612 lines
20 KiB
Python
612 lines
20 KiB
Python
#!/usr/bin/python
|
|
|
|
def calculate_form(x, y, q4):
|
|
x1, x2, x3, x4 = x
|
|
y1, y2, y3, y4 = y
|
|
form = (x1 * y1 - x2 * y2 + x3 * y3 - x4 * y4) % q_4
|
|
# TBD change for ring modulo q_4
|
|
return form
|
|
|
|
def check_condition(v, q4):
|
|
form = calculate_form(v, v, q4)
|
|
if form:
|
|
return False
|
|
return True
|
|
|
|
def find_v(q4):
|
|
results = []
|
|
for i in range(q4):
|
|
for j in range(q4):
|
|
for k in range(q4):
|
|
for m in range(q4):
|
|
if check_condition([i, j, k, m], q_4):
|
|
results.add(v)
|
|
return results
|
|
|
|
def check_inequality(q, v):
|
|
a1, a2, a3, a4 = v
|
|
q1, q2, q3, q4 = q
|
|
pattern = [q1, q2, q4],[-q2, -q4],[q3, q4],[-q1, -q3, -q4]
|
|
signature_function_generator = get_function_of_theta_for_sum(pattern)
|
|
signature_function_for_sum = signature_function_generator(a1, a2, a3, a4)
|
|
|
|
# sigma_v = sigma(q4, a1) - s(a2) + s(a3) - s(a4)
|
|
|
|
|
|
"""
|
|
This script calculates signature functions for knots (cable sums).
|
|
|
|
The script can be run as a sage script from the terminal
|
|
or used in interactive mode.
|
|
|
|
A knot (cable sum) is encoded as a list where each element (also a list)
|
|
corresponds to a cable knot, e.g. a list
|
|
[[1, 3], [2], [-1, -2], [-3]] encodes
|
|
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7).
|
|
|
|
To calculate the number of characters for which signature function vanish use
|
|
the function eval_cable_for_thetas as shown below.
|
|
|
|
sage: eval_cable_for_thetas([[1, 3], [2], [-1, -2], [-3]])
|
|
|
|
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
|
|
Zero cases: 1
|
|
All cases: 1225
|
|
Zero theta combinations:
|
|
(0, 0, 0, 0)
|
|
|
|
sage:
|
|
|
|
|
|
The numbers given to the function eval_cable_for_thetas are k-values for each
|
|
component/cable in a direct sum.
|
|
|
|
To calculate signature function for a knot and a theta value, use function
|
|
get_function_of_theta_for_sum (see help/docstring for details).
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
|
|
import collections
|
|
import inspect
|
|
import itertools as it
|
|
import pandas as pd
|
|
import re
|
|
|
|
|
|
class MySettings(object):
|
|
def __init__(self):
|
|
self.f_results = os.path.join(os.getcwd(), "results.out")
|
|
|
|
# is the ratio restriction for values in k_vector taken into account
|
|
# False flag is usefull to make quick script tests
|
|
self.only_slice_candidates = True
|
|
# self.only_slice_candidates = False
|
|
|
|
# knot_sum_formula is a schema for knots which signature function
|
|
# will be calculated
|
|
self.knot_sum_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \
|
|
[-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
|
|
"""
|
|
About notation:
|
|
Cables that we work with follow a schema:
|
|
T(2, q_0; 2, q_1; 2, q_2) # T(2, q_1; 2, q_2) #
|
|
# -T(2, q_3; 2, q_2) # -T(2, q_0; 2, q_3; 2, q_2)
|
|
In knot_sum_formula each k[i] is related with some q_i value, where
|
|
q_i = 2*k[i] + 1.
|
|
So we can work in the following steps:
|
|
1) choose a schema/formula by changing the value of knot_sum_formula
|
|
2) set each q_i all or choose range in which q_i should varry
|
|
3) choose vector v / theata vector.
|
|
|
|
"""
|
|
# self.knot_sum_formula = "[[k[0], k[1], k[2]], [k[3]],\
|
|
# [-k[0], -k[1], -k[3]], [-k[2]]]"
|
|
self.default_limit = 3
|
|
|
|
|
|
class SignatureFunction(object):
|
|
"""
|
|
This simple class encodes twisted and untwisted signature functions
|
|
of knots. Since the signature function is entirely encoded by its signature
|
|
jump, the class stores only information about signature jumps
|
|
in a dictionary self.data.
|
|
The dictionary stores data of the signature jump as a key/values pair,
|
|
where the key is the argument at which the functions jumps
|
|
and value encodes the value of the jump. Remember that we treat
|
|
signature functions as defined on the interval [0,1).
|
|
"""
|
|
def __init__(self, values=[]):
|
|
# We will store data of signature jumps here.
|
|
self.data = collections.defaultdict(int)
|
|
# values contain initial data of singature jumps
|
|
for jump_arg, jump in values:
|
|
assert 0 <= jump_arg < 1, \
|
|
"Signature function is defined on the interval [0, 1)."
|
|
self.data[jump_arg] = jump
|
|
|
|
def sum_of_absolute_values(self):
|
|
return sum([abs(i) for i in self.data.values()])
|
|
|
|
def double_cover(self):
|
|
# to read values for t^2
|
|
new_data = []
|
|
for jump_arg, jump in self.data.items():
|
|
new_data.append((mod_one(jump_arg/2), jump))
|
|
new_data.append((mod_one(1/2 + jump_arg/2), jump))
|
|
return SignatureFunction(new_data)
|
|
|
|
def square_root(self):
|
|
# to read values for t^(1/2)
|
|
new_data = []
|
|
for jump_arg, jump in self.data.items():
|
|
if jump_arg < 1/2:
|
|
new_data.append((2 * jump_arg, jump))
|
|
return SignatureFunction(new_data)
|
|
|
|
def get_signture_jump(self, t):
|
|
return self.data.get(t, 0)
|
|
|
|
def minus_square_root(self):
|
|
# to read values for t^(1/2)
|
|
new_data = []
|
|
for jump_arg, jump in self.data.items():
|
|
if jump_arg >= 1/2:
|
|
new_data.append((mod_one(2 * jump_arg), jump))
|
|
return SignatureFunction(new_data)
|
|
|
|
def __lshift__(self, shift):
|
|
# A shift of the signature functions corresponds to the rotation.
|
|
return self.__rshift__(-shift)
|
|
|
|
def __rshift__(self, shift):
|
|
new_data = []
|
|
for jump_arg, jump in self.data.items():
|
|
new_data.append((mod_one(jump_arg + shift), jump))
|
|
return SignatureFunction(new_data)
|
|
|
|
def __neg__(self):
|
|
# we can perform arithmetic operations on signature functions.
|
|
new_data = []
|
|
for jump_arg, jump in self.data.items():
|
|
new_data.append(jump_arg, -jump)
|
|
return SignatureFunction(new_data)
|
|
|
|
def __add__(self, other):
|
|
new_signature_function = SignatureFunction()
|
|
new_data = collections.defaultdict(int)
|
|
for jump_arg, jump in other.data.items():
|
|
new_data[jump_arg] = jump + self.data.get(jump_arg, 0)
|
|
for jump_arg, jump in self.data.items():
|
|
if jump_arg not in new_data.keys():
|
|
new_data[jump_arg] = self.data[jump_arg]
|
|
new_signature_function.data = new_data
|
|
return new_signature_function
|
|
|
|
def __sub__(self, other):
|
|
return self + other.__neg__()
|
|
|
|
def __str__(self):
|
|
return ''.join([str(jump_arg) + ": " + str(jump) + "\n"
|
|
for jump_arg, jump in sorted(self.data.items())])
|
|
|
|
|
|
def main(arg):
|
|
"""
|
|
This function is run if the script was called from the terminal.
|
|
It calls another function, perform_calculations,
|
|
to calculate signature functions for a schema
|
|
of a cable sum defined in the class MySettings.
|
|
Optionaly a parameter (a limit for k_0 value) can be given.
|
|
Thought to be run for time consuming calculations.
|
|
"""
|
|
try:
|
|
new_limit = int(arg[1])
|
|
except:
|
|
new_limit = None
|
|
perform_calculations(limit=new_limit)
|
|
|
|
|
|
def perform_calculations(knot_sum_formula=None, limit=None):
|
|
"""
|
|
This function calculates signature functions for knots constracted
|
|
accordinga a schema for a cable sum. The schema is given as an argument
|
|
or defined in the class MySettings.
|
|
Results of calculations will be writen to a file and the stdout.
|
|
limit is the upper bound for the first value in k_vector,
|
|
i.e k[0] value in a cable sum, where q_0 = 2 * k[0] + 1.
|
|
|
|
(the number of knots that will be constracted depends on limit value).
|
|
For each knot/cable sum the function eval_cable_for_thetas is called.
|
|
eval_cable_for_thetas calculetes the number of all possible thetas
|
|
(characters) and the number of combinations for which signature function
|
|
equeles zero. In case the first number is larger than squere of the second,
|
|
eval_cable_for_thetas returns None (i.e. the knot can not be slice).
|
|
Data for knots that are candidates for slice knots are saved to a file.
|
|
"""
|
|
|
|
settings = MySettings()
|
|
if limit is None:
|
|
limit = settings.default_limit
|
|
if knot_sum_formula is None:
|
|
knot_sum_formula = settings.knot_sum_formula
|
|
|
|
k_vector_size = extract_max(knot_sum_formula) + 1
|
|
combinations = it.combinations_with_replacement(range(1, limit + 1),
|
|
k_vector_size)
|
|
|
|
with open(settings.f_results, 'w') as f_results:
|
|
for k in combinations:
|
|
# print
|
|
# print k
|
|
# TBD: maybe the following condition or the function
|
|
# get_shifted_combination should be redefined to a dynamic version
|
|
if settings.only_slice_candidates and k_vector_size == 5:
|
|
k = get_shifted_combination(k)
|
|
# print k
|
|
knot_sum = eval(knot_sum_formula)
|
|
|
|
if is_trivial_combination(knot_sum):
|
|
continue
|
|
result = eval_cable_for_thetas(knot_sum, print_results=False)
|
|
if result is not None:
|
|
knot_description, null_comb, all_comb = result
|
|
line = (str(k) + ", " + str(null_comb) + ", " +
|
|
str(all_comb) + "\n")
|
|
f_results.write(line)
|
|
|
|
|
|
def is_trivial_combination(knot_sum):
|
|
# for now is applicable only for schema that are sums of 4 cables
|
|
if len(knot_sum) == 4:
|
|
oposit_to_first = [-k for k in knot_sum[0]]
|
|
if oposit_to_first in knot_sum:
|
|
return True
|
|
return False
|
|
|
|
|
|
def get_shifted_combination(combination):
|
|
# for now applicable only for schama
|
|
# "[[k[0], k[1], k[2]], [k[3], k[4]],
|
|
# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
|
|
# shift the combination so that the knot can be a candidate for slice
|
|
combination = [combination[0], 4 * combination[0] + combination[1],
|
|
4 * (4 * combination[0] + combination[1]) + combination[2],
|
|
4 * combination[0] + combination[3],
|
|
4 * (4 * combination[0] + combination[3]) + combination[4]]
|
|
return combination
|
|
|
|
|
|
def get_blanchfield_for_pattern(k_n, theta):
|
|
"""
|
|
This function calculates a twisted signature function for a given cable
|
|
and theta/character. It returns object of class SignatureFunction.
|
|
It is based on Proposition 9.8. in Twisted Blanchfield Pairing.
|
|
"""
|
|
|
|
# TBD: k_n explanation
|
|
|
|
if theta == 0:
|
|
a = get_untwisted_signature_function(k_n)
|
|
return a.square_root() + a.minus_square_root()
|
|
results = []
|
|
k = abs(k_n)
|
|
ksi = 1/(2 * k + 1)
|
|
# lambda_odd (theta + e) % 2 == 0:
|
|
for e in range(1, k + 1):
|
|
if (theta + e) % 2 != 0:
|
|
results.append((e * ksi, 1 * sgn(k_n)))
|
|
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
|
# lambda_even
|
|
# print "normal"
|
|
for e in range(1, theta):
|
|
if (theta + e) % 2 == 0:
|
|
results.append((e * ksi, 1 * sgn(k_n)))
|
|
results.append((1 - e * ksi, -1 * sgn(k_n)))
|
|
# print "reversed"
|
|
for e in range(theta + 1, k + 1):
|
|
if (theta + e) % 2 != 0:
|
|
continue
|
|
results.append((e * ksi, -1 * sgn(k_n)))
|
|
results.append((1 - e * ksi, 1 * sgn(k_n)))
|
|
return SignatureFunction(results)
|
|
|
|
|
|
def get_cable_signature_as_theta_function(*arg):
|
|
"""
|
|
This function takes as an argument a single cable T_(2, q), i.e.
|
|
arbitrary number of integers that encode the cable,
|
|
and returns another function that alow to calculate signature function
|
|
for this single cable and a theta given as an argument.
|
|
"""
|
|
def get_signture_function(theta):
|
|
"""
|
|
This function returns SignatureFunction for previously defined single
|
|
cable T_(2, q) and a theta given as an argument.
|
|
The cable was defined by calling function
|
|
get_cable_signature_as_theta_function(*arg)
|
|
with the cable description as an argument.
|
|
It is an implementaion of the formula:
|
|
Bl_theta(K'_(2, d)) =
|
|
Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t)
|
|
+ Bl(K')(ksi_l^theta * t)
|
|
"""
|
|
|
|
# TBD: another formula (for t^2) description
|
|
|
|
k_n = abs(arg[-1])
|
|
if theta > k_n:
|
|
msg = "k for the pattern in the cable is " + str(arg[-1]) + \
|
|
". Parameter theta should not be larger than abs(k)."
|
|
raise ValueError(msg)
|
|
cable_signature = get_blanchfield_for_pattern(arg[-1], theta)
|
|
for i, k in enumerate(arg[:-1][::-1]):
|
|
ksi = 1/(2 * k_n + 1)
|
|
power = 2^i
|
|
a = get_untwisted_signature_function(k)
|
|
shift = theta * ksi * power
|
|
b = a >> shift
|
|
c = a << shift
|
|
for _ in range(i):
|
|
b = b.double_cover()
|
|
c = c.double_cover()
|
|
cable_signature += b + c
|
|
return cable_signature
|
|
return get_signture_function
|
|
|
|
|
|
def get_untwisted_signature_function(j):
|
|
"""This function returns the signature function of the T_{2,2k+1}
|
|
torus knot."""
|
|
k = abs(j)
|
|
w = ([((2 * a + 1)/(4 * k + 2), -1 * sgn(j)) for a in range(k)] +
|
|
[((2 * a + 1)/(4 * k + 2), 1 * sgn(j))
|
|
for a in range(k + 1, 2 * k + 1)])
|
|
return SignatureFunction(w)
|
|
|
|
|
|
def get_function_of_theta_for_sum(*arg):
|
|
"""
|
|
Function intended to construct signature function for a connected
|
|
sum of multiple cables with varying theta parameter values.
|
|
Accept arbitrary number of arguments (depending on number of cables in
|
|
connected sum).
|
|
Each argument should be given as list of integer representing
|
|
k - parameters for a cable: parameters k_i (i=1,.., n-1) for satelit knots
|
|
T(2, 2k_i + 1) and - the last one - k_n for a pattern knot T(2, 2k_n + 1).
|
|
Returns a function that will take theta vector as an argument and return
|
|
an object SignatureFunction.
|
|
|
|
To calculate signature function for a cable sum and a theta values vector,
|
|
use as below.
|
|
|
|
sage: signature_function_generator = get_function_of_theta_for_sum(
|
|
[1, 3], [2], [-1, -2], [-3])
|
|
sage: sf = signature_function_generator(2, 1, 2, 2)
|
|
sage: print sf
|
|
0: 0
|
|
5/42: 1
|
|
1/7: 0
|
|
1/5: -1
|
|
7/30: -1
|
|
2/5: 1
|
|
3/7: 0
|
|
13/30: -1
|
|
19/42: -1
|
|
23/42: 1
|
|
17/30: 1
|
|
4/7: 0
|
|
3/5: -1
|
|
23/30: 1
|
|
4/5: 1
|
|
6/7: 0
|
|
37/42: -1
|
|
|
|
Or like below.
|
|
sage: print get_function_of_theta_for_sum([1, 3], [2], [-1, -2], [-3]
|
|
)(2, 1, 2, 2)
|
|
0: 0
|
|
1/7: 0
|
|
1/6: 0
|
|
1/5: -1
|
|
2/5: 1
|
|
3/7: 0
|
|
1/2: 0
|
|
4/7: 0
|
|
3/5: -1
|
|
4/5: 1
|
|
5/6: 0
|
|
6/7: 0
|
|
"""
|
|
|
|
def signature_function_for_sum(*thetas, **kwargs):
|
|
"""
|
|
Returns object of SignatureFunction class for a previously defined
|
|
connected sum of len(arg) cables.
|
|
Accept len(arg) arguments: for each cable one theta parameter.
|
|
If call with no arguments, all theta parameters are set to be 0.
|
|
"""
|
|
if 'verbose' in kwargs:
|
|
verbose = kwargs['verbose']
|
|
else:
|
|
verbose = False
|
|
|
|
la = len(arg)
|
|
lt = len(thetas)
|
|
|
|
# call with no arguments
|
|
if lt == 0:
|
|
return signature_function_for_sum(*(la * [0]))
|
|
|
|
if lt != la:
|
|
msg = "This function takes exactly " + str(la) + \
|
|
" arguments or no argument at all (" + str(lt) + " given)."
|
|
raise TypeError(msg)
|
|
|
|
sf = SignatureFunction([(0, 0)])
|
|
|
|
# for each cable in cable sum apply theta
|
|
for i, knot in enumerate(arg):
|
|
try:
|
|
sf += (get_cable_signature_as_theta_function(*knot))(thetas[i])
|
|
# in case wrong theata value was given
|
|
except ValueError as e:
|
|
print "ValueError: " + str(e.args[0]) +\
|
|
" Please change " + str(i + 1) + ". parameter."
|
|
return None
|
|
if verbose:
|
|
print
|
|
print str(*thetas)
|
|
print sf
|
|
return sf
|
|
return signature_function_for_sum
|
|
|
|
|
|
def eval_cable_for_thetas(knot_sum, print_results=True, verbose=False):
|
|
"""
|
|
This function calculates all possible twisted signature functions for
|
|
a knot that is given as an argument. The knot should be encoded as a list
|
|
of its direct component. Each component schould be presented as a list
|
|
of integers. This integers correspond to the k - values in each component/
|
|
cable. If a component is a mirror image of a cable the minus sign should
|
|
be written before each number for this component. For example:
|
|
eval_cable_for_thetas([[1, 8], [2], [-2, -8], [-2]])
|
|
eval_cable_for_thetas([[1, 2], [-1, -2]])
|
|
|
|
sage: eval_cable_for_thetas([[1, 3], [2], [-1, -2], [-3]])
|
|
|
|
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
|
|
Zero cases: 1
|
|
All cases: 1225
|
|
Zero theta combinations:
|
|
(0, 0, 0, 0)
|
|
|
|
sage:
|
|
The numbers given to the function eval_cable_for_thetas are k-values for each
|
|
component/cable in a direct sum.
|
|
|
|
|
|
"""
|
|
f = get_function_of_theta_for_sum(*knot_sum)
|
|
knot_description = get_knot_descrption(*knot_sum)
|
|
all_combinations = get_number_of_combinations(*knot_sum)
|
|
|
|
null_combinations = 0
|
|
zero_theta_combinations = []
|
|
|
|
ranges_list = [range(abs(knot[-1]) + 1) for knot in knot_sum]
|
|
if verbose:
|
|
print
|
|
print knot_description
|
|
for v_theta in it.product(*ranges_list):
|
|
if f(*v_theta, verbose=verbose).sum_of_absolute_values() == 0:
|
|
zero_theta_combinations.append(v_theta)
|
|
m = len([theta for theta in v_theta if theta != 0])
|
|
null_combinations += 2^m
|
|
# else:
|
|
# assert sum(v_theta) != 0
|
|
|
|
if print_results:
|
|
print
|
|
print knot_description
|
|
print "Zero cases: " + str(null_combinations)
|
|
print "All cases: " + str(all_combinations)
|
|
if zero_theta_combinations:
|
|
print "Zero theta combinations: "
|
|
for el in zero_theta_combinations:
|
|
print el
|
|
if null_combinations^2 >= all_combinations:
|
|
return knot_description, null_combinations, all_combinations
|
|
return None
|
|
|
|
|
|
def check_squares(a, k):
|
|
print
|
|
p = 2 * k + 1
|
|
k_0 = (p^2 - 1)/2
|
|
knot_sum = [[a, k], [k_0], [-a, -k_0], [-k]]
|
|
print get_knot_descrption(*knot_sum)
|
|
if a * 4 >= p or is_trivial_combination(knot_sum):
|
|
if a * 4 >= p:
|
|
print str(knot_sum)
|
|
print "a * 4 >= p"
|
|
else:
|
|
print "Trivial " + str(knot_sum)
|
|
return None
|
|
|
|
eval_cable_for_thetas(knot_sum)
|
|
|
|
|
|
def get_number_of_combinations(*arg):
|
|
"""
|
|
Arguments:
|
|
arbitrary number of lists of numbers, each list encodes a single cable.
|
|
Return:
|
|
number of possible theta values combinations that could be applied
|
|
for a given cable sum,
|
|
i.e. the product of q_j for j = {1,.. n},
|
|
where n is a number of direct components in the cable sum,
|
|
and q_j is the last q parameter for the component (a single cable).
|
|
"""
|
|
number_of_combinations = 1
|
|
for knot in arg:
|
|
number_of_combinations *= (2 * abs(knot[-1]) + 1)
|
|
return number_of_combinations
|
|
|
|
|
|
def extract_max(string):
|
|
"""
|
|
Return:
|
|
maximum of absolute values of numbers from given string
|
|
Examples:
|
|
sage: extract_max("([1, 3], [2], [-1, -2], [-10])")
|
|
10
|
|
sage: extract_max("3, 55, ewewe, -42, 3300, 50")
|
|
3300
|
|
"""
|
|
numbers = re.findall('\d+', string)
|
|
numbers = map(int, numbers)
|
|
return max(numbers)
|
|
|
|
|
|
def mod_one(n):
|
|
"""
|
|
Argument:
|
|
a number
|
|
Return:
|
|
the fractional part of a number
|
|
Examples:
|
|
sage: mod_one(9 + 3/4)
|
|
3/4
|
|
sage: mod_one(-9 + 3/4)
|
|
3/4
|
|
sage: mod_one(-3/4)
|
|
1/4
|
|
"""
|
|
return n - floor(n)
|
|
|
|
|
|
def get_knot_descrption(*arg):
|
|
"""
|
|
Arguments:
|
|
arbitrary number of lists of numbers, each list encodes a single cable.
|
|
Examples:
|
|
sage: get_knot_descrption([1, 3], [2], [-1, -2], [-3])
|
|
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
|
|
"""
|
|
description = ""
|
|
for knot in arg:
|
|
if knot[0] < 0:
|
|
description += "-"
|
|
description += "T("
|
|
for k in knot:
|
|
description += "2, " + str(2 * abs(k) + 1) + "; "
|
|
description = description[:-2] + ") # "
|
|
return description[:-3]
|
|
|
|
|
|
if __name__ == '__main__' and '__file__' in globals():
|
|
# not called in interactive mode as __file__ is not defined
|
|
main(sys.argv)
|