signature_function/cable_signature.sage

806 lines
30 KiB
Python

#!/usr/bin/python
import collections
import numpy as np
import itertools as it
import re
class TorusCable(object):
def __init__(self, knot_formula, k_vector=None, q_vector=None):
# q_i = 2 * k_i + 1
if k_vector is None:
if q_vector is None:
# TBD docstring
print("Please give a list of k (k_vector) \
or q values (q_vector).")
return None
else:
k_vector = [(q - 1)/2 for q in q_vector]
elif q_vector is None:
q_vector = [2 * k + 1 for k in k_vector]
self.knot_formula = knot_formula
self.k_vector = k_vector
self.q_vector = q_vector
k = k_vector
self.knot_sum = eval(knot_formula)
self.knot_description = self.get_knot_descrption()
self.__sigma_function = None
self.__signature_as_function_of_theta = None
def get_knot_descrption(self):
description = ""
for knot in self.knot_sum:
if knot[0] < 0:
description += "-"
description += "T("
for k in knot:
description += "2, " + str(2 * abs(k) + 1) + "; "
description = description[:-2] + ") # "
return description[:-3]
# searching for signature == 0
def get_signature_as_function_of_theta(self, verbose=False):
if self.__signature_as_function_of_theta is None:
self.__signature_as_function_of_theta = \
self.__get_signature_as_function_of_theta(verbose=verbose)
return self.__signature_as_function_of_theta
# searching for signature == 0
def __get_signature_as_function_of_theta(self, **key_args):
if 'verbose' in key_args:
verbose_default = key_args['verbose']
else:
verbose_default = False
def signature_as_function_of_theta(*thetas, **kwargs):
verbose = verbose_default
if 'verbose' in kwargs:
verbose = kwargs['verbose']
len_a = len(self.knot_sum)
len_t = len(thetas)
# call with no arguments
if len_t == 0:
return signature_as_function_of_theta(*(len_a * [0]))
if len_t != len_a:
msg = "This function takes exactly " + str(len_a) + \
" arguments or no argument at all (" + str(len_t) + \
" given)."
raise TypeError(msg)
sf = SignatureFunction()
# for each cable knot in cable sum apply theta
for i, knot in enumerate(self.knot_sum):
try:
ssf = get_signature_summand_as_theta_function(*knot)
sf += ssf(thetas[i])
# in case wrong theata value was given
except ValueError as e:
print("ValueError: " + str(e.args[0]) +\
" Please change " + str(i + 1) + ". parameter.")
return None
if verbose:
print()
print(str(thetas))
print(sf)
return sf
signature_as_function_of_theta.__doc__ =\
signature_as_function_of_theta_docstring
return signature_as_function_of_theta
# searching for signature == 0
def check_for_null_theta_combinations(self, verbose=False):
list_of_good_vectors= []
number_of_null_comb = 0
f = self.get_signature_as_function_of_theta(verbose=verbose)
range_list = [range(abs(knot[-1]) + 1) for knot in self.knot_sum]
for theta_vector in it.product(*range_list):
if f(*theta_vector, verbose=False).is_zero_everywhere():
list_of_good_vectors.append(theta_vector)
m = len([theta for theta in theta_vector if theta != 0])
number_of_null_comb += 2^m
return number_of_null_comb, list_of_good_vectors
# searching for signature == 0
def eval_cable_for_null_signature(self, print_results=False, verbose=False):
# search for zero combinations
number_of_all_comb = self.get_number_of_combinations_of_theta()
result = self.check_for_null_theta_combinations(verbose=verbose)
number_of_null_comb, list_of_good_vectors = result
if print_results:
print()
print(self.knot_description)
print("Zero cases: " + str(number_of_null_comb))
print("All cases: " + str(number_of_all_comb))
print("Zero theta combinations: ")
for el in list_of_good_vectors:
print(el)
if number_of_null_comb^2 >= number_of_all_comb:
return number_of_null_comb, number_of_all_comb
return None
# check sigma for all v = s * [a_1, a_2, a_3, a_4] for s in [1, q_4 - 1]
def __is_sigma_for_vector_class_big(self, theta_vector):
[a_1, a_2, a_3, a_4] = theta_vector
q_4 = self.q_vector[3]
for shift in range(1, q_4):
shifted_theta = [(shift * a) % q_4 for a in
[a_1, a_2, a_3, a_4]]
sigma_v = self.__sigma_function(shifted_theta)
if abs(sigma_v) > 5 + np.count_nonzero(shifted_theta):
return True
return False
def __tmp_print_all_sigma_for_vector_class(self, theta_vector):
print("\n")
print(self.knot_description)
print("vector = " + str(theta_vector))
[a_1, a_2, a_3, a_4] = theta_vector
q_4 = self.q_vector[3]
for shift in range(1, q_4):
shifted_theta = [(shift * a) % q_4 for a in
[a_1, a_2, a_3, a_4]]
print(str(shifted_theta) + "\t\t" + \
str(self.__sigma_function(shifted_theta)))
print("\n")
def __tmp_get_max_sigma_for_vector_class(self, theta_vector):
# print("\n")
# print(self.knot_description)
# print("vector = " + str(theta_vector))
max_sigma = (theta_vector, 0)
[a_1, a_2, a_3, a_4] = theta_vector
q_4 = self.q_vector[3]
for shift in range(1, q_4):
shifted_theta = [(shift * a) % q_4 for a in
[a_1, a_2, a_3, a_4]]
sigma = self.__sigma_function(shifted_theta)
if abs(sigma) > abs(max_sigma[1]):
max_sigma = (shifted_theta, sigma)
assert max_sigma[1] == 0, knot_description
# print("\n" + self.knot_description + "\t" + str(max_sigma[0]) +\
# "\t" + str(max_sigma[1]))
return max_sigma[1]
def is_sigma_for_vector_class_big(self, theta_vector):
if self.__sigma_function is None:
self.__sigma_function = self.__get_sigma_function()
return self.__is_sigma_for_vector_class_big(theta_vector)
def __get_sigma_function(self):
k_1, k_2, k_3, k_4 = [abs(k) for k in self.k_vector]
q_4 = 2 * k_4 + 1
ksi = 1/q_4
sigma_q_1 = get_untwisted_signature_function(k_1)
sigma_q_2 = get_untwisted_signature_function(k_2)
sigma_q_3 = get_untwisted_signature_function(k_3)
def sigma_function(theta_vector, print_results=False):
# "untwisted" part (Levine-Tristram signatures)
a_1, a_2, a_3, a_4 = theta_vector
untwisted_part = 2 * (sigma_q_2(ksi * a_1) -
sigma_q_2(ksi * a_2) +
sigma_q_3(ksi * a_3) -
sigma_q_3(ksi * a_4) +
sigma_q_1(ksi * a_1 * 2) -
sigma_q_1(ksi * a_4 * 2))
# "twisted" part
tp = [0, 0, 0, 0]
for i, a in enumerate(theta_vector):
if a:
tp[i] = -q_4 + 2 * a - 2 * (a^2/q_4)
twisted_part = tp[0] - tp[1] + tp[2] - tp[3]
# if print_results:
# self.print_results_LT(theta_vector, untwisted_part)
# self.print_results_LT(theta_vector, twisted_part)
sigma_v = untwisted_part + twisted_part
return sigma_v
return sigma_function
def print_results_LT(self, theta_vector, untwisted_part):
knot_description = self.knot_description
k_1, k_2, k_3, k_4 = [abs(k) for k in self.k_vector]
a_1, a_2, a_3, a_4 = theta_vector
q_4 = 2 * k_4 + 1
ksi = 1/q_4
sigma_q_1 = get_untwisted_signature_function(k_1)
sigma_q_2 = get_untwisted_signature_function(k_2)
sigma_q_3 = get_untwisted_signature_function(k_3)
print("\n\nLevine-Tristram signatures for the cable sum: ")
print(knot_description)
print("and characters:\n" + str(theta_vector) + ",")
print("ksi = " + str(ksi))
print("\n\n2 * (sigma_q_2(ksi * a_1) + " + \
"sigma_q_1(ksi * a_1 * 2) - " +\
"sigma_q_2(ksi * a_2) + " +\
"sigma_q_3(ksi * a_3) - " +\
"sigma_q_3(ksi * a_4) - " +\
"sigma_q_1(ksi * a_4 * 2))" +\
\
" = \n\n2 * (sigma_q_2(" + \
str(ksi) + " * " + str(a_1) + \
") + sigma_q_1(" + \
str(ksi) + " * " + str(a_1) + " * 2" + \
") - sigma_q_2(" + \
str(ksi) + " * " + str(a_2) + \
") + sigma_q_3(" + \
str(ksi) + " * " + str(a_3) + \
") - sigma_q_3(" + \
str(ksi) + " * " + str(a_4) + \
") - sigma_q_1(" + \
str(ksi) + " * " + str(a_4) + " * 2)) " + \
\
" = \n\n2 * (sigma_q_2(" + \
str(mod_one(ksi * a_1)) + \
") + sigma_q_1(" + \
str(mod_one(ksi * a_1 * 2)) + \
") - sigma_q_2(" + \
str(mod_one(ksi * a_2)) + \
") + sigma_q_3(" + \
str(mod_one(ksi * a_3)) + \
") - sigma_q_3(" + \
str(mod_one(ksi * a_4)) + \
") - sigma_q_1(" + \
str(mod_one(ksi * a_4 * 2)) + \
\
") = \n\n2 * ((" + \
str(sigma_q_2(ksi * a_1)) + \
") + (" + \
str(sigma_q_1(ksi * a_1 * 2)) + \
") - (" + \
str(sigma_q_2(ksi * a_2)) + \
") + (" + \
str(sigma_q_3(ksi * a_3)) + \
") - (" + \
str(sigma_q_3(ksi * a_4)) + \
") - (" + \
str(sigma_q_1(ksi * a_4 * 2)) + ")) = " + \
"\n\n2 * (" + \
str(sigma_q_2(ksi * a_1) +
sigma_q_1(ksi * a_1 * 2) -
sigma_q_2(ksi * a_2) +
sigma_q_3(ksi * a_3) -
sigma_q_3(ksi * a_4) -
sigma_q_1(ksi * a_4 * 2)) + \
") = " + str(untwisted_part))
print("\nSignatures:")
print("\nq_1 = " + str(2 * k_1 + 1) + ": " + repr(sigma_q_1))
print("\nq_2 = " + str(2 * k_2 + 1) + ": " + repr(sigma_q_2))
print("\nq_3 = " + str(2 * k_3 + 1) + ": " + repr(sigma_q_3))
def get_number_of_combinations_of_theta(self):
number_of_combinations = 1
for knot in self.knot_sum:
number_of_combinations *= (2 * abs(knot[-1]) + 1)
return number_of_combinations
def print_results_sigma(self, theta_vector, twisted_part):
a_1, a_2, a_3, a_4 = theta_vector
knot_description = self.knot_description
q_4 = self.q_vector[-1]
print("\n\nSigma values for the cable sum: ")
print(knot_description)
print("and characters: " + str(v_theta))
print("\nsigma(T_{2, q_4}, ksi_a) = " + \
"-q + (2 * a * (q_4 - a)/q_4) " +\
"= -q + 2 * a - 2 * a^2/q_4 if a != 0,\n\t\t\t" +\
" = 0 if a == 0.")
print("\nsigma(T_{2, q_4}, chi_a_1) = ", end="")
if a_1:
print("- (" + str(q_4) + ") + 2 * " + str(a_1) + " + " +\
"- 2 * " + str(a_1^2) + "/" + str(q_4) + \
" = " + str(tp[0]))
else:
print("0")
print("\nsigma(T_{2, q_4}, chi_a_2) = ", end ="")
if a_2:
print("- (" + str(q_4) + ") + 2 * " + str(a_2) + " + " +\
"- 2 * " + str(a_2^2) + "/" + str(q_4) + \
" = " + str(tp[1]))
else:
print("0", end="")
print("\nsigma(T_{2, q_4}, chi_a_3) = ", end="")
if a_3:
print("- (" + str(q_4) + ") + 2 * " + str(a_3) + " + " +\
"- 2 * " + str(a_3^2) + "/" + str(q_4) + \
" = " + str(tp[2]))
else:
print("0", end="")
print("\nsigma(T_{2, q_4}, chi_a_4) = ", end="")
if a_4:
print("- (" + str(q_4) + ") + 2 * " + str(a_4) + " + " +\
"- 2 * " + str(a_4^2) + "/" + str(q_4) + \
" = " + str(tp[3]))
else:
print("0")
print("\n\nsigma(T_{2, q_4}, chi_a_1) " + \
"- sigma(T_{2, q_4}, chi_a_2) " + \
"+ sigma(T_{2, q_4}, chi_a_3) " + \
"- sigma(T_{2, q_4}, chi_a_4) =\n" + \
"sigma(T_{2, q_4}, " + str(a_1) + \
") - sigma(T_{2, q_4}, " + str(a_2) + \
") + sigma(T_{2, q_4}, " + str(a_3) + \
") - sigma(T_{2, q_4}, " + str(a_4) + ") = " + \
str(tp[0] - tp[1] + tp[2] - tp[3]))
# searching for sigma > 5 + #(v_i != 0)
def calculate_sigma(self, theta_vector):
if self.__sigma_function is None:
self.__sigma_function = self.__get_sigma_function()
return self.__sigma_function(theta_vector)
# searching for sigma > 5 + #(v_i != 0)
def __check_combinations_in_range(self, range_product):
large_sigma_for_all_combinations = True
bad_vectors = []
good_vectors = []
q_4 = self.q_vector[-1]
for vector in range_product:
a_1, a_2, a_3, a_4 = vector
if (a_1^2 - a_2^2 + a_3^2 - a_4^2) % q_4:
continue
if all(a in [1, q_4 - 1] for a in vector):
is_all_one = True
else:
is_all_one = False
if self.__is_sigma_for_vector_class_big(vector):
good_vectors.append(vector)
# if is_all_one:
# print("\nHURA" * 100)
# print(self.knot_description)
# self.__tmp_print_all_sigma_for_vector_class(vector)
# pass
else:
if is_all_one:
self.__tmp_get_max_sigma_for_vector_class(vector)
bad_vectors.append(vector)
#####################################################
if len(bad_vectors) > 8:
break
####################################################
large_sigma_for_all_combinations = False
return good_vectors, bad_vectors
# searching for sigma > 5 + #(v_i != 0)
def check_combinations_in_range(self, range_product):
if self.__sigma_function is None:
self.__sigma_function = self.__get_sigma_function()
return self.__check_combinations_in_range(range_product)
# searching for sigma > 5 + #(v_i != 0)
def __check_all_combinations_in_ranges(self, list_of_ranges,
print_results=True):
all_combinations_pass = True
all_bad_vectors = []
number_of_all_good_v = 0
for i, range_product in enumerate(list_of_ranges):
good_v, bad_v = self.__check_combinations_in_range(range_product)
number_of_all_good_v += len(good_v)
all_bad_vectors = list(it.chain(all_bad_vectors, bad_v))
if bad_v:
all_combinations_pass = False
if len(all_bad_vectors) > 8:
break
# if print_results:
# print("good : bad:\t " + str(len(good_v)) +\
# " : " + str(len(bad_v)))
# if i in [0, 4,]:
# print()
# if bad_v:
# print(bad_v)
if print_results:
print("good : bad:\t " + str(number_of_all_good_v) +\
" : " + str(len(all_bad_vectors)))
if len(all_bad_vectors) < 8:
print()
print(all_bad_vectors)
return all_combinations_pass
# searching for sigma > 5 + #(v_i != 0)
def eval_cable_for_large_sigma(self, list_of_ranges,
print_results=False, verbose=False):
if self.__sigma_function is None:
self.__sigma_function = self.__get_sigma_function()
if print_results:
# print("\n\n")
# print(100 * "*")
# print("Searching for a large signature values for the cable sum: ")
print(self.knot_description, end="\t\t\t")
# print()
if self.__check_all_combinations_in_ranges(list_of_ranges,
print_results=print_results):
return True
return False
class SignatureFunction(object):
def __init__(self, values=None, counter=None):
# set values of signature jumps
if counter is None:
counter = collections.Counter()
if values is None:
values = []
assert all(x < 1 for x, y in values),\
"Signature function is defined on the interval [0, 1)."
counter = collections.Counter(dict(values))
self.cnt_signature_jumps = counter
def sum_of_absolute_values(self):
return sum([abs(i) for i in self.cnt_signature_jumps.values()])
def is_zero_everywhere(self):
return not any(self.cnt_signature_jumps.values())
def double_cover(self):
# to read values for t^2
new_data = []
for jump_arg, jump in self.cnt_signature_jumps.items():
new_data.append((jump_arg/2, jump))
new_data.append((1/2 + jump_arg/2, jump))
return SignatureFunction(values=new_data)
def square_root(self):
# to read values for t^(1/2)
new_data = []
for jump_arg, jump in self.cnt_signature_jumps.items():
if jump_arg < 1/2:
new_data.append((2 * jump_arg, jump))
return SignatureFunction(values=new_data)
def minus_square_root(self):
# to read values for t^(1/2)
counter = collections.Counter()
for jump_arg, jump in self.cnt_signature_jumps.items():
if jump_arg >= 1/2:
counter[mod_one(2 * jump_arg)] = jump
return SignatureFunction(counter=counter)
def __lshift__(self, shift):
# A shift of the signature functions corresponds to the rotation.
return self.__rshift__(-shift)
def __rshift__(self, shift):
new_data = []
for jump_arg, jump in self.cnt_signature_jumps.items():
new_data.append((mod_one(jump_arg + shift), jump))
return SignatureFunction(values=new_data)
def __neg__(self):
counter = collections.Counter()
counter.subtract(self.cnt_signature_jumps)
return SignatureFunction(counter=counter)
# TBD short
def __add__(self, other):
counter = copy(self.cnt_signature_jumps)
counter.update(other.cnt_signature_jumps)
return SignatureFunction(counter=counter)
def __eq__(self, other):
return self.cnt_signature_jumps == other.cnt_signature_jumps
def __sub__(self, other):
counter = copy(self.cnt_signature_jumps)
counter.subtract(other.cnt_signature_jumps)
return SignatureFunction(counter=counter)
def __str__(self):
result = ''.join([str(jump_arg) + ": " + str(jump) + "\n"
for jump_arg, jump in sorted(self.cnt_signature_jumps.items())])
return result
def __repr__(self):
result = ''.join([str(jump_arg) + ": " + str(jump) + ", "
for jump_arg, jump in sorted(self.cnt_signature_jumps.items())])
return result[:-2] + "."
def __call__(self, arg):
# Compute the value of the signature function at the point arg.
# This requires summing all signature jumps that occur before arg.
arg = mod_one(arg)
cnt = self.cnt_signature_jumps
before_arg = [jump for jump_arg, jump in cnt.items() if jump_arg < arg]
return 2 * sum(before_arg) + cnt[arg]
def mod_one(n):
return n - floor(n)
def get_untwisted_signature_function(j):
# return the signature function of the T_{2,2k+1} torus knot
k = abs(j)
w = ([((2 * a + 1)/(4 * k + 2), -1 * sgn(j)) for a in range(k)] +
[((2 * a + 1)/(4 * k + 2), 1 * sgn(j))
for a in range(k + 1, 2 * k + 1)])
return SignatureFunction(values=w)
def get_signature_summand_as_theta_function(*arg):
def get_signture_function(theta):
# TBD: another formula (for t^2) description
k_n = abs(arg[-1])
if theta > k_n:
msg = "k for the pattern in the cable is " + str(arg[-1]) + \
". Parameter theta should not be larger than abs(k)."
raise ValueError(msg)
# twisted part
cable_signature = get_blanchfield_for_pattern(arg[-1], theta)
# untwisted part
for i, k in enumerate(arg[:-1][::-1]):
ksi = 1/(2 * k_n + 1)
power = 2^i
a = get_untwisted_signature_function(k)
shift = theta * ksi * power
b = a >> shift
c = a << shift
for _ in range(i):
b = b.double_cover()
c = c.double_cover()
cable_signature += b + c
test = b - c
test2 = -c + b
assert test == test
return cable_signature
get_signture_function.__doc__ = get_signture_function_docsting
return get_signture_function
def get_blanchfield_for_pattern(k_n, theta):
if theta == 0:
a = get_untwisted_signature_function(k_n)
return a.square_root() + a.minus_square_root()
results = []
k = abs(k_n)
ksi = 1/(2 * k + 1)
# lambda_odd, i.e. (theta + e) % 2 != 0
for e in range(1, k + 1):
if (theta + e) % 2 != 0:
results.append((e * ksi, 1 * sgn(k_n)))
results.append((1 - e * ksi, -1 * sgn(k_n)))
# lambda_even
# print("normal")
for e in range(1, theta):
if (theta + e) % 2 == 0:
results.append((e * ksi, 1 * sgn(k_n)))
results.append((1 - e * ksi, -1 * sgn(k_n)))
# print("reversed")
for e in range(theta + 1, k + 1):
if (theta + e) % 2 != 0:
continue
results.append((e * ksi, -1 * sgn(k_n)))
results.append((1 - e * ksi, 1 * sgn(k_n)))
return SignatureFunction(values=results)
def get_signature_summand_as_theta_function(*arg):
def get_signture_function(theta):
# TBD: another formula (for t^2) description
k_n = abs(arg[-1])
if theta > k_n:
msg = "k for the pattern in the cable is " + str(arg[-1]) + \
". Parameter theta should not be larger than abs(k)."
raise ValueError(msg)
# twisted part
cable_signature = get_blanchfield_for_pattern(arg[-1], theta)
# untwisted part
for i, k in enumerate(arg[:-1][::-1]):
ksi = 1/(2 * k_n + 1)
power = 2^i
a = get_untwisted_signature_function(k)
shift = theta * ksi * power
b = a >> shift
c = a << shift
for _ in range(i):
b = b.double_cover()
c = c.double_cover()
cable_signature += b + c
test = b - c
test2 = -c + b
assert test == test
return cable_signature
get_signture_function.__doc__ = get_signture_function_docsting
return get_signture_function
def get_untwisted_signature_function(j):
# return the signature function of the T_{2,2k+1} torus knot
k = abs(j)
w = ([((2 * a + 1)/(4 * k + 2), -1 * sgn(j)) for a in range(k)] +
[((2 * a + 1)/(4 * k + 2), 1 * sgn(j))
for a in range(k + 1, 2 * k + 1)])
return SignatureFunction(values=w)
TorusCable.get_number_of_combinations_of_theta.__doc__ = \
"""
Arguments:
arbitrary number of lists of numbers, each list encodes a single cable
Return:
number of possible theta values combinations that could be applied
for a given cable sum,
i.e. the product of q_j for j = {1,.. n},
where n is a number of direct components in the cable sum,
and q_j is the last q parameter for the component (a single cable)
"""
TorusCable.get_knot_descrption.__doc__ = \
"""
Arguments:
arbitrary number of lists of numbers, each list encodes a single cable.
Examples:
sage: get_knot_descrption([1, 3], [2], [-1, -2], [-3])
'T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)'
"""
TorusCable.eval_cable_for_null_signature.__doc__ = \
"""
This function calculates all possible twisted signature functions for
a knot that is given as an argument. The knot should be encoded as a list
of its direct component. Each component schould be presented as a list
of integers. This integers correspond to the k - values in each component/
cable. If a component is a mirror image of a cable the minus sign should
be written before each number for this component. For example:
eval_cable_for_null_signature([[1, 8], [2], [-2, -8], [-2]])
eval_cable_for_null_signature([[1, 2], [-1, -2]])
sage: eval_cable_for_null_signature([[1, 3], [2], [-1, -2], [-3]])
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
Zero cases: 1
All cases: 1225
Zero theta combinations:
(0, 0, 0, 0)
sage:
The numbers given to the function eval_cable_for_null_signature
are k-values for each component/cable in a direct sum.
"""
TorusCable.get_signature_as_function_of_theta.__doc__ = \
"""
Function intended to construct signature function for a connected
sum of multiple cables with varying theta parameter values.
Accept arbitrary number of arguments (depending on number of cables in
connected sum).
Each argument should be given as list of integer representing
k - parameters for a cable: parameters k_i (i=1,.., n-1) for satelit knots
T(2, 2k_i + 1) and - the last one - k_n for a pattern knot T(2, 2k_n + 1).
Returns a function that will take theta vector as an argument and return
an object SignatureFunction.
To calculate signature function for a cable sum and a theta values vector,
use as below.
sage: signature_function_generator = get_signature_as_function_of_theta(
[1, 3], [2], [-1, -2], [-3])
sage: sf = signature_function_generator(2, 1, 2, 2)
sage: print(sf)
0: 0
5/42: 1
1/7: 0
1/5: -1
7/30: -1
2/5: 1
3/7: 0
13/30: -1
19/42: -1
23/42: 1
17/30: 1
4/7: 0
3/5: -1
23/30: 1
4/5: 1
6/7: 0
37/42: -1
Or like below.
sage: print(get_signature_as_function_of_theta([1, 3], [2], [-1, -2], [-3]
)(2, 1, 2, 2))
0: 0
1/7: 0
1/6: 0
1/5: -1
2/5: 1
3/7: 0
1/2: 0
4/7: 0
3/5: -1
4/5: 1
5/6: 0
6/7: 0
"""
SignatureFunction.__doc__ = \
"""
This simple class encodes twisted and untwisted signature functions
of knots. Since the signature function is entirely encoded by its signature
jump, the class stores only information about signature jumps
in a dictionary self.cnt_signature_jumps.
The dictionary stores data of the signature jump as a key/values pair,
where the key is the argument at which the functions jumps
and value encodes the value of the jump. Remember that we treat
signature functions as defined on the interval [0,1).
"""
get_signture_function_docsting = \
"""
This function returns SignatureFunction for previously defined single
cable T_(2, q) and a theta given as an argument.
The cable was defined by calling function
get_signature_summand_as_theta_function(*arg)
with the cable description as an argument.
It is an implementaion of the formula:
Bl_theta(K'_(2, d)) =
Bl_theta(T_2, d) + Bl(K')(ksi_l^(-theta) * t)
+ Bl(K')(ksi_l^theta * t)
"""
signature_as_function_of_theta_docstring = \
"""
Arguments:
Returns object of SignatureFunction class for a previously defined
connected sum of len(arg) cables.
Accept len(arg) arguments: for each cable one theta parameter.
If call with no arguments, all theta parameters are set to be 0.
"""
mod_one.__doc__ = \
"""
Argument:
a number
Return:
the fractional part of the argument
Examples:
sage: mod_one(9 + 3/4)
3/4
sage: mod_one(-9 + 3/4)
3/4
sage: mod_one(-3/4)
1/4
"""
get_blanchfield_for_pattern.__doc__ = \
"""
Arguments:
k_n: a number s.t. q_n = 2 * k_n + 1, where
T(2, q_n) is a pattern knot for a single cable from a cable sum
theta: twist/character for the cable (value form v vector)
Return:
SignatureFunction created for twisted signature function
for a given cable and theta/character
Based on:
Proposition 9.8. in Twisted Blanchfield Pairing
(https://arxiv.org/pdf/1809.08791.pdf)
"""
get_signature_summand_as_theta_function.__doc__ = \
"""
Argument:
n integers that encode a single cable, i.e.
values of q_i for T(2,q_0; 2,q_1; ... 2, q_n)
Return:
a function that returns SignatureFunction for this single cable
and a theta given as an argument
"""