computation up to 11 crossing ok, for larger knots the algorithm does not work

This commit is contained in:
Maria Marchwicka 2019-03-05 15:28:37 +00:00
parent 7836c158c7
commit 4625bde375

332
blanchfield.sage Normal file
View File

@ -0,0 +1,332 @@
#!/usr/bin/env python
import sys
import os
class MySettings(object):
def __init__(self):
self.f_pd_knot_11_15 = os.path.join(os.getcwd(), "knots_11_to_15.txt")
self.f_knot_up_to_10 = os.path.join(os.getcwd(), "knots_3_to_10.txt")
class Crossing(object):
def __init__(self, c_idx, paired_ind, complex, previous):
self.c_idx = c_idx
self.paired_ind = paired_ind
self.previous = previous
self.G = complex.knot.fundamental_group()
self.F = self.G.free_group()
self.pd = complex.pd_code[c_idx]
if paired_ind is not None:
self.edge = self.pd[paired_ind]
else:
self.edge = None
self.orientation = complex.orientation[c_idx]
self.pd_sign = self.get_pd_sign()
self.element = self.set_element(complex)
self.done = False
self.path_by_edges = []
self.w_i = self.F([])
def set_w_i(self, complex):
w_i = self.F([])
path = self.get_path_by_edges(None)
for edge in path:
arc = complex.get_arc(abs(edge))
g = self.F([arc+1])
if edge < 0:
g = g.inverse()
w_i *= g
self.path_by_edges = path
self.w_i = w_i
def get_path_by_edges(self, edge):
path_by_edges = []
if self.previous is not None:
path_by_edges.extend(self.previous.get_path_by_edges(self.edge))
if edge is not None:
idx = self.pd.index(edge)
else:
idx = None
path_by_edges.extend(self.get_correction(idx))
return path_by_edges
def get_correction(self, ind_to_pair):
path = []
correction_in = self.calculate_correction_in(ind_to_pair)
if self.previous is not None:
ind_to_pair = self.previous.pd.index(self.edge)
p_out = self.previous.calculate_correction_out(ind_to_pair)
path.extend(p_out)
path.extend(correction_in)
return path
def calculate_correction_in(self, ind_to_pair):
path_out = self.calculate_correction_out(ind_to_pair)
ind = self.paired_ind
if ind is None or ind == 0:
return []
pd = self.pd_sign
if ind == 3:
return [pd[3]]
if ind == 1 and len(path_out) > 2:
return [pd[1], pd[2], pd[3]]
if ind == 2 and len(path_out) > 1:
return [pd[2], pd[3]]
if ind == 1:
return [-pd[0]]
return [-pd[1], -pd[0]] # ind == 2
def calculate_correction_out(self, ind_to_pair):
path = []
if ind_to_pair is not None:
if ind_to_pair < 3:
path.append(-self.pd_sign[3])
if ind_to_pair < 2:
path.append(-self.pd_sign[2])
if ind_to_pair < 1:
path.append(-self.pd_sign[1])
return path
def set_element(self, complex):
loop = self.set_loop(complex)
relation = self.F([])
for element in loop:
relation *= element
return relation
def set_loop(self, complex):
F = self.F
loop = []
for edge in self.pd_sign:
arc = complex.get_arc(abs(edge))
g = F([arc+1])
if edge < 0:
g = g.inverse()
loop.append(g)
return loop
def get_pd_sign(self):
pd = []
pd.append(self.pd[0])
if self.orientation == 1:
pd.append(self.pd[1])
pd.append(-self.pd[2])
pd.append(-self.pd[3])
else:
pd.append(-self.pd[1])
pd.append(-self.pd[2])
pd.append(self.pd[3])
return pd
class TwistedChainComplex(object):
"""
This class implements twisted Blanchfield pairing
of a zero-surgery of a knot.
"""
def __init__(self, knot, field=RationalField(), images=None):
self.knot = knot
self.crossings_list = []
self.pd_code = self.knot.pd_code()
self.visited = [False] * len(self.pd_code)
self.orientation = self.knot.orientation()
# self.field = field
# self.ring = LaurentPolynomialRing(self.field, 'T')
# self.pol_ring = self.ring.polynomial_ring()
# self.T = self.ring.gen()
# self.TT = self.pol_ring.gen()
self.overcrossing_seq = []
self.G = self.get_fundamental_group()
assert self.G.abelian_invariants() == (0,)
def get_fundamental_group(self):
G = self.knot.fundamental_group()
pd_code = self.pd_code
orientation = self.knot.orientation()
writhe = self.knot.writhe()
arc = self.get_arc(1)
overcrossing_seq = [0] * len(pd_code)
longitude = G([arc + 1] * abs(writhe))
if writhe > 0:
longitude = longitude.inverse()
for entry in range(1, 2 * len(pd_code) + 1):
for idx, pd in enumerate(pd_code):
if entry == pd[0]:
# print "undercrossing pd[0]"
overcrossing_seq[idx] = longitude
overcrossing = pd[1]
arc = self.get_arc(overcrossing)
g = G([arc + 1])
if orientation[idx] == -1:
g = g.inverse()
overcrossing = -overcrossing
longitude *= g
break
elif entry == pd[1] and orientation[idx] == 1:
# print "overcrossing pd[1]"
break
elif entry == pd[3] and orientation[idx] == -1:
# print "overcrossing pd[3]"
break
relations = list(G.relations())
relations.append(longitude)
F = G.free_group().quotient(relations)
self.overcrossing_seq = overcrossing_seq
return F
def get_crossings_list(self):
pd_code = self.pd_code
pd_ind = 0 # current crossing id
paired_ind = None # position for a paired edge
crossing = None
while not all(self.visited):
self.visited[pd_ind] = True
crossing = Crossing(pd_ind, paired_ind, self, crossing)
self.crossings_list.append(crossing)
pd = crossing.pd
for i in reversed(range(4)):
pd_ind, paired_ind = self.find_next(crossing.c_idx, pd[i])
if not self.visited[pd_ind]:
break
elif self.visited[pd_ind] and i == 0:
if all(self.visited):
break
crossing, pd_ind, paired_ind = self.find_previous()
return self.crossings_list
def compute_wi(self):
F = self.G.free_group()
self.crossings_list = self.get_crossings_list()
crossings_list = self.crossings_list
null_loop = F([])
full_walk = [] # conjugated elements
big_lst = [] # elements
for c in crossings_list:
c.set_w_i(self)
for c in crossings_list[::-1]:
lst = []
walk = []
p = c
while p is not None:
if not p.done:
g = p.w_i * p.element * p.w_i.inverse()
walk.append(g)
lst.append(p)
p.done = True
p = p.previous
full_walk.extend(walk[::-1])
big_lst.extend(lst[::-1])
for el in full_walk:
null_loop *= el
if null_loop != F([]):
n_loop = F([])
for c in crossings_list:
n_loop *= c.w_i * c.element * c.w_i.inverse()
if n_loop == F([]):
return -1
print "n_loop = " + str(n_loop)
return 0
return 1
def find_previous(self):
previous = None
for c in self.crossings_list:
for i in reversed(range(4)):
new_ind, paired_ind = self.find_next(c.c_idx, c.pd[i])
if not self.visited[new_ind]:
previous = c
break
if previous is not None:
break
if previous is None:
raise ValueError("This knot is to difficult or doesn't exist.")
return previous, new_ind, paired_ind
def find_next(self, pd_ind, edge):
pd_code = self.pd_code
for ind, pd in enumerate(pd_code):
if ind == pd_ind:
continue
if edge in pd:
return ind, pd.index(edge)
raise ValueError("The knot.pd_code is incorrect.")
def get_arc(self, edge):
arcs = self.knot.arcs()
for idx, arc in enumerate(arcs):
if edge in arc:
return idx
def parse_pd_code(pd_code_from_file):
set = '0987654321[],'
pd_code = ''.join([c for c in pd_code_from_file if c in set])
return eval(pd_code)
def parse_knot_name(name):
data = name[5: -2].split(',')
name = data[0].strip() + data[1].strip().lower()[:1] + data[2].strip()
return name
def check_11_to_15(f_out=None):
with open(settings.f_pd_knot_11_15, 'r') as f:
line = f.readline()
while line:
name = parse_knot_name(line)
pd_code = parse_pd_code(f.readline())
line = f.readline()
knot = Link(pd_code)
C = TwistedChainComplex(knot)
result = C.compute_wi()
if result == 1:
# print C.knot.is_alternating()
pass
# print "ok"
# elif result == -1:
# print name
elif result == 0:
print "ERROR while checking " + str(name)
def check_up_to_10(f_out=None):
with open(settings.f_knot_up_to_10, 'r') as f:
line = f.readline()
while line:
line = line.split(" = ")
name = str(line[0])[5:]
pd_code = parse_pd_code(str(line[1]))
line = f.readline()
knot = Link(pd_code)
C = TwistedChainComplex(knot)
if C.compute_wi() == 1:
# print C.knot.is_alternating()
print "ok"
else:
print "!!!!!!!!!!!!!!"
print knot
print "!!!!!!!!!!!!!!"
def perform_test():
# check_up_to_10()
check_11_to_15()
if __name__ == '__main__':
settings = MySettings()
perform_test()