kmSv4M9lWn9b7Qu8UPB4ZTqsxWkiYhuwHtizU9KVliV/oTNI9lRqRcn86aHRwRHxm84MllGW7X8QcJCkRyQ9Jun4TkvXuizZJwCnSloJ/BY4t3OilU1bfz9qVa393loNy/xxrpLuBwa2MOqywgcREZKKvt8tfYX8Y+DLEfFW1vVb+0g6FagHPlztLFlJ6gJcA5xe5Sgd0Y3kUPsokr2rhyS9PyLWVTNURqcAN0fE1ZKOAn4s6RD/vnYeSR8hKfMPVTuL5UPmMo+IjxYbJ+llSXtHxKq0rFs8pChpd+A3wGXp4a9qeREYXPB4UDqspWlWSupGcrjx1c6JV1KW/Ej6KMmLrQ9HxOZOypZFqfy9gUOAWemZjYHADEknRkQtfH51lu2/kuR851bgOUnPkJT7450Tsags2c8AjgeIiDmSepB8gUmtnCooJdPvR62SdChwE3BCRNTK3xyrceU6zD4D+HJ6/8vAr5tPIKk7MJ3kXNadZVpvez0OHChpvzTXF0ieQ6HC5/RZ4MGIqJVP2CmZX9LhwH8DJ9bQ+domreaPiPUR0T8ihkbEUJJzh7VS5JDt5+dXJHvlSOpPcth9WSdmLCZL9ueB4wAkvQ/oATR2asqOmQGcll7V/vfA+oLTgDVN0hBgGvCliHim2nksR8pxFR3JueQHgKXA/cAe6fB64Kb0/qnAVmB+wW1Eta78I7ni9RmS8/aXpcO+TVIakPwB+wXwLPAHYP9qZW1n/vuBlwu29YxqZ25L/mbTzqKGrmbPuP1FcqrgaeAp4AvVztyG7MOBR0iudJ8P/GO1MzfL/1OSd8NsJTkCcgYwDhhXsO2vT5/fU7X0s5Mh+03A2oLf24ZqZ/YtHzd/nKuZmVnO+RPgzMzMcs5lbmZmlnMuczMzs5xzmZuZmeWcy9zMzCznXOZmZmY55zI3MzPLuf8FRtNt0y4WF54AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAEICAYAAAByPazKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoUUlEQVR4nO3de5xVdb3/8ddbLuJREBBQFBDqoEcxHXUO5S2x1NBzFLtYoCCYybHC7hkeK8m0vPzK0iwiQYFQU/NCdryVkhc0GRIveEWkBE1GQMC4CPj5/bHW4GKYPbOH2TN7FvN+Ph77MWt9L2t99p6Z/dnru75rL0UEZmZm1vrtUO4AzMzMrDhO2mZmZjnhpG1mZpYTTtpmZmY54aRtZmaWE07aZmZmOeGk3YpI2lHSc5J6lzuWtkjSTyR9sRHtx0h6pDljKgdJ/SWFpPbljsXMtuSk3UIk3S3pnfSxQdK7mfWJabOxwEMR8Uba59uSnpW0WtKrkr7diP0dI+kZSW9LWibpdkl7Fdl3R0mTJf093fc8SSds43N9J32uzxTZdx9Jd0qqlrRc0r2S9m3EvsdJqpK0XtL1teo6SrpV0qI0KQ2p1f3/Af8rqWOx+2sNSvCaLZJ0bIliKVvClzRJ0ouS3pM0po76r0v6p6RVkqZI2rGlYzRrKiftFhIRJ0TELhGxCzADuLxmPSLOSZudA0zPdBNwBtANGAqMkzS8yF0+B3wiIroCewIvA78qsm974DXgaGBX4LvAzZL6F9M5+1zT5zsbuKXIfXcFZgL7ArsDTwB3FtkX4HXgYmBKgfpHgJHAP+uI+w3gBeDkRuyvRRVIhl1p2mu2vXgK+BLwt9oVkj4BjAc+DuwNfAD4QYtGZ1YCTtqthKR+JG8kf60pi4jLI+JvEbExIl4keSM+opjtRcSbEfF6pmgT8O+Z/Y2XdFeBvv+KiAkRsSgi3ouIu4BXgUO34Xn1B44CpmXK7pI0vsC+n4iIyRGxPCI2AFcC+0rarZj9RcRtEXEHsKyOuncj4mcR8QjJ61GXWcB/FbOv2iT9XNJr6ZHcXElHpeV7SFqTfQ6SDkmPjDuk65+X9LykFemR8t6ZtiHpy5JeJvnwVft5bfNrJmk60A/4Qzoqcl6m+nRJ/5D0lqQLMn12SP9+XklHcW6W1D2tfij9+Xa6vcMkfVDSA2nbtyTNkNS1yJe1aBFxTUT8GVhXR/VoYHJEzI+IFcAPgTGljsGsuTlptx4fAhZGxMa6KiWJJPnNL3aDkvpJehtYC3wLuLymLiIujYj/LnI7uwP7NGbfGWcAD0fEosy+/zsiLi2y/0eBf0bEVkm4mTwPHLSNfecAFUB34AbgFkmdIuKfJB8GPptpOwq4KSI2SBoG/C/wKaAn8DBwY61tnwJ8GNi/iDiKfs0iYhTwD+CkdGTk8kz1kSRH7x8Hvi9pv7T83DSeo0lGcVYA12T2DdA13d5jJCNGP07b7gf0BSYUiknS0+lpnboevyzi+ddlEMmReI2ngN2L/TBo1lo4abceXYHV9dRPIPl9XVfsBiPiH+nweA+SIe4XGhtUeiQ4A5gaEY3uT5K0r9+GfkjqQ5IMvrEt/bfRapLfRaNFxG8jYlk6MvITYEeSpAcwlWRYHkntgBG8fyrkHODHEfF8+qHtR0BF9mg7rV8eEWvri6HEr9kPImJtRDxFkuRqPsycA1wQEYsjYj3J3+ZnCp3HjogFEXF/RKyPiGrgpyQJv04RcWBEdC3w+NI2PpddgJWZ9Zrlztu4PbOycNJuRpJOz0zGuruB5iso8AYiaRxJ8vuv9E2yUSJiOUnSuLMxE4Qk7UCSWN4FxjV2v5KOBPYAbt2Gvj2B+4BfRkTto87m1Bl4e1s6SvpWOsS9Mh3h2JXkAxMkpzb2lzQAOA5YGRFPpHV7Az+vOZoElpMcnWYnDr5WxP5L/Zplz/uvIUl8NfHenon3eZLTDbsXiGt3STdJWiJpFfBb3n9dWso7QJfMes1yfR+UzVodJ+1mFBEzMhOyGpp9/TQwoHZSlfR50gk0EbG4CeG0B3qx5RtXQelw/GSSN+JPp+dKG2s0cFtEvNOYTpK6kSSfmRFxyTbstyn2Y8th1KKk56/PIxkC75aOcKwkSb5ExDrgZpKj7VFsOeHwNeB/ah1R7hQRszNt6r0dXxNfs8be6u814IRa8XaKiCUFtvWjtPxDEdGF5DVQoY1Lmq8trz7IPiYW6teA+Wx52uMg4M0WPO1iVhJO2q1EmpAXAINryiSdTvKGd1xELKzdR9IsSRPq2p6kT0naN5001JNkSPLJ9KgbSRMkzaonpF+RJLCT6hqSVd2XTGXrdyJJYNc3Mu4uwL3AoxGx1WQ1SUMkFUwyktpL6gS0A9pJ6pT9IKTkcrZO6WrHtD6bQI4G7s60LxhrLZ2BjUA10F7S99n6A9I0kslPJ7Nl0p4InC9pULrPXSWdWsQ+a2Js0msGvEkyCbJYE4FLaobvJfVMz8tD8vzfq7W9ziRHuiuVXHZY76WLETEoe/VBrcc5hfopuaSvE8kHgg7p77bmPW4acJak/dNJcN9lG0/bmJWTk3br8muSo7AaFwO7AXMKHGn0BR4tsK29gHtIhv+eIXkj/WQxfdM34/8hmVT1z8y+T0/r+2a2W8gpJMPMD9ZRV1/cnwT+Eziz1hFWv0zf2QX6QvJmvJZkdGJkuvzdTP2LadleJIluLclwL0q+1GZ/4I4iY826l+T1fgn4O8kM5i2GtCPiUZLfw98i4u+Z8tuBy4Cb0uHjZ4Gir4un6a/Zj4HvpsPd3ypifz8nucTsPkmrgcdJJskREWuAS4BH0+19hOTSqkNIRh7+CNzWiOfWGPeR/D4PByalyx9N47qHZCLmgyQT7/4OXNhMcZg1G0U0dmTMmouSL3t4kmQo/I0G2vYBbo6Iw7dxX/PS/TR6eFDSSGBQRJy/DX2bGve1wC0Rce+29G9g2z8BXomIX6brTYq1wD4eAG6IiGtLtc0i9tlsr5mZtSwnbbMWIuk/gfuBvhHhCVBm1mgeHjdrAZKmAn8CvuaEbWbbykfaZmZmOeEjbTMzs5xolbfe69GjR/Tv37/cYZiZ5cbcuXPfioie5Y7DmlerTNr9+/enqqqq3GGYmeWGpL833MryzsPjZmZmOeGkbWZmlhNO2mZmZjnhpG1mZpYTTtpmZmY50WDSltRX0oOSnktvmffVOtpI0lWSFkh6WtIhmbrRkl5OH6NL/QTMzMzaimIu+doIfDMi/iapMzBX0v0R8VymzQnAwPTxYZLbOn5YUneSO+lUktxPd66kmRGxoqTPwszMrA1oMGmnd5t6I11eLel5ktsaZpP2MGBaJN+J+rikrultDocA92fu4Xw/MBS4saTPwoo2ZEi5I7C2bNasckdglm+NOqctqT9wMPDXWlV7seW9gxenZYXK69r2WElVkqqqq6sbE5aZmVmbUPQ3oknaBfg9yV2KVpU6kIiYRHLjeiorK30Xk2biIx0rhxUrVtC1a1dA5Q7FLNeKStqSOpAk7BkRcVsdTZYAfTPrfdKyJSRD5NnyWdsSqJnl12mnncaaNWv4yEc+whFHHEFFRQV9+/ZFchI3a4wGk7aS/6rJwPMR8dMCzWYC4yTdRDIRbWVEvCHpXuBHkrql7Y4Hzi9B3GaWI8ceeyzTpk3j4Ycf5oEHHkASu+yyC4cddhhHHnkkBx54IHvuuaeTuFkDGryftqQjgYeBZ4D30uL/BfoBRMTENLH/gmSS2RrgzIioSvt/Pm0PcElEXNdQUJWVleEbhphtPxYtWsSpp55Kr1692GGHZCrN+vXrWb16NZs2bQKga9euHHnkkRx22GEcdNBB9OrVq5wh546kuRFRWe44rHk1mLTLwUnbbPtz9tln89xzz9G9e/et6iKC9evXs2rVKiKCTZs2cfjhh3P11VeXIdJ8ctJuG/yNaGbWIkaOHMmGDRvqrJNEp06d6NWr1+akfvLJJ7dkeGa54KRtZi3iiCOOoEuXLqxdu7Zgm02bNlFdXc24ceM47rjjWjA6s3xw0jazFtG+fXtOO+00Vq5cWWd9RPDmm2/yyU9+kjFjxrRscGY54aRtZi3mpJNOYocddtg8+SxrzZo1tGvXjhEjRngWuVkBTtpm1mJ69uzJ0UcfzbJly7YoX758ORFB+/bt+fznP8+8efPKE6BZK+ekbWYtasSIEUQENVeuvP322+y0005s3Lhx8xH22LFjue+++8oZplmr5KRtZi2qoqKCPffck3feeYd//etfbNq0iWuuuYZp06ZtnqjWpUsXzj//fK677jpa42WpZuXipG1mLUoSo0ePZsWKFaxatYorrriCfffdlwEDBjB9+nQGDhzI22+/TY8ePbj66qu5+OKLC14qZtbWOGmbWYs77rjj6NGjB+effz5HHHHE5vIePXrwm9/8hqOPPpq33nqLXr16cccdd/DVr36V1atXlzFis9bB34hmZmWxcuVKunTpUudM8U2bNnHllVdy4403sttuu7FixQr23ntvfvGLX7DHHnuUIdrWz9+I1jb4SNvMymLXXXcteGlXu3bt+OY3v8l5553H8uXL6dy5M4sXL2bUqFG8+OKLLRypWevhpG1mrZIkPve5z3HllVeybt06OnTowLp16zjzzDN59NFHyx2eWVk4aZtZq3bUUUcxefJkdtxxRzZu3EinTp346le/yi233OKZ5dbmOGmbWau33377MX36dHr37s3q1avp3r07l156KT/72c/q/HY1s+2Vk7aZ5ULv3r2ZOnUqhxxyCMuWLaNnz55Mnz6d8ePHs27dunKHZ9YinLTNLDc6d+7M1VdfzUknncTSpUvp2bMnDz74IGeffTbLly8vd3hmza7BpC1piqSlkp4tUP9tSfPSx7OSNknqntYtkvRMWudruMysyTp27MiFF17Il7/8Zd566y26du3KSy+9xKhRo1i0aFG5wzNrVsUcaV8PDC1UGRFXRERFRFQA5wN/iYjsR95j0npfP2hmJSGJs846i4svvphVq1ax0047sWLFCs444wz+9re/lTs8s2bTYNKOiIeAYsedRgA3NikiM7MinXDCCUycOHHzLPIddtiBc845h3vuuafMkZk1j5Kd05b0byRH5L/PFAdwn6S5ksY20H+spCpJVdXV1aUKy8y2c4cccghTp06lW7dum282csEFFzB58mRfEmbbnVJORDsJeLTW0PiREXEIcALwZUkfLdQ5IiZFRGVEVPbs2bOEYZnZ9q5///5Mnz6dffbZZ/PNRq655hp+8IMf+GYjtl0pZdIeTq2h8YhYkv5cCtwODC7h/szMNuvevTu/+c1vGDJkCNXV1fTq1Ys//OEPnHvuub7ZiG03SpK0Je0KHA3cmSnbWVLnmmXgeKDOGehmZqXQqVMnLrvsMkaNGkV1dTW77bYbc+fOZcyYMbzxxhvlDs+syYq55OtG4DFgX0mLJZ0l6RxJ52SafRK4LyL+lSnbHXhE0lPAE8AfI8KzQ8ysWbVr146vfe1rjB8/fvPNRl5//XVGjRrFCy+8UO7wzJrEt+Y0s+3Wo48+ynnnnccOOyTHJ5s2beKyyy7jqKOOKnNkpedbc7YN/kY0M9tuHXHEEUyZMoVOnTqxYcMGdtppJ77+9a9z8803e2a55ZKTtplt1/bdd1+mTZtGnz59WLVq1eabjfz0pz/1zUYsd5y0zWy717t3b6677joqKytZtmwZvXr14oYbbuC8885j7dq15Q7PrGhO2mbWJnTu3JmrrrqKYcOGsXTpUnr06MFf/vIXzj77bJYtW1bu8MyK4qRtZm1Ghw4d+N73vse55567+WYjL7/8MqNGjeLVV18td3hmDXLSNrM2RRJnnnkml1xyCatXr6ZTp06sXLmS0aNH89RTT5U7PLN6OWmbWZs0dOhQJk6cCCSXgq1atYqFCxeWOSqz+jlpm1mbdfDBBzNt2jR69OjBaaedximnnFLukMzq1b7cAZiZldPee+/NbbfdRocOHZBU7nDM6uWkbWZtXseOHcsdgllRPDxuZmaWE07aZmZmOeGkbWZWwKJFizjggAOKbn/44YdvVVbzHecTJkzYYj3rRz/60TbvE+COO+4A6NSYPkr0lzSmQP0QSXc1KpDtlKQKSY9Jmi/paUmfy9QNkPRXSQsk/U5Sx0xdb0n3pcv3SHq79msqaVzaNyT1aCgWJ20zsxKZPXv2VmUzZszgiiuuYN26dVx++eXMmDFjqzbZpL0t0qS9UyO7TQSOBPpJmixpryYF0UiS8jSnag1wRkQMAoYCP5PUNa27DLgyIv4dWAGclek3FLg3Xb4CGFXHth8FjgX+XkwgTtpmZkVYuHAhBx98MHPmzGH+/PkMHjyYiooKDjzwQF5++WUAdtlll636jRw5kj59+nDFFVfQr18/Ro4cuUX9+PHjWbt2LRUVFZx++ulAct342WefzaBBgzj++OM3fz/6K6+8wtChQzn00EM56qijeOGFF5g9ezYzZ84E6CNpnqQPSjpb0hxJT0n6vaR/q+MpfQkYAXweOD8ilhR67pIGp0eaT0qaLWnftPwhSRWZdo9IOkjSzpKmSHoi7TMsrR8jaaakB4A/F9jXEEmzJN0q6QVJM5RO65e0qOZoVFKlpFnp8gRJUyU9LOnvkj4l6XJJz6RHuB0KPbdiRMRLEfFyuvw6sBTomcb1MeDWtOlU4JRM16HA3Wm/PwOr69j2kxGxqDHBtLrHoYceGmZm5fbqq6/GoEGD4oUXXoiKioqYN29eRESMGzcufvvb30ZExPr162PNmjUREbHzzjtvtY0ZM2bE5ZdfHt/5znfisssuixkzZmzVJtvv1VdfjXbt2sWTTz4ZERGnnnpqTJ8+PSIiPvaxj8VLL70UERGPP/54HHPMMRERMXr06ABeifQ9FNgts3wxcG7Uep8FfgWMBL4P/AbYs1b9EOCudLkL0D5dPhb4fbo8GvhZurwPUJUu/wgYmS53BV4CdgbGAIuB7rXjqbXflUAfkgPLx4Aj07pFQI90uRKYlS5PAB4BOgAHkRwZn5DW3Q6cUsd+vg3Mq+NxVaHY0n6DgefT2HoACzJ1fYFn0+V2wLxCr2kd29383Op7NDg8IWkK8N/A0ojY6kSLpCHAnUDNF/feFhEXpXVDgZ+nwV8bEZc2tD8zs9akurqaYcOGcdttt7H//vsDcNhhh3HJJZewePFiPvWpTzFw4MCC/UeMGIEkJkyYwHnnnVfUfbwHDBhARUUFAIceeiiLFi3inXfeYfbs2Zx66qmb261fv77QJg6QdDFJwtyF94dos74E7E2SjC9qIKRdgamSBgJBkhwBbgG+J+nbJEfs16flxwMnS/pWut4J6Jcu3x8RyxvY3xMRsRhA0jygP0lSrs/dEbFB0jMkOeeetPyZtP8WIuIKkiHroknqDUwHRkfEew1c1/9h4K+N2X4xihkev57kEL8+D0dERfqoSdjtgGuAE4D9gRGS9m9KsGZmLW3XXXelX79+PPLI+znjtNNOY+bMmey0006ceOKJPPDAAwX717yx10xEK+YLXHbcccfNy+3atWPjxo289957dO3alXnz5m1+PP/884U2cT0wLiI+BPyAOiappQf2iyLi+gYDgh8CD6YHbifVbC8i1gD3A8OAzwI1J+wFfDqTF/pFRE2w/ypif9lPI5t4/ztFNvJ+3qr9nNanMb0HbIj3Px29Rx3fSSLp2+nphNqPq+oKSFIX4I/ABRHxeFq8DOiaOT/fB6g5zXAC739wKJkGk3ZEPAQ09KmoLoNJhg0WRsS7wE0kv1gzs9zo2LEjt99+O9OmTeOGG24AkvPbH/jAB/jKV77CsGHDePrpp5u0jw4dOrBhw4Z623Tp0oUBAwZwyy23AMmpzZobnHTu3Bm2fD/vDLyRnss9vUnBJXbl/WQ0plbdtcBVwJyIWJGW3QucmzkXfXAJYoBkCPnQdPnTTdlQRFyR+VCRfXyldtt0RvjtwLSIuDWzjQAeBD6TFo0mGXkG+Djwp6bEWJdSTUQ7LJ3wcLekQWnZXsBrmTaL07I6SRorqUpSVXV1dYnCMjNrup133pm77rqLK6+8kpkzZ3LzzTdzwAEHUFFRwbPPPssZZ5zRpO2PHTuWAw88cPNEtEJmzJjB5MmTOeiggxg0aBB33pnkh+HDhwPskU76+iDwPZKh2UeBF5oUXOJy4MeSnqTWUWtEzAVWAddlin9IMoT+tKT56Xop/AD4uaQqkiPwlvJZ4KPAmMwReUVa9x3gG5IWALsBkyX1BNZFxOaJZ5IeJjmd8HFJiyV9Ii3/iqTFJEfpT0u6tr5AVMz5FUn9SU6e13VOuwvwXkS8I+lE4OcRMVDSZ4ChEfGFtN0o4MMRMa6h/VVWVkZVVVWDcZmZWULS3IioLMN+9wRmAf+RDk23eZJGAn2aYx5Xk4+0I2JVRLyTLv8f0CGdkr+EZCZdjexYv5mZ5ZykM0iO6C9wwn5fRPy2uSZeN/nidkl7AG9GREgaTPJBYBnwNjBQ0gCSZD0cOK2p+zMzs9YhIqYB07alr6QPkczEzlofER9ucmDbsWIu+bqR5NqyHum4+4Wk0/0jYiLJCfgvStoIrAWGpyfnN0oaRzIhoR0wJSLmN8uzMDOzXImIZ4CKcseRN0Wd025pPqdtZtY45TqnbS3LX2NqZmaWE07aZmZmOeGkbWZmlhNO2mZmZjnhpG1mZpYTTtpmZmY54aRtZmaWE07aZmZmOeGkbWZmlhNO2mZmZjnhpG1mZpYTTtpmZmY54aRtZmaWE07aZmZmOeGkbWZmlhMNJm1JUyQtlfRsgfrTJT0t6RlJsyUdlKlblJbPk+QbZJuZmTVBMUfa1wND66l/FTg6Ij4E/BCYVKv+mIio8M3ZzczMmqZ9Qw0i4iFJ/eupn51ZfRzoU4K4zMzMrJZSn9M+C7g7sx7AfZLmShpbX0dJYyVVSaqqrq4ucVhmZmb51+CRdrEkHUOStI/MFB8ZEUsk9QLul/RCRDxUV/+ImEQ6tF5ZWRmlisvMzGx7UZIjbUkHAtcCwyJiWU15RCxJfy4FbgcGl2J/ZmZmbVGTk7akfsBtwKiIeClTvrOkzjXLwPFAnTPQzczMrGENDo9LuhEYAvSQtBi4EOgAEBETge8DuwG/lASwMZ0pvjtwe1rWHrghIu5phudgZmbWJhQze3xEA/VfAL5QR/lC4KCte5iZmdm28DeimZmZ5YSTtpmZWU44aZuZmeWEk7aZmVlOOGmbmZnlhJO2mZlZTjhpm5mZ5YSTtpmZWU44aZuZmeWEk7aZmVlOOGmbmZnlhJO2mZlZTjhpm5mZ5YSTtpmZWU44aZuZmeWEk7aZmVlOFJW0JU2RtFTSswXqJekqSQskPS3pkEzdaEkvp4/RpQrczMysrSn2SPt6YGg99ScAA9PHWOBXAJK6AxcCHwYGAxdK6ratwZqZmbVlRSXtiHgIWF5Pk2HAtEg8DnSV1Bv4BHB/RCyPiBXA/dSf/M3MzKyAUp3T3gt4LbO+OC0rVL4VSWMlVUmqqq6uLlFYZmZm249WMxEtIiZFRGVEVPbs2bPc4ZiZmbU6pUraS4C+mfU+aVmhcjMzM2ukUiXtmcAZ6SzyjwArI+IN4F7geEnd0glox6dlZmZm1kjti2kk6UZgCNBD0mKSGeEdACJiIvB/wInAAmANcGZat1zSD4E56aYuioj6JrSZmZlZAUUl7YgY0UB9AF8uUDcFmNL40MzMzCyr1UxEMzMzs/o5aZuZmeWEk7aZmVlOOGmbmZnlhJO2mZlZTjhpm5mZ5YSTtpmZWU44aZuZmeWEk7aZmVlOOGmbmZnlhJO2mZlZTjhpm5mZ5YSTtpmZWU44aZuZmeWEk7aZmVlOOGmbmZnlRFFJW9JQSS9KWiBpfB31V0qalz5ekvR2pm5Tpm5mCWM3MzNrU9o31EBSO+Aa4DhgMTBH0syIeK6mTUR8PdP+XODgzCbWRkRFySI2MzNro4o50h4MLIiIhRHxLnATMKye9iOAG0sRnJmZmb2vmKS9F/BaZn1xWrYVSXsDA4AHMsWdJFVJelzSKYV2Imls2q6qurq6iLDMzMzallJPRBsO3BoRmzJle0dEJXAa8DNJH6yrY0RMiojKiKjs2bNnicMyMzPLv2KS9hKgb2a9T1pWl+HUGhqPiCXpz4XALLY8321mZmZFKiZpzwEGShogqSNJYt5qFrik/wC6AY9lyrpJ2jFd7gEcATxXu6+ZmZk1rMHZ4xGxUdI44F6gHTAlIuZLugioioiaBD4cuCkiItN9P+DXkt4j+YBwaXbWuZmZmRVPW+bY1qGysjKqqqrKHYaZWW5ImpvOH7LtmL8RzczMLCectM3MzHLCSdvMzCwnnLTNzMxywknbzMwsJ5y0zczMcsJJ28zMLCectM3MzHLCSdvMzCwnnLTNzMxywknbzMwsJ5y0zczMcsJJ28zMLCectM3MzHLCSdvMzCwnikrakoZKelHSAknj66gfI6la0rz08YVM3WhJL6eP0aUM3szMrC1p31ADSe2Aa4DjgMXAHEkzI+K5Wk1/FxHjavXtDlwIVAIBzE37rihJ9GZmZm1IMUfag4EFEbEwIt4FbgKGFbn9TwD3R8TyNFHfDwzdtlDNzMzatmKS9l7Aa5n1xWlZbZ+W9LSkWyX1bWRfJI2VVCWpqrq6uoiwzMzM2pZSTUT7A9A/Ig4kOZqe2tgNRMSkiKiMiMqePXuWKCwzM7PtRzFJewnQN7PeJy3bLCKWRcT6dPVa4NBi+5qZmVlxiknac4CBkgZI6ggMB2ZmG0jqnVk9GXg+Xb4XOF5SN0ndgOPTMjMzM2ukBmePR8RGSeNIkm07YEpEzJd0EVAVETOBr0g6GdgILAfGpH2XS/ohSeIHuCgiljfD8zAzM9vuKSLKHcNWKisro6qqqtxhmJnlhqS5EVFZ7jisefkb0czMzHLCSdvMzCwnnLTNzMxywknbzMwsJ5y0zczMcsJJ28zMLCectM3MzHLCSdvMzCwnnLTNzMxywknbzMwsJ5y0zczMcsJJ28zMLCectM3MzHLCSdvMzCwnnLTNzMxywknbzMwsJ4pK2pKGSnpR0gJJ4+uo/4ak5yQ9LenPkvbO1G2SNC99zCxl8GZmZm1J+4YaSGoHXAMcBywG5kiaGRHPZZo9CVRGxBpJXwQuBz6X1q2NiIrShm1mZtb2FHOkPRhYEBELI+Jd4CZgWLZBRDwYEWvS1ceBPqUN08zMzIpJ2nsBr2XWF6dlhZwF3J1Z7ySpStLjkk4p1EnS2LRdVXV1dRFhmZmZtS0NDo83hqSRQCVwdKZ474hYIukDwAOSnomIV2r3jYhJwCSAysrKKGVcZmZm24NijrSXAH0z633Ssi1IOha4ADg5ItbXlEfEkvTnQmAWcHAT4jUzM2uziknac4CBkgZI6ggMB7aYBS7pYODXJAl7aaa8m6Qd0+UewBFAdgKbmZmZFanB4fGI2ChpHHAv0A6YEhHzJV0EVEXETOAKYBfgFkkA/4iIk4H9gF9Leo/kA8KltWadm5mZWZEU0fpOH1dWVkZVVVW5wzAzyw1JcyOistxxWPPyN6KZmZnlhJO2mZlZTjhpm5mZ5YSTtpmZWU44aZuZmeWEk7aZmVlOOGmbmZnlhJO2mZlZTjhpm5mZ5YSTtpmZWU44aZuZmeWEk7aZmVlOOGmbmZnlhJO2mZlZTjhpm5mZ5YSTtpmZWU4UlbQlDZX0oqQFksbXUb+jpN+l9X+V1D9Td35a/qKkT5QwdjMzszalwaQtqR1wDXACsD8wQtL+tZqdBayIiH8HrgQuS/vuDwwHBgFDgV+m2zMzM7NGal9Em8HAgohYCCDpJmAY8FymzTBgQrp8K/ALSUrLb4qI9cCrkhak23usNOG3PkOGlDuC+s2aVe4IrC3z/4dZ0xQzPL4X8FpmfXFaVmebiNgIrAR2K7IvAJLGSqqSVFVdXV1c9GZmZm1IMUfaLSIiJgGTACorK6PM4Wwzf1I3K8z/H2ZNU8yR9hKgb2a9T1pWZxtJ7YFdgWVF9jUzM7MiFJO05wADJQ2Q1JFkYtnMWm1mAqPT5c8AD0REpOXD09nlA4CBwBOlCd3MzKxtaXB4PCI2ShoH3Au0A6ZExHxJFwFVETETmAxMTyeaLSdJ7KTtbiaZtLYR+HJEbGqm52JmZrZdU3JA3LpUVlZGVVVVucMwM8sNSXMjorLccVjz8jeimZmZ5YSTtpmZWU44aZuZmeWEk7aZmVlOtMqJaJJWAy+WO45t1AN4q9xBNIHjLy/HX155jn/fiOhc7iCsebWab0Sr5cW8zoKUVJXX2MHxl5vjL688xy/Jl9y0AR4eNzMzywknbTMzs5xorUl7UrkDaII8xw6Ov9wcf3nlOf48x25FapUT0czMzGxrrfVI28zMzGpx0jYzM8uJVpG0JXWXdL+kl9Of3epoUyHpMUnzJT0t6XPliDUTz1BJL0paIGl8HfU7SvpdWv9XSf3LEGZBRcT/DUnPpa/1nyXtXY44C2ko/ky7T0sKSa3qMp5i4pf02fR3MF/SDS0dYyFF/O30k/SgpCfTv58TyxFnIZKmSFoq6dkC9ZJ0Vfr8npZ0SEvHWEgRsZ+exvyMpNmSDmrpGK2ZRUTZH8DlwPh0eTxwWR1t9gEGpst7Am8AXcsUbzvgFeADQEfgKWD/Wm2+BExMl4cDvyv369zI+I8B/i1d/mLe4k/bdQYeAh4HKssddyNf/4HAk0C3dL1XueNuROyTgC+my/sDi8odd634PgocAjxboP5E4G5AwEeAv5Y75kbEfnjmb+aE1hS7H6V5tIojbWAYMDVdngqcUrtBRLwUES+ny68DS4GeLRVgLYOBBRGxMCLeBW4ieQ5Z2ed0K/BxSWrBGOvTYPwR8WBErElXHwf6tHCM9Snm9Qf4IXAZsK4lgytCMfGfDVwTESsAImJpC8dYSDGxB9AlXd4VeL0F42tQRDwELK+nyTBgWiQeB7pK6t0y0dWvodgjYnbN3wyt7//WSqC1JO3dI+KNdPmfwO71NZY0mORT/ivNHVgBewGvZdYXp2V1tomIjcBKYLcWia5hxcSfdRbJkUdr0WD86ZBm34j4Y0sGVqRiXv99gH0kPSrpcUlDWyy6+hUT+wRgpKTFwP8B57ZMaCXT2P+P1qq1/d9aCbTY15hK+hOwRx1VF2RXIiIkFbwOLf3EOx0YHRHvlTZKq03SSKASOLrcsRRL0g7AT4ExZQ6lKdqTDJEPITlaekjShyLi7XIGVaQRwPUR8RNJhwHTJR3g/9eWI+kYkqR9ZLljsdJqsaQdEccWqpP0pqTeEfFGmpTrHAqU1AX4I3BBOmxVLkuAvpn1PmlZXW0WS2pPMky4rGXCa1Ax8SPpWJIPVUdHxPoWiq0YDcXfGTgAmJWekdgDmCnp5IhoDd/PXMzrv5jkfOQG4FVJL5Ek8TktE2JBxcR+FjAUICIek9SJ5EYcrWWIvyFF/X+0VpIOBK4FToiI1vKeYyXSWobHZwKj0+XRwJ21G0jqCNxOcq7p1haMrS5zgIGSBqRxDSd5DlnZ5/QZ4IGIaC3fZNNg/JIOBn4NnNyKzqfWqDf+iFgZET0ion9E9Cc5t9daEjYU9/dzB8lRNpJ6kAyXL2zBGAspJvZ/AB8HkLQf0AmobtEom2YmcEY6i/wjwMrM6btWTVI/4DZgVES8VO54rBmUeyZcmsd2A/4MvAz8CeiellcC16bLI4ENwLzMo6KMMZ8IvERyXv2CtOwikuQAyRvVLcAC4AngA+V+nRsZ/5+ANzOv9cxyx9yY+Gu1nUUrmj1e5OsvkiH+54BngOHljrkRse8PPEoys3wecHy5Y64V/40kV59sIBnROAs4Bzgn89pfkz6/Z1rT304RsV8LrMj831aVO2Y/Svvw15iamZnlRGsZHjczM7MGOGmbmZnlhJO2mZlZTjhpm5mZ5YSTtpmZWU44aZuZmeWEk7aZmVlO/H+oBCZPaMGCyAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-T(2, 3; 2, 7; 2, 11), theta = 10\n",
"pp = 101/11, satellite_part = 8\n",
"\n",
"sigma(-T(2, 3; 2, 7; 2, 11)) = 189/11\n",
"****************************************************************************************************\n",
"Calculation summary for a cable sum:\n",
"T(2, 3; 2, 5; 2, 11) # -T(2, 5; 2, 11) # T(2, 7; 2, 11) # -T(2, 3; 2, 7; 2, 11)\n",
"2. T(2, 7; 2, 11)\n",
"Pattern part = -101/11\n",
"Satellite part = -4\n",
"Sigma = -145/11\n",
"\n",
"3. -T(2, 3; 2, 7; 2, 11)\n",
"Pattern part = 101/11\n",
"Satellite part = 8\n",
"Sigma = 189/11\n",
"\n",
"[0, 0, 10, 10] 4\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
]
},
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cs = import_sage('cable_signature')\n",
"knot_formula = \"[[k[0], k[1], k[3]],\" + \\\n",
" \" [-k[1], -k[3]],\" + \\\n",
" \" [k[2], k[3]],\" + \\\n",
" \" [-k[0], -k[2], -k[3]]]\"\n",
"# q_vector = (3, 5, 7, 13)\n",
"q_vector = (3, 5, 7, 11)\n",
"\n",
"template = cs.CableTemplate(knot_formula, q_vector=q_vector, verbose=True)\n",
"cable = template.cable\n",
"# cable.plot_all_summands()\n",
"cable.is_function_big_for_all_metabolizers(invariant=cs.SIGMA)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Cables with 8 direct summands "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"formula_1 = \"[[k[0], k[5], k[3]], \" + \\\n",
" \"[-k[1], -k[3]], \" + \\\n",
" \"[k[2], k[3]], \" + \\\n",
" \"[-k[0], -k[2], -k[3]]]\"\n",
"formula_2 = \"[[k[4], k[1], k[7]], \" + \\\n",
" \"[-k[5], -k[7]], \" + \\\n",
" \"[k[6], k[7]], \" + \\\n",
" \"[-k[4], -k[6], -k[7]]]\"\n",
"\n",
"\n",
"\n",
"cable_template_1 = cs.CableTemplate(knot_formula=formula_1)\n",
"cable_template_2 = cs.CableTemplate(knot_formula=formula_2)\n",
"cable_template = cable_template_1 + cable_template_2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Relatively small cables "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 5; 2, 17; 2, 41) # -T(2, 13; 2, 41) # T(2, 19; 2, 41) # -T(2, 5; 2, 19; 2, 41) # T(2, 7; 2, 13; 2, 43) # -T(2, 17; 2, 43) # T(2, 23; 2, 43) # -T(2, 7; 2, 23; 2, 43)\n",
"T(2, 5; 2, 17; 2, 41) # -T(2, 13; 2, 41) # T(2, 19; 2, 41) # -T(2, 5; 2, 19; 2, 41) # T(2, 7; 2, 13; 2, 43) # -T(2, 17; 2, 43) # T(2, 23; 2, 43) # -T(2, 7; 2, 23; 2, 43)\n"
]
}
],
"source": [
"q_vector = (5, 13, 19, 41,\\\n",
" 7, 17, 23, 43)\n",
"cable_template.fill_q_vector(q_vector=q_vector)\n",
"cable = cable_template.cable\n",
"print(cable.knot_description)\n",
"\n",
"q_vector_small = (3, 7, 13, 19,\\\n",
" 5, 11, 17, 23)\n",
"cable_template.fill_q_vector(q_vector=q_vector)\n",
"cable = cable_template.cable\n",
"print(cable.knot_description)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# cable.is_signature_big_for_all_metabolizers()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Slice candidate"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 5; 2, 71; 2, 347) # -T(2, 67; 2, 347) # T(2, 61; 2, 347) # -T(2, 5; 2, 61; 2, 347) # T(2, 11; 2, 67; 2, 367) # -T(2, 71; 2, 367) # T(2, 79; 2, 367) # -T(2, 11; 2, 79; 2, 367)\n"
]
}
],
"source": [
"\n",
"cable_template.fill_q_vector()\n",
"# print(cable_template.q_vector)\n",
"# print(cable_template.knot_formula)\n",
"\n",
"slice_canidate = cable_template.cable\n",
"print(slice_canidate.knot_description)\n",
"sf = slice_canidate(4,4,4,4,0,0,0,0)\n",
"sf = slice_canidate(4,1,1,4,0,0,0,0)\n",
"\n",
"\n",
"# cable.is_signature_big_for_all_metabolizers()\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# knot_formula = \"[[k[0], k[1], k[4]], [-k[1], -k[3]],\\\n",
"# [k[2], k[3]], [-k[0], -k[2], -k[4]]]\"\n",
"\n",
"# knot_formula = \"[[k[3]], [-k[3]],\\\n",
"# [k[3]], [-k[3]] ]\"\n",
"\n",
"# knot_formula = \"[[k[3], k[2], k[0]], [-k[2], -k[0]],\\\n",
"# [k[1], k[0]], [-k[3], -k[1], -k[0]]]\"\n",
"\n",
"# knot_formula = \"[[k[0], k[1], k[2]], [k[3], k[4]],\\\n",
"# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]\"\n",
"\n",
"# knot_formula = \"[[k[0], k[1], k[2]], [k[3]],\\\n",
"# [-k[0], -k[1], -k[3]], [-k[2]]]\""
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 5; 2, 71; 2, 347) # -T(2, 67; 2, 347) # T(2, 61; 2, 347) # -T(2, 5; 2, 61; 2, 347) # T(2, 11; 2, 67; 2, 367) # -T(2, 71; 2, 367) # T(2, 79; 2, 367) # -T(2, 11; 2, 79; 2, 367)\n"
]
},
{
"data": {
"text/plain": [
"127349"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"formula_1 = \"[[k[0], k[5], k[3]], \" + \\\n",
" \"[-k[1], -k[3]], \" + \\\n",
" \"[k[2], k[3]], \" + \\\n",
" \"[-k[0], -k[2], -k[3]]]\"\n",
"formula_2 = \"[[k[4], k[1], k[7]], \" + \\\n",
" \"[-k[5], -k[7]], \" + \\\n",
" \"[k[6], k[7]], \" + \\\n",
" \"[-k[4], -k[6], -k[7]]]\"\n",
"\n",
"\n",
"\n",
"cable_template_1 = cs.CableTemplate(knot_formula=formula_1)\n",
"cable_template_2 = cs.CableTemplate(knot_formula=formula_2)\n",
"cable_template = cable_template_1 + cable_template_2\n",
"\n",
"cable_template.fill_q_vector()\n",
"# print(cable_template.q_vector)\n",
"# print(cable_template.knot_formula)\n",
"\n",
"slice_canidate = cable_template.cable\n",
"print(slice_canidate.knot_description)\n",
"sf = slice_canidate(4,4,4,4,0,0,0,0)\n",
"sf = slice_canidate(4,1,1,4,0,0,0,0)\n",
"\n",
"\n",
"slice_canidate.q_order\n",
"# slice_canidate.is_signature_big_for_all_metabolizers()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 11; 2, 53; 2, 347) # -T(2, 53; 2, 347) # T(2, 61; 2, 347) # -T(2, 7; 2, 61; 2, 347) # T(2, 7; 2, 71; 2, 367) # -T(2, 71; 2, 367) # T(2, 79; 2, 367) # -T(2, 11; 2, 79; 2, 367)\n"
]
},
{
"data": {
"text/plain": [
"127349"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"-4"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"formula_1 = \"[[k[0], k[5], k[3]], \" + \\\n",
" \"[-k[5], -k[3]], \" + \\\n",
" \"[k[2], k[3]], \" + \\\n",
" \"[-k[4], -k[2], -k[3]]]\"\n",
"formula_2 = \"[[k[4], k[1], k[7]], \" + \\\n",
" \"[-k[1], -k[7]], \" + \\\n",
" \"[k[6], k[7]], \" + \\\n",
" \"[-k[0], -k[6], -k[7]]]\"\n",
"\n",
"\n",
"\n",
"\n",
"cable_template_1 = cs.CableTemplate(knot_formula=formula_1)\n",
"cable_template_2 = cs.CableTemplate(knot_formula=formula_2)\n",
"cable_template = cable_template_1 + cable_template_2\n",
"cable_template.fill_q_vector()\n",
"\n",
"slice_canidate = cable_template.cable\n",
"print(slice_canidate.knot_description)\n",
"\n",
"slice_canidate.q_order\n",
"# slice_canidate.is_signature_big_for_all_metabolizers()\n",
"sigma = slice_canidate.get_sigma_as_function_of_theta()\n",
"# sigma((0, 6, 6, 0, 0,0,0,0))\n",
"# 13450/83\n",
"sigma((9, 9, 9, 9, 0,0,0,0))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 11; 2, 71; 2, 313) # -T(2, 61; 2, 313) # T(2, 313) # -T(2, 7; 2, 67; 2, 313) # T(2, 7; 2, 61; 2, 347) # -T(2, 347) # T(2, 67; 2, 347) # -T(2, 11; 2, 71; 2, 347)\n"
]
}
],
"source": [
"formula_1 = \"[[k[0], k[5], k[3]], \" + \\\n",
" \"[-k[1], -k[3]], \" + \\\n",
" \"[ k[3]], \" + \\\n",
" \"[-k[4], -k[6], -k[3]]]\"\n",
"\n",
"formula_2 = \"[[k[4], k[1], k[7]], \" + \\\n",
" \"[ -k[7]], \" + \\\n",
" \"[k[6], k[7]], \" + \\\n",
" \"[-k[0], -k[5], -k[7]]]\"\n",
"\n",
"\n",
"\n",
"\n",
"cable_template_1 = cs.CableTemplate(knot_formula=formula_1)\n",
"cable_template_2 = cs.CableTemplate(knot_formula=formula_2)\n",
"cable_template = cable_template_1 + cable_template_2\n",
"\n",
"cable_template.fill_q_vector()\n",
"# print(cable_template.q_vector)\n",
"# print(cable_template.knot_formula)\n",
"\n",
"slice_canidate = cable_template.cable\n",
"print(slice_canidate.knot_description)\n",
"sf = slice_canidate(4,4,4,4,0,0,0,0)\n",
"sf = slice_canidate(4,1,1,4,0,0,0,0)\n",
"# slice_canidate.is_signature_big_for_all_metabolizers()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 43; 2, 191) # -T(2, 37; 2, 191) # T(2, 191) # -T(2, 5; 2, 41; 2, 191) # T(2, 5; 2, 37; 2, 211) # -T(2, 211) # T(2, 41; 2, 211) # -T(2, 43; 2, 211)\n"
]
},
{
"data": {
"text/plain": [
"40301"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"formula_1 = \" [ [k[5], k[3]], \" + \\\n",
" \" [ -k[1], -k[3]], \" + \\\n",
" \" [ k[3]], \" + \\\n",
" \"[-k[4], -k[6], -k[3]]]\"\n",
"\n",
"formula_2 = \"[[k[4], k[1], k[7]], \" + \\\n",
" \"[ -k[7]], \" + \\\n",
" \"[k[6], k[7]], \" + \\\n",
" \"[-k[5], -k[7]]]\"\n",
"\n",
"\n",
"\n",
"\n",
"cable_template_1 = cs.CableTemplate(knot_formula=formula_1)\n",
"cable_template_2 = cs.CableTemplate(knot_formula=formula_2)\n",
"cable_template = cable_template_1 + cable_template_2\n",
"\n",
"cable_template.fill_q_vector()\n",
"# print(cable_template.q_vector)\n",
"# print(cable_template.knot_formula)\n",
"\n",
"slice_canidate = cable_template.cable\n",
"print(slice_canidate.knot_description)\n",
"sf = slice_canidate(4,4,4,4,0,0,0,0)\n",
"sf = slice_canidate(4,1,1,4,0,0,0,0)\n",
"slice_canidate.q_order\n",
"# slice_canidate.is_signature_big_for_all_metabolizers()\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"sf = slice_canidate()\n",
"sf = sf[2]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAOuElEQVR4nO3cf6zddX3H8edL7mAzOn61IqPUy0bNVjWZ5gQ1+8UGYjGRmkkWWIx1YWvixpLptqyLyWDoH7JNWYxsrhOyjmSCI9m8iTMNgsTECONUnbNu2Cv+oIhSKSMhRFn1vT/O1+V6c8o9t+fcczz9PB/JTc/3+/30nvent+XZc763pKqQJLXrObMeQJI0W4ZAkhpnCCSpcYZAkhpnCCSpcQuzHuBEbNq0qRYXF2c9hiTNlQMHDny7qjavPj+XIVhcXKTf7896DEmaK0m+Nuy8bw1JUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuMmEoIkO5I8mGQ5yZ4h109Lckd3/f4ki6uub03yVJI/msQ8kqTRjR2CJKcANwOXA9uBq5NsX7XsGuCJqroQuAm4cdX19wIfG3cWSdL6TeIVwUXAclU9VFXPALcDO1et2Qns6x7fCVySJABJ3gB8BTg4gVkkSes0iRCcBzy84vhwd27omqo6BjwJnJ3kecCfAH++1pMk2Z2kn6R/5MiRCYwtSYLZ3yy+Hripqp5aa2FV7a2qXlX1Nm/evPGTSVIjFibwOR4Bzl9xvKU7N2zN4SQLwOnA48ArgSuT/AVwBvD9JN+pqvdPYC5J0ggmEYIHgG1JLmDwH/yrgN9ctWYJ2AV8GrgSuKeqCvilHyxIcj3wlBGQpOkaOwRVdSzJtcB+4BTg1qo6mOQGoF9VS8AtwG1JloGjDGIhSfoRkMFfzOdLr9erfr8/6zEkaa4kOVBVvdXnZ32zWJI0Y4ZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkhpnCCSpcYZAkho3kRAk2ZHkwSTLSfYMuX5akju66/cnWezOvybJgST/2f34a5OYR5I0urFDkOQU4GbgcmA7cHWS7auWXQM8UVUXAjcBN3bnvw28vqpeBuwCbht3HknS+kziFcFFwHJVPVRVzwC3AztXrdkJ7Ose3wlckiRV9dmq+kZ3/iDwE0lOm8BMkqQRTSIE5wEPrzg+3J0buqaqjgFPAmevWvNG4DNV9d0JzCRJGtHCrAcASPISBm8XXfYsa3YDuwG2bt06pckk6eQ3iVcEjwDnrzje0p0buibJAnA68Hh3vAX4F+DNVfXl4z1JVe2tql5V9TZv3jyBsSVJMJkQPABsS3JBklOBq4ClVWuWGNwMBrgSuKeqKskZwEeBPVX1qQnMIklap7FD0L3nfy2wH/gv4MNVdTDJDUmu6JbdApydZBl4O/CDbzG9FrgQ+LMkn+s+XjDuTJKk0aWqZj3DuvV6ver3+7MeQ5LmSpIDVdVbfd5/WSxJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjZtICJLsSPJgkuUke4ZcPy3JHd31+5Msrrj2p935B5O8dhLzSJJGN3YIkpwC3AxcDmwHrk6yfdWya4AnqupC4Cbgxu7nbgeuAl4C7AD+pvt8kqQpWZjA57gIWK6qhwCS3A7sBL64Ys1O4Pru8Z3A+5OkO397VX0X+EqS5e7zfXoCcw118cUb9ZklaWPde+/GfN5JvDV0HvDwiuPD3bmha6rqGPAkcPaIPxeAJLuT9JP0jxw5MoGxJUkwmVcEU1FVe4G9AL1er07082xUUSVpXk3iFcEjwPkrjrd054auSbIAnA48PuLPlSRtoEmE4AFgW5ILkpzK4Obv0qo1S8Cu7vGVwD1VVd35q7rvKroA2Ab8+wRmkiSNaOy3hqrqWJJrgf3AKcCtVXUwyQ1Av6qWgFuA27qbwUcZxIJu3YcZ3Fg+BvxeVX1v3JkkSaPL4C/m86XX61W/35/1GJI0V5IcqKre6vP+y2JJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGGQJJapwhkKTGjRWCJGcluSvJoe7HM4+zble35lCSXd255yb5aJL/TnIwybvHmUWSdGLGfUWwB7i7qrYBd3fHPyTJWcB1wCuBi4DrVgTjr6rqZ4GXA7+Q5PIx55EkrdO4IdgJ7Ose7wPeMGTNa4G7qupoVT0B3AXsqKqnq+oTAFX1DPAZYMuY80iS1mncEJxTVY92j78JnDNkzXnAwyuOD3fn/l+SM4DXM3hVIUmaooW1FiT5OPDCIZfesfKgqipJrXeAJAvAh4D3VdVDz7JuN7AbYOvWret9GknScawZgqq69HjXknwryblV9WiSc4HHhix7BLh4xfEW4N4Vx3uBQ1X112vMsbdbS6/XW3dwJEnDjfvW0BKwq3u8C/jIkDX7gcuSnNndJL6sO0eSdwGnA38w5hySpBM0bgjeDbwmySHg0u6YJL0kHwSoqqPAO4EHuo8bqupoki0M3l7aDnwmyeeS/PaY80iS1ilV8/cuS6/Xq36/P+sxJGmuJDlQVb3V5/2XxZLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUOEMgSY0zBJLUuLFCkOSsJHclOdT9eOZx1u3q1hxKsmvI9aUkXxhnFknSiRn3FcEe4O6q2gbc3R3/kCRnAdcBrwQuAq5bGYwkvw48NeYckqQTNG4IdgL7usf7gDcMWfNa4K6qOlpVTwB3ATsAkjwPeDvwrjHnkCSdoHFDcE5VPdo9/iZwzpA15wEPrzg+3J0DeCfwHuDptZ4oye4k/ST9I0eOjDGyJGmlhbUWJPk48MIhl96x8qCqKkmN+sRJfh74map6W5LFtdZX1V5gL0Cv1xv5eSRJz27NEFTVpce7luRbSc6tqkeTnAs8NmTZI8DFK463APcCrwZ6Sb7azfGCJPdW1cVIkqZm3LeGloAffBfQLuAjQ9bsBy5LcmZ3k/gyYH9V/W1V/VRVLQK/CHzJCEjS9I0bgncDr0lyCLi0OyZJL8kHAarqKIN7AQ90Hzd05yRJPwJSNX9vt/d6ver3+7MeQ5LmSpIDVdVbfd5/WSxJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktQ4QyBJjTMEktS4VNWsZ1i3JEeAr53gT98EfHuC48wD99yG1vbc2n5h/D2/qKo2rz45lyEYR5J+VfVmPcc0uec2tLbn1vYLG7dn3xqSpMYZAklqXIsh2DvrAWbAPbehtT23tl/YoD03d49AkvTDWnxFIElawRBIUuNO2hAk2ZHkwSTLSfYMuX5akju66/cnWZzBmBMzwn7fnuSLST6f5O4kL5rFnJO01p5XrHtjkkoy999qOMqek/xG97U+mOSfpj3jpI3we3trkk8k+Wz3+/t1s5hzUpLcmuSxJF84zvUkeV/36/H5JK8Y+0mr6qT7AE4Bvgz8NHAq8B/A9lVrfhf4QPf4KuCOWc+9wfv9VeC53eO3zvN+R91zt+75wCeB+4DerOeewtd5G/BZ4Mzu+AWznnsKe94LvLV7vB346qznHnPPvwy8AvjCca6/DvgYEOBVwP3jPufJ+orgImC5qh6qqmeA24Gdq9bsBPZ1j+8ELkmSKc44SWvut6o+UVVPd4f3AVumPOOkjfI1BngncCPwnWkOt0FG2fPvADdX1RMAVfXYlGectFH2XMBPdo9PB74xxfkmrqo+CRx9liU7gX+sgfuAM5KcO85znqwhOA94eMXx4e7c0DVVdQx4Ejh7KtNN3ij7XekaBn+jmGdr7rl7yXx+VX10moNtoFG+zi8GXpzkU0nuS7JjatNtjFH2fD3wpiSHgX8Dfn86o83Mev+8r2lhrHE0d5K8CegBvzLrWTZSkucA7wXeMuNRpm2BwdtDFzN41ffJJC+rqv+Z5VAb7GrgH6rqPUleDdyW5KVV9f1ZDzYvTtZXBI8A56843tKdG7omyQKDl5SPT2W6yRtlvyS5FHgHcEVVfXdKs22Utfb8fOClwL1JvsrgvdSlOb9hPMrX+TCwVFX/W1VfAb7EIAzzapQ9XwN8GKCqPg38OIP/OdvJaqQ/7+txsobgAWBbkguSnMrgZvDSqjVLwK7u8ZXAPdXdiZlDa+43ycuBv2MQgXl/3xjW2HNVPVlVm6pqsaoWGdwXuaKq+rMZdyJG+X39rwxeDZBkE4O3ih6a4oyTNsqevw5cApDk5xiE4MhUp5yuJeDN3XcPvQp4sqoeHecTnpRvDVXVsSTXAvsZfNfBrVV1MMkNQL+qloBbGLyEXGZwY+aq2U08nhH3+5fA84B/7u6Jf72qrpjZ0GMacc8nlRH3vB+4LMkXge8Bf1xV8/pKd9Q9/yHw90nexuDG8Vvm+C91JPkQg5hv6u57XAf8GEBVfYDBfZDXAcvA08Bvjf2cc/zrJUmagJP1rSFJ0ogMgSQ1zhBIUuMMgSQ1zhBIUuMMgSQ1zhBIUuP+Dx1J0gxS2y6OAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sf.plot()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"T(2, 17; 2, 83) # -T(2, 11; 2, 83) # T(2, 83) # -T(2, 13; 2, 83) # T(2, 11; 2, 103) # -T(2, 103) # T(2, 13; 2, 103) # -T(2, 17; 2, 103)\n"
]
},
{
"data": {
"text/plain": [
"8549"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"formula_1 = \"[ [k[5], k[3]], \" + \\\n",
" \"[ -k[1], -k[3]], \" + \\\n",
" \"[ k[3]], \" + \\\n",
" \"[ -k[6], -k[3]]]\"\n",
"\n",
"formula_2 = \"[[ k[1], k[7]], \" + \\\n",
" \"[ -k[7]], \" + \\\n",
" \"[ k[6], k[7]], \" + \\\n",
" \"[ -k[5], -k[7]]]\"\n",
"\n",
"\n",
"\n",
"\n",
"cable_template_1 = cs.CableTemplate(knot_formula=formula_1)\n",
"cable_template_2 = cs.CableTemplate(knot_formula=formula_2)\n",
"cable_template = cable_template_1 + cable_template_2\n",
"\n",
"cable_template.fill_q_vector()\n",
"# print(cable_template.q_vector)\n",
"# print(cable_template.knot_formula)\n",
"\n",
"slice_canidate = cable_template.cable\n",
"print(slice_canidate.knot_description)\n",
"sf = slice_canidate(4,4,4,4,0,0,0,0)\n",
"sf = slice_canidate(4,1,1,4,0,0,0,0)\n",
"slice_canidate.q_order"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 0, 2, 2, 0, 0, 0, 0] 0\n",
"[0, 0, 3, 3, 0, 0, 0, 0] 0\n",
"[0, 0, 4, 4, 0, 0, 0, 0] 4\n",
"[0, 0, 5, 5, 0, 0, 0, 0] 4\n",
"[0, 0, 6, 6, 0, 0, 0, 0] 4\n",
"[0, 0, 7, 7, 0, 0, 0, 0] 4\n",
"[0, 0, 8, 8, 0, 0, 0, 0] 4\n",
"[0, 0, 9, 9, 0, 0, 0, 0] 4\n",
"[0, 0, 10, 10, 0, 0, 0, 0] 8\n",
"[0, 2, 2, 0, 0, 0, 0, 0] 0\n",
"[0, 3, 3, 0, 0, 0, 0, 0] 0\n",
"[0, 4, 4, 0, 0, 0, 0, 0] 4\n",
"[0, 5, 5, 0, 0, 0, 0, 0] 4\n",
"[0, 6, 6, 0, 0, 0, 0, 0] 4\n",
"[0, 7, 7, 0, 0, 0, 0, 0] 4\n",
"[0, 8, 8, 0, 0, 0, 0, 0] 4\n",
"[0, 9, 9, 0, 0, 0, 0, 0] 4\n",
"[0, 10, 10, 0, 0, 0, 0, 0] 4\n",
"[0, 11, 11, 0, 0, 0, 0, 0] 4\n",
"[0, 12, 12, 0, 0, 0, 0, 0] 8\n",
"[0, 4, 4, 0, 0, 0, 0, 0] 4\n",
"[0, 6, 6, 0, 0, 0, 0, 0] 4\n",
"[0, 8, 8, 0, 0, 0, 0, 0] 4\n",
"[0, 10, 10, 0, 0, 0, 0, 0] 4\n",
"[0, 12, 12, 0, 0, 0, 0, 0] 8\n",
"[0, 6, 6, 0, 0, 0, 0, 0] 4\n",
"[0, 9, 9, 0, 0, 0, 0, 0] 4\n",
"[0, 12, 12, 0, 0, 0, 0, 0] 8\n",
"[0, 8, 8, 0, 0, 0, 0, 0] 4\n",
"[0, 12, 12, 0, 0, 0, 0, 0] 8\n",
"[0, 10, 10, 0, 0, 0, 0, 0] 4\n",
"[0, 15, 15, 0, 0, 0, 0, 0] 8\n",
"[0, 12, 12, 0, 0, 0, 0, 0] 8\n",
"[0, 14, 14, 0, 0, 0, 0, 0] 8\n",
"[0, 16, 16, 0, 0, 0, 0, 0] 8\n",
"[0, 18, 18, 0, 0, 0, 0, 0] 8\n",
"[0, 20, 20, 0, 0, 0, 0, 0] 12\n",
"[0, 22, 22, 0, 0, 0, 0, 0] 12\n",
"[2, 0, 0, 2, 0, 0, 0, 0] 0\n",
"[3, 0, 0, 3, 0, 0, 0, 0] -4\n",
"[4, 0, 0, 4, 0, 0, 0, 0] 0\n",
"[5, 0, 0, 5, 0, 0, 0, 0] 0\n",
"[6, 0, 0, 6, 0, 0, 0, 0] 0\n",
"[7, 0, 0, 7, 0, 0, 0, 0] 0\n",
"[8, 0, 0, 8, 0, 0, 0, 0] -4\n",
"[9, 0, 0, 9, 0, 0, 0, 0] -4\n",
"[10, 0, 0, 10, 0, 0, 0, 0] 0\n",
"[11, 0, 0, 11, 0, 0, 0, 0] 0\n",
"[12, 0, 0, 12, 0, 0, 0, 0] 0\n",
"[13, 0, 0, 13, 0, 0, 0, 0] -4\n",
"[14, 0, 0, 14, 0, 0, 0, 0] -4\n",
"[15, 0, 0, 15, 0, 0, 0, 0] -4\n",
"[16, 0, 0, 16, 0, 0, 0, 0] 0\n",
"[17, 0, 0, 17, 0, 0, 0, 0] 0\n",
"[18, 0, 0, 18, 0, 0, 0, 0] -4\n",
"[19, 0, 0, 19, 0, 0, 0, 0] -4\n",
"[20, 0, 0, 20, 0, 0, 0, 0] -4\n",
"[21, 0, 0, 21, 0, 0, 0, 0] -4\n",
"[22, 0, 0, 22, 0, 0, 0, 0] -8\n",
"[2, 2, 0, 0, 0, 0, 0, 0] 0\n",
"[3, 3, 0, 0, 0, 0, 0, 0] -4\n",
"[4, 4, 0, 0, 0, 0, 0, 0] 0\n",
"[5, 5, 0, 0, 0, 0, 0, 0] 0\n",
"[6, 6, 0, 0, 0, 0, 0, 0] 0\n",
"[7, 7, 0, 0, 0, 0, 0, 0] 0\n",
"[8, 8, 0, 0, 0, 0, 0, 0] -4\n",
"[9, 9, 0, 0, 0, 0, 0, 0] -4\n",
"[10, 10, 0, 0, 0, 0, 0, 0] -4\n",
"[11, 11, 0, 0, 0, 0, 0, 0] -4\n",
"[12, 12, 0, 0, 0, 0, 0, 0] 0\n",
"[13, 13, 0, 0, 0, 0, 0, 0] -4\n",
"[14, 14, 0, 0, 0, 0, 0, 0] -4\n",
"[15, 15, 0, 0, 0, 0, 0, 0] -4\n",
"[16, 16, 0, 0, 0, 0, 0, 0] -4\n",
"[17, 17, 0, 0, 0, 0, 0, 0] -4\n",
"[18, 18, 0, 0, 0, 0, 0, 0] -8\n",
"[2, 2, 2, 2, 0, 0, 0, 0] 0\n",
"[3, 3, 3, 3, 0, 0, 0, 0] -4\n",
"[4, 4, 4, 4, 0, 0, 0, 0] 4\n",
"[5, 5, 5, 5, 0, 0, 0, 0] 4\n",
"[6, 6, 6, 6, 0, 0, 0, 0] 4\n",
"[7, 7, 7, 7, 0, 0, 0, 0] 4\n",
"[8, 8, 8, 8, 0, 0, 0, 0] 0\n",
"[9, 9, 9, 9, 0, 0, 0, 0] 0\n",
"[10, 10, 10, 10, 0, 0, 0, 0] 4\n",
"[11, 11, 11, 11, 0, 0, 0, 0] 4\n",
"[12, 12, 12, 12, 0, 0, 0, 0] 8\n",
"[13, 13, 13, 13, 0, 0, 0, 0] 4\n",
"[14, 14, 14, 14, 0, 0, 0, 0] 4\n",
"[15, 15, 15, 15, 0, 0, 0, 0] 4\n",
"[16, 16, 16, 16, 0, 0, 0, 0] 8\n",
"[17, 17, 17, 17, 0, 0, 0, 0] 8\n",
"[18, 18, 18, 18, 0, 0, 0, 0] 4\n",
"[19, 19, 19, 19, 0, 0, 0, 0] 8\n",
"[20, 20, 20, 20, 0, 0, 0, 0] 8\n",
"[21, 21, 21, 21, 0, 0, 0, 0] 8\n",
"[22, 22, 22, 22, 0, 0, 0, 0] 4\n",
"[23, 23, 23, 23, 0, 0, 0, 0] 8\n",
"[24, 24, 24, 24, 0, 0, 0, 0] 8\n",
"[25, 25, 25, 25, 0, 0, 0, 0] 8\n",
"[26, 26, 26, 26, 0, 0, 0, 0] 8\n",
"[27, 27, 27, 27, 0, 0, 0, 0] 8\n",
"[28, 28, 28, 28, 0, 0, 0, 0] 8\n",
"[29, 29, 29, 29, 0, 0, 0, 0] 12\n",
"[2, 4, 4, 2, 0, 0, 0, 0] 4\n",
"[3, 6, 6, 3, 0, 0, 0, 0] 0\n",
"[4, 8, 8, 4, 0, 0, 0, 0] 4\n",
"[5, 10, 10, 5, 0, 0, 0, 0] 4\n",
"[6, 12, 12, 6, 0, 0, 0, 0] 8\n",
"[7, 14, 14, 7, 0, 0, 0, 0] 8\n",
"[8, 16, 16, 8, 0, 0, 0, 0] 4\n",
"[9, 18, 18, 9, 0, 0, 0, 0] 4\n",
"[10, 20, 20, 10, 0, 0, 0, 0] 12\n",
"[2, 6, 6, 2, 0, 0, 0, 0] 4\n",
"[3, 9, 9, 3, 0, 0, 0, 0] 0\n",
"[4, 12, 12, 4, 0, 0, 0, 0] 8\n",
"[5, 15, 15, 5, 0, 0, 0, 0] 8\n",
"[6, 18, 18, 6, 0, 0, 0, 0] 8\n",
"[7, 21, 21, 7, 0, 0, 0, 0] 12\n",
"[2, 8, 8, 2, 0, 0, 0, 0] 4\n",
"[3, 12, 12, 3, 0, 0, 0, 0] 4\n",
"[4, 16, 16, 4, 0, 0, 0, 0] 8\n",
"[5, 20, 20, 5, 0, 0, 0, 0] 12\n",
"[2, 10, 10, 2, 0, 0, 0, 0] 4\n",
"[3, 15, 15, 3, 0, 0, 0, 0] 4\n",
"[4, 20, 20, 4, 0, 0, 0, 0] 12\n",
"[2, 12, 12, 2, 0, 0, 0, 0] 8\n",
"[3, 18, 18, 3, 0, 0, 0, 0] 4\n",
"[4, 24, 24, 4, 0, 0, 0, 0] 12\n",
"[2, 14, 14, 2, 0, 0, 0, 0] 8\n",
"[3, 21, 21, 3, 0, 0, 0, 0] 8\n",
"[4, 28, 28, 4, 0, 0, 0, 0] 16\n",
"[2, 16, 16, 2, 0, 0, 0, 0] 8\n",
"[3, 24, 24, 3, 0, 0, 0, 0] 8\n",
"[4, 32, 32, 4, 0, 0, 0, 0] 16\n",
"[2, 18, 18, 2, 0, 0, 0, 0] 8\n",
"[3, 27, 27, 3, 0, 0, 0, 0] 12\n",
"[2, 20, 20, 2, 0, 0, 0, 0] 12\n",
"[2, 22, 22, 2, 0, 0, 0, 0] 12\n",
"[2, 24, 24, 2, 0, 0, 0, 0] 12\n",
"[2, 26, 26, 2, 0, 0, 0, 0] 12\n",
"[2, 28, 28, 2, 0, 0, 0, 0] 16\n",
"[2, 30, 30, 2, 0, 0, 0, 0] 16\n",
"[2, 32, 32, 2, 0, 0, 0, 0] 16\n",
"[2, 34, 34, 2, 0, 0, 0, 0] 20\n",
"[2, 36, 36, 2, 0, 0, 0, 0] 20\n",
"[4, 4, 0, 0, 0, 0, 0, 0] 0\n",
"[6, 6, 0, 0, 0, 0, 0, 0] 0\n",
"[8, 8, 0, 0, 0, 0, 0, 0] -4\n",
"[10, 10, 0, 0, 0, 0, 0, 0] -4\n",
"[12, 12, 0, 0, 0, 0, 0, 0] 0\n",
"[14, 14, 0, 0, 0, 0, 0, 0] -4\n",
"[16, 16, 0, 0, 0, 0, 0, 0] -4\n",
"[18, 18, 0, 0, 0, 0, 0, 0] -8\n",
"[4, 4, 2, 2, 0, 0, 0, 0] 0\n",
"[6, 6, 3, 3, 0, 0, 0, 0] 0\n",
"[8, 8, 4, 4, 0, 0, 0, 0] 0\n",
"[10, 10, 5, 5, 0, 0, 0, 0] 0\n",
"[12, 12, 6, 6, 0, 0, 0, 0] 4\n",
"[14, 14, 7, 7, 0, 0, 0, 0] 0\n",
"[16, 16, 8, 8, 0, 0, 0, 0] 0\n",
"[18, 18, 9, 9, 0, 0, 0, 0] -4\n",
"[20, 20, 10, 10, 0, 0, 0, 0] 4\n",
"[22, 22, 11, 11, 0, 0, 0, 0] 0\n",
"[24, 24, 12, 12, 0, 0, 0, 0] 0\n",
"[26, 26, 13, 13, 0, 0, 0, 0] 0\n",
"[28, 28, 14, 14, 0, 0, 0, 0] 0\n",
"[30, 30, 15, 15, 0, 0, 0, 0] 0\n",
"[32, 32, 16, 16, 0, 0, 0, 0] 0\n",
"[34, 34, 17, 17, 0, 0, 0, 0] 4\n",
"[36, 36, 18, 18, 0, 0, 0, 0] 4\n",
"[38, 38, 19, 19, 0, 0, 0, 0] 0\n",
"[40, 40, 20, 20, 0, 0, 0, 0] 0\n",
"[42, 42, 21, 21, 0, 0, 0, 0] 0\n",
"[44, 44, 22, 22, 0, 0, 0, 0] 0\n",
"[46, 46, 23, 23, 0, 0, 0, 0] 4\n",
"[48, 48, 24, 24, 0, 0, 0, 0] 8\n",
"[50, 50, 25, 25, 0, 0, 0, 0] 4\n",
"[52, 52, 26, 26, 0, 0, 0, 0] 8\n",
"[54, 54, 27, 27, 0, 0, 0, 0] 8\n",
"[56, 56, 28, 28, 0, 0, 0, 0] 8\n",
"[58, 58, 29, 29, 0, 0, 0, 0] 12\n",
"[4, 48, 36, 2, 0, 0, 0, 0] 20\n",
"[4, 66, 32, 2, 0, 0, 0, 0] 20\n",
"[4, 74, 22, 2, 0, 0, 0, 0] 20\n",
"[4, 76, 28, 2, 0, 0, 0, 0] 28\n",
"[6, 6, 0, 0, 0, 0, 0, 0] 0\n",
"[9, 9, 0, 0, 0, 0, 0, 0] -4\n",
"[12, 12, 0, 0, 0, 0, 0, 0] 0\n",
"[15, 15, 0, 0, 0, 0, 0, 0] -4\n",
"[18, 18, 0, 0, 0, 0, 0, 0] -8\n",
"[6, 6, 2, 2, 0, 0, 0, 0] 0\n",
"[9, 9, 3, 3, 0, 0, 0, 0] -4\n",
"[12, 12, 4, 4, 0, 0, 0, 0] 4\n",
"[15, 15, 5, 5, 0, 0, 0, 0] 0\n",
"[18, 18, 6, 6, 0, 0, 0, 0] -4\n",
"[21, 21, 7, 7, 0, 0, 0, 0] 0\n",
"[24, 24, 8, 8, 0, 0, 0, 0] -4\n",
"[27, 27, 9, 9, 0, 0, 0, 0] -4\n",
"[30, 30, 10, 10, 0, 0, 0, 0] 0\n",
"[33, 33, 11, 11, 0, 0, 0, 0] -4\n",
"[36, 36, 12, 12, 0, 0, 0, 0] 0\n",
"[39, 39, 13, 13, 0, 0, 0, 0] -4\n",
"[42, 42, 14, 14, 0, 0, 0, 0] -4\n",
"[45, 45, 15, 15, 0, 0, 0, 0] -4\n",
"[48, 48, 16, 16, 0, 0, 0, 0] 4\n",
"[51, 51, 17, 17, 0, 0, 0, 0] 0\n",
"[54, 54, 18, 18, 0, 0, 0, 0] 4\n",
"[57, 57, 19, 19, 0, 0, 0, 0] 4\n",
"[60, 60, 20, 20, 0, 0, 0, 0] 4\n",
"[63, 63, 21, 21, 0, 0, 0, 0] 8\n",
"[66, 66, 22, 22, 0, 0, 0, 0] 8\n",
"[69, 69, 23, 23, 0, 0, 0, 0] 12\n",
"[6, 20, 6, 2, 0, 0, 0, 0] -4\n",
"[9, 30, 9, 3, 0, 0, 0, 0] -4\n",
"[12, 40, 12, 4, 0, 0, 0, 0] 8\n",
"[15, 50, 15, 5, 0, 0, 0, 0] 8\n",
"[18, 60, 18, 6, 0, 0, 0, 0] 12\n",
"[6, 22, 28, 2, 0, 0, 0, 0] 20\n",
"[6, 44, 24, 2, 0, 0, 0, 0] 16\n",
"[6, 56, 38, 2, 0, 0, 0, 0] 24\n",
"[6, 58, 26, 2, 0, 0, 0, 0] 16\n",
"[6, 62, 34, 2, 0, 0, 0, 0] 24\n",
"[8, 8, 0, 0, 0, 0, 0, 0] -4\n",
"[12, 12, 0, 0, 0, 0, 0, 0] 0\n",
"[16, 16, 0, 0, 0, 0, 0, 0] -4\n",
"[20, 20, 0, 0, 0, 0, 0, 0] -4\n",
"[24, 24, 0, 0, 0, 0, 0, 0] -8\n",
"[8, 8, 2, 2, 0, 0, 0, 0] -4\n",
"[12, 12, 3, 3, 0, 0, 0, 0] 0\n",
"[16, 16, 4, 4, 0, 0, 0, 0] 0\n",
"[20, 20, 5, 5, 0, 0, 0, 0] 0\n",
"[24, 24, 6, 6, 0, 0, 0, 0] -4\n",
"[28, 28, 7, 7, 0, 0, 0, 0] -4\n",
"[32, 32, 8, 8, 0, 0, 0, 0] -8\n",
"[36, 36, 9, 9, 0, 0, 0, 0] -4\n",
"[40, 40, 10, 10, 0, 0, 0, 0] -4\n",
"[44, 44, 11, 11, 0, 0, 0, 0] -4\n",
"[48, 48, 12, 12, 0, 0, 0, 0] 0\n",
"[52, 52, 13, 13, 0, 0, 0, 0] 0\n",
"[56, 56, 14, 14, 0, 0, 0, 0] 0\n",
"[60, 60, 15, 15, 0, 0, 0, 0] 0\n",
"[64, 64, 16, 16, 0, 0, 0, 0] 8\n",
"[68, 68, 17, 17, 0, 0, 0, 0] 8\n",
"[72, 72, 18, 18, 0, 0, 0, 0] 8\n",
"[76, 76, 19, 19, 0, 0, 0, 0] 12\n",
"[8, 16, 14, 2, 0, 0, 0, 0] 8\n",
"[12, 24, 21, 3, 0, 0, 0, 0] 16\n",
"[8, 34, 10, 2, 0, 0, 0, 0] 0\n",
"[12, 51, 15, 3, 0, 0, 0, 0] 8\n",
"[16, 68, 20, 4, 0, 0, 0, 0] 24\n",
"[8, 50, 38, 2, 0, 0, 0, 0] 20\n",
"[8, 72, 12, 2, 0, 0, 0, 0] 8\n",
"[12, 108, 18, 3, 0, 0, 0, 0] 112\n",
"[10, 10, 0, 0, 0, 0, 0, 0] -4\n",
"[15, 15, 0, 0, 0, 0, 0, 0] -4\n",
"[20, 20, 0, 0, 0, 0, 0, 0] -4\n",
"[25, 25, 0, 0, 0, 0, 0, 0] -8\n",
"[10, 10, 2, 2, 0, 0, 0, 0] -4\n",
"[15, 15, 3, 3, 0, 0, 0, 0] -4\n",
"[20, 20, 4, 4, 0, 0, 0, 0] 0\n",
"[25, 25, 5, 5, 0, 0, 0, 0] -4\n",
"[30, 30, 6, 6, 0, 0, 0, 0] -4\n",
"[35, 35, 7, 7, 0, 0, 0, 0] -4\n",
"[40, 40, 8, 8, 0, 0, 0, 0] -8\n",
"[45, 45, 9, 9, 0, 0, 0, 0] -8\n",
"[50, 50, 10, 10, 0, 0, 0, 0] -4\n",
"[55, 55, 11, 11, 0, 0, 0, 0] 0\n",
"[60, 60, 12, 12, 0, 0, 0, 0] 0\n",
"[65, 65, 13, 13, 0, 0, 0, 0] 0\n",
"[70, 70, 14, 14, 0, 0, 0, 0] 4\n",
"[75, 75, 15, 15, 0, 0, 0, 0] 4\n",
"[80, 80, 16, 16, 0, 0, 0, 0] 8\n",
"[85, 85, 17, 17, 0, 0, 0, 0] 12\n",
"[10, 14, 10, 2, 0, 0, 0, 0] 8\n",
"[15, 21, 15, 3, 0, 0, 0, 0] 12\n",
"[10, 34, 8, 2, 0, 0, 0, 0] 0\n",
"[15, 51, 12, 3, 0, 0, 0, 0] 4\n",
"[20, 68, 16, 4, 0, 0, 0, 0] 20\n",
"[10, 46, 32, 2, 0, 0, 0, 0] 24\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10, 74, 20, 2, 0, 0, 0, 0] 24\n",
"[10, 78, 26, 2, 0, 0, 0, 0] 36\n",
"[12, 12, 0, 0, 0, 0, 0, 0] 0\n",
"[18, 18, 0, 0, 0, 0, 0, 0] -8\n",
"[12, 12, 2, 2, 0, 0, 0, 0] 0\n",
"[18, 18, 3, 3, 0, 0, 0, 0] -8\n",
"[24, 24, 4, 4, 0, 0, 0, 0] -4\n",
"[30, 30, 5, 5, 0, 0, 0, 0] -4\n",
"[36, 36, 6, 6, 0, 0, 0, 0] -4\n",
"[42, 42, 7, 7, 0, 0, 0, 0] -8\n",
"[48, 48, 8, 8, 0, 0, 0, 0] -4\n",
"[54, 54, 9, 9, 0, 0, 0, 0] -4\n",
"[60, 60, 10, 10, 0, 0, 0, 0] 0\n",
"[66, 66, 11, 11, 0, 0, 0, 0] 4\n",
"[72, 72, 12, 12, 0, 0, 0, 0] 4\n",
"[78, 78, 13, 13, 0, 0, 0, 0] 8\n",
"[84, 84, 14, 14, 0, 0, 0, 0] 8\n",
"[90, 90, 15, 15, 0, 0, 0, 0] 8\n",
"[96, 96, 16, 16, 0, 0, 0, 0] 8\n",
"[102, 102, 17, 17, 0, 0, 0, 0] 8\n",
"[108, 108, 18, 18, 0, 0, 0, 0] 4\n",
"[114, 114, 19, 19, 0, 0, 0, 0] 4\n",
"[120, 120, 20, 20, 0, 0, 0, 0] 0\n",
"[126, 126, 21, 21, 0, 0, 0, 0] 0\n",
"[132, 132, 22, 22, 0, 0, 0, 0] 4\n",
"[138, 138, 23, 23, 0, 0, 0, 0] 8\n",
"[144, 144, 24, 24, 0, 0, 0, 0] 8\n",
"[150, 150, 25, 25, 0, 0, 0, 0] 12\n",
"[12, 54, 28, 2, 0, 0, 0, 0] 24\n",
"[12, 58, 30, 2, 0, 0, 0, 0] 24\n",
"[12, 72, 8, 2, 0, 0, 0, 0] 8\n",
"[18, 108, 12, 3, 0, 0, 0, 0] 104\n",
"[12, 76, 18, 2, 0, 0, 0, 0] 28\n",
"[14, 14, 0, 0, 0, 0, 0, 0] -4\n",
"[21, 21, 0, 0, 0, 0, 0, 0] -4\n",
"[28, 28, 0, 0, 0, 0, 0, 0] -8\n",
"[14, 14, 2, 2, 0, 0, 0, 0] -4\n",
"[21, 21, 3, 3, 0, 0, 0, 0] -4\n",
"[28, 28, 4, 4, 0, 0, 0, 0] -4\n",
"[35, 35, 5, 5, 0, 0, 0, 0] -4\n",
"[42, 42, 6, 6, 0, 0, 0, 0] -8\n",
"[49, 49, 7, 7, 0, 0, 0, 0] -4\n",
"[56, 56, 8, 8, 0, 0, 0, 0] -4\n",
"[63, 63, 9, 9, 0, 0, 0, 0] 0\n",
"[70, 70, 10, 10, 0, 0, 0, 0] 4\n",
"[77, 77, 11, 11, 0, 0, 0, 0] 8\n",
"[84, 84, 12, 12, 0, 0, 0, 0] 8\n",
"[91, 91, 13, 13, 0, 0, 0, 0] 4\n",
"[98, 98, 14, 14, 0, 0, 0, 0] 4\n",
"[105, 105, 15, 15, 0, 0, 0, 0] 0\n",
"[112, 112, 16, 16, 0, 0, 0, 0] 4\n",
"[119, 119, 17, 17, 0, 0, 0, 0] 4\n",
"[126, 126, 18, 18, 0, 0, 0, 0] 0\n",
"[133, 133, 19, 19, 0, 0, 0, 0] 0\n",
"[140, 140, 20, 20, 0, 0, 0, 0] 4\n",
"[147, 147, 21, 21, 0, 0, 0, 0] 8\n",
"[154, 154, 22, 22, 0, 0, 0, 0] 12\n",
"[14, 16, 8, 2, 0, 0, 0, 0] 4\n",
"[21, 24, 12, 3, 0, 0, 0, 0] 8\n",
"[28, 32, 16, 4, 0, 0, 0, 0] 12\n",
"[14, 38, 16, 2, 0, 0, 0, 0] 12\n",
"[14, 42, 24, 2, 0, 0, 0, 0] 20\n",
"[14, 48, 28, 2, 0, 0, 0, 0] 24\n",
"[14, 54, 20, 2, 0, 0, 0, 0] 16\n",
"[14, 72, 26, 2, 0, 0, 0, 0] 28\n",
"[16, 16, 0, 0, 0, 0, 0, 0] -4\n",
"[24, 24, 0, 0, 0, 0, 0, 0] -8\n",
"[16, 16, 2, 2, 0, 0, 0, 0] -4\n",
"[24, 24, 3, 3, 0, 0, 0, 0] -8\n",
"[32, 32, 4, 4, 0, 0, 0, 0] -8\n",
"[40, 40, 5, 5, 0, 0, 0, 0] -8\n",
"[48, 48, 6, 6, 0, 0, 0, 0] -4\n",
"[56, 56, 7, 7, 0, 0, 0, 0] -4\n",
"[64, 64, 8, 8, 0, 0, 0, 0] 0\n",
"[72, 72, 9, 9, 0, 0, 0, 0] 0\n",
"[80, 80, 10, 10, 0, 0, 0, 0] 4\n",
"[88, 88, 11, 11, 0, 0, 0, 0] 8\n",
"[96, 96, 12, 12, 0, 0, 0, 0] 4\n",
"[104, 104, 13, 13, 0, 0, 0, 0] 4\n",
"[112, 112, 14, 14, 0, 0, 0, 0] 0\n",
"[120, 120, 15, 15, 0, 0, 0, 0] -4\n",
"[128, 128, 16, 16, 0, 0, 0, 0] 0\n",
"[136, 136, 17, 17, 0, 0, 0, 0] 4\n",
"[144, 144, 18, 18, 0, 0, 0, 0] 4\n",
"[152, 152, 19, 19, 0, 0, 0, 0] 8\n",
"[160, 160, 20, 20, 0, 0, 0, 0] 12\n",
"[16, 24, 18, 2, 0, 0, 0, 0] 16\n",
"[16, 38, 14, 2, 0, 0, 0, 0] 12\n",
"[16, 50, 16, 2, 0, 0, 0, 0] 12\n",
"[16, 60, 32, 2, 0, 0, 0, 0] 28\n",
"[16, 66, 28, 2, 0, 0, 0, 0] 28\n",
"[16, 74, 24, 2, 0, 0, 0, 0] 32\n",
"[18, 2, 4, 2, 0, 0, 0, 0] 12\n",
"[18, 18, 0, 0, 0, 0, 0, 0] -8\n",
"[18, 18, 2, 2, 0, 0, 0, 0] -8\n",
"[27, 27, 3, 3, 0, 0, 0, 0] -8\n",
"[36, 36, 4, 4, 0, 0, 0, 0] -4\n",
"[45, 45, 5, 5, 0, 0, 0, 0] -8\n",
"[54, 54, 6, 6, 0, 0, 0, 0] -4\n",
"[63, 63, 7, 7, 0, 0, 0, 0] 0\n",
"[72, 72, 8, 8, 0, 0, 0, 0] 0\n",
"[81, 81, 9, 9, 0, 0, 0, 0] 4\n",
"[90, 90, 10, 10, 0, 0, 0, 0] 8\n",
"[99, 99, 11, 11, 0, 0, 0, 0] 4\n",
"[108, 108, 12, 12, 0, 0, 0, 0] 0\n",
"[117, 117, 13, 13, 0, 0, 0, 0] 0\n",
"[126, 126, 14, 14, 0, 0, 0, 0] -4\n",
"[135, 135, 15, 15, 0, 0, 0, 0] 0\n",
"[144, 144, 16, 16, 0, 0, 0, 0] 4\n",
"[153, 153, 17, 17, 0, 0, 0, 0] 8\n",
"[162, 162, 18, 18, 0, 0, 0, 0] 12\n",
"[18, 24, 16, 2, 0, 0, 0, 0] 12\n",
"[18, 48, 18, 2, 0, 0, 0, 0] 16\n",
"[18, 76, 12, 2, 0, 0, 0, 0] 20\n",
"[18, 78, 28, 2, 0, 0, 0, 0] 40\n",
"[20, 10, 6, 2, 0, 0, 0, 0] 8\n",
"[30, 15, 9, 3, 0, 0, 0, 0] 8\n",
"[40, 20, 12, 4, 0, 0, 0, 0] 8\n",
"[50, 25, 15, 5, 0, 0, 0, 0] 8\n",
"[60, 30, 18, 6, 0, 0, 0, 0] 12\n",
"[20, 20, 0, 0, 0, 0, 0, 0] -4\n",
"[30, 30, 0, 0, 0, 0, 0, 0] -8\n",
"[20, 20, 2, 2, 0, 0, 0, 0] -4\n",
"[30, 30, 3, 3, 0, 0, 0, 0] -8\n",
"[40, 40, 4, 4, 0, 0, 0, 0] -8\n",
"[50, 50, 5, 5, 0, 0, 0, 0] -8\n",
"[60, 60, 6, 6, 0, 0, 0, 0] -4\n",
"[70, 70, 7, 7, 0, 0, 0, 0] 0\n",
"[80, 80, 8, 8, 0, 0, 0, 0] 0\n",
"[90, 90, 9, 9, 0, 0, 0, 0] 4\n",
"[100, 100, 10, 10, 0, 0, 0, 0] 4\n",
"[110, 110, 11, 11, 0, 0, 0, 0] 0\n",
"[120, 120, 12, 12, 0, 0, 0, 0] -4\n",
"[130, 130, 13, 13, 0, 0, 0, 0] 0\n",
"[140, 140, 14, 14, 0, 0, 0, 0] 0\n",
"[150, 150, 15, 15, 0, 0, 0, 0] 4\n",
"[160, 160, 16, 16, 0, 0, 0, 0] 12\n",
"[20, 54, 14, 2, 0, 0, 0, 0] 12\n",
"[20, 68, 24, 2, 0, 0, 0, 0] 28\n",
"[20, 74, 10, 2, 0, 0, 0, 0] 16\n",
"[20, 76, 20, 2, 0, 0, 0, 0] 32\n",
"[22, 22, 0, 0, 0, 0, 0, 0] -8\n",
"[22, 22, 2, 2, 0, 0, 0, 0] -8\n",
"[33, 33, 3, 3, 0, 0, 0, 0] -12\n",
"[22, 26, 14, 2, 0, 0, 0, 0] 8\n",
"[33, 39, 21, 3, 0, 0, 0, 0] 16\n",
"[22, 36, 22, 2, 0, 0, 0, 0] 20\n",
"[22, 74, 4, 2, 0, 0, 0, 0] 4\n",
"[33, 111, 6, 3, 0, 0, 0, 0] 108\n",
"[24, 16, 4, 2, 0, 0, 0, 0] 0\n",
"[36, 24, 6, 3, 0, 0, 0, 0] -4\n",
"[48, 32, 8, 4, 0, 0, 0, 0] 0\n",
"[60, 40, 10, 5, 0, 0, 0, 0] 4\n",
"[72, 48, 12, 6, 0, 0, 0, 0] 4\n",
"[84, 56, 14, 7, 0, 0, 0, 0] -8\n",
"[96, 64, 16, 8, 0, 0, 0, 0] -44\n",
"[24, 24, 0, 0, 0, 0, 0, 0] -8\n",
"[24, 24, 2, 2, 0, 0, 0, 0] -8\n",
"[36, 36, 3, 3, 0, 0, 0, 0] -8\n",
"[48, 48, 4, 4, 0, 0, 0, 0] -4\n",
"[60, 60, 5, 5, 0, 0, 0, 0] -4\n",
"[72, 72, 6, 6, 0, 0, 0, 0] 0\n",
"[84, 84, 7, 7, 0, 0, 0, 0] 4\n",
"[96, 96, 8, 8, 0, 0, 0, 0] 0\n",
"[108, 108, 9, 9, 0, 0, 0, 0] -4\n",
"[120, 120, 10, 10, 0, 0, 0, 0] -4\n",
"[132, 132, 11, 11, 0, 0, 0, 0] 0\n",
"[144, 144, 12, 12, 0, 0, 0, 0] 0\n",
"[156, 156, 13, 13, 0, 0, 0, 0] 4\n",
"[168, 168, 14, 14, 0, 0, 0, 0] 8\n",
"[180, 180, 15, 15, 0, 0, 0, 0] 4\n",
"[192, 192, 16, 16, 0, 0, 0, 0] 4\n",
"[204, 204, 17, 17, 0, 0, 0, 0] 0\n",
"[216, 216, 18, 18, 0, 0, 0, 0] 0\n",
"[228, 228, 19, 19, 0, 0, 0, 0] 8\n",
"[240, 240, 20, 20, 0, 0, 0, 0] 8\n",
"[252, 252, 21, 21, 0, 0, 0, 0] 8\n",
"[264, 264, 22, 22, 0, 0, 0, 0] 8\n",
"[276, 276, 23, 23, 0, 0, 0, 0] 8\n",
"[288, 288, 24, 24, 0, 0, 0, 0] 4\n",
"[300, 300, 25, 25, 0, 0, 0, 0] 4\n",
"[312, 312, 26, 26, 0, 0, 0, 0] 12\n",
"[24, 42, 14, 2, 0, 0, 0, 0] 12\n",
"[24, 44, 6, 2, 0, 0, 0, 0] 0\n",
"[36, 66, 9, 3, 0, 0, 0, 0] 4\n",
"[48, 88, 12, 4, 0, 0, 0, 0] 44\n",
"[24, 68, 20, 2, 0, 0, 0, 0] 24\n",
"[24, 74, 16, 2, 0, 0, 0, 0] 24\n",
"[26, 22, 12, 2, 0, 0, 0, 0] 12\n",
"[26, 26, 0, 0, 0, 0, 0, 0] -8\n",
"[26, 26, 2, 2, 0, 0, 0, 0] -8\n",
"[39, 39, 3, 3, 0, 0, 0, 0] -12\n",
"[26, 34, 22, 2, 0, 0, 0, 0] 24\n",
"[26, 58, 6, 2, 0, 0, 0, 0] 0\n",
"[39, 87, 9, 3, 0, 0, 0, 0] 32\n",
"[26, 70, 24, 2, 0, 0, 0, 0] 32\n",
"[26, 72, 14, 2, 0, 0, 0, 0] 20\n",
"[26, 78, 10, 2, 0, 0, 0, 0] 24\n",
"[28, 22, 6, 2, 0, 0, 0, 0] 0\n",
"[42, 33, 9, 3, 0, 0, 0, 0] -4\n",
"[56, 44, 12, 4, 0, 0, 0, 0] 8\n",
"[70, 55, 15, 5, 0, 0, 0, 0] 8\n",
"[84, 66, 18, 6, 0, 0, 0, 0] 0\n",
"[98, 77, 21, 7, 0, 0, 0, 0] -32\n",
"[28, 28, 0, 0, 0, 0, 0, 0] -8\n",
"[28, 28, 2, 2, 0, 0, 0, 0] -8\n",
"[42, 42, 3, 3, 0, 0, 0, 0] -12\n",
"[28, 48, 14, 2, 0, 0, 0, 0] 12\n",
"[28, 54, 12, 2, 0, 0, 0, 0] 8\n",
"[42, 81, 18, 3, 0, 0, 0, 0] 28\n",
"[28, 66, 16, 2, 0, 0, 0, 0] 16\n",
"[28, 76, 4, 2, 0, 0, 0, 0] 8\n",
"[42, 114, 6, 3, 0, 0, 0, 0] 116\n",
"[28, 78, 18, 2, 0, 0, 0, 0] 32\n",
"[30, 30, 0, 0, 0, 0, 0, 0] -8\n",
"[30, 30, 2, 2, 0, 0, 0, 0] -8\n",
"[45, 45, 3, 3, 0, 0, 0, 0] -12\n",
"[30, 36, 20, 2, 0, 0, 0, 0] 20\n",
"[30, 58, 12, 2, 0, 0, 0, 0] 8\n",
"[45, 87, 18, 3, 0, 0, 0, 0] 44\n",
"[32, 32, 0, 0, 0, 0, 0, 0] -12\n",
"[32, 32, 2, 2, 0, 0, 0, 0] -12\n",
"[32, 46, 10, 2, 0, 0, 0, 0] 4\n",
"[48, 69, 15, 3, 0, 0, 0, 0] 16\n",
"[32, 50, 22, 2, 0, 0, 0, 0] 16\n",
"[32, 60, 16, 2, 0, 0, 0, 0] 12\n",
"[32, 66, 4, 2, 0, 0, 0, 0] -4\n",
"[48, 99, 6, 3, 0, 0, 0, 0] 64\n",
"[32, 80, 20, 2, 0, 0, 0, 0] 32\n",
"[34, 34, 0, 0, 0, 0, 0, 0] -8\n",
"[34, 34, 2, 2, 0, 0, 0, 0] -8\n",
"[51, 51, 3, 3, 0, 0, 0, 0] -12\n",
"[34, 36, 12, 2, 0, 0, 0, 0] 8\n",
"[51, 54, 18, 3, 0, 0, 0, 0] 12\n",
"[34, 56, 18, 2, 0, 0, 0, 0] 16\n",
"[34, 62, 6, 2, 0, 0, 0, 0] 0\n",
"[51, 93, 9, 3, 0, 0, 0, 0] 48\n",
"[36, 32, 8, 2, 0, 0, 0, 0] 0\n",
"[54, 48, 12, 3, 0, 0, 0, 0] 8\n",
"[72, 64, 16, 4, 0, 0, 0, 0] 16\n",
"[36, 34, 14, 2, 0, 0, 0, 0] 12\n",
"[36, 36, 2, 2, 0, 0, 0, 0] -8\n",
"[54, 54, 3, 3, 0, 0, 0, 0] -8\n",
"[72, 72, 4, 4, 0, 0, 0, 0] 0\n",
"[90, 90, 5, 5, 0, 0, 0, 0] 4\n",
"[108, 108, 6, 6, 0, 0, 0, 0] -4\n",
"[126, 126, 7, 7, 0, 0, 0, 0] -8\n",
"[144, 144, 8, 8, 0, 0, 0, 0] -4\n",
"[162, 162, 9, 9, 0, 0, 0, 0] 4\n",
"[180, 180, 10, 10, 0, 0, 0, 0] 4\n",
"[198, 198, 11, 11, 0, 0, 0, 0] -4\n",
"[216, 216, 12, 12, 0, 0, 0, 0] -4\n",
"[234, 234, 13, 13, 0, 0, 0, 0] 4\n",
"[252, 252, 14, 14, 0, 0, 0, 0] 4\n",
"[270, 270, 15, 15, 0, 0, 0, 0] 4\n",
"[288, 288, 16, 16, 0, 0, 0, 0] 0\n",
"[306, 306, 17, 17, 0, 0, 0, 0] 4\n",
"[324, 324, 18, 18, 0, 0, 0, 0] 8\n",
"[342, 342, 19, 19, 0, 0, 0, 0] 8\n",
"[360, 360, 20, 20, 0, 0, 0, 0] 4\n",
"[378, 378, 21, 21, 0, 0, 0, 0] 0\n",
"[396, 396, 22, 22, 0, 0, 0, 0] 8\n",
"[414, 414, 23, 23, 0, 0, 0, 0] 16\n",
"[36, 48, 4, 2, 0, 0, 0, 0] -4\n",
"[54, 72, 6, 3, 0, 0, 0, 0] 4\n",
"[72, 96, 8, 4, 0, 0, 0, 0] 60\n",
"[36, 78, 12, 2, 0, 0, 0, 0] 24\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[38, 38, 0, 0, 0, 0, 0, 0] -12\n",
"[38, 38, 2, 2, 0, 0, 0, 0] -12\n",
"[38, 42, 18, 2, 0, 0, 0, 0] 12\n",
"[38, 50, 8, 2, 0, 0, 0, 0] -4\n",
"[57, 75, 12, 3, 0, 0, 0, 0] 20\n",
"[38, 56, 6, 2, 0, 0, 0, 0] -4\n",
"[57, 84, 9, 3, 0, 0, 0, 0] 28\n",
"[38, 68, 14, 2, 0, 0, 0, 0] 12\n",
"[40, 40, 0, 0, 0, 0, 0, 0] -12\n",
"[40, 40, 2, 2, 0, 0, 0, 0] -12\n",
"[40, 54, 18, 2, 0, 0, 0, 0] 12\n",
"[40, 62, 16, 2, 0, 0, 0, 0] 12\n",
"[40, 76, 14, 2, 0, 0, 0, 0] 20\n",
"[42, 38, 4, 2, 0, 0, 0, 0] -8\n",
"[63, 57, 6, 3, 0, 0, 0, 0] -4\n",
"[84, 76, 8, 4, 0, 0, 0, 0] 0\n",
"[105, 95, 10, 5, 0, 0, 0, 0] -28\n",
"[42, 42, 0, 0, 0, 0, 0, 0] -12\n",
"[42, 42, 2, 2, 0, 0, 0, 0] -12\n",
"[42, 74, 8, 2, 0, 0, 0, 0] 8\n",
"[63, 111, 12, 3, 0, 0, 0, 0] 120\n",
"[42, 80, 18, 2, 0, 0, 0, 0] 28\n",
"[44, 44, 2, 2, 0, 0, 0, 0] -12\n",
"[44, 66, 10, 2, 0, 0, 0, 0] 4\n",
"[66, 99, 15, 3, 0, 0, 0, 0] 80\n",
"[44, 68, 6, 2, 0, 0, 0, 0] 0\n",
"[66, 102, 9, 3, 0, 0, 0, 0] 84\n",
"[44, 80, 22, 2, 0, 0, 0, 0] 32\n",
"[44, 82, 12, 2, 0, 0, 0, 0] 24\n",
"[46, 46, 2, 2, 0, 0, 0, 0] -12\n",
"[46, 58, 16, 2, 0, 0, 0, 0] 8\n",
"[69, 87, 24, 3, 0, 0, 0, 0] 52\n",
"[46, 64, 18, 2, 0, 0, 0, 0] 16\n",
"[48, 18, 4, 2, 0, 0, 0, 0] -4\n",
"[72, 27, 6, 3, 0, 0, 0, 0] -4\n",
"[96, 36, 8, 4, 0, 0, 0, 0] -52\n",
"[48, 26, 6, 2, 0, 0, 0, 0] -4\n",
"[72, 39, 9, 3, 0, 0, 0, 0] 0\n",
"[96, 52, 12, 4, 0, 0, 0, 0] -48\n",
"[48, 28, 12, 2, 0, 0, 0, 0] 8\n",
"[72, 42, 18, 3, 0, 0, 0, 0] 12\n",
"[48, 36, 18, 2, 0, 0, 0, 0] 16\n",
"[48, 48, 2, 2, 0, 0, 0, 0] -8\n",
"[72, 72, 3, 3, 0, 0, 0, 0] -4\n",
"[96, 96, 4, 4, 0, 0, 0, 0] 0\n",
"[120, 120, 5, 5, 0, 0, 0, 0] -8\n",
"[144, 144, 6, 6, 0, 0, 0, 0] -4\n",
"[168, 168, 7, 7, 0, 0, 0, 0] 4\n",
"[192, 192, 8, 8, 0, 0, 0, 0] -4\n",
"[216, 216, 9, 9, 0, 0, 0, 0] -8\n",
"[240, 240, 10, 10, 0, 0, 0, 0] 4\n",
"[264, 264, 11, 11, 0, 0, 0, 0] 4\n",
"[288, 288, 12, 12, 0, 0, 0, 0] -4\n",
"[312, 312, 13, 13, 0, 0, 0, 0] 4\n",
"[336, 336, 14, 14, 0, 0, 0, 0] 8\n",
"[360, 360, 15, 15, 0, 0, 0, 0] 0\n",
"[384, 384, 16, 16, 0, 0, 0, 0] 4\n",
"[408, 408, 17, 17, 0, 0, 0, 0] 12\n",
"[48, 58, 20, 2, 0, 0, 0, 0] 16\n",
"[48, 66, 8, 2, 0, 0, 0, 0] 4\n",
"[72, 99, 12, 3, 0, 0, 0, 0] 72\n",
"[50, 30, 8, 2, 0, 0, 0, 0] 0\n",
"[75, 45, 12, 3, 0, 0, 0, 0] 0\n",
"[100, 60, 16, 4, 0, 0, 0, 0] -52\n",
"[50, 40, 10, 2, 0, 0, 0, 0] 4\n",
"[75, 60, 15, 3, 0, 0, 0, 0] 4\n",
"[100, 80, 20, 4, 0, 0, 0, 0] -32\n",
"[50, 50, 2, 2, 0, 0, 0, 0] -12\n",
"[50, 74, 18, 2, 0, 0, 0, 0] 24\n",
"[52, 36, 16, 2, 0, 0, 0, 0] 16\n",
"[52, 52, 2, 2, 0, 0, 0, 0] -8\n",
"[78, 78, 3, 3, 0, 0, 0, 0] 0\n",
"[104, 104, 4, 4, 0, 0, 0, 0] 0\n",
"[130, 130, 5, 5, 0, 0, 0, 0] -4\n",
"[156, 156, 6, 6, 0, 0, 0, 0] 0\n",
"[182, 182, 7, 7, 0, 0, 0, 0] 0\n",
"[208, 208, 8, 8, 0, 0, 0, 0] -8\n",
"[234, 234, 9, 9, 0, 0, 0, 0] 0\n",
"[260, 260, 10, 10, 0, 0, 0, 0] 4\n",
"[286, 286, 11, 11, 0, 0, 0, 0] -4\n",
"[312, 312, 12, 12, 0, 0, 0, 0] 4\n",
"[338, 338, 13, 13, 0, 0, 0, 0] 8\n",
"[364, 364, 14, 14, 0, 0, 0, 0] -4\n",
"[390, 390, 15, 15, 0, 0, 0, 0] 0\n",
"[416, 416, 16, 16, 0, 0, 0, 0] 12\n",
"[52, 64, 20, 2, 0, 0, 0, 0] 24\n",
"[52, 78, 8, 2, 0, 0, 0, 0] 20\n",
"[54, 20, 12, 2, 0, 0, 0, 0] 12\n",
"[54, 28, 14, 2, 0, 0, 0, 0] 12\n",
"[54, 40, 4, 2, 0, 0, 0, 0] -4\n",
"[81, 60, 6, 3, 0, 0, 0, 0] -12\n",
"[54, 54, 2, 2, 0, 0, 0, 0] -8\n",
"[81, 81, 3, 3, 0, 0, 0, 0] 0\n",
"[108, 108, 4, 4, 0, 0, 0, 0] -4\n",
"[135, 135, 5, 5, 0, 0, 0, 0] -4\n",
"[162, 162, 6, 6, 0, 0, 0, 0] 4\n",
"[189, 189, 7, 7, 0, 0, 0, 0] -4\n",
"[216, 216, 8, 8, 0, 0, 0, 0] -8\n",
"[243, 243, 9, 9, 0, 0, 0, 0] 4\n",
"[270, 270, 10, 10, 0, 0, 0, 0] 4\n",
"[297, 297, 11, 11, 0, 0, 0, 0] 0\n",
"[324, 324, 12, 12, 0, 0, 0, 0] 4\n",
"[351, 351, 13, 13, 0, 0, 0, 0] 4\n",
"[378, 378, 14, 14, 0, 0, 0, 0] -4\n",
"[405, 405, 15, 15, 0, 0, 0, 0] 4\n",
"[432, 432, 16, 16, 0, 0, 0, 0] 8\n",
"[459, 459, 17, 17, 0, 0, 0, 0] 0\n",
"[486, 486, 18, 18, 0, 0, 0, 0] 12\n",
"[56, 24, 10, 2, 0, 0, 0, 0] 4\n",
"[84, 36, 15, 3, 0, 0, 0, 0] -4\n",
"[112, 48, 20, 4, 0, 0, 0, 0] -96\n",
"[56, 34, 4, 2, 0, 0, 0, 0] -4\n",
"[84, 51, 6, 3, 0, 0, 0, 0] -20\n",
"[56, 56, 2, 2, 0, 0, 0, 0] -8\n",
"[84, 84, 3, 3, 0, 0, 0, 0] 0\n",
"[112, 112, 4, 4, 0, 0, 0, 0] -4\n",
"[140, 140, 5, 5, 0, 0, 0, 0] -4\n",
"[168, 168, 6, 6, 0, 0, 0, 0] 4\n",
"[196, 196, 7, 7, 0, 0, 0, 0] -4\n",
"[224, 224, 8, 8, 0, 0, 0, 0] -4\n",
"[252, 252, 9, 9, 0, 0, 0, 0] 0\n",
"[280, 280, 10, 10, 0, 0, 0, 0] 0\n",
"[308, 308, 11, 11, 0, 0, 0, 0] 0\n",
"[336, 336, 12, 12, 0, 0, 0, 0] 8\n",
"[364, 364, 13, 13, 0, 0, 0, 0] -4\n",
"[392, 392, 14, 14, 0, 0, 0, 0] 0\n",
"[420, 420, 15, 15, 0, 0, 0, 0] 8\n",
"[448, 448, 16, 16, 0, 0, 0, 0] 0\n",
"[476, 476, 17, 17, 0, 0, 0, 0] 4\n",
"[504, 504, 18, 18, 0, 0, 0, 0] 12\n",
"[58, 30, 14, 2, 0, 0, 0, 0] 12\n",
"[58, 42, 8, 2, 0, 0, 0, 0] 4\n",
"[87, 63, 12, 3, 0, 0, 0, 0] -16\n",
"[58, 58, 2, 2, 0, 0, 0, 0] -8\n",
"[87, 87, 3, 3, 0, 0, 0, 0] 0\n",
"[116, 116, 4, 4, 0, 0, 0, 0] -8\n",
"[145, 145, 5, 5, 0, 0, 0, 0] 0\n",
"[174, 174, 6, 6, 0, 0, 0, 0] 0\n",
"[203, 203, 7, 7, 0, 0, 0, 0] -8\n",
"[232, 232, 8, 8, 0, 0, 0, 0] 0\n",
"[261, 261, 9, 9, 0, 0, 0, 0] 4\n",
"[290, 290, 10, 10, 0, 0, 0, 0] -4\n",
"[319, 319, 11, 11, 0, 0, 0, 0] 4\n",
"[348, 348, 12, 12, 0, 0, 0, 0] 4\n",
"[377, 377, 13, 13, 0, 0, 0, 0] -4\n",
"[406, 406, 14, 14, 0, 0, 0, 0] 4\n",
"[435, 435, 15, 15, 0, 0, 0, 0] 4\n",
"[464, 464, 16, 16, 0, 0, 0, 0] 4\n",
"[493, 493, 17, 17, 0, 0, 0, 0] 12\n",
"[58, 62, 22, 2, 0, 0, 0, 0] 24\n",
"[58, 78, 20, 2, 0, 0, 0, 0] 36\n",
"[60, 48, 6, 2, 0, 0, 0, 0] 0\n",
"[90, 72, 9, 3, 0, 0, 0, 0] -24\n",
"[60, 58, 10, 2, 0, 0, 0, 0] 4\n",
"[90, 87, 15, 3, 0, 0, 0, 0] 12\n",
"[60, 60, 2, 2, 0, 0, 0, 0] -8\n",
"[90, 90, 3, 3, 0, 0, 0, 0] 0\n",
"[120, 120, 4, 4, 0, 0, 0, 0] -8\n",
"[150, 150, 5, 5, 0, 0, 0, 0] 0\n",
"[180, 180, 6, 6, 0, 0, 0, 0] 0\n",
"[210, 210, 7, 7, 0, 0, 0, 0] -8\n",
"[240, 240, 8, 8, 0, 0, 0, 0] 0\n",
"[270, 270, 9, 9, 0, 0, 0, 0] 0\n",
"[300, 300, 10, 10, 0, 0, 0, 0] -4\n",
"[330, 330, 11, 11, 0, 0, 0, 0] 8\n",
"[360, 360, 12, 12, 0, 0, 0, 0] 0\n",
"[390, 390, 13, 13, 0, 0, 0, 0] 0\n",
"[420, 420, 14, 14, 0, 0, 0, 0] 8\n",
"[450, 450, 15, 15, 0, 0, 0, 0] 0\n",
"[480, 480, 16, 16, 0, 0, 0, 0] 4\n",
"[510, 510, 17, 17, 0, 0, 0, 0] 12\n",
"[62, 62, 2, 2, 0, 0, 0, 0] -4\n",
"[93, 93, 3, 3, 0, 0, 0, 0] -4\n",
"[124, 124, 4, 4, 0, 0, 0, 0] -8\n",
"[155, 155, 5, 5, 0, 0, 0, 0] 0\n",
"[186, 186, 6, 6, 0, 0, 0, 0] 0\n",
"[217, 217, 7, 7, 0, 0, 0, 0] -8\n",
"[248, 248, 8, 8, 0, 0, 0, 0] 4\n",
"[279, 279, 9, 9, 0, 0, 0, 0] -4\n",
"[310, 310, 10, 10, 0, 0, 0, 0] 0\n",
"[341, 341, 11, 11, 0, 0, 0, 0] 4\n",
"[372, 372, 12, 12, 0, 0, 0, 0] -4\n",
"[403, 403, 13, 13, 0, 0, 0, 0] 8\n",
"[434, 434, 14, 14, 0, 0, 0, 0] 4\n",
"[465, 465, 15, 15, 0, 0, 0, 0] -4\n",
"[496, 496, 16, 16, 0, 0, 0, 0] 12\n",
"[62, 64, 16, 2, 0, 0, 0, 0] 20\n",
"[62, 70, 8, 2, 0, 0, 0, 0] 12\n",
"[62, 72, 4, 2, 0, 0, 0, 0] 4\n",
"[93, 108, 6, 3, 0, 0, 0, 0] 52\n",
"[64, 12, 6, 2, 0, 0, 0, 0] 8\n",
"[96, 18, 9, 3, 0, 0, 0, 0] -52\n",
"[64, 46, 4, 2, 0, 0, 0, 0] -4\n",
"[96, 69, 6, 3, 0, 0, 0, 0] -52\n",
"[64, 50, 20, 2, 0, 0, 0, 0] 16\n",
"[64, 54, 22, 2, 0, 0, 0, 0] 20\n",
"[64, 70, 12, 2, 0, 0, 0, 0] 16\n",
"[66, 32, 18, 2, 0, 0, 0, 0] 16\n",
"[66, 42, 20, 2, 0, 0, 0, 0] 20\n",
"[66, 52, 26, 2, 0, 0, 0, 0] 24\n",
"[66, 60, 24, 2, 0, 0, 0, 0] 24\n",
"[68, 38, 12, 2, 0, 0, 0, 0] 8\n",
"[102, 57, 18, 3, 0, 0, 0, 0] -64\n",
"[68, 46, 22, 2, 0, 0, 0, 0] 20\n",
"[68, 66, 20, 2, 0, 0, 0, 0] 20\n",
"[68, 68, 2, 2, 0, 0, 0, 0] -4\n",
"[102, 102, 3, 3, 0, 0, 0, 0] -4\n",
"[136, 136, 4, 4, 0, 0, 0, 0] -4\n",
"[170, 170, 5, 5, 0, 0, 0, 0] 4\n",
"[204, 204, 6, 6, 0, 0, 0, 0] -8\n",
"[238, 238, 7, 7, 0, 0, 0, 0] 0\n",
"[272, 272, 8, 8, 0, 0, 0, 0] -4\n",
"[306, 306, 9, 9, 0, 0, 0, 0] -4\n",
"[340, 340, 10, 10, 0, 0, 0, 0] 4\n",
"[374, 374, 11, 11, 0, 0, 0, 0] -4\n",
"[408, 408, 12, 12, 0, 0, 0, 0] 8\n",
"[442, 442, 13, 13, 0, 0, 0, 0] 0\n",
"[476, 476, 14, 14, 0, 0, 0, 0] 0\n",
"[510, 510, 15, 15, 0, 0, 0, 0] 8\n",
"[544, 544, 16, 16, 0, 0, 0, 0] 0\n",
"[578, 578, 17, 17, 0, 0, 0, 0] 8\n",
"[612, 612, 18, 18, 0, 0, 0, 0] 4\n",
"[646, 646, 19, 19, 0, 0, 0, 0] 4\n",
"[680, 680, 20, 20, 0, 0, 0, 0] 8\n",
"[714, 714, 21, 21, 0, 0, 0, 0] 0\n",
"[748, 748, 22, 22, 0, 0, 0, 0] 12\n",
"[70, 48, 8, 2, 0, 0, 0, 0] 0\n",
"[105, 72, 12, 3, 0, 0, 0, 0] -76\n",
"[70, 64, 14, 2, 0, 0, 0, 0] 12\n",
"[70, 70, 2, 2, 0, 0, 0, 0] -4\n",
"[105, 105, 3, 3, 0, 0, 0, 0] -8\n",
"[140, 140, 4, 4, 0, 0, 0, 0] -4\n",
"[175, 175, 5, 5, 0, 0, 0, 0] 0\n",
"[210, 210, 6, 6, 0, 0, 0, 0] -8\n",
"[245, 245, 7, 7, 0, 0, 0, 0] 4\n",
"[280, 280, 8, 8, 0, 0, 0, 0] -4\n",
"[315, 315, 9, 9, 0, 0, 0, 0] 0\n",
"[350, 350, 10, 10, 0, 0, 0, 0] 0\n",
"[385, 385, 11, 11, 0, 0, 0, 0] 0\n",
"[420, 420, 12, 12, 0, 0, 0, 0] 8\n",
"[455, 455, 13, 13, 0, 0, 0, 0] -4\n",
"[490, 490, 14, 14, 0, 0, 0, 0] 4\n",
"[525, 525, 15, 15, 0, 0, 0, 0] 0\n",
"[560, 560, 16, 16, 0, 0, 0, 0] 8\n",
"[595, 595, 17, 17, 0, 0, 0, 0] 8\n",
"[630, 630, 18, 18, 0, 0, 0, 0] 4\n",
"[665, 665, 19, 19, 0, 0, 0, 0] 12\n",
"[72, 26, 12, 2, 0, 0, 0, 0] 4\n",
"[108, 39, 18, 3, 0, 0, 0, 0] -84\n",
"[72, 30, 6, 2, 0, 0, 0, 0] -4\n",
"[108, 45, 9, 3, 0, 0, 0, 0] -96\n",
"[72, 36, 10, 2, 0, 0, 0, 0] 4\n",
"[108, 54, 15, 3, 0, 0, 0, 0] -88\n",
"[72, 46, 16, 2, 0, 0, 0, 0] 12\n",
"[72, 62, 18, 2, 0, 0, 0, 0] 16\n",
"[72, 64, 24, 2, 0, 0, 0, 0] 24\n",
"[72, 72, 2, 2, 0, 0, 0, 0] -4\n",
"[108, 108, 3, 3, 0, 0, 0, 0] -8\n",
"[144, 144, 4, 4, 0, 0, 0, 0] -4\n",
"[180, 180, 5, 5, 0, 0, 0, 0] 0\n",
"[216, 216, 6, 6, 0, 0, 0, 0] -8\n",
"[252, 252, 7, 7, 0, 0, 0, 0] 0\n",
"[288, 288, 8, 8, 0, 0, 0, 0] -8\n",
"[324, 324, 9, 9, 0, 0, 0, 0] 0\n",
"[360, 360, 10, 10, 0, 0, 0, 0] 0\n",
"[396, 396, 11, 11, 0, 0, 0, 0] 4\n",
"[432, 432, 12, 12, 0, 0, 0, 0] 4\n",
"[468, 468, 13, 13, 0, 0, 0, 0] 0\n",
"[504, 504, 14, 14, 0, 0, 0, 0] 8\n",
"[540, 540, 15, 15, 0, 0, 0, 0] -4\n",
"[576, 576, 16, 16, 0, 0, 0, 0] 12\n",
"[74, 14, 6, 2, 0, 0, 0, 0] 0\n",
"[111, 21, 9, 3, 0, 0, 0, 0] -108\n",
"[74, 22, 18, 2, 0, 0, 0, 0] 12\n",
"[74, 48, 22, 2, 0, 0, 0, 0] 16\n",
"[74, 54, 10, 2, 0, 0, 0, 0] 0\n",
"[111, 81, 15, 3, 0, 0, 0, 0] -84\n",
"[74, 60, 28, 2, 0, 0, 0, 0] 20\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[74, 82, 16, 2, 0, 0, 0, 0] 28\n",
"[76, 12, 4, 2, 0, 0, 0, 0] 0\n",
"[114, 18, 6, 3, 0, 0, 0, 0] -124\n",
"[76, 18, 14, 2, 0, 0, 0, 0] 8\n",
"[114, 27, 21, 3, 0, 0, 0, 0] -104\n",
"[76, 28, 18, 2, 0, 0, 0, 0] 12\n",
"[76, 40, 12, 2, 0, 0, 0, 0] 4\n",
"[114, 60, 18, 3, 0, 0, 0, 0] -108\n",
"[76, 60, 22, 2, 0, 0, 0, 0] 16\n",
"[76, 62, 8, 2, 0, 0, 0, 0] 0\n",
"[114, 93, 12, 3, 0, 0, 0, 0] -68\n",
"[76, 66, 24, 2, 0, 0, 0, 0] 20\n",
"[76, 74, 6, 2, 0, 0, 0, 0] 4\n",
"[114, 111, 9, 3, 0, 0, 0, 0] -8\n",
"[152, 148, 12, 4, 0, 0, 0, 0] -8\n",
"[190, 185, 15, 5, 0, 0, 0, 0] -24\n",
"[78, 28, 4, 2, 0, 0, 0, 0] -12\n",
"[78, 32, 16, 2, 0, 0, 0, 0] 4\n",
"[117, 48, 24, 3, 0, 0, 0, 0] -116\n",
"[78, 36, 14, 2, 0, 0, 0, 0] 4\n",
"[117, 54, 21, 3, 0, 0, 0, 0] -120\n",
"[78, 72, 10, 2, 0, 0, 0, 0] 4\n",
"[117, 108, 15, 3, 0, 0, 0, 0] -28\n",
"[80, 22, 8, 2, 0, 0, 0, 0] -8\n",
"[120, 33, 12, 3, 0, 0, 0, 0] -148\n",
"[80, 26, 16, 2, 0, 0, 0, 0] 0\n",
"[120, 39, 24, 3, 0, 0, 0, 0] -132\n",
"[80, 42, 4, 2, 0, 0, 0, 0] -16\n",
"[80, 46, 6, 2, 0, 0, 0, 0] -12\n",
"[82, 12, 8, 2, 0, 0, 0, 0] 0\n",
"[123, 18, 12, 3, 0, 0, 0, 0] -156\n",
"[82, 38, 6, 2, 0, 0, 0, 0] -12\n",
"[82, 44, 14, 2, 0, 0, 0, 0] 0\n",
"[123, 66, 21, 3, 0, 0, 0, 0] -144\n",
"[82, 56, 20, 2, 0, 0, 0, 0] 8\n",
"[123, 84, 30, 3, 0, 0, 0, 0] -116\n",
"[82, 80, 26, 2, 0, 0, 0, 0] 28\n",
"\n",
"OK\n",
"[0, 0, 0, 0, 0, 0, 2, 2] 0\n",
"[0, 0, 0, 0, 0, 0, 3, 3] 0\n",
"[0, 0, 0, 0, 0, 0, 4, 4] 0\n",
"[0, 0, 0, 0, 0, 0, 5, 5] 0\n",
"[0, 0, 0, 0, 0, 0, 6, 6] 0\n",
"[0, 0, 0, 0, 0, 0, 7, 7] 0\n",
"[0, 0, 0, 0, 0, 0, 8, 8] 0\n",
"[0, 0, 0, 0, 0, 0, 9, 9] 0\n",
"[0, 0, 0, 0, 0, 0, 10, 10] 4\n",
"[0, 0, 0, 0, 0, 0, 11, 11] 4\n",
"[0, 0, 0, 0, 0, 0, 12, 12] 0\n",
"[0, 0, 0, 0, 0, 0, 13, 13] 0\n",
"[0, 0, 0, 0, 0, 0, 14, 14] 0\n",
"[0, 0, 0, 0, 0, 0, 15, 15] 0\n",
"[0, 0, 0, 0, 0, 0, 16, 16] 4\n",
"[0, 0, 0, 0, 0, 0, 17, 17] 4\n",
"[0, 0, 0, 0, 0, 0, 18, 18] 4\n",
"[0, 0, 0, 0, 0, 0, 19, 19] 4\n",
"[0, 0, 0, 0, 0, 0, 20, 20] 0\n",
"[0, 0, 0, 0, 0, 0, 21, 21] 0\n",
"[0, 0, 0, 0, 0, 0, 22, 22] 4\n",
"[0, 0, 0, 0, 0, 0, 23, 23] 4\n",
"[0, 0, 0, 0, 0, 0, 24, 24] 4\n",
"[0, 0, 0, 0, 0, 0, 25, 25] 4\n",
"[0, 0, 0, 0, 0, 0, 26, 26] 4\n",
"[0, 0, 0, 0, 0, 0, 27, 27] 4\n",
"[0, 0, 0, 0, 0, 0, 28, 28] 4\n",
"[0, 0, 0, 0, 0, 0, 29, 29] 4\n",
"[0, 0, 0, 0, 0, 0, 30, 30] 4\n",
"[0, 0, 0, 0, 0, 0, 31, 31] 4\n",
"[0, 0, 0, 0, 0, 0, 32, 32] 4\n",
"[0, 0, 0, 0, 0, 0, 33, 33] 4\n",
"[0, 0, 0, 0, 0, 0, 34, 34] 8\n",
"[0, 0, 0, 0, 0, 2, 2, 0] 0\n",
"[0, 0, 0, 0, 0, 3, 3, 0] 0\n",
"[0, 0, 0, 0, 0, 4, 4, 0] -4\n",
"[0, 0, 0, 0, 0, 5, 5, 0] -4\n",
"[0, 0, 0, 0, 0, 6, 6, 0] -4\n",
"[0, 0, 0, 0, 0, 7, 7, 0] -4\n",
"[0, 0, 0, 0, 0, 8, 8, 0] -4\n",
"[0, 0, 0, 0, 0, 9, 9, 0] -4\n",
"[0, 0, 0, 0, 0, 10, 10, 0] -4\n",
"[0, 0, 0, 0, 0, 11, 11, 0] -4\n",
"[0, 0, 0, 0, 0, 12, 12, 0] -8\n",
"[0, 0, 0, 0, 0, 4, 4, 0] -4\n",
"[0, 0, 0, 0, 0, 6, 6, 0] -4\n",
"[0, 0, 0, 0, 0, 8, 8, 0] -4\n",
"[0, 0, 0, 0, 0, 10, 10, 0] -4\n",
"[0, 0, 0, 0, 0, 12, 12, 0] -8\n",
"[0, 0, 0, 0, 0, 6, 6, 0] -4\n",
"[0, 0, 0, 0, 0, 9, 9, 0] -4\n",
"[0, 0, 0, 0, 0, 12, 12, 0] -8\n",
"[0, 0, 0, 0, 0, 8, 8, 0] -4\n",
"[0, 0, 0, 0, 0, 12, 12, 0] -8\n",
"[0, 0, 0, 0, 0, 10, 10, 0] -4\n",
"[0, 0, 0, 0, 0, 15, 15, 0] -8\n",
"[0, 0, 0, 0, 0, 12, 12, 0] -8\n",
"[0, 0, 0, 0, 0, 14, 14, 0] -8\n",
"[0, 0, 0, 0, 0, 16, 16, 0] -8\n",
"[0, 0, 0, 0, 0, 18, 18, 0] -8\n",
"[0, 0, 0, 0, 0, 20, 20, 0] -12\n",
"[0, 0, 0, 0, 0, 22, 22, 0] -12\n",
"[0, 0, 0, 0, 2, 0, 0, 2] 0\n",
"[0, 0, 0, 0, 3, 0, 0, 3] 0\n",
"[0, 0, 0, 0, 4, 0, 0, 4] 4\n",
"[0, 0, 0, 0, 5, 0, 0, 5] 0\n",
"[0, 0, 0, 0, 6, 0, 0, 6] 0\n",
"[0, 0, 0, 0, 7, 0, 0, 7] 0\n",
"[0, 0, 0, 0, 8, 0, 0, 8] 0\n",
"[0, 0, 0, 0, 9, 0, 0, 9] 0\n",
"[0, 0, 0, 0, 10, 0, 0, 10] 4\n",
"[0, 0, 0, 0, 11, 0, 0, 11] 4\n",
"[0, 0, 0, 0, 12, 0, 0, 12] 4\n",
"[0, 0, 0, 0, 13, 0, 0, 13] 4\n",
"[0, 0, 0, 0, 14, 0, 0, 14] 4\n",
"[0, 0, 0, 0, 15, 0, 0, 15] 0\n",
"[0, 0, 0, 0, 16, 0, 0, 16] 4\n",
"[0, 0, 0, 0, 17, 0, 0, 17] 4\n",
"[0, 0, 0, 0, 18, 0, 0, 18] 4\n",
"[0, 0, 0, 0, 19, 0, 0, 19] 4\n",
"[0, 0, 0, 0, 20, 0, 0, 20] 4\n",
"[0, 0, 0, 0, 21, 0, 0, 21] 4\n",
"[0, 0, 0, 0, 22, 0, 0, 22] 8\n",
"[0, 0, 0, 0, 2, 2, 0, 0] 0\n",
"[0, 0, 0, 0, 3, 3, 0, 0] 0\n",
"[0, 0, 0, 0, 4, 4, 0, 0] 0\n",
"[0, 0, 0, 0, 5, 5, 0, 0] -4\n",
"[0, 0, 0, 0, 6, 6, 0, 0] -4\n",
"[0, 0, 0, 0, 7, 7, 0, 0] -4\n",
"[0, 0, 0, 0, 8, 8, 0, 0] -4\n",
"[0, 0, 0, 0, 9, 9, 0, 0] -4\n",
"[0, 0, 0, 0, 10, 10, 0, 0] -4\n",
"[0, 0, 0, 0, 11, 11, 0, 0] -4\n",
"[0, 0, 0, 0, 12, 12, 0, 0] -4\n",
"[0, 0, 0, 0, 13, 13, 0, 0] -4\n",
"[0, 0, 0, 0, 14, 14, 0, 0] -4\n",
"[0, 0, 0, 0, 15, 15, 0, 0] -8\n",
"[0, 0, 0, 0, 2, 2, 2, 2] 0\n",
"[0, 0, 0, 0, 3, 3, 3, 3] 0\n",
"[0, 0, 0, 0, 4, 4, 4, 4] 0\n",
"[0, 0, 0, 0, 5, 5, 5, 5] -4\n",
"[0, 0, 0, 0, 6, 6, 6, 6] -4\n",
"[0, 0, 0, 0, 7, 7, 7, 7] -4\n",
"[0, 0, 0, 0, 8, 8, 8, 8] -4\n",
"[0, 0, 0, 0, 9, 9, 9, 9] -4\n",
"[0, 0, 0, 0, 10, 10, 10, 10] 0\n",
"[0, 0, 0, 0, 11, 11, 11, 11] 0\n",
"[0, 0, 0, 0, 12, 12, 12, 12] -4\n",
"[0, 0, 0, 0, 13, 13, 13, 13] -4\n",
"[0, 0, 0, 0, 14, 14, 14, 14] -4\n",
"[0, 0, 0, 0, 15, 15, 15, 15] -8\n",
"[0, 0, 0, 0, 16, 16, 16, 16] -4\n",
"[0, 0, 0, 0, 17, 17, 17, 17] -4\n",
"[0, 0, 0, 0, 18, 18, 18, 18] -4\n",
"[0, 0, 0, 0, 19, 19, 19, 19] -4\n",
"[0, 0, 0, 0, 20, 20, 20, 20] -8\n",
"[0, 0, 0, 0, 21, 21, 21, 21] -8\n",
"[0, 0, 0, 0, 22, 22, 22, 22] -4\n",
"[0, 0, 0, 0, 23, 23, 23, 23] -4\n",
"[0, 0, 0, 0, 24, 24, 24, 24] -8\n",
"[0, 0, 0, 0, 25, 25, 25, 25] -8\n",
"[0, 0, 0, 0, 26, 26, 26, 26] -8\n",
"[0, 0, 0, 0, 27, 27, 27, 27] -8\n",
"[0, 0, 0, 0, 28, 28, 28, 28] -8\n",
"[0, 0, 0, 0, 29, 29, 29, 29] -8\n",
"[0, 0, 0, 0, 30, 30, 30, 30] -8\n",
"[0, 0, 0, 0, 31, 31, 31, 31] -8\n",
"[0, 0, 0, 0, 32, 32, 32, 32] -8\n",
"[0, 0, 0, 0, 33, 33, 33, 33] -12\n",
"[0, 0, 0, 0, 2, 4, 4, 2] -4\n",
"[0, 0, 0, 0, 3, 6, 6, 3] -4\n",
"[0, 0, 0, 0, 4, 8, 8, 4] 0\n",
"[0, 0, 0, 0, 5, 10, 10, 5] -4\n",
"[0, 0, 0, 0, 6, 12, 12, 6] -8\n",
"[0, 0, 0, 0, 7, 14, 14, 7] -8\n",
"[0, 0, 0, 0, 8, 16, 16, 8] -8\n",
"[0, 0, 0, 0, 9, 18, 18, 9] -8\n",
"[0, 0, 0, 0, 10, 20, 20, 10] -8\n",
"[0, 0, 0, 0, 11, 22, 22, 11] -8\n",
"[0, 0, 0, 0, 12, 24, 24, 12] -8\n",
"[0, 0, 0, 0, 13, 26, 26, 13] -8\n",
"[0, 0, 0, 0, 14, 28, 28, 14] -12\n",
"[0, 0, 0, 0, 2, 6, 6, 2] -4\n",
"[0, 0, 0, 0, 3, 9, 9, 3] -4\n",
"[0, 0, 0, 0, 4, 12, 12, 4] -4\n",
"[0, 0, 0, 0, 5, 15, 15, 5] -8\n",
"[0, 0, 0, 0, 6, 18, 18, 6] -8\n",
"[0, 0, 0, 0, 7, 21, 21, 7] -12\n",
"[0, 0, 0, 0, 2, 8, 8, 2] -4\n",
"[0, 0, 0, 0, 3, 12, 12, 3] -8\n",
"[0, 0, 0, 0, 4, 16, 16, 4] -4\n",
"[0, 0, 0, 0, 5, 20, 20, 5] -12\n",
"[0, 0, 0, 0, 2, 10, 10, 2] -4\n",
"[0, 0, 0, 0, 3, 15, 15, 3] -8\n",
"[0, 0, 0, 0, 4, 20, 20, 4] -8\n",
"[0, 0, 0, 0, 5, 25, 25, 5] -12\n",
"[0, 0, 0, 0, 2, 12, 12, 2] -8\n",
"[0, 0, 0, 0, 3, 18, 18, 3] -8\n",
"[0, 0, 0, 0, 4, 24, 24, 4] -8\n",
"[0, 0, 0, 0, 5, 30, 30, 5] -16\n",
"[0, 0, 0, 0, 2, 14, 14, 2] -8\n",
"[0, 0, 0, 0, 3, 21, 21, 3] -12\n",
"[0, 0, 0, 0, 2, 16, 16, 2] -8\n",
"[0, 0, 0, 0, 3, 24, 24, 3] -12\n",
"[0, 0, 0, 0, 2, 18, 18, 2] -8\n",
"[0, 0, 0, 0, 3, 27, 27, 3] -12\n",
"[0, 0, 0, 0, 2, 20, 20, 2] -12\n",
"[0, 0, 0, 0, 2, 22, 22, 2] -12\n",
"[0, 0, 0, 0, 2, 24, 24, 2] -12\n",
"[0, 0, 0, 0, 2, 26, 26, 2] -12\n",
"[0, 0, 0, 0, 2, 28, 28, 2] -16\n",
"[0, 0, 0, 0, 2, 30, 30, 2] -16\n",
"[0, 0, 0, 0, 2, 32, 32, 2] -16\n",
"[0, 0, 0, 0, 2, 34, 34, 2] -16\n",
"[0, 0, 0, 0, 2, 36, 36, 2] -20\n",
"[0, 0, 0, 0, 2, 38, 38, 2] -20\n",
"[0, 0, 0, 0, 4, 4, 0, 0] 0\n",
"[0, 0, 0, 0, 6, 6, 0, 0] -4\n",
"[0, 0, 0, 0, 8, 8, 0, 0] -4\n",
"[0, 0, 0, 0, 10, 10, 0, 0] -4\n",
"[0, 0, 0, 0, 12, 12, 0, 0] -4\n",
"[0, 0, 0, 0, 14, 14, 0, 0] -4\n",
"[0, 0, 0, 0, 16, 16, 0, 0] -8\n",
"[0, 0, 0, 0, 4, 4, 2, 2] 0\n",
"[0, 0, 0, 0, 6, 6, 3, 3] -4\n",
"[0, 0, 0, 0, 8, 8, 4, 4] -4\n",
"[0, 0, 0, 0, 10, 10, 5, 5] -4\n",
"[0, 0, 0, 0, 12, 12, 6, 6] -4\n",
"[0, 0, 0, 0, 14, 14, 7, 7] -4\n",
"[0, 0, 0, 0, 16, 16, 8, 8] -8\n",
"[0, 0, 0, 0, 18, 18, 9, 9] -8\n",
"[0, 0, 0, 0, 20, 20, 10, 10] -4\n",
"[0, 0, 0, 0, 22, 22, 11, 11] -4\n",
"[0, 0, 0, 0, 24, 24, 12, 12] -12\n",
"[0, 0, 0, 0, 4, 22, 36, 2] -4\n",
"[0, 0, 0, 0, 6, 33, 54, 3] -16\n",
"[0, 0, 0, 0, 4, 24, 96, 2] -24\n",
"[0, 0, 0, 0, 4, 26, 56, 2] -8\n",
"[0, 0, 0, 0, 6, 39, 84, 3] -24\n",
"[0, 0, 0, 0, 4, 42, 102, 2] -44\n",
"[0, 0, 0, 0, 4, 48, 52, 2] -20\n",
"[0, 0, 0, 0, 4, 52, 80, 2] -24\n",
"[0, 0, 0, 0, 6, 6, 0, 0] -4\n",
"[0, 0, 0, 0, 9, 9, 0, 0] -4\n",
"[0, 0, 0, 0, 12, 12, 0, 0] -4\n",
"[0, 0, 0, 0, 15, 15, 0, 0] -8\n",
"[0, 0, 0, 0, 6, 6, 2, 2] -4\n",
"[0, 0, 0, 0, 9, 9, 3, 3] -4\n",
"[0, 0, 0, 0, 12, 12, 4, 4] -4\n",
"[0, 0, 0, 0, 15, 15, 5, 5] -8\n",
"[0, 0, 0, 0, 18, 18, 6, 6] -8\n",
"[0, 0, 0, 0, 21, 21, 7, 7] -8\n",
"[0, 0, 0, 0, 24, 24, 8, 8] -12\n",
"[0, 0, 0, 0, 6, 14, 24, 2] 4\n",
"[0, 0, 0, 0, 9, 21, 36, 3] 0\n",
"[0, 0, 0, 0, 12, 28, 48, 4] 0\n",
"[0, 0, 0, 0, 15, 35, 60, 5] -4\n",
"[0, 0, 0, 0, 18, 42, 72, 6] -8\n",
"[0, 0, 0, 0, 21, 49, 84, 7] -12\n",
"[0, 0, 0, 0, 6, 26, 52, 2] -8\n",
"[0, 0, 0, 0, 9, 39, 78, 3] -16\n",
"[0, 0, 0, 0, 6, 36, 50, 2] -16\n",
"[0, 0, 0, 0, 6, 40, 34, 2] -16\n",
"[0, 0, 0, 0, 6, 56, 80, 2] -24\n",
"[0, 0, 0, 0, 8, 8, 0, 0] -4\n",
"[0, 0, 0, 0, 12, 12, 0, 0] -4\n",
"[0, 0, 0, 0, 16, 16, 0, 0] -8\n",
"[0, 0, 0, 0, 8, 8, 2, 2] -4\n",
"[0, 0, 0, 0, 12, 12, 3, 3] -4\n",
"[0, 0, 0, 0, 16, 16, 4, 4] -8\n",
"[0, 0, 0, 0, 20, 20, 5, 5] -8\n",
"[0, 0, 0, 0, 24, 24, 6, 6] -12\n",
"[0, 0, 0, 0, 8, 16, 14, 2] -4\n",
"[0, 0, 0, 0, 12, 24, 21, 3] -4\n",
"[0, 0, 0, 0, 16, 32, 28, 4] -4\n",
"[0, 0, 0, 0, 20, 40, 35, 5] 0\n",
"[0, 0, 0, 0, 24, 48, 42, 6] -4\n",
"[0, 0, 0, 0, 28, 56, 49, 7] -4\n",
"[0, 0, 0, 0, 32, 64, 56, 8] 0\n",
"[0, 0, 0, 0, 36, 72, 63, 9] 4\n",
"[0, 0, 0, 0, 40, 80, 70, 10] 16\n",
"[0, 0, 0, 0, 8, 18, 26, 2] 4\n",
"[0, 0, 0, 0, 12, 27, 39, 3] 0\n",
"[0, 0, 0, 0, 16, 36, 52, 4] -4\n",
"[0, 0, 0, 0, 20, 45, 65, 5] -4\n",
"[0, 0, 0, 0, 24, 54, 78, 6] -8\n",
"[0, 0, 0, 0, 28, 63, 91, 7] -16\n",
"[0, 0, 0, 0, 8, 34, 90, 2] -24\n",
"[0, 0, 0, 0, 8, 40, 60, 2] -12\n",
"[0, 0, 0, 0, 8, 42, 46, 2] -16\n",
"[0, 0, 0, 0, 8, 48, 94, 2] -32\n",
"[0, 0, 0, 0, 8, 58, 76, 2] -16\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 0, 0, 0, 10, 10, 0, 0] -4\n",
"[0, 0, 0, 0, 15, 15, 0, 0] -8\n",
"[0, 0, 0, 0, 10, 10, 2, 2] -4\n",
"[0, 0, 0, 0, 15, 15, 3, 3] -8\n",
"[0, 0, 0, 0, 20, 20, 4, 4] -8\n",
"[0, 0, 0, 0, 25, 25, 5, 5] -12\n",
"[0, 0, 0, 0, 10, 14, 10, 2] 0\n",
"[0, 0, 0, 0, 15, 21, 15, 3] -4\n",
"[0, 0, 0, 0, 20, 28, 20, 4] 0\n",
"[0, 0, 0, 0, 25, 35, 25, 5] 0\n",
"[0, 0, 0, 0, 30, 42, 30, 6] 0\n",
"[0, 0, 0, 0, 35, 49, 35, 7] 0\n",
"[0, 0, 0, 0, 40, 56, 40, 8] 0\n",
"[0, 0, 0, 0, 45, 63, 45, 9] -4\n",
"[0, 0, 0, 0, 50, 70, 50, 10] 4\n",
"[0, 0, 0, 0, 55, 77, 55, 11] 8\n",
"[0, 0, 0, 0, 60, 84, 60, 12] 16\n",
"[0, 0, 0, 0, 10, 24, 58, 2] 0\n",
"[0, 0, 0, 0, 15, 36, 87, 3] -16\n",
"[0, 0, 0, 0, 10, 30, 86, 2] -12\n",
"[0, 0, 0, 0, 10, 32, 102, 2] -32\n",
"[0, 0, 0, 0, 10, 34, 66, 2] -8\n",
"[0, 0, 0, 0, 15, 51, 99, 3] -36\n",
"[0, 0, 0, 0, 10, 38, 100, 2] -32\n",
"[0, 0, 0, 0, 10, 52, 62, 2] -12\n",
"[0, 0, 0, 0, 12, 12, 0, 0] -4\n",
"[0, 0, 0, 0, 18, 18, 0, 0] -8\n",
"[0, 0, 0, 0, 12, 12, 2, 2] -4\n",
"[0, 0, 0, 0, 18, 18, 3, 3] -8\n",
"[0, 0, 0, 0, 24, 24, 4, 4] -12\n",
"[0, 0, 0, 0, 12, 28, 52, 2] 0\n",
"[0, 0, 0, 0, 18, 42, 78, 3] -8\n",
"[0, 0, 0, 0, 24, 56, 104, 4] -32\n",
"[0, 0, 0, 0, 12, 32, 36, 2] -4\n",
"[0, 0, 0, 0, 18, 48, 54, 3] -8\n",
"[0, 0, 0, 0, 24, 64, 72, 4] 0\n",
"[0, 0, 0, 0, 30, 80, 90, 5] 4\n",
"[0, 0, 0, 0, 36, 96, 108, 6] -4\n",
"[0, 0, 0, 0, 42, 112, 126, 7] -24\n",
"[0, 0, 0, 0, 12, 36, 34, 2] -4\n",
"[0, 0, 0, 0, 18, 54, 51, 3] -8\n",
"[0, 0, 0, 0, 24, 72, 68, 4] 8\n",
"[0, 0, 0, 0, 30, 90, 85, 5] 24\n",
"[0, 0, 0, 0, 12, 38, 58, 2] -8\n",
"[0, 0, 0, 0, 18, 57, 87, 3] -16\n",
"[0, 0, 0, 0, 12, 40, 92, 2] -20\n",
"[0, 0, 0, 0, 12, 42, 64, 2] -8\n",
"[0, 0, 0, 0, 18, 63, 96, 3] -24\n",
"[0, 0, 0, 0, 12, 46, 88, 2] -20\n",
"[0, 0, 0, 0, 12, 48, 102, 2] -36\n",
"[0, 0, 0, 0, 12, 52, 68, 2] -8\n",
"[0, 0, 0, 0, 18, 78, 102, 3] -20\n",
"[0, 0, 0, 0, 12, 54, 60, 2] -8\n",
"[0, 0, 0, 0, 18, 81, 90, 3] -4\n",
"[0, 0, 0, 0, 24, 108, 120, 4] -16\n",
"[0, 0, 0, 0, 12, 56, 100, 2] -32\n",
"[0, 0, 0, 0, 14, 14, 0, 0] -4\n",
"[0, 0, 0, 0, 21, 21, 0, 0] -8\n",
"[0, 0, 0, 0, 14, 14, 2, 2] -4\n",
"[0, 0, 0, 0, 21, 21, 3, 3] -8\n",
"[0, 0, 0, 0, 28, 28, 4, 4] -12\n",
"[0, 0, 0, 0, 14, 16, 8, 2] 0\n",
"[0, 0, 0, 0, 21, 24, 12, 3] -4\n",
"[0, 0, 0, 0, 28, 32, 16, 4] 0\n",
"[0, 0, 0, 0, 35, 40, 20, 5] -4\n",
"[0, 0, 0, 0, 42, 48, 24, 6] 0\n",
"[0, 0, 0, 0, 49, 56, 28, 7] -4\n",
"[0, 0, 0, 0, 56, 64, 32, 8] 0\n",
"[0, 0, 0, 0, 63, 72, 36, 9] 4\n",
"[0, 0, 0, 0, 70, 80, 40, 10] 12\n",
"[0, 0, 0, 0, 14, 26, 22, 2] 0\n",
"[0, 0, 0, 0, 21, 39, 33, 3] 0\n",
"[0, 0, 0, 0, 28, 52, 44, 4] 0\n",
"[0, 0, 0, 0, 35, 65, 55, 5] 4\n",
"[0, 0, 0, 0, 42, 78, 66, 6] 16\n",
"[0, 0, 0, 0, 14, 32, 76, 2] 0\n",
"[0, 0, 0, 0, 21, 48, 114, 3] -60\n",
"[0, 0, 0, 0, 14, 48, 84, 2] -12\n",
"[0, 0, 0, 0, 14, 54, 56, 2] -8\n",
"[0, 0, 0, 0, 21, 81, 84, 3] 8\n",
"[0, 0, 0, 0, 28, 108, 112, 4] 12\n",
"[0, 0, 0, 0, 14, 60, 100, 2] -28\n",
"[0, 0, 0, 0, 16, 16, 0, 0] -8\n",
"[0, 0, 0, 0, 16, 16, 2, 2] -8\n",
"[0, 0, 0, 0, 24, 24, 3, 3] -12\n",
"[0, 0, 0, 0, 16, 18, 22, 2] 8\n",
"[0, 0, 0, 0, 24, 27, 33, 3] 8\n",
"[0, 0, 0, 0, 32, 36, 44, 4] 8\n",
"[0, 0, 0, 0, 40, 45, 55, 5] 4\n",
"[0, 0, 0, 0, 48, 54, 66, 6] 0\n",
"[0, 0, 0, 0, 56, 63, 77, 7] 0\n",
"[0, 0, 0, 0, 64, 72, 88, 8] -4\n",
"[0, 0, 0, 0, 72, 81, 99, 9] -12\n",
"[0, 0, 0, 0, 16, 24, 18, 2] 0\n",
"[0, 0, 0, 0, 24, 36, 27, 3] 0\n",
"[0, 0, 0, 0, 32, 48, 36, 4] 4\n",
"[0, 0, 0, 0, 40, 60, 45, 5] 4\n",
"[0, 0, 0, 0, 48, 72, 54, 6] 8\n",
"[0, 0, 0, 0, 56, 84, 63, 7] 20\n",
"[0, 0, 0, 0, 16, 36, 80, 2] -8\n",
"[0, 0, 0, 0, 24, 54, 120, 3] -80\n",
"[0, 0, 0, 0, 16, 38, 70, 2] -4\n",
"[0, 0, 0, 0, 24, 57, 105, 3] -36\n",
"[0, 0, 0, 0, 16, 40, 100, 2] -28\n",
"[0, 0, 0, 0, 16, 52, 86, 2] -16\n",
"[0, 0, 0, 0, 16, 60, 84, 2] -12\n",
"[0, 0, 0, 0, 16, 64, 62, 2] -4\n",
"[0, 0, 0, 0, 24, 96, 93, 3] 20\n",
"[0, 0, 0, 0, 18, 18, 0, 0] -8\n",
"[0, 0, 0, 0, 18, 18, 2, 2] -8\n",
"[0, 0, 0, 0, 27, 27, 3, 3] -12\n",
"[0, 0, 0, 0, 18, 22, 24, 2] 8\n",
"[0, 0, 0, 0, 27, 33, 36, 3] 4\n",
"[0, 0, 0, 0, 36, 44, 48, 4] 4\n",
"[0, 0, 0, 0, 45, 55, 60, 5] 4\n",
"[0, 0, 0, 0, 54, 66, 72, 6] 4\n",
"[0, 0, 0, 0, 63, 77, 84, 7] 8\n",
"[0, 0, 0, 0, 72, 88, 96, 8] 4\n",
"[0, 0, 0, 0, 81, 99, 108, 9] -8\n",
"[0, 0, 0, 0, 90, 110, 120, 10] -24\n",
"[0, 0, 0, 0, 18, 24, 16, 2] 0\n",
"[0, 0, 0, 0, 27, 36, 24, 3] 0\n",
"[0, 0, 0, 0, 36, 48, 32, 4] 4\n",
"[0, 0, 0, 0, 45, 60, 40, 5] 4\n",
"[0, 0, 0, 0, 54, 72, 48, 6] 8\n",
"[0, 0, 0, 0, 63, 84, 56, 7] 20\n",
"[0, 0, 0, 0, 18, 36, 96, 2] -20\n",
"[0, 0, 0, 0, 18, 42, 38, 2] -4\n",
"[0, 0, 0, 0, 27, 63, 57, 3] 0\n",
"[0, 0, 0, 0, 36, 84, 76, 4] 24\n",
"[0, 0, 0, 0, 18, 50, 74, 2] -8\n",
"[0, 0, 0, 0, 27, 75, 111, 3] -40\n",
"[0, 0, 0, 0, 18, 64, 58, 2] -4\n",
"[0, 0, 0, 0, 27, 96, 87, 3] 28\n",
"[0, 0, 0, 0, 18, 66, 88, 2] -12\n",
"[0, 0, 0, 0, 18, 68, 94, 2] -16\n",
"[0, 0, 0, 0, 20, 20, 0, 0] -8\n",
"[0, 0, 0, 0, 20, 20, 2, 2] -8\n",
"[0, 0, 0, 0, 30, 30, 3, 3] -12\n",
"[0, 0, 0, 0, 20, 36, 30, 2] 0\n",
"[0, 0, 0, 0, 30, 54, 45, 3] 0\n",
"[0, 0, 0, 0, 40, 72, 60, 4] 16\n",
"[0, 0, 0, 0, 20, 38, 92, 2] -12\n",
"[0, 0, 0, 0, 20, 42, 82, 2] -8\n",
"[0, 0, 0, 0, 30, 63, 123, 3] -84\n",
"[0, 0, 0, 0, 20, 44, 60, 2] 0\n",
"[0, 0, 0, 0, 30, 66, 90, 3] -8\n",
"[0, 0, 0, 0, 40, 88, 120, 4] -44\n",
"[0, 0, 0, 0, 20, 46, 22, 2] -8\n",
"[0, 0, 0, 0, 30, 69, 33, 3] 8\n",
"[0, 0, 0, 0, 40, 92, 44, 4] 36\n",
"[0, 0, 0, 0, 20, 62, 96, 2] -20\n",
"[0, 0, 0, 0, 20, 66, 56, 2] 0\n",
"[0, 0, 0, 0, 30, 99, 84, 3] 40\n",
"[0, 0, 0, 0, 20, 74, 62, 2] 8\n",
"[0, 0, 0, 0, 30, 111, 93, 3] 56\n",
"[0, 0, 0, 0, 20, 80, 66, 2] 12\n",
"[0, 0, 0, 0, 22, 18, 16, 2] 12\n",
"[0, 0, 0, 0, 22, 22, 0, 0] -8\n",
"[0, 0, 0, 0, 22, 22, 2, 2] -8\n",
"[0, 0, 0, 0, 33, 33, 3, 3] -16\n",
"[0, 0, 0, 0, 22, 26, 14, 2] 0\n",
"[0, 0, 0, 0, 33, 39, 21, 3] -4\n",
"[0, 0, 0, 0, 44, 52, 28, 4] 0\n",
"[0, 0, 0, 0, 55, 65, 35, 5] 8\n",
"[0, 0, 0, 0, 66, 78, 42, 6] 16\n",
"[0, 0, 0, 0, 22, 34, 26, 2] 4\n",
"[0, 0, 0, 0, 33, 51, 39, 3] 0\n",
"[0, 0, 0, 0, 44, 68, 52, 4] 8\n",
"[0, 0, 0, 0, 55, 85, 65, 5] 24\n",
"[0, 0, 0, 0, 22, 44, 80, 2] -4\n",
"[0, 0, 0, 0, 33, 66, 120, 3] -72\n",
"[0, 0, 0, 0, 22, 46, 20, 2] -8\n",
"[0, 0, 0, 0, 33, 69, 30, 3] 4\n",
"[0, 0, 0, 0, 44, 92, 40, 4] 36\n",
"[0, 0, 0, 0, 22, 50, 28, 2] -4\n",
"[0, 0, 0, 0, 33, 75, 42, 3] 12\n",
"[0, 0, 0, 0, 22, 56, 94, 2] -16\n",
"[0, 0, 0, 0, 22, 60, 66, 2] 0\n",
"[0, 0, 0, 0, 33, 90, 99, 3] 4\n",
"[0, 0, 0, 0, 44, 120, 132, 4] -24\n",
"[0, 0, 0, 0, 22, 62, 58, 2] 0\n",
"[0, 0, 0, 0, 33, 93, 87, 3] 24\n",
"[0, 0, 0, 0, 22, 74, 84, 2] 4\n",
"[0, 0, 0, 0, 33, 111, 126, 3] -28\n",
"[0, 0, 0, 0, 22, 80, 96, 2] -4\n",
"[0, 0, 0, 0, 33, 120, 144, 3] -72\n",
"[0, 0, 0, 0, 24, 14, 6, 2] 4\n",
"[0, 0, 0, 0, 36, 21, 9, 3] 4\n",
"[0, 0, 0, 0, 48, 28, 12, 4] 0\n",
"[0, 0, 0, 0, 60, 35, 15, 5] -4\n",
"[0, 0, 0, 0, 72, 42, 18, 6] -4\n",
"[0, 0, 0, 0, 84, 49, 21, 7] -16\n",
"[0, 0, 0, 0, 24, 22, 18, 2] 8\n",
"[0, 0, 0, 0, 36, 33, 27, 3] 8\n",
"[0, 0, 0, 0, 48, 44, 36, 4] 4\n",
"[0, 0, 0, 0, 60, 55, 45, 5] 0\n",
"[0, 0, 0, 0, 72, 66, 54, 6] 4\n",
"[0, 0, 0, 0, 84, 77, 63, 7] 4\n",
"[0, 0, 0, 0, 96, 88, 72, 8] 0\n",
"[0, 0, 0, 0, 108, 99, 81, 9] -12\n",
"[0, 0, 0, 0, 24, 24, 0, 0] -12\n",
"[0, 0, 0, 0, 24, 24, 2, 2] -12\n",
"[0, 0, 0, 0, 24, 44, 98, 2] -24\n",
"[0, 0, 0, 0, 24, 52, 22, 2] -8\n",
"[0, 0, 0, 0, 36, 78, 33, 3] 16\n",
"[0, 0, 0, 0, 24, 56, 68, 2] 0\n",
"[0, 0, 0, 0, 36, 84, 102, 3] -4\n",
"[0, 0, 0, 0, 48, 112, 136, 4] -56\n",
"[0, 0, 0, 0, 24, 62, 64, 2] 0\n",
"[0, 0, 0, 0, 36, 93, 96, 3] 16\n",
"[0, 0, 0, 0, 24, 70, 38, 2] 4\n",
"[0, 0, 0, 0, 36, 105, 57, 3] 56\n",
"[0, 0, 0, 0, 24, 84, 60, 2] 20\n",
"[0, 0, 0, 0, 24, 86, 52, 2] 20\n",
"[0, 0, 0, 0, 24, 90, 100, 2] 4\n",
"[0, 0, 0, 0, 36, 135, 150, 3] -52\n",
"[0, 0, 0, 0, 26, 18, 8, 2] 4\n",
"[0, 0, 0, 0, 39, 27, 12, 3] 0\n",
"[0, 0, 0, 0, 52, 36, 16, 4] 0\n",
"[0, 0, 0, 0, 65, 45, 20, 5] -4\n",
"[0, 0, 0, 0, 78, 54, 24, 6] -8\n",
"[0, 0, 0, 0, 91, 63, 28, 7] -16\n",
"[0, 0, 0, 0, 26, 26, 0, 0] -12\n",
"[0, 0, 0, 0, 26, 26, 2, 2] -12\n",
"[0, 0, 0, 0, 26, 34, 22, 2] 0\n",
"[0, 0, 0, 0, 39, 51, 33, 3] 4\n",
"[0, 0, 0, 0, 52, 68, 44, 4] 8\n",
"[0, 0, 0, 0, 65, 85, 55, 5] 24\n",
"[0, 0, 0, 0, 26, 44, 50, 2] 0\n",
"[0, 0, 0, 0, 39, 66, 75, 3] 4\n",
"[0, 0, 0, 0, 52, 88, 100, 4] 8\n",
"[0, 0, 0, 0, 65, 110, 125, 5] -24\n",
"[0, 0, 0, 0, 26, 46, 38, 2] 0\n",
"[0, 0, 0, 0, 39, 69, 57, 3] 8\n",
"[0, 0, 0, 0, 52, 92, 76, 4] 36\n",
"[0, 0, 0, 0, 26, 54, 94, 2] -16\n",
"[0, 0, 0, 0, 26, 58, 80, 2] -4\n",
"[0, 0, 0, 0, 39, 87, 120, 3] -48\n",
"[0, 0, 0, 0, 26, 62, 44, 2] 0\n",
"[0, 0, 0, 0, 39, 93, 66, 3] 36\n",
"[0, 0, 0, 0, 26, 64, 98, 2] -20\n",
"[0, 0, 0, 0, 26, 66, 64, 2] 4\n",
"[0, 0, 0, 0, 39, 99, 96, 3] 28\n",
"[0, 0, 0, 0, 26, 68, 48, 2] 4\n",
"[0, 0, 0, 0, 39, 102, 72, 3] 52\n",
"[0, 0, 0, 0, 26, 72, 86, 2] 0\n",
"[0, 0, 0, 0, 39, 108, 129, 3] -40\n",
"[0, 0, 0, 0, 26, 74, 90, 2] -4\n",
"[0, 0, 0, 0, 39, 111, 135, 3] -56\n",
"[0, 0, 0, 0, 26, 78, 46, 2] 12\n",
"[0, 0, 0, 0, 26, 86, 82, 2] 16\n",
"[0, 0, 0, 0, 26, 88, 58, 2] 24\n",
"[0, 0, 0, 0, 26, 96, 60, 2] 40\n",
"[0, 0, 0, 0, 28, 28, 0, 0] -12\n",
"[0, 0, 0, 0, 28, 28, 2, 2] -12\n",
"[0, 0, 0, 0, 28, 44, 34, 2] 4\n",
"[0, 0, 0, 0, 42, 66, 51, 3] 8\n",
"[0, 0, 0, 0, 56, 88, 68, 4] 32\n",
"[0, 0, 0, 0, 28, 48, 44, 2] 0\n",
"[0, 0, 0, 0, 42, 72, 66, 3] 12\n",
"[0, 0, 0, 0, 28, 50, 22, 2] -4\n",
"[0, 0, 0, 0, 42, 75, 33, 3] 16\n",
"[0, 0, 0, 0, 28, 54, 30, 2] 0\n",
"[0, 0, 0, 0, 42, 81, 45, 3] 20\n",
"[0, 0, 0, 0, 28, 58, 100, 2] -20\n",
"[0, 0, 0, 0, 28, 68, 62, 2] 8\n",
"[0, 0, 0, 0, 42, 102, 93, 3] 40\n",
"[0, 0, 0, 0, 28, 76, 84, 2] 8\n",
"[0, 0, 0, 0, 42, 114, 126, 3] -16\n",
"[0, 0, 0, 0, 28, 90, 78, 2] 28\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 0, 0, 0, 30, 30, 2, 2] -12\n",
"[0, 0, 0, 0, 30, 36, 20, 2] 0\n",
"[0, 0, 0, 0, 45, 54, 30, 3] 0\n",
"[0, 0, 0, 0, 60, 72, 40, 4] 12\n",
"[0, 0, 0, 0, 30, 50, 70, 2] 4\n",
"[0, 0, 0, 0, 45, 75, 105, 3] -20\n",
"[0, 0, 0, 0, 30, 54, 28, 2] 0\n",
"[0, 0, 0, 0, 45, 81, 42, 3] 20\n",
"[0, 0, 0, 0, 30, 60, 52, 2] 4\n",
"[0, 0, 0, 0, 45, 90, 78, 3] 28\n",
"[0, 0, 0, 0, 30, 64, 78, 2] 4\n",
"[0, 0, 0, 0, 45, 96, 117, 3] -28\n",
"[0, 0, 0, 0, 30, 78, 48, 2] 16\n",
"[0, 0, 0, 0, 30, 84, 86, 2] 16\n",
"[0, 0, 0, 0, 30, 92, 96, 2] 16\n",
"[0, 0, 0, 0, 30, 94, 100, 2] 16\n",
"[0, 0, 0, 0, 30, 102, 54, 2] 52\n",
"[0, 0, 0, 0, 32, 32, 2, 2] -12\n",
"[0, 0, 0, 0, 32, 42, 34, 2] 8\n",
"[0, 0, 0, 0, 48, 63, 51, 3] 4\n",
"[0, 0, 0, 0, 64, 84, 68, 4] 28\n",
"[0, 0, 0, 0, 32, 46, 90, 2] -8\n",
"[0, 0, 0, 0, 48, 69, 135, 3] -120\n",
"[0, 0, 0, 0, 32, 50, 48, 2] 4\n",
"[0, 0, 0, 0, 48, 75, 72, 3] 12\n",
"[0, 0, 0, 0, 32, 56, 46, 2] 4\n",
"[0, 0, 0, 0, 48, 84, 69, 3] 24\n",
"[0, 0, 0, 0, 32, 76, 92, 2] 4\n",
"[0, 0, 0, 0, 48, 114, 138, 3] -60\n",
"[0, 0, 0, 0, 32, 78, 74, 2] 16\n",
"[0, 0, 0, 0, 32, 88, 82, 2] 24\n",
"[0, 0, 0, 0, 32, 92, 50, 2] 36\n",
"[0, 0, 0, 0, 32, 96, 70, 2] 44\n",
"[0, 0, 0, 0, 32, 100, 88, 2] 40\n",
"[0, 0, 0, 0, 34, 34, 2, 2] -16\n",
"[0, 0, 0, 0, 34, 36, 12, 2] -8\n",
"[0, 0, 0, 0, 51, 54, 18, 3] -4\n",
"[0, 0, 0, 0, 68, 72, 24, 4] 8\n",
"[0, 0, 0, 0, 85, 90, 30, 5] 20\n",
"[0, 0, 0, 0, 34, 40, 6, 2] -16\n",
"[0, 0, 0, 0, 34, 42, 32, 2] 4\n",
"[0, 0, 0, 0, 51, 63, 48, 3] 4\n",
"[0, 0, 0, 0, 68, 84, 64, 4] 24\n",
"[0, 0, 0, 0, 34, 44, 28, 2] 0\n",
"[0, 0, 0, 0, 51, 66, 42, 3] 8\n",
"[0, 0, 0, 0, 68, 88, 56, 4] 28\n",
"[0, 0, 0, 0, 34, 48, 88, 2] -8\n",
"[0, 0, 0, 0, 51, 72, 132, 3] -108\n",
"[0, 0, 0, 0, 34, 50, 100, 2] -20\n",
"[0, 0, 0, 0, 34, 52, 78, 2] 0\n",
"[0, 0, 0, 0, 51, 78, 117, 3] -52\n",
"[0, 0, 0, 0, 34, 54, 42, 2] 4\n",
"[0, 0, 0, 0, 51, 81, 63, 3] 20\n",
"[0, 0, 0, 0, 34, 58, 96, 2] -16\n",
"[0, 0, 0, 0, 34, 60, 64, 2] 4\n",
"[0, 0, 0, 0, 51, 90, 96, 3] 12\n",
"[0, 0, 0, 0, 34, 62, 80, 2] 0\n",
"[0, 0, 0, 0, 51, 93, 120, 3] -40\n",
"[0, 0, 0, 0, 34, 64, 36, 2] 4\n",
"[0, 0, 0, 0, 51, 96, 54, 3] 40\n",
"[0, 0, 0, 0, 34, 76, 68, 2] 16\n",
"[0, 0, 0, 0, 34, 80, 60, 2] 20\n",
"[0, 0, 0, 0, 34, 84, 62, 2] 24\n",
"[0, 0, 0, 0, 34, 96, 66, 2] 40\n",
"[0, 0, 0, 0, 36, 22, 4, 2] -4\n",
"[0, 0, 0, 0, 54, 33, 6, 3] -12\n",
"[0, 0, 0, 0, 36, 32, 12, 2] -4\n",
"[0, 0, 0, 0, 54, 48, 18, 3] -4\n",
"[0, 0, 0, 0, 72, 64, 24, 4] 4\n",
"[0, 0, 0, 0, 90, 80, 30, 5] 4\n",
"[0, 0, 0, 0, 108, 96, 36, 6] -8\n",
"[0, 0, 0, 0, 126, 112, 42, 7] -24\n",
"[0, 0, 0, 0, 36, 36, 2, 2] -16\n",
"[0, 0, 0, 0, 36, 42, 36, 2] 4\n",
"[0, 0, 0, 0, 54, 63, 54, 3] 4\n",
"[0, 0, 0, 0, 72, 84, 72, 4] 24\n",
"[0, 0, 0, 0, 36, 54, 64, 2] 4\n",
"[0, 0, 0, 0, 54, 81, 96, 3] 0\n",
"[0, 0, 0, 0, 72, 108, 128, 4] -36\n",
"[0, 0, 0, 0, 36, 64, 34, 2] 8\n",
"[0, 0, 0, 0, 54, 96, 51, 3] 40\n",
"[0, 0, 0, 0, 36, 72, 94, 2] -4\n",
"[0, 0, 0, 0, 54, 108, 141, 3] -88\n",
"[0, 0, 0, 0, 36, 76, 40, 2] 16\n",
"[0, 0, 0, 0, 36, 88, 90, 2] 16\n",
"[0, 0, 0, 0, 36, 94, 98, 2] 16\n",
"[0, 0, 0, 0, 36, 100, 46, 2] 48\n",
"[0, 0, 0, 0, 38, 38, 2, 2] -16\n",
"[0, 0, 0, 0, 38, 42, 18, 2] 0\n",
"[0, 0, 0, 0, 57, 63, 27, 3] 4\n",
"[0, 0, 0, 0, 76, 84, 36, 4] 20\n",
"[0, 0, 0, 0, 38, 46, 26, 2] 4\n",
"[0, 0, 0, 0, 57, 69, 39, 3] 8\n",
"[0, 0, 0, 0, 76, 92, 52, 4] 32\n",
"[0, 0, 0, 0, 38, 52, 50, 2] 4\n",
"[0, 0, 0, 0, 57, 78, 75, 3] 12\n",
"[0, 0, 0, 0, 38, 54, 72, 2] 4\n",
"[0, 0, 0, 0, 57, 81, 108, 3] -24\n",
"[0, 0, 0, 0, 38, 64, 94, 2] -8\n",
"[0, 0, 0, 0, 57, 96, 141, 3] -112\n",
"[0, 0, 0, 0, 38, 66, 54, 2] 8\n",
"[0, 0, 0, 0, 57, 99, 81, 3] 40\n",
"[0, 0, 0, 0, 38, 74, 88, 2] 4\n",
"[0, 0, 0, 0, 57, 111, 132, 3] -48\n",
"[0, 0, 0, 0, 38, 78, 100, 2] -4\n",
"[0, 0, 0, 0, 57, 117, 150, 3] -104\n",
"[0, 0, 0, 0, 38, 90, 58, 2] 32\n",
"[0, 0, 0, 0, 38, 94, 86, 2] 32\n",
"[0, 0, 0, 0, 40, 40, 2, 2] -16\n",
"[0, 0, 0, 0, 40, 56, 60, 2] 8\n",
"[0, 0, 0, 0, 60, 84, 90, 3] 8\n",
"[0, 0, 0, 0, 80, 112, 120, 4] -4\n",
"[0, 0, 0, 0, 100, 140, 150, 5] -60\n",
"[0, 0, 0, 0, 40, 58, 74, 2] 4\n",
"[0, 0, 0, 0, 60, 87, 111, 3] -24\n",
"[0, 0, 0, 0, 40, 64, 50, 2] 8\n",
"[0, 0, 0, 0, 60, 96, 75, 3] 36\n",
"[0, 0, 0, 0, 40, 66, 44, 2] 8\n",
"[0, 0, 0, 0, 60, 99, 66, 3] 44\n",
"[0, 0, 0, 0, 40, 70, 76, 2] 12\n",
"[0, 0, 0, 0, 40, 76, 36, 2] 16\n",
"[0, 0, 0, 0, 40, 78, 70, 2] 20\n",
"[0, 0, 0, 0, 40, 80, 90, 2] 8\n",
"[0, 0, 0, 0, 60, 120, 135, 3] -36\n",
"[0, 0, 0, 0, 40, 82, 94, 2] 8\n",
"[0, 0, 0, 0, 60, 123, 141, 3] -52\n",
"[0, 0, 0, 0, 40, 84, 102, 2] 0\n",
"[0, 0, 0, 0, 60, 126, 153, 3] -92\n",
"[0, 0, 0, 0, 40, 86, 54, 2] 28\n",
"[0, 0, 0, 0, 40, 94, 66, 2] 40\n",
"[0, 0, 0, 0, 42, 42, 2, 2] -16\n",
"[0, 0, 0, 0, 42, 54, 34, 2] 8\n",
"[0, 0, 0, 0, 63, 81, 51, 3] 20\n",
"[0, 0, 0, 0, 42, 68, 86, 2] 4\n",
"[0, 0, 0, 0, 63, 102, 129, 3] -52\n",
"[0, 0, 0, 0, 42, 72, 98, 2] -8\n",
"[0, 0, 0, 0, 63, 108, 147, 3] -112\n",
"[0, 0, 0, 0, 42, 74, 76, 2] 16\n",
"[0, 0, 0, 0, 42, 92, 100, 2] 16\n",
"[0, 0, 0, 0, 44, 44, 2, 2] -20\n",
"[0, 0, 0, 0, 44, 48, 28, 2] 0\n",
"[0, 0, 0, 0, 66, 72, 42, 3] 12\n",
"[0, 0, 0, 0, 44, 58, 14, 2] -8\n",
"[0, 0, 0, 0, 66, 87, 21, 3] 20\n",
"[0, 0, 0, 0, 44, 62, 26, 2] 4\n",
"[0, 0, 0, 0, 66, 93, 39, 3] 36\n",
"[0, 0, 0, 0, 44, 64, 102, 2] -20\n",
"[0, 0, 0, 0, 44, 66, 40, 2] 8\n",
"[0, 0, 0, 0, 66, 99, 60, 3] 48\n",
"[0, 0, 0, 0, 44, 68, 80, 2] 4\n",
"[0, 0, 0, 0, 66, 102, 120, 3] -24\n",
"[0, 0, 0, 0, 44, 72, 70, 2] 12\n",
"[0, 0, 0, 0, 44, 76, 62, 2] 16\n",
"[0, 0, 0, 0, 44, 78, 54, 2] 16\n",
"[0, 0, 0, 0, 44, 100, 72, 2] 48\n",
"[0, 0, 0, 0, 44, 102, 52, 2] 52\n",
"[0, 0, 0, 0, 46, 42, 8, 2] -12\n",
"[0, 0, 0, 0, 46, 46, 2, 2] -20\n",
"[0, 0, 0, 0, 46, 56, 32, 2] 4\n",
"[0, 0, 0, 0, 69, 84, 48, 3] 20\n",
"[0, 0, 0, 0, 46, 60, 56, 2] 4\n",
"[0, 0, 0, 0, 69, 90, 84, 3] 24\n",
"[0, 0, 0, 0, 46, 66, 94, 2] -8\n",
"[0, 0, 0, 0, 69, 99, 141, 3] -108\n",
"[0, 0, 0, 0, 46, 70, 78, 2] 8\n",
"[0, 0, 0, 0, 69, 105, 117, 3] -12\n",
"[0, 0, 0, 0, 46, 74, 58, 2] 12\n",
"[0, 0, 0, 0, 46, 76, 70, 2] 16\n",
"[0, 0, 0, 0, 46, 78, 26, 2] 16\n",
"[0, 0, 0, 0, 46, 90, 80, 2] 28\n",
"[0, 0, 0, 0, 46, 94, 82, 2] 32\n",
"[0, 0, 0, 0, 46, 98, 30, 2] 44\n",
"[0, 0, 0, 0, 46, 100, 36, 2] 48\n",
"[0, 0, 0, 0, 46, 102, 84, 2] 48\n",
"[0, 0, 0, 0, 48, 50, 32, 2] 4\n",
"[0, 0, 0, 0, 72, 75, 48, 3] 12\n",
"[0, 0, 0, 0, 48, 58, 72, 2] 4\n",
"[0, 0, 0, 0, 72, 87, 108, 3] -16\n",
"[0, 0, 0, 0, 48, 68, 26, 2] 8\n",
"[0, 0, 0, 0, 72, 102, 39, 3] 52\n",
"[0, 0, 0, 0, 48, 70, 98, 2] -12\n",
"[0, 0, 0, 0, 48, 78, 30, 2] 16\n",
"[0, 0, 0, 0, 48, 80, 86, 2] 12\n",
"[0, 0, 0, 0, 48, 82, 60, 2] 24\n",
"[0, 0, 0, 0, 48, 84, 92, 2] 12\n",
"[0, 0, 0, 0, 48, 86, 96, 2] 8\n",
"[0, 0, 0, 0, 72, 129, 144, 3] -44\n",
"[0, 0, 0, 0, 48, 90, 54, 2] 32\n",
"[0, 0, 0, 0, 50, 36, 6, 2] -12\n",
"[0, 0, 0, 0, 50, 44, 26, 2] 4\n",
"[0, 0, 0, 0, 75, 66, 39, 3] 4\n",
"[0, 0, 0, 0, 100, 88, 52, 4] 4\n",
"[0, 0, 0, 0, 125, 110, 65, 5] -24\n",
"[0, 0, 0, 0, 50, 52, 38, 2] 4\n",
"[0, 0, 0, 0, 75, 78, 57, 3] 12\n",
"[0, 0, 0, 0, 50, 62, 100, 2] -16\n",
"[0, 0, 0, 0, 50, 64, 40, 2] 8\n",
"[0, 0, 0, 0, 75, 96, 60, 3] 40\n",
"[0, 0, 0, 0, 50, 68, 58, 2] 8\n",
"[0, 0, 0, 0, 75, 102, 87, 3] 40\n",
"[0, 0, 0, 0, 50, 84, 50, 2] 24\n",
"[0, 0, 0, 0, 50, 86, 70, 2] 28\n",
"[0, 0, 0, 0, 50, 88, 60, 2] 32\n",
"[0, 0, 0, 0, 50, 92, 32, 2] 36\n",
"[0, 0, 0, 0, 50, 96, 98, 2] 20\n",
"[0, 0, 0, 0, 50, 98, 102, 2] 20\n",
"[0, 0, 0, 0, 52, 26, 6, 2] -4\n",
"[0, 0, 0, 0, 78, 39, 9, 3] -16\n",
"[0, 0, 0, 0, 52, 28, 12, 2] 0\n",
"[0, 0, 0, 0, 78, 42, 18, 3] -8\n",
"[0, 0, 0, 0, 104, 56, 24, 4] -32\n",
"[0, 0, 0, 0, 52, 48, 4, 2] -20\n",
"[0, 0, 0, 0, 52, 58, 56, 2] 4\n",
"[0, 0, 0, 0, 78, 87, 84, 3] 16\n",
"[0, 0, 0, 0, 52, 60, 30, 2] 4\n",
"[0, 0, 0, 0, 78, 90, 45, 3] 24\n",
"[0, 0, 0, 0, 52, 66, 76, 2] 8\n",
"[0, 0, 0, 0, 78, 99, 114, 3] -16\n",
"[0, 0, 0, 0, 52, 74, 60, 2] 16\n",
"[0, 0, 0, 0, 52, 82, 78, 2] 20\n",
"[0, 0, 0, 0, 52, 84, 66, 2] 24\n",
"[0, 0, 0, 0, 52, 94, 70, 2] 40\n",
"[0, 0, 0, 0, 52, 102, 44, 2] 52\n",
"[0, 0, 0, 0, 54, 66, 38, 2] 8\n",
"[0, 0, 0, 0, 81, 99, 57, 3] 40\n",
"[0, 0, 0, 0, 54, 74, 68, 2] 16\n",
"[0, 0, 0, 0, 54, 76, 86, 2] 8\n",
"[0, 0, 0, 0, 81, 114, 129, 3] -32\n",
"[0, 0, 0, 0, 54, 78, 44, 2] 16\n",
"[0, 0, 0, 0, 54, 82, 102, 2] -4\n",
"[0, 0, 0, 0, 81, 123, 153, 3] -104\n",
"[0, 0, 0, 0, 54, 86, 40, 2] 28\n",
"[0, 0, 0, 0, 54, 90, 48, 2] 32\n",
"[0, 0, 0, 0, 54, 102, 30, 2] 52\n",
"[0, 0, 0, 0, 56, 26, 4, 2] -8\n",
"[0, 0, 0, 0, 84, 39, 6, 3] -24\n",
"[0, 0, 0, 0, 56, 54, 14, 2] -8\n",
"[0, 0, 0, 0, 84, 81, 21, 3] 4\n",
"[0, 0, 0, 0, 112, 108, 28, 4] 8\n",
"[0, 0, 0, 0, 140, 135, 35, 5] -8\n",
"[0, 0, 0, 0, 168, 162, 42, 6] -20\n",
"[0, 0, 0, 0, 56, 60, 46, 2] 4\n",
"[0, 0, 0, 0, 84, 90, 69, 3] 24\n",
"[0, 0, 0, 0, 56, 66, 20, 2] 0\n",
"[0, 0, 0, 0, 84, 99, 30, 3] 36\n",
"[0, 0, 0, 0, 56, 68, 16, 2] 0\n",
"[0, 0, 0, 0, 84, 102, 24, 3] 40\n",
"[0, 0, 0, 0, 56, 70, 74, 2] 8\n",
"[0, 0, 0, 0, 84, 105, 111, 3] 0\n",
"[0, 0, 0, 0, 112, 140, 148, 4] -80\n",
"[0, 0, 0, 0, 56, 78, 58, 2] 16\n",
"[0, 0, 0, 0, 56, 92, 64, 2] 36\n",
"[0, 0, 0, 0, 56, 96, 78, 2] 40\n",
"[0, 0, 0, 0, 58, 38, 12, 2] -8\n",
"[0, 0, 0, 0, 87, 57, 18, 3] -16\n",
"[0, 0, 0, 0, 58, 62, 22, 2] 0\n",
"[0, 0, 0, 0, 87, 93, 33, 3] 24\n",
"[0, 0, 0, 0, 58, 64, 18, 2] 0\n",
"[0, 0, 0, 0, 87, 96, 27, 3] 28\n",
"[0, 0, 0, 0, 58, 68, 50, 2] 8\n",
"[0, 0, 0, 0, 87, 102, 75, 3] 36\n",
"[0, 0, 0, 0, 58, 70, 60, 2] 12\n",
"[0, 0, 0, 0, 58, 74, 46, 2] 12\n",
"[0, 0, 0, 0, 58, 78, 56, 2] 16\n",
"[0, 0, 0, 0, 58, 82, 58, 2] 20\n",
"[0, 0, 0, 0, 58, 84, 20, 2] 16\n",
"[0, 0, 0, 0, 58, 86, 88, 2] 16\n",
"[0, 0, 0, 0, 58, 88, 26, 2] 28\n",
"[0, 0, 0, 0, 58, 90, 38, 2] 32\n",
"[0, 0, 0, 0, 58, 94, 74, 2] 36\n",
"[0, 0, 0, 0, 60, 40, 8, 2] -12\n",
"[0, 0, 0, 0, 60, 44, 20, 2] -4\n",
"[0, 0, 0, 0, 90, 66, 30, 3] -8\n",
"[0, 0, 0, 0, 120, 88, 40, 4] -48\n",
"[0, 0, 0, 0, 60, 54, 12, 2] -12\n",
"[0, 0, 0, 0, 60, 56, 40, 2] 4\n",
"[0, 0, 0, 0, 90, 84, 60, 3] 12\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 0, 0, 0, 60, 70, 58, 2] 8\n",
"[0, 0, 0, 0, 90, 105, 87, 3] 36\n",
"[0, 0, 0, 0, 60, 74, 52, 2] 12\n",
"[0, 0, 0, 0, 60, 76, 74, 2] 12\n",
"[0, 0, 0, 0, 60, 80, 34, 2] 20\n",
"[0, 0, 0, 0, 60, 82, 48, 2] 20\n",
"[0, 0, 0, 0, 60, 84, 24, 2] 20\n",
"[0, 0, 0, 0, 60, 86, 68, 2] 28\n",
"[0, 0, 0, 0, 60, 88, 50, 2] 28\n",
"[0, 0, 0, 0, 60, 96, 26, 2] 40\n",
"[0, 0, 0, 0, 60, 98, 72, 2] 44\n",
"[0, 0, 0, 0, 60, 100, 92, 2] 36\n",
"[0, 0, 0, 0, 62, 52, 10, 2] -8\n",
"[0, 0, 0, 0, 93, 78, 15, 3] -12\n",
"[0, 0, 0, 0, 62, 64, 16, 2] 0\n",
"[0, 0, 0, 0, 93, 96, 24, 3] 20\n",
"[0, 0, 0, 0, 62, 68, 28, 2] 8\n",
"[0, 0, 0, 0, 93, 102, 42, 3] 36\n",
"[0, 0, 0, 0, 62, 74, 20, 2] 8\n",
"[0, 0, 0, 0, 93, 111, 30, 3] 52\n",
"[0, 0, 0, 0, 62, 76, 44, 2] 16\n",
"[0, 0, 0, 0, 62, 78, 94, 2] 4\n",
"[0, 0, 0, 0, 93, 117, 141, 3] -84\n",
"[0, 0, 0, 0, 62, 84, 34, 2] 28\n",
"[0, 0, 0, 0, 62, 92, 68, 2] 40\n",
"[0, 0, 0, 0, 62, 94, 84, 2] 36\n",
"[0, 0, 0, 0, 62, 100, 86, 2] 44\n",
"[0, 0, 0, 0, 64, 42, 12, 2] -8\n",
"[0, 0, 0, 0, 96, 63, 18, 3] -24\n",
"[0, 0, 0, 0, 64, 60, 34, 2] 8\n",
"[0, 0, 0, 0, 96, 90, 51, 3] 8\n",
"[0, 0, 0, 0, 128, 120, 68, 4] -8\n",
"[0, 0, 0, 0, 160, 150, 85, 5] -44\n",
"[0, 0, 0, 0, 64, 62, 24, 2] 4\n",
"[0, 0, 0, 0, 96, 93, 36, 3] 12\n",
"[0, 0, 0, 0, 64, 66, 26, 2] 8\n",
"[0, 0, 0, 0, 96, 99, 39, 3] 24\n",
"[0, 0, 0, 0, 64, 86, 76, 2] 28\n",
"[0, 0, 0, 0, 64, 92, 56, 2] 36\n",
"[0, 0, 0, 0, 64, 102, 82, 2] 48\n",
"[0, 0, 0, 0, 66, 34, 10, 2] -4\n",
"[0, 0, 0, 0, 99, 51, 15, 3] -32\n",
"[0, 0, 0, 0, 66, 60, 22, 2] 0\n",
"[0, 0, 0, 0, 99, 90, 33, 3] 8\n",
"[0, 0, 0, 0, 132, 120, 44, 4] -24\n",
"[0, 0, 0, 0, 66, 68, 90, 2] -4\n",
"[0, 0, 0, 0, 99, 102, 135, 3] -100\n",
"[0, 0, 0, 0, 66, 70, 62, 2] 12\n",
"[0, 0, 0, 0, 66, 72, 76, 2] 12\n",
"[0, 0, 0, 0, 66, 80, 20, 2] 12\n",
"[0, 0, 0, 0, 66, 84, 52, 2] 24\n",
"[0, 0, 0, 0, 66, 94, 40, 2] 40\n",
"[0, 0, 0, 0, 66, 96, 34, 2] 44\n",
"[0, 0, 0, 0, 68, 52, 12, 2] -12\n",
"[0, 0, 0, 0, 68, 56, 24, 2] 0\n",
"[0, 0, 0, 0, 102, 84, 36, 3] -8\n",
"[0, 0, 0, 0, 136, 112, 48, 4] -60\n",
"[0, 0, 0, 0, 68, 72, 96, 2] -8\n",
"[0, 0, 0, 0, 102, 108, 144, 3] -128\n",
"[0, 0, 0, 0, 68, 74, 54, 2] 12\n",
"[0, 0, 0, 0, 68, 76, 34, 2] 16\n",
"[0, 0, 0, 0, 68, 80, 82, 2] 12\n",
"[0, 0, 0, 0, 68, 86, 60, 2] 28\n",
"[0, 0, 0, 0, 68, 88, 72, 2] 28\n",
"[0, 0, 0, 0, 68, 90, 94, 2] 16\n",
"[0, 0, 0, 0, 68, 92, 62, 2] 36\n",
"[0, 0, 0, 0, 70, 38, 16, 2] -4\n",
"[0, 0, 0, 0, 105, 57, 24, 3] -36\n",
"[0, 0, 0, 0, 70, 42, 24, 2] 0\n",
"[0, 0, 0, 0, 105, 63, 36, 3] -32\n",
"[0, 0, 0, 0, 70, 50, 30, 2] 0\n",
"[0, 0, 0, 0, 105, 75, 45, 3] -24\n",
"[0, 0, 0, 0, 70, 58, 42, 2] 4\n",
"[0, 0, 0, 0, 105, 87, 63, 3] -8\n",
"[0, 0, 0, 0, 140, 116, 84, 4] -68\n",
"[0, 0, 0, 0, 70, 72, 44, 2] 8\n",
"[0, 0, 0, 0, 105, 108, 66, 3] 28\n",
"[0, 0, 0, 0, 70, 76, 46, 2] 12\n",
"[0, 0, 0, 0, 70, 78, 40, 2] 16\n",
"[0, 0, 0, 0, 70, 86, 50, 2] 24\n",
"[0, 0, 0, 0, 70, 92, 90, 2] 20\n",
"[0, 0, 0, 0, 70, 94, 52, 2] 36\n",
"[0, 0, 0, 0, 70, 96, 32, 2] 40\n",
"[0, 0, 0, 0, 70, 102, 96, 2] 32\n",
"[0, 0, 0, 0, 72, 56, 4, 2] -20\n",
"[0, 0, 0, 0, 72, 76, 94, 2] 0\n",
"[0, 0, 0, 0, 108, 114, 141, 3] -120\n",
"[0, 0, 0, 0, 72, 88, 68, 2] 32\n",
"[0, 0, 0, 0, 72, 92, 20, 2] 28\n",
"[0, 0, 0, 0, 72, 96, 88, 2] 32\n",
"[0, 0, 0, 0, 72, 98, 60, 2] 48\n",
"[0, 0, 0, 0, 72, 100, 44, 2] 48\n",
"[0, 0, 0, 0, 74, 50, 18, 2] -4\n",
"[0, 0, 0, 0, 111, 75, 27, 3] -40\n",
"[0, 0, 0, 0, 74, 58, 40, 2] 4\n",
"[0, 0, 0, 0, 111, 87, 60, 3] -24\n",
"[0, 0, 0, 0, 74, 70, 56, 2] 8\n",
"[0, 0, 0, 0, 111, 105, 84, 3] 0\n",
"[0, 0, 0, 0, 148, 140, 112, 4] -76\n",
"[0, 0, 0, 0, 74, 76, 60, 2] 16\n",
"[0, 0, 0, 0, 74, 78, 32, 2] 16\n",
"[0, 0, 0, 0, 74, 80, 102, 2] -8\n",
"[0, 0, 0, 0, 111, 120, 153, 3] -160\n",
"[0, 0, 0, 0, 74, 94, 58, 2] 36\n",
"[0, 0, 0, 0, 74, 102, 20, 2] 44\n",
"[0, 0, 0, 0, 76, 58, 8, 2] -16\n",
"[0, 0, 0, 0, 76, 70, 40, 2] 8\n",
"[0, 0, 0, 0, 114, 105, 60, 3] 0\n",
"[0, 0, 0, 0, 152, 140, 80, 4] -44\n",
"[0, 0, 0, 0, 76, 74, 42, 2] 12\n",
"[0, 0, 0, 0, 76, 82, 98, 2] -4\n",
"[0, 0, 0, 0, 114, 123, 147, 3] -136\n",
"[0, 0, 0, 0, 76, 86, 64, 2] 24\n",
"[0, 0, 0, 0, 76, 88, 18, 2] 20\n",
"[0, 0, 0, 0, 76, 92, 80, 2] 28\n",
"[0, 0, 0, 0, 78, 64, 30, 2] 0\n",
"[0, 0, 0, 0, 117, 96, 45, 3] -28\n",
"[0, 0, 0, 0, 78, 70, 46, 2] 4\n",
"[0, 0, 0, 0, 117, 105, 69, 3] -8\n",
"[0, 0, 0, 0, 156, 140, 92, 4] -68\n",
"[0, 0, 0, 0, 78, 82, 52, 2] 16\n",
"[0, 0, 0, 0, 78, 84, 96, 2] 0\n",
"[0, 0, 0, 0, 117, 126, 144, 3] -120\n",
"[0, 0, 0, 0, 78, 90, 28, 2] 24\n",
"[0, 0, 0, 0, 78, 92, 18, 2] 24\n",
"[0, 0, 0, 0, 78, 96, 56, 2] 36\n",
"[0, 0, 0, 0, 80, 52, 4, 2] -24\n",
"[0, 0, 0, 0, 80, 56, 6, 2] -20\n",
"[0, 0, 0, 0, 80, 58, 26, 2] 0\n",
"[0, 0, 0, 0, 120, 87, 39, 3] -52\n",
"[0, 0, 0, 0, 80, 62, 34, 2] 4\n",
"[0, 0, 0, 0, 120, 93, 51, 3] -44\n",
"[0, 0, 0, 0, 80, 68, 44, 2] 4\n",
"[0, 0, 0, 0, 120, 102, 66, 3] -28\n",
"[0, 0, 0, 0, 80, 82, 88, 2] 8\n",
"[0, 0, 0, 0, 120, 123, 132, 3] -96\n",
"[0, 0, 0, 0, 80, 88, 100, 2] 4\n",
"[0, 0, 0, 0, 120, 132, 150, 3] -140\n",
"[0, 0, 0, 0, 80, 90, 46, 2] 28\n",
"[0, 0, 0, 0, 80, 92, 76, 2] 32\n",
"[0, 0, 0, 0, 80, 98, 18, 2] 36\n",
"[0, 0, 0, 0, 82, 86, 26, 2] 20\n",
"[0, 0, 0, 0, 82, 88, 32, 2] 24\n",
"[0, 0, 0, 0, 82, 94, 46, 2] 32\n",
"[0, 0, 0, 0, 82, 102, 64, 2] 48\n",
"[0, 0, 0, 0, 84, 48, 14, 2] -16\n",
"[0, 0, 0, 0, 84, 60, 16, 2] -12\n",
"[0, 0, 0, 0, 84, 74, 22, 2] 0\n",
"[0, 0, 0, 0, 126, 111, 33, 3] -24\n",
"[0, 0, 0, 0, 84, 76, 28, 2] 4\n",
"[0, 0, 0, 0, 126, 114, 42, 3] -16\n",
"[0, 0, 0, 0, 84, 90, 92, 2] 12\n",
"[0, 0, 0, 0, 84, 94, 62, 2] 32\n",
"[0, 0, 0, 0, 84, 96, 102, 2] 8\n",
"[0, 0, 0, 0, 126, 144, 153, 3] -128\n",
"[0, 0, 0, 0, 84, 102, 46, 2] 44\n",
"[0, 0, 0, 0, 86, 30, 10, 2] -12\n",
"[0, 0, 0, 0, 86, 52, 16, 2] -16\n",
"[0, 0, 0, 0, 86, 68, 42, 2] 0\n",
"[0, 0, 0, 0, 129, 102, 63, 3] -56\n",
"[0, 0, 0, 0, 86, 72, 26, 2] 0\n",
"[0, 0, 0, 0, 129, 108, 39, 3] -44\n",
"[0, 0, 0, 0, 86, 76, 54, 2] 4\n",
"[0, 0, 0, 0, 129, 114, 81, 3] -36\n",
"[0, 0, 0, 0, 86, 80, 48, 2] 8\n",
"[0, 0, 0, 0, 129, 120, 72, 3] -16\n",
"[0, 0, 0, 0, 86, 84, 30, 2] 12\n",
"[0, 0, 0, 0, 86, 94, 38, 2] 28\n",
"[0, 0, 0, 0, 86, 98, 96, 2] 16\n",
"[0, 0, 0, 0, 86, 100, 62, 2] 40\n",
"[0, 0, 0, 0, 86, 102, 98, 2] 20\n",
"[0, 0, 0, 0, 88, 46, 12, 2] -24\n",
"[0, 0, 0, 0, 88, 66, 18, 2] -12\n",
"[0, 0, 0, 0, 88, 72, 88, 2] -12\n",
"[0, 0, 0, 0, 88, 74, 38, 2] 0\n",
"[0, 0, 0, 0, 132, 111, 57, 3] -48\n",
"[0, 0, 0, 0, 88, 82, 80, 2] 4\n",
"[0, 0, 0, 0, 132, 123, 120, 3] -92\n",
"[0, 0, 0, 0, 88, 86, 58, 2] 12\n",
"[0, 0, 0, 0, 88, 94, 90, 2] 12\n",
"[0, 0, 0, 0, 88, 96, 72, 2] 28\n",
"[0, 0, 0, 0, 88, 100, 32, 2] 36\n",
"[0, 0, 0, 0, 90, 34, 8, 2] -20\n",
"[0, 0, 0, 0, 90, 60, 6, 2] -28\n",
"[0, 0, 0, 0, 90, 74, 26, 2] 0\n",
"[0, 0, 0, 0, 135, 111, 39, 3] -56\n",
"[0, 0, 0, 0, 90, 76, 96, 2] -16\n",
"[0, 0, 0, 0, 90, 80, 40, 2] 8\n",
"[0, 0, 0, 0, 135, 120, 60, 3] -32\n",
"[0, 0, 0, 0, 90, 88, 36, 2] 16\n",
"[0, 0, 0, 0, 90, 92, 70, 2] 24\n",
"[0, 0, 0, 0, 90, 94, 88, 2] 16\n",
"[0, 0, 0, 0, 90, 98, 90, 2] 20\n",
"[0, 0, 0, 0, 92, 40, 12, 2] -24\n",
"[0, 0, 0, 0, 92, 76, 32, 2] 0\n",
"[0, 0, 0, 0, 138, 114, 48, 3] -64\n",
"[0, 0, 0, 0, 92, 82, 18, 2] 0\n",
"[0, 0, 0, 0, 138, 123, 27, 3] -40\n",
"[0, 0, 0, 0, 92, 84, 48, 2] 8\n",
"[0, 0, 0, 0, 138, 126, 72, 3] -32\n",
"[0, 0, 0, 0, 92, 90, 84, 2] 12\n",
"[0, 0, 0, 0, 92, 100, 60, 2] 36\n",
"[0, 0, 0, 0, 94, 48, 8, 2] -32\n",
"[0, 0, 0, 0, 94, 54, 26, 2] -16\n",
"[0, 0, 0, 0, 94, 56, 22, 2] -20\n",
"[0, 0, 0, 0, 94, 64, 38, 2] -12\n",
"[0, 0, 0, 0, 94, 66, 46, 2] -12\n",
"[0, 0, 0, 0, 94, 68, 18, 2] -16\n",
"[0, 0, 0, 0, 94, 72, 36, 2] -8\n",
"[0, 0, 0, 0, 141, 108, 54, 3] -88\n",
"[0, 0, 0, 0, 94, 76, 72, 2] -4\n",
"[0, 0, 0, 0, 141, 114, 108, 3] -116\n",
"[0, 0, 0, 0, 94, 78, 62, 2] 0\n",
"[0, 0, 0, 0, 141, 117, 93, 3] -80\n",
"[0, 0, 0, 0, 94, 82, 40, 2] 4\n",
"[0, 0, 0, 0, 141, 123, 60, 3] -48\n",
"[0, 0, 0, 0, 94, 90, 68, 2] 16\n",
"[0, 0, 0, 0, 96, 58, 34, 2] -16\n",
"[0, 0, 0, 0, 96, 62, 20, 2] -24\n",
"[0, 0, 0, 0, 96, 76, 90, 2] -20\n",
"[0, 0, 0, 0, 96, 80, 22, 2] -8\n",
"[0, 0, 0, 0, 144, 120, 33, 3] -68\n",
"[0, 0, 0, 0, 96, 84, 78, 2] 0\n",
"[0, 0, 0, 0, 144, 126, 117, 3] -120\n",
"[0, 0, 0, 0, 96, 86, 48, 2] 4\n",
"[0, 0, 0, 0, 144, 129, 72, 3] -44\n",
"[0, 0, 0, 0, 96, 92, 30, 2] 12\n",
"[0, 0, 0, 0, 96, 98, 86, 2] 16\n",
"[0, 0, 0, 0, 96, 102, 70, 2] 32\n",
"[0, 0, 0, 0, 98, 44, 24, 2] -24\n",
"[0, 0, 0, 0, 98, 64, 26, 2] -20\n",
"[0, 0, 0, 0, 98, 70, 48, 2] -16\n",
"[0, 0, 0, 0, 98, 72, 42, 2] -12\n",
"[0, 0, 0, 0, 98, 82, 76, 2] -4\n",
"[0, 0, 0, 0, 147, 123, 114, 3] -132\n",
"[0, 0, 0, 0, 98, 94, 36, 2] 12\n",
"[0, 0, 0, 0, 98, 96, 50, 2] 16\n",
"[0, 0, 0, 0, 98, 100, 20, 2] 16\n",
"[0, 0, 0, 0, 98, 102, 86, 2] 20\n",
"[0, 0, 0, 0, 100, 38, 10, 2] -32\n",
"[0, 0, 0, 0, 100, 40, 16, 2] -28\n",
"[0, 0, 0, 0, 100, 56, 12, 2] -36\n",
"[0, 0, 0, 0, 100, 58, 28, 2] -24\n",
"[0, 0, 0, 0, 100, 60, 14, 2] -32\n",
"[0, 0, 0, 0, 100, 78, 38, 2] -8\n",
"[0, 0, 0, 0, 150, 117, 57, 3] -104\n",
"[0, 0, 0, 0, 100, 80, 100, 2] -28\n",
"[0, 0, 0, 0, 100, 88, 80, 2] 0\n",
"[0, 0, 0, 0, 150, 132, 120, 3] -136\n",
"[0, 0, 0, 0, 100, 90, 24, 2] 4\n",
"[0, 0, 0, 0, 150, 135, 36, 3] -52\n",
"[0, 0, 0, 0, 100, 92, 42, 2] 12\n",
"[0, 0, 0, 0, 100, 94, 30, 2] 12\n",
"[0, 0, 0, 0, 102, 32, 10, 2] -32\n",
"[0, 0, 0, 0, 102, 42, 4, 2] -48\n",
"[0, 0, 0, 0, 102, 48, 12, 2] -40\n",
"[0, 0, 0, 0, 102, 62, 6, 2] -44\n",
"[0, 0, 0, 0, 102, 64, 44, 2] -24\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 0, 0, 0, 102, 80, 74, 2] -12\n",
"[0, 0, 0, 0, 102, 82, 54, 2] -8\n",
"[0, 0, 0, 0, 153, 123, 81, 3] -104\n",
"[0, 0, 0, 0, 102, 84, 40, 2] -4\n",
"[0, 0, 0, 0, 153, 126, 60, 3] -88\n",
"[0, 0, 0, 0, 102, 96, 84, 2] 8\n",
"[0, 0, 0, 0, 153, 144, 126, 3] -128\n",
"[0, 0, 0, 0, 102, 98, 50, 2] 16\n",
"\n",
"OK\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"slice_canidate.is_function_big_for_all_metabolizers(invariant=cs.SIGMA)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 0, 2, 2, 0, 0, 0, 0] 2\n",
"[0, 0, 3, 3, 0, 0, 0, 0] 2\n",
"[0, 0, 4, 4, 0, 0, 0, 0] -6\n",
"[0, 0, 5, 5, 0, 0, 0, 0] -6\n",
"[0, 0, 6, 6, 0, 0, 0, 0] -6\n",
"[0, 0, 7, 7, 0, 0, 0, 0] -8\n",
"[0, 2, 2, 0, 0, 0, 0, 0] 2\n",
"[0, 3, 3, 0, 0, 0, 0, 0] 2\n",
"[0, 4, 4, 0, 0, 0, 0, 0] -6\n",
"[0, 5, 5, 0, 0, 0, 0, 0] -6\n",
"[0, 6, 6, 0, 0, 0, 0, 0] -6\n",
"[0, 7, 7, 0, 0, 0, 0, 0] -6\n",
"[0, 8, 8, 0, 0, 0, 0, 0] -8\n",
"[0, 4, 4, 0, 0, 0, 0, 0] -6\n",
"[0, 6, 6, 0, 0, 0, 0, 0] -6\n",
"[0, 8, 8, 0, 0, 0, 0, 0] -8\n",
"[0, 6, 6, 0, 0, 0, 0, 0] -6\n",
"[0, 9, 9, 0, 0, 0, 0, 0] -8\n",
"[0, 8, 8, 0, 0, 0, 0, 0] -8\n",
"[0, 10, 10, 0, 0, 0, 0, 0] -8\n",
"[0, 12, 12, 0, 0, 0, 0, 0] -10\n",
"[0, 14, 14, 0, 0, 0, 0, 0] -10\n",
"[2, 0, 0, 2, 0, 0, 0, 0] 4\n",
"[3, 0, 0, 3, 0, 0, 0, 0] 8\n",
"[2, 2, 0, 0, 0, 0, 0, 0] 4\n",
"[3, 3, 0, 0, 0, 0, 0, 0] 8\n",
"[2, 2, 2, 2, 0, 0, 0, 0] 6\n",
"[3, 3, 3, 3, 0, 0, 0, 0] 10\n",
"[2, 4, 4, 2, 0, 0, 0, 0] -10\n",
"[2, 6, 6, 2, 0, 0, 0, 0] -10\n",
"[4, 4, 0, 0, 0, 0, 0, 0] 4\n",
"[6, 6, 0, 0, 0, 0, 0, 0] -4\n",
"[8, 8, 0, 0, 0, 0, 0, 0] 8\n",
"[4, 4, 2, 2, 0, 0, 0, 0] 6\n",
"[6, 6, 3, 3, 0, 0, 0, 0] -6\n",
"[8, 8, 4, 4, 0, 0, 0, 0] -6\n",
"[10, 10, 5, 5, 0, 0, 0, 0] -6\n",
"[12, 12, 6, 6, 0, 0, 0, 0] -8\n",
"[14, 14, 7, 7, 0, 0, 0, 0] 8\n",
"[16, 16, 8, 8, 0, 0, 0, 0] 6\n",
"[18, 18, 9, 9, 0, 0, 0, 0] 10\n",
"[8, 8, 0, 0, 0, 0, 0, 0] 8\n",
"[8, 8, 2, 2, 0, 0, 0, 0] 8\n",
"[12, 12, 3, 3, 0, 0, 0, 0] -6\n",
"[16, 16, 4, 4, 0, 0, 0, 0] 8\n",
"[20, 20, 5, 5, 0, 0, 0, 0] -8\n",
"[24, 24, 6, 6, 0, 0, 0, 0] 10\n",
"[10, 10, 0, 0, 0, 0, 0, 0] 8\n",
"[10, 10, 2, 2, 0, 0, 0, 0] 8\n",
"[15, 15, 3, 3, 0, 0, 0, 0] 10\n",
"[12, 12, 0, 0, 0, 0, 0, 0] -4\n",
"[18, 18, 0, 0, 0, 0, 0, 0] 8\n",
"[12, 12, 2, 2, 0, 0, 0, 0] -6\n",
"[18, 18, 3, 3, 0, 0, 0, 0] 10\n",
"[14, 14, 0, 0, 0, 0, 0, 0] 8\n",
"[14, 14, 2, 2, 0, 0, 0, 0] 10\n",
"[16, 16, 2, 2, 0, 0, 0, 0] 10\n",
"[24, 24, 0, 0, 0, 0, 0, 0] 8\n",
"[24, 24, 2, 2, 0, 0, 0, 0] 10\n",
"[52, 58, 0, 2, 0, 0, 0, 0] 10\n",
"\n",
"OK\n",
"[0, 0, 0, 0, 0, 0, 2, 2] -4\n",
"[0, 0, 0, 0, 0, 0, 3, 3] -4\n",
"[0, 0, 0, 0, 0, 0, 4, 4] -4\n",
"[0, 0, 0, 0, 0, 0, 5, 5] -4\n",
"[0, 0, 0, 0, 0, 0, 6, 6] -4\n",
"[0, 0, 0, 0, 0, 0, 7, 7] 4\n",
"[0, 0, 0, 0, 0, 0, 8, 8] -4\n",
"[0, 0, 0, 0, 0, 0, 9, 9] -4\n",
"[0, 0, 0, 0, 0, 0, 10, 10] -8\n",
"[0, 0, 0, 0, 0, 2, 2, 0] -2\n",
"[0, 0, 0, 0, 0, 3, 3, 0] -2\n",
"[0, 0, 0, 0, 0, 4, 4, 0] 6\n",
"[0, 0, 0, 0, 0, 5, 5, 0] 6\n",
"[0, 0, 0, 0, 0, 6, 6, 0] 6\n",
"[0, 0, 0, 0, 0, 7, 7, 0] 6\n",
"[0, 0, 0, 0, 0, 8, 8, 0] 8\n",
"[0, 0, 0, 0, 0, 4, 4, 0] 6\n",
"[0, 0, 0, 0, 0, 6, 6, 0] 6\n",
"[0, 0, 0, 0, 0, 8, 8, 0] 8\n",
"[0, 0, 0, 0, 0, 6, 6, 0] 6\n",
"[0, 0, 0, 0, 0, 9, 9, 0] 8\n",
"[0, 0, 0, 0, 0, 8, 8, 0] 8\n",
"[0, 0, 0, 0, 0, 10, 10, 0] 8\n",
"[0, 0, 0, 0, 0, 12, 12, 0] 10\n",
"[0, 0, 0, 0, 0, 14, 14, 0] 10\n",
"[0, 0, 0, 0, 0, 46, 36, 2] 10\n",
"[0, 0, 0, 0, 2, 0, 0, 2] -4\n",
"[0, 0, 0, 0, 3, 0, 0, 3] -4\n",
"[0, 0, 0, 0, 4, 0, 0, 4] -8\n",
"[0, 0, 0, 0, 2, 2, 0, 0] -2\n",
"[0, 0, 0, 0, 3, 3, 0, 0] -2\n",
"[0, 0, 0, 0, 4, 4, 0, 0] -2\n",
"[0, 0, 0, 0, 5, 5, 0, 0] 6\n",
"[0, 0, 0, 0, 6, 6, 0, 0] 6\n",
"[0, 0, 0, 0, 7, 7, 0, 0] 6\n",
"[0, 0, 0, 0, 8, 8, 0, 0] 6\n",
"[0, 0, 0, 0, 9, 9, 0, 0] 6\n",
"[0, 0, 0, 0, 10, 10, 0, 0] 8\n",
"[0, 0, 0, 0, 2, 2, 2, 2] -6\n",
"[0, 0, 0, 0, 3, 3, 3, 3] -6\n",
"[0, 0, 0, 0, 4, 4, 4, 4] -6\n",
"[0, 0, 0, 0, 5, 5, 5, 5] 10\n",
"[0, 0, 0, 0, 2, 4, 4, 2] 10\n",
"[0, 0, 0, 0, 2, 6, 6, 2] 10\n",
"[0, 0, 0, 0, 2, 12, 12, 2] 10\n",
"[0, 0, 0, 0, 2, 14, 14, 2] 10\n",
"[0, 0, 0, 0, 2, 16, 16, 2] 12\n",
"[0, 0, 0, 0, 2, 30, 22, 0] 10\n",
"[0, 0, 0, 0, 4, 4, 0, 0] -2\n",
"[0, 0, 0, 0, 6, 6, 0, 0] 6\n",
"[0, 0, 0, 0, 8, 8, 0, 0] 6\n",
"[0, 0, 0, 0, 10, 10, 0, 0] 8\n",
"[0, 0, 0, 0, 4, 4, 2, 2] -6\n",
"[0, 0, 0, 0, 6, 6, 3, 3] 10\n",
"[0, 0, 0, 0, 6, 6, 0, 0] 6\n",
"[0, 0, 0, 0, 9, 9, 0, 0] 6\n",
"[0, 0, 0, 0, 12, 12, 0, 0] 8\n",
"[0, 0, 0, 0, 6, 6, 2, 2] 10\n",
"[0, 0, 0, 0, 8, 8, 0, 0] 6\n",
"[0, 0, 0, 0, 12, 12, 0, 0] 8\n",
"[0, 0, 0, 0, 8, 8, 2, 2] 10\n",
"[0, 0, 0, 0, 10, 10, 0, 0] 8\n",
"[0, 0, 0, 0, 12, 12, 0, 0] 8\n",
"[0, 0, 0, 0, 14, 14, 0, 0] 8\n",
"[0, 0, 0, 0, 16, 16, 0, 0] 10\n",
"[0, 0, 0, 0, 18, 18, 0, 0] 10\n",
"[0, 0, 0, 0, 22, 30, 2, 0] 10\n",
"\n",
"OK\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"slice_canidate.is_function_big_for_all_metabolizers(invariant=cs.SIGNATURE)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"-4"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sigma = slice_canidate.get_sigma_as_function_of_theta()\n",
"sigma((0, 6, 6, 0, 0,0,0,0))\n",
"sigma((9, 0, 0, 9, 0,0,0,0))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0: 0, 49/2822: -1, 1/34: 2, 61/1826: 1, 117/2822: -1, 1/22: -2, 105/1826: 1, 215/2822: -1, 3/34: 2, 283/2822: -1, 227/1826: 1, 381/2822: -1, 3/22: -2, 5/34: 2, 271/1826: 1, 449/2822: -1, 547/2822: -1, 7/34: 2, 393/1826: 1, 615/2822: -1, 5/22: -2, 437/1826: 1, 713/2822: -1, 9/34: 2, 781/2822: -1, 559/1826: 1, 879/2822: -1, 7/22: -2, 11/34: 2, 603/1826: 1, 947/2822: -1, 1045/2822: -1, 13/34: 2, 1113/2822: -1, 725/1826: 1, 9/22: -2, 769/1826: 1, 1211/2822: -1, 15/34: 2, 1279/2822: -1, 1543/2822: 1, 19/34: -2, 1611/2822: 1, 1057/1826: -1, 13/22: 2, 1101/1826: -1, 1709/2822: 1, 21/34: -2, 1777/2822: 1, 1875/2822: 1, 1223/1826: -1, 23/34: -2, 15/22: 2, 1943/2822: 1, 1267/1826: -1, 2041/2822: 1, 25/34: -2, 2109/2822: 1, 1389/1826: -1, 17/22: 2, 2207/2822: 1, 1433/1826: -1, 27/34: -2, 2275/2822: 1, 2373/2822: 1, 1555/1826: -1, 29/34: -2, 19/22: 2, 2441/2822: 1, 1599/1826: -1, 2539/2822: 1, 31/34: -2, 2607/2822: 1, 1721/1826: -1, 21/22: 2, 2705/2822: 1, 1765/1826: -1, 33/34: -2, 2773/2822: 1, 1: 0."
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"_, _, sf = slice_canidate((1, 1, 0, 0, 0,0,0,0))\n",
"sf"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAORUlEQVR4nO3dcYykd13H8c+Ha2tFqzXekmLvypZYiJdCgExqCYks7dmcZ8MFqKZNChKrm0IwJEIa6iWgEhINEY2xCV60ARUpqNReShvoSdcLhCs8S6/X3rWQo7ZwpdoB5IQQkNqvf8zTMN3Ozjwzz29m9rv7fiWbzPPMb36/72+emc8++8wz+zgiBADI6znzLgAA0A5BDgDJEeQAkBxBDgDJEeQAkNwZ8xh0+/btsbi4OI+hASCt1dXVb0bEwtr1cwnyxcVFVVU1j6EBIC3bjw5az6EVAEiOIAeA5AhyAEiOIAeA5AhyAEiuWJDb3mb7Xtu3l+oTADBayT3yt0t6sGB/AIAGigS57R2Sfl3S35Tor4SlpR//AJivzfo+3CgZU2qP/C8k3SDpqfUa2F62Xdmuut1uoWEBAG57YQnbV0raGxFvtb0k6Z0RceWwx3Q6neCbnQAwHturEdFZu77EHvmrJL3W9iOSbpF0me1/KNAvAKCB1kEeETdGxI6IWJR0taTPRMS1rSsDADTCeeQAkFzR/34YESuSVkr2CQAYjj1yAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5FoHue2zbX/B9n22j9v+oxKFAQCaKXGFoB9Kuiwivmf7TEmftX1nRBwp0DcAYITWQR4RIel79eKZ9U+07RcA0EyRY+S2t9k+KukJSXdFxD0D2izbrmxX3W63xLAAABUK8oj4v4h4maQdki6xffGANgciohMRnYWFhRLDAgBU+KyViPiOpLsl7SnZLwBgfSXOWlmwfW59+ycl/aqkh9r2CwBopsRZK8+X9GHb29T7xfDxiLi9QL8AgAZKnLVyTNLLC9QCAJgA3+wEgOQIcgBIjiAHgOQIcgBIjiAHgOQIcgBIjiAHgOQIcgBIjiAHgOQIcgBIjiAHgOQIcgBIjiAHgOQIcgBIjiAHgOQIcgBIrsSl3nbavtv2CdvHbb+9RGEAgGZKXOrtSUnviIgv2T5H0qrtuyLiRIG+AQAjlLjU2+OSHq9vf9f2g5LOlzS3IF9aklZW1l8ep59+w/rob7u23Tj9jFPPpP0Nq3VY+/XaTvr8rlfPJM9Xqee4jXGf17WPGaTta6XtNmvzvA7briXeA23eZyVeL/3P4ajne9qKHiO3vaje9TvvGXDfsu3KdtXtdksOCwBbmiOiTEf2T0v6d0nvi4hPDGvb6XSiqqoi4wLAVmF7NSI6a9cX2SO3faakf5H0kVEhDgAoq8RZK5b0t5IejIgPtC8JADCOEnvkr5L0RkmX2T5a/+wt0C8AoIESZ618VpIL1AIAmADf7ASA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5Epd6u1m20/YfqBEfwCA5krtkX9I0p5CfQEAxlAkyCPisKRvl+gLADCemR0jt71su7JddbvdWQ0LAJvezII8Ig5ERCciOgsLC7MaFgA2Pc5aAYDkCHIASK7U6YcflfR5SS+2fcr2dSX6BQCMdkaJTiLimhL9AADGx6EVAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5AhyAEiOIAeA5EpdIWiP7S/bPmn7XSX6BAA00zrIbW+TdJOkX5O0S9I1tne17RcA0EyJS71dIulkRDwsSbZvkbRP0okCfT/L0tKz162szKafQY8Z9NilpeF9DetnnHqa9t+2lqcf/3TbQctN59Sknqb1lniOS2pSz6TbdG0/TWtpu83GfU+Ues2up9T7bJLHjTu3Uv00UeLQyvmSvt63fKpe9wy2l21Xtqtut1tgWACAJDki2nVgXyVpT0T8Tr38Rkm/HBFvW+8xnU4nqqpqNS4AbDW2VyOis3Z9iT3yxyTt7FveUa8DAMxAiSD/oqSLbF9o+yxJV0s6WKBfAEADrT/sjIgnbb9N0qckbZN0c0Qcb10ZAKCREmetKCLukHRHib4AAOPhm50AkBxBDgDJEeQAkBxBDgDJEeQAkBxBDgDJEeQAkBxBDgDJEeQAkBxBDgDJEeQAkBxBDgDJEeQAkBxBDgDJEeQAkBxBDgDJtQpy279h+7jtp2w/64KgAIDpa7tH/oCk10s6XKAWAMAEWl3qLSIelCTbZaoBAIxtZsfIbS/brmxX3W53VsMCwKY3co/c9iFJ5w24a39E3NZ0oIg4IOmAJHU6nWhcIQBgqJFBHhG7Z1EIAGAynH4IAMm1Pf3wdbZPSXqlpE/a/lSZsgAATbU9a+VWSbcWqgUAMAEOrQBAcgQ5ACRHkANAcgQ5ACRHkANAcgQ5ACRHkANAcgQ5ACRHkANAcgQ5ACRHkANAcgQ5ACRHkANAcgQ5ACRHkANAcm0vLPF+2w/ZPmb7VtvnFqoLANBQ2z3yuyRdHBEvlfQVSTe2LwkAMI62Vwj6dN/iEUlXtStnMktLz1xeWZlem1lqWs+odlnnNah9f9v11m8E682xzdybtJ+2cV5rw2rdyPOa9H3WtJ9pKHmM/Lcl3bnenbaXbVe2q263W3BYANjaHBHDG9iHJJ034K79EXFb3Wa/pI6k18eoDiV1Op2oqmqCcgFg67K9GhGdtetHHlqJiN0jOn6zpCslXd4kxAEAZbU6Rm57j6QbJL06Ir5fpiQAwDjaHiP/K0nnSLrL9lHbHyxQEwBgDG3PWvnFUoUAACbDNzsBIDmCHACSI8gBIDmCHACSI8gBIDmCHACSI8gBIDmCHACSI8gBIDmCHACSI8gBIDmCHACSI8gBIDmCHACSI8gBIDmCHACSaxXktt9r+1h9daBP2/6FUoUBAJppu0f+/oh4aUS8TNLtkt7dviQAwDhaBXlE/E/f4k9JinblAADG1eqanZJk+32S3iTptKTXDGm3LGlZki644IK2wwIAao4YvhNt+5Ck8wbctT8ibutrd6OksyPiPaMG7XQ6UVXVuLUCwJZmezUiOmvXj9wjj4jdDcf4iKQ7JI0McgBAOW3PWrmob3GfpIfalQMAGFfbY+R/YvvFkp6S9Kik69uXBAAYR6sgj4g3lCoEADAZvtkJAMkR5ACQHEEOAMkR5ACQHEEOAMkR5ACQHEEOAMkR5ACQHEEOAMkR5ACQHEEOAMkR5ACQHEEOAMkR5ACQHEEOAMkR5ACQXJEgt/0O22F7e4n+AADNtQ5y2zslXSHpa+3LAQCMq+01OyXpzyXdIOm2An1tGktLP769sjKvKqbj6blttnltZpt1m23m99k4Wu2R294n6bGIuK9B22Xble2q2+22GRYA0McRMbyBfUjSeQPu2i/pDyRdERGnbT8iqRMR3xw1aKfTiaqqJigXALYu26sR0Vm7fuShlYjYvU6HL5F0oaT7bEvSDklfsn1JRPxny3oBAA1NfIw8Iu6X9Lynl8fZIwcAlMN55ACQXImzViRJEbFYqi8AQHPskQNAcgQ5ACRHkANAcgQ5ACQ38gtBUxnU7kp6dMKHb5e01U5xZM5bA3PeGtrM+QURsbB25VyCvA3b1aBvNm1mzHlrYM5bwzTmzKEVAEiOIAeA5DIG+YF5FzAHzHlrYM5bQ/E5pztGDgB4pox75ACAPgQ5ACS3YYPc9h7bX7Z90va7Btz/E7Y/Vt9/j+3FOZRZVIM5/77tE7aP2f432y+YR50ljZpzX7s31Bf4Tn2qWpP52v7Nejsft/2Ps66xtAav6wts32373vq1vXcedZZk+2bbT9h+YJ37bfsv6+fkmO1XtBowIjbcj6Rtkr4q6YWSzpJ0n6Rda9q8VdIH69tXS/rYvOuewZxfI+m59e23bIU51+3OkXRY0hH1/uf93Guf4ja+SNK9kn6uXn7evOuewZwPSHpLfXuXpEfmXXeBef+KpFdIemCd+/dKulOSJV0q6Z42423UPfJLJJ2MiIcj4n8l3SJp35o2+yR9uL79z5Iud32poqRGzjki7o6I79eLR9S7KlNmTbazJL1X0p9K+sEsi5uCJvP9XUk3RcR/S1JEPDHjGktrMueQ9DP17Z+V9I0Z1jcVEXFY0reHNNkn6e+i54ikc20/f9LxNmqQny/p633Lp+p1A9tExJOSTkv6+ZlUNx1N5tzvOvV+o2c2cs71n5w7I+KTsyxsSpps4xdJepHtz9k+YnvPzKqbjiZz/kNJ19o+JekOSb83m9Lmatz3+1DFLiyB2bF9raSOpFfPu5Zpsv0cSR+Q9OY5lzJLZ6h3eGVJvb+4Dtt+SUR8Z55FTdk1kj4UEX9m+5WS/t72xRHx1LwLy2Kj7pE/Jmln3/KOet3ANrbPUO9Psm/NpLrpaDJn2d4tab+k10bED2dU27SMmvM5ki6WtFJfE/ZSSQcTf+DZZBufknQwIn4UEf8h6SvqBXtWTeZ8naSPS1JEfF7S2er9Y6nNrNH7vamNGuRflHSR7Qttn6Xeh5kH17Q5KOm36ttXSfpM1J8iJDVyzrZfLumv1Qvx7MdOpRFzjojTEbE9IhajdynBI+rNvZpPua01eV3/q3p747K9Xb1DLQ/PsMbSmsz5a5IulyTbv6RekHdnWuXsHZT0pvrslUslnY6Ixyfubd6f7g751HevensjX5W0v173x+q9kaXexv4nSSclfUHSC+dd8wzmfEjSf0k6Wv8cnHfN057zmrYrSnzWSsNtbPUOJ52QdL+kq+dd8wzmvEvS59Q7o+WopCvmXXOBOX9U0uOSfqTeX1nXSbpe0vV92/mm+jm5v+3rmq/oA0ByG/XQCgCgIYIcAJIjyAEgOYIcAJIjyAEgOYIcAJIjyAEguf8HnIINaoEpLxEAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"cs = import_sage('cable_signature')\n",
"sg = import_sage('signature')\n",
"sg.SignaturePloter.plot(sf)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"T_17_83_inv_T_11_83_T_83_inv_T_13_83_T_11_103_inv_T_103_T_13_103_inv_T_17_103\n"
]
},
{
"ename": "TypeError",
"evalue": "unable to convert [0, 4, 0, 4, 0, 0, 0, 0] to a rational",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-22-c4fd4acceb8f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0msg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimport_sage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'signature'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mslice_canidate\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_sum_for_theta_vector\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave_to_dir\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/Users/Kasia/signature_function/cable_signature.py\u001b[0m in \u001b[0;36mplot_sum_for_theta_vector\u001b[0;34m(self, thetas, save_to_dir)\u001b[0m\n\u001b[1;32m 342\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mtheta\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mknot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthetas\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mknot_summands\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 344\u001b[0;31m \u001b[0mknot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_summand_for_theta\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthetas\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave_path\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msave_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 345\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 346\u001b[0m \u001b[0;31m# pp, sp, sf = self.signature_as_function_of_theta(*thetas)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/Kasia/signature_function/cable_signature.py\u001b[0m in \u001b[0;36mplot_summand_for_theta\u001b[0;34m(self, theta, save_path)\u001b[0m\n\u001b[1;32m 195\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 196\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mplot_summand_for_theta\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtheta\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave_path\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 197\u001b[0;31m \u001b[0mpp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msignature_as_function_of_theta\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtheta\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 198\u001b[0m \u001b[0mtitle\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mknot_description\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\", theta = \"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtheta\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 199\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msave_path\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/Kasia/signature_function/cable_signature.py\u001b[0m in \u001b[0;36mget_summand_signture_function\u001b[0;34m(theta)\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 162\u001b[0m \u001b[0;31m# theta should not be larger than k for the pattern.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 163\u001b[0;31m \u001b[0mtheta\u001b[0m \u001b[0;34m%=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0m_sage_const_2\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpatt_k\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0m_sage_const_1\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 164\u001b[0m \u001b[0mtheta\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtheta\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_sage_const_2\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpatt_k\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0m_sage_const_1\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mtheta\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 165\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Applications/SageMath-9.0.app/Contents/Resources/sage/local/lib/python3.7/site-packages/sage/rings/rational.pyx\u001b[0m in \u001b[0;36msage.rings.rational.Rational.__mod__ (build/cythonized/sage/rings/rational.c:23158)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2815\u001b[0m \u001b[0mcdef\u001b[0m \u001b[0mRational\u001b[0m \u001b[0mrat\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2816\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mRational\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2817\u001b[0;31m \u001b[0mrat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mRational\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2818\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2819\u001b[0m \u001b[0mrat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Applications/SageMath-9.0.app/Contents/Resources/sage/local/lib/python3.7/site-packages/sage/rings/rational.pyx\u001b[0m in \u001b[0;36msage.rings.rational.Rational.__init__ (build/cythonized/sage/rings/rational.c:6392)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 527\u001b[0m \"\"\"\n\u001b[1;32m 528\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 529\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__set_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbase\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 530\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 531\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__reduce__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Applications/SageMath-9.0.app/Contents/Resources/sage/local/lib/python3.7/site-packages/sage/rings/rational.pyx\u001b[0m in \u001b[0;36msage.rings.rational.Rational.__set_value (build/cythonized/sage/rings/rational.c:8515)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 683\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 684\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 685\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"unable to convert {!r} to a rational\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 686\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 687\u001b[0m \u001b[0mcdef\u001b[0m \u001b[0mvoid\u001b[0m \u001b[0mset_from_mpq\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mRational\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmpq_t\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: unable to convert [0, 4, 0, 4, 0, 0, 0, 0] to a rational"
]
}
],
"source": [
"cs = import_sage('cable_signature')\n",
"sg = import_sage('signature')\n",
"\n",
"slice_canidate.plot_sum_for_theta_vector([0,4,0,4,0,0,0,0], save_to_dir=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sf.plot()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.0",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}