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Abstract In this paper we describe JCLEC, a Java soft-
ware system for the development of evolutionary com-
putation applications. This system has been designed
as a framework, applying design patterns to maximize
its reusability and adaptability to new paradigms with
a minimum of programming effort. JCLEC architecture
comprises three main modules: the core contains all ab-
stract type definitions and their implementation; exper-
iments runner is a scripting environment to run algo-
rithms in batch mode; finally, GenLab is a graphical user
interface that allows users to configure an algorithm, to
execute it interactively and to visualize the results ob-
tained. The use of JCLEC system is illustrated though
the analysis of one case study: the resolution of the 0/1
knapsack problem by means of evolutionary algorithms.

Key words Evolutionary Computation Software Tools,
Framework, Java, Object Oriented Design

1 Introduction

The use of Evolutionary Computation (EC) algorithms
in problem solving is a widespread practice. Examples
such as industrial design [1], the learning of boolean
queries [8], the identification of biochemical networks [9],
the learning of controllers in robotics [41] or the improve-
ment of e-learning systems [46] show their suitability as
problem solvers in a wide range of scientific fields.

Although evolutionary algorithms (EAs) are power-
ful for solving a wide range of scientific problems, their
use requires certain programming expertise along with
considerable time and effort in order to write a computer
program for implementing the often sophisticated algo-
rithm according to user needs. This work can be tedious
and needs to be done before users can start the task they
really should be working on. A simple solution is to get
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a ready-to-use EC software system, which is often de-
veloped for general purposes but has the potential to be
applied to any specific application. By doing this, users
removes the tedious job of having to codify the com-
monalities himself and he can concentrate on his specific
needs, like specialized functions for fitness evaluation,
reproductional operators, or high-performance represen-
tations.

In the last few years, a large number of EC soft-
ware tools have been developed. Some of them are spe-
cialized in a concrete EC flavor: genetic algorithms [4,
27], memetic algorithms [31], genetic programming [43,
50], distributed EAs [54], parameter control in EAs [36],
evolutionary multiobjective optimization [53] and learn-
ing classifier systems [39]. Others are generic tools, that
is, they can be used both to develop a variety of EAs
and to be applied to different problems. This category
of tools includes ECJ [37], one of the most popular tools
at present. Its open architecture allows a great variety of
EAs to be represented. However, standard distribution
does not provide a variety of ready-to-use components
(algorithms or genetic operators). Evolvica [47,48] is an-
other interesting EC tool. This system has a graphic user
interface (GUI), that lets users specify EAs by manipu-
lating program elements graphically. This visual model
allows EC models to develop quickly, but its use is found
to be complicated by non-experts in EC field. Other in-
teresting tools are Open Beagle [19] and EO [28], both
coded in C++. The first has an architecture that resem-
bles ECJ, and can be used in the same applications, but
it does not have a GUI to configure algorithms and vi-
sualize results. The system EO has components which
makes algorithm configuration easier [6], although is dif-
ficult to extend.

As we can see, there are numerous EC tools, but
most of them are mainly meant for people experienced
in the EC field. Furthemore, although there are excel-
lent generic tools, most of them do not have a vari-
ety of ready-to-use components which allows the EC re-
searcher to carry out the comparison between their own
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algorithms and others reported in the bibliography. Fi-
nally, with the exception of PPCea system [36], there do
not seem to be any systems that deal with experimental
studies in EC.

This paper presents the JCLEC system which was
developed to address some of the previously mentioned
problems involved in the design of an EC tool. This sys-
tem can be used by people who are inexperienced in the
EC field, because it has a GUI which eases such tasks
as the configuration, execution and verification of results
and it has a great variety of evolutionary algorithms and
ready-to-use representations. Also, this system can be
used by EC researchers, because it is easy to extend and
allows test suites to be defined. The objective of this ar-
ticle is to present its design principles and system char-
acteristics, as well as to show several examples of how
this application can be used both by people unfamiliar
with EC as well as by experts in the field.

We have organized this paper as follows. In the next
section, we will analyze some considerations about the
design of an EC software system. Then, we will present
JCLEC, its architectonic principles and the subsystems
that comprise it. After this presentation, we will illus-
trate some of the previously discussed ideas by means of
one example: the 0/1 knapsack problem. We will finalize
exposing conclusions and the improvements foreseen for
the tool.

2 Design of an EC software system

The design of a generic EC software system is not an
easy task. First, EC is a diverse paradigm and the sys-
tem should take on all its variants (genetic algorithms,
genetic programming, evolution strategies, evolutionary
programming). The system should also make possible
the addition of other new paradigms. Furthermore, if the
system is used by EC expert researchers then it has to
allow the realization of experimental studies and the de-
velopment of reports in a flexible and configurable way.
On the other hand, if the system is used by less ex-
perienced researchers in the EC field, then it is more
appropriate to have a graphic user interface, where the
algorithm configuration can be done easily and a visual
monitoring of the evolutionary process can be carried
out. Finally, the system’s components should be avail-
able in a library so that they can be used for developing
self-reliant applications.

In spite of being an important issue, there are too few
publications about the design of an EC software system.
The papers of Cona [7] and Keith et al. [29] analyze
different ways of coding the representation of genetic
programs. More recently, Lenaerts and Manderick [34]
make an in depth analysis of the development of a GP
framework. Also, the work of Krasnogor and Smith [31]
discusses the use of design patterns in the development
of a memetic algorithm framework. Finally, the work of

Gagné and Parizeau [18] explains the design principles
which should be a generic EC framework.

In this section we analyze the application of Object
Oriented Programming (OOP) ideas in the development
of EC software systems. First, we introduce the frame-
work term and how this concept fits the idea of a robust,
reusable and extensible software for EC. Then, we will
analyze how the design patterns can help to make an EC
framework in a flexible way.

2.1 Framework design

From an object-oriented programming (OOP) perspec-
tive, EA can be seen as an abstract class of algorithms,
and its different flavors such as genetic algorithms (GA),
genetic programming (GP), evolution strategies (ES) or
evolutionary programming (EP) can be seen as some of
its concrete instantiations [18]. Building a robust and
reusable design for this model is a difficult task, because
there are multiple aspects to take into account: rep-
resentation of individuals, mating selection procedure,
crossover and mutation operators and survivor selection
procedure. Certain types of operations can be applied to
all individuals while others, like crossover and mutation
are specifically characteristic of the representation used.
Also, to guarantee software reusability, different EA el-
ements must be uncoupled as much as possible. Finally,
our system should be easy to extend, that is, the incor-
poration of new features must be able to be performed
without requiring important system modifications. From
the software engineering point of view, the best way of
modeling it is in the form of a framework.

The term framework can be defined as a set of co-
operating classes that make up a reusable design for a
specific software domain [20]. The framework dictates
the architecture of the application, i.e. it defines the over-
all structure, its partitioning into classes and objects, its
key responsibilities and collaborations, and the thread
of control. In other words, it filters out what parts are
common in the domain and which are problem depen-
dent. A framework can be considered as a puzzle which is
almost finished where you still have to put in the remain-
ing pieces to complete the puzzle although the resulting
image can vary depending on which pieces you use.

As we can see, this kind of a framework-based design
resolves some of the issues mentioned with respect to the
designing of an EC software system. First, we will define
objects that represent individuals evolving in the sys-
tem and their components (genotypes, phenotypes and
fitnesses). On the other hand, we define the EA con-
trol flow. This second part provides hooks for problem-
specific or specialized functions and operators. The user
must provide the system with all operators and func-
tions necessary to perform the evolutionary process. The
framework will take care of the functions’ points of entry
(where they are called and executed on the aggregate ob-
jects), and will describe the interface (how certain parts
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can be extended or reused) of all the variable parts. For
example, the implementation of crossover or mutation is
not hard-coded in a specific class in the algorithm. The
user implements a reproduction operator creating a new
class which satisfies a number of interface prerequisites
and connects it to the framework. When the application
is executed the framework will instantiate the operator
and apply it.

2.2 Design patterns

The design of an EC framework can be greatly improved
using design patterns [20,22]. A design pattern is a de-
scription of communicating objects and classes that is
customized to solve a general design problem in a spe-
cific context. Each pattern represents a common and re-
curring design solution which can be applied over and
over again in different problem-specific contexts.

Patterns provide the designer with: (1) abstract tem-
plates on how to make specific parts of a framework more
flexible towards changes (2) a mechanism to document
the architecture of a framework using a high level vo-
cabulary and (3) a mechanism to impose rules on how
to reuse or extend the framework, i.e. outline a specific
interface on how to incorporate extensions. On the other
hand, they provide the user with (1) a higher level of doc-
umentation for a complex framework consisting of nu-
merous heavily interconnected classes and objects and
(2) a guidance on how to extend the framework with
new variations and whether or not the extensions can be
made.

There are several design patterns that can be used
in the design of an EC framework. In the following, we
explain design patterns that have been used in the de-
velopment of several existing frameworks [19,31,34,37]:

– Singleton is used to restrict instantiation of a class
to one object. This is useful when exactly one object
is needed to coordinate actions across the system.

– Abstract Factory provides an interface for creating
families of related objects without specifying their
concrete implementations. In this way one can guar-
antee that the system is independent with respect to
how specific objects are defined, created or manipu-
lated.

– Factory Method defines an interface for creating an
object, but lets subclasses decide which class to in-
stantiate. This pattern allows a class to defer instan-
tiation to subclasses.

– Builder allows a user to separate the construction of
an aggregated object from its representation. This
allows the user to use the same construction process
to build different representations.

– Prototype is used when the type of objects to cre-
ate is determined by a prototypical instance, which
is cloned to produce new objects. This is useful when
the inherent cost of creating a new object in the
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Figure 1 JCLEC architecture

standard way (e.g., using the ’new’ keyword) is pro-
hibitively expensive for a given application.

– Flyweight allows a user to avoid the expense of mul-
tiple instances that contain the same information by
sharing one instance.

– Strategy defines a family of algorithms, encapsulates
each one, and make them interchangeable. Strategy
lets the algorithm vary independently of the clients
that use it.

– Template Method defines the skeleton of an algorithm
in an operation, deferring some steps to subclasses.
This pattern lets subclasses redefine certain steps of
an algorithm without changing the algorithm.

– Visitor represents an operation to be performed on
the elements of an object’s structure. Visitor lets you
define new operations without changing the classes of
the elements where it will operate.

3 JCLEC

JCLEC is an EC framework developed in the Java pro-
gramming language. The project started as a class li-
brary in 1999 [55]. In the years 2003-2004 the software
has been completely re-written in order to resolve some
fundamental problems in the architecture and today it
is in its third major version. It has been released with
the GNU General Public Licence (GPL) and it is hosted
as a free software project in the SourceForge page1.

Three layers comprise the JCLEC architecture (See
the UML package diagram [17] in Figure 1). The system
core is in the lowest layer. It has the definition of the ab-
stract types, its base implementations and some software
modules that provide all the functionality to the system.
The experiments runner system is built on the base of
the core layer. It reads a specification file that contains
the configuration of one or several algorithm executions

1 http://jclec.sourceforge.net/
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Figure 2 Abstract types in JCLEC core hierarchy

and, after checking its correctness, create the necessary
objects, executes the algorithms and saves the results in
one or several report files. Finally, GenLab is a Graphical
User Interface (GUI) for EC built on experiments run-
ner and core subsystems. This interface allows the user
to configure an algorithm, execute it and visualize the
results on-line. The system can also be used to define
experiments that will be executed by the experiments
runner module. Next, we are going to describe the main
features of each sub-systems.

3.1 JCLEC core

The JCLEC core defines the data types that define the
functionality of the framework. This section discusses
class hierarchy and design patterns used as well as the
package structure in order to get an overview of this
tool’s possibilities.

3.1.1 Class hierarchy. Figure 2 is a UML class diagram
[17] that shows the interfaces that define the function-
ality of the JCLEC system. As can be seen, there are
objects related with individuals (IIndividual and IFit-
ness), their commonalities (ISpecies and IEvaluator),
the evolutionary system (ISystem), actions performed
in the course of evolution (IProvider, ISelector, IRecom-
binator and IMutator) and the evolutionary algorithm
itself (IAlgorithm).

The IIndividual interface represents one of the in-
dividuals that lives in a system in evolution. This inter-
face does not declare methods related to the individual’s
genotype or to its phenotype, granted that this function-
ality is defined in the lower classes of the hierarchy. In
fact, JCLEC’s core contains several implementations of
the interface IIndividual that are distinguished in the
genotype that they present (bit string, int or double ar-
rays, expression trees or syntax trees). Such classes can

be used directly in the implementation of EAs or they
can be extended by the user (defining the phenotype that
maps to a given genotype). Obviously, the user can also
define new types of individuals associated with new rep-
resentations. As a matter of fact, if a class implements
the IIndividual interface, then integration with the other
system components is taken for granted. All the IIndi-
vidual instances contain an object that implements the
interface IFitness, which denotes the individual’s fitness.
There are several implementations for this interface, that
represent fitness in single-objective and multi-objective
problems.

The ISystem interface represents an evolutionary sys-
tem (for example, a population) in an abstract way. This
class will contain, among other things, the beings that
inhabit the system and the current generation, as well as
information on the individuals. The information on the
individuals is not encoded directly in the class ISystem
or in its subclases, but rather it is delegated to the classes
ISpecies and IEvaluator. This allows the use of the same
subclass of ISystem to represent systems that only dif-
fer in the type of individuals that inhabit the system.
The interfaces that extend to ISpecies define methods
that provide information on the structure of the individ-
uals (for example, the length of the chromosome and the
schema in the case of linear genotypes or the maximum
size of tree and the token set in GP). These methods will
be used by the genetic operators to handle individuals
correctly. These interfaces also define a method to create
new instances of the IIndividual subclass they represent,
given their genotype. This use of the abstract factory and
factory method patterns allow genetic operators to cre-
ate instances of a specific class without having to know
what class it is. On the other hand, IEvaluator defines
the method evaluate(List) that performs the evaluation
of the individuals, that is, it computes and assigns their
fitness. As we will see in Section 4, in order to solve a
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problem with JCLEC, it is necessary for the user to im-
plement a class that extends to this interface, providing
the system with a way to obtain the individuals’ fitness.

Elementary operations performed in the course of
the evolution are represented by the ITool interface. As
we can see in Figure 2, there are several interfaces that
extend ITool : IProvider represents the action of creat-
ing new individuals, ISelector is a selection procedure,
IRecombinator is a recombination method and IMutator
represent a mutation operation. ITool interface define
the method contextualize, that associates an object ITool
with an object ISystem (its execution context). This as-
sociation relationship allows the object ITool to access
information that is contained in the object ISystem and
which is necessary to carry out its work correctly.

The IAlgorithm interface represents EAs in an ab-
stract way. This class has a reference to a ISystem object
(the system that experiences evolution) as well as some
references to ITool objects. These references are defined
generically, and they should be set just before the algo-
rithm is ready to be executed. With this type of design,
the same IAlgorithm class can represent variants of an
algorithm, that differ in the type of individuals that ex-
ist in the system or in the genetic operators employed,
(but not in the course of evolution, which is implemented
or codified directly within the class). As we can see, we
again use the delegation pattern to make our implemen-
tation as generic as possible. The IAlgorithm interface
applies also the strategy pattern to define the control
flow of any EA in a generic way. This interface contains
three methods related to the execution of an EA: doInit,
that initializes the algorithm, doIterate that makes an
iteration and isFinished that checks when an algorithm
has finished. An user only has to know these methods
to run an algorithm, without specific knowledge about
their implementation. This design pattern has also been
applied in the case of the populational algorithms, that
extend to the PopulationAlgorithm abstract class. This
class implements the doIterate method based on four ab-
stract methods: doSelection, that performs parents selec-
tion, doGeneration, that produces new individuals from
the parents, doReplacement, that decides which individ-
uals must be replaced and doUpdate, that updates popu-
lation2. The PopulationAlgorithm subclasses will imple-
ment these four methods to define the concrete algorithm
flow.

3.1.2 System configuration As we have already seen,
before an algorithm is ready to run, it is necessary to
carry out a set-up process in which the elements that
have been defined in a generic way (for example, the ge-
netic operators that will apply) are setup. Other objects
such as ISpecies, IEvaluator and some subclasses of ITool
also need to be configured before their use. JCLEC im-

2 These four steps in which each iteration of the algorithm
is divided have been proposed by K. Deb in [11].

plements two alternative configuration mechanisms: one
is based on the interpretation of a configuration file, and
the other is based on the concept of Java Beans [45].

The file configuration mechanism is based on the use
of the interface IConfigure. This interface defines the
method configure, that takes an object Configuration3

as the argument and uses the information that it con-
tains to carry out a self-configuration process. The ad-
vantage of this approach is that it avoids interaction with
the user during the set-up process, carrying this process
out more quickly. Other systems, such as ECJ [37] or
OpenBeagle [19] have configuration mechanisms similar
to this.

Besides the file configuration mechanism, all JCLEC
objects that present configurable fields implement acces-
sor methods (getXXX and setXXX ) that give read-and-
write access to these fields. This allows the establishment
of an interactive setup process, in which the application
requests the user to give the configuration values, and it
does not allow an algorithm to run until the system has
been configured correctly. This mechanism, used in the
GenLab system, is similar to the one that other graphic
applications present as Evolvica [47].

3.1.3 Algorithms listeners and events. In order to ob-
tain information about the execution of an evolution-
ary process we have defined a listeners system similar to
the one used in the management of events in Java. This
system consists of the IAlgorithmListener interface and
the AlgorithmEvent class. The IAlgorithmListener ob-
jects take charge of picking up all the events related to
algorithm execution (algorithm started, iteration com-
pleted and algorithm finished) and react depending on
the events. The AlgorithmEvent represents the events
that happen during algorithm execution. This class has
a reference to the algorithm in order to access the cur-
rent state and to react according to the object it has
been created for.

3.1.4 Package structure. The structure of JCLEC core
is organized in packages, that is, sets of classes and in-
terfaces grouped by a specific criterion. In this section
we are going to describe the main packages. We do not
describe them exhaustively but instead deal with the
functionality of each of them in order to get an overview
of the system.

net.sf.jclec This package is the root of the JCLEC hi-
erarchy, containing all abstract datatypes described in
the previous section. It also defines the IConfigure inter-
face, that allows to initialize the JCLEC objects from a
configuration file.

3 This object is defined in the Jakarta Commons Configu-
ration class library [26].
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net.sf.jclec.base This package contains base implemen-
tations (abstract classes) for all interfaces defined in the
org.jclec package and other generic classes largely used
in the evolutionary algorithm library.

net.sf.jclec.fitness This package contains several imple-
mentations of the interface IFitness. The package con-
tains also the definition for several classes that establish
ordering relationships between IFitness objects (they
implement the java.util.Comparator interface). Such ob-
jects are used to sort individuals in different algorithm
phases like, for instance, parents selection or system up-
date.

net.sf.jclec.selector This package has implementations
for several selection methods (implementations for the
ISelector interface). At the present time, we have imple-
mentations for the following methods: roulette selection,
Boltzmann selection, stochastic remaining selection, uni-
versal stochastic selection, range selection, tournament
selection, NAM selection and UFS selection.

net.sf.jclec.binarray This package defines the classes ne-
eded to implement binary encoded genetic algorithms
[21]. For instance, the BinArrayIndividual class defines
individuals with a bits array as genotype. On the other
hand, the BinArraySpecies class defines the structure
of BinArrayIndividuals (its length and the schema that
represent them). The package also has implementations
for operators that work selectively over individuals with
binary lineal genotype: one point, two points and uni-
form crossovers, one allele and uniform mutations.

net.sf.jclec.intarray This package defines the IntArray-
Individual class that represents an individual with a list
of integer values as genotype, and the IntArrayIndividu-
alSpecies class, that represents this kind of individuals.
It also contains the implementation for several operators
that work with this type of individuals: one point, two
points and uniform crossovers and one allele and uniform
mutators.

net.sf.jclec.realarray This package contains the neces-
sary classes to implement a real coded genetic algorithm.
It has the RealArrayIndividual class that represents an
individual with a vector of real values as genotype. It
also has the RealArrayIndividualSpecies class that de-
fines the structure of a set of real encoded individuals
(number of alleles and range of allowed values for each
allele).

The package has some operators (creation of new
individuals, crossover and mutation) that work specif-
ically over this type of individuals. It has two-arided re-
combination operators (arithmetic, BGA linear, BLX-α,
fuzzy, extended linear, extended fuzzy, SBX, UNDX and
others [23]) and mutation operators (random, not uni-
form, modal continuous, modal discrete and Muhlenbein

mutation [23]). It also has some multi-parent crossover
operators (panmitic discrete, intermediate generalized,
recombination of set of genes, recombination by mix-
ing m-tuples, majority mix, half mix, uniform crossover,
crossover based on occurrences and aptitude, diagonal
crossover, mass center crossover, seed crossover, UNDX-
n crossover) and crossover based on confidence intervals
(CIXL1 and CIXL2) [24].

net.sf.jclec.exprtree This package defines a type of in-
dividual, called ExprTreeIndividual, that can be used in
conventional [30] and strongly typed [40] genetic pro-
gramming algorithms. The package also defines the Ex-
prTreeIndividualSpecies class that defines the structure
of a set of individuals of this type and operators to ma-
nipulate them in a consistent way: the branch crossover
and branch mutation operators. Also, package contains
other mutation operators (one node, all nodes, expand
branch, truncate branch, promote node, demote node
and gaussian) used in the implementation of evolution-
ary programming algorithms [3].

net.sf.jclec.syntaxtree This package has an implemen-
tation for Grammar Based Genetic Programming [44,
56]. In this paradigm, individuals have a syntactic tree
(that belongs to an user-defined grammar) as genotype.
This grammar contributes to have a better control over
the structure of individuals and over genetic operators.
It lets incorporate knowledge about the problem domain
and to bias the search toward the most appropriate re-
gions of the search space. The package has implemen-
tations for typical operators (selective crossover, selec-
tive mutator and directed mutation) and others pro-
posed that have shown its utility in the resolution of
some problems of symbolic regression.

net.sf.jclec.gep This package has an implementation for
Gene Expression Programming [14]. In this paradigm,
individuals present an integer lineal genotype that maps
to an expression tree. This tree will be used in the eval-
uation of individuals. The package has the typical oper-
ators for the following paradigms: mutation, one point
and two points recombination, gene recombination, gene
transposition, IS transposition and RIS transposition.

net.sf.jclec.ge This package contains an implementa-
tion for Grammatical Evolution[42]. In this paradigm,
individuals contain a binary array as genotype that maps
to a sequence of productions of a free-context grammar.
The phenotype is obtained starting from the terminal
symbol of the grammar and applying the change defined
by the individual genotype. The package also has the
typical genetic operators for this paradigm.

net.sf.jclec.algorithms and related packages. This pack-
age has an abstract implementation for the IAlgorithm
interface and final implementations for several types of
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Figure 3 Algorithms run window (SGA view)

evolutionary algorithms. In the current version of JCLEC,
the implemented algorithms are:

– Classic algorithms: simple generational, steady state
and CHC [13].

– Multi-objective algorithms: NSGA-II and SPEA2 [5,
10].

– Memetic algorithms: generational and steady state
[32].

– Scatter search algorithm [33].
– Niching algorithms: clearing, sequential and fitness

sharing [49].

3.2 JCLEC Experiments Runner

The JCLEC Experiments Runner (JER) can be seen as a
simple EA scripting environment. This application reads
an EA script file in XML format and executes all the
indicated algorithms, generating one or several report
files as output.

The internal operation in JER can be seen as a use
case of the application programming interface (API) pro-
vided by the interfaces IAlgorithm and IConfiguration.
First, the application extracts one or several process el-
ements of the input file. For each process element, it
extracts a subelement algorithm and a subelement lis-
teners. The first one is used to create and configure an
instance of an IAlgorithm subclass. The second one con-
sists of one or several listener elements, used to create
and configure instances of IAlgorithmListener. Object
creation and configuration is accomplished by means of
the Java reflection mechanism [15] and the configure
method, respectively. Once the IAlgorithm object is cre-
ated and the IAlgorithmListeners are attached to their

respective algorithm, the system performs the algorithm
execution phase. To do that, experiments runner uses
the API provided by the IAlgorithm, that is, the doInit,
doIterate and isFinished methods.

The main advantage of JER is that, as we can define
several runs in a single experiment file, it allows exper-
imental studies to be carried out easily. Also, as user
interaction it is not required, the experiments can be
planned outside the workhours, taking advantage of the
moments when the servers have less activity. The dis-
advantage is that the structure of the configuration files
is not very user friendly. This problem can be partially
solved by using the graphical editor GenLab.

3.3 GenLab: A Graphical User Interface for EC

GenLab is a graphical user application included in the
JCLEC distribution. Its main objectives are (1) to in-
teractively execute EC algorithms and (2) to edit exper-
iment files used by the JRE.

Figure 3 (at the left) shows the main window of the
GenLab application when we have selected the interac-
tive mode, that is, executing only one algorithm and
visualizing the results in execution time. As we can see,
we have the typical operations in the main menu (for
example, to create a new application or to save the cur-
rent execution in a file) as well as an input data area
with three different zones:

– Algorithm selection. In this zone, the user chooses one
algorithm from among all the available algorithms in
the system.
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– Algorithm configuration. This zone is different for
each available algorithm. In this zone the user sets
the algorithm configuration parameters.

– Visualization results. In this area the user can select
some items to be visualized. Each of these items is as-
sociated with a listener that will gather and visualize
the information during the algorithm execution.

When the algorithm is configured the user can choose
either to save the configuration in a XML file or to ex-
ecute it. If the user chooses to execute it, then the sys-
tem will show several auxiliary windows with the results
obtained during the execution. Figure 3 (at the right)
shows two charts: one with the fitness of the best indi-
vidual for each generation and the other with the average
fitness in the whole evolutionary process.

The look of the experiments edition window is ba-
sically the same as the previous interactive mode, but
now there is a different window for each algorithm. In
this mode, the system provides tools to copy and paste
the algorithm configurations in order to ease the config-
urations of experiments with several executions.

4 Case study: The 0|1 Knapsack problem

The 0/1 knapsack problem [38] is a classic problem in
combinatorial optimization. It derives its name from the
maximization problem of choosing possible essentials that
can fit into one bag (of maximum weight) to be car-
ried on a trip. A similar problem very often appears in
business, combinatorics, complexity theory, cryptogra-
phy and applied mathematics. Given a set of items, each
with a cost and a value, the number of each item is then
determined to be included in a collection so that the to-
tal cost is less than some given cost and the total value
is as great as possible.

This problem is NP-hard, and it has been solved with
dynamic programming techniques, although it can also
be solved with EC algorithms. In this section, we are
going to show how to use JCLEC to solve this problem
from two different view points of view: a classic view-
point in which the fitness function is the total value of
the knapsack (and we have to deal with the restriction of
the maximum weight) and a multi-objective viewpoint
[51,57] with two confronted objectives (the value and the
weight of the knapsack).

4.1 First solving approach

The most common way to solve the above problem is to
use a binary encoding scheme. In this scheme, the indi-
vidual contains a binary genotype with many genes as
different items that we can lump together in the knap-
sack. The meaning of value 1 for the i-th gene is that the
i-th item has been put in the knapsack, and the meaning
of value 0 is the opposite. The fitness of the individual

public KnapsackEvaluator
extends AbstractEvaluator<BinArrayIndividual>

{
/** Article values */

private static final int [] PROFIT =
{
10, 10, 10, 10, 10, 10, 15, 15, 15, 15,
15, 15, 20, 20, 20, 20, 20, 20, 40, 40,
40, 40, 40, 40, 50, 50, 50, 50, 50, 50
};

/** Article weights */

private static final int [] WEIGHT =
{

3, 3, 3, 3, 3, 3, 5, 5, 5, 5,
5, 5, 9, 9, 9, 9, 9, 9, 40, 40,

40, 40, 40, 40, 80, 80, 80, 80, 80, 80
};

/** Genotype length */

private static final int GENOTYPE_LENGTH = 30;

/** Evaluation method */

public void evaluate(BinArrayIndividual ind)
{

// Individual genotype
byte [] genotype = ind.getGenotype();
// Total weight and profit
int totalweight = 0;
int totalprofit = 0;
// Calculate weight
for (int i=0; i<GENOTYPE_LENGTH; i++) {

totalweight += WEIGHT[i];
}
// Calculate profit (if necessary)
if (totalweight <= maxweight) {

for (int i=0; i<GENOTYPE_LENGTH; i++) {
totalprofit += PROFIT[i];

}
}
ind.setFitness(new SimpleValueFitness(totalprofit));

}

/** Return a valid comparator for generated fitnesses */

public Comparator<IFitness> getComparator()
{

return new ValueFitnessComparator();
}

}

Figure 4 Simple evaluator used in the 0|1 knapsack problem

can be calculated very easily. We only have to add the
values of the items whose associated bit is 1. And if we
want to use the weight restriction, we have to apply the
same fitness function only if the total knapsack weight
(calculated as the addition of the individual weights)
does not surpass the maximum weight established.

As we have seen previously, the JCLEC system has
a package to represent binary individuals with crossover
and mutator genetic operators. So, we only have to write
the source code to evaluate the fitness of the individual
(IEvaluator object). Figure 4 shows the corresponding
code of this class denominated KnapsackEvaluator to
solve the problem with 30 items.

As we can see, the class implements two methods.
The first one is the evaluate() method that sets the fit-
ness value of individuals which is received as an argu-
ment. This method uses 30 bits as the length of the indi-
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<experiment>
<process>

<algorithm type="SGA">
<rand-gen-factory="org.ayrna.jclec.util.random.RanmtFactory" seed="123456789"/>
<population-size>50</population-size>
<max-of-generations>100</max-of-generations>
<species type="org.ayrna.jclec.binarray.BinArrayIndividualSpecies" genotype-length="50"/>
<evaluator type="mypackage.KnapsackEvaluator"/>
<provider type="org.ayrna.jclec.binarray.BinArrayCreator"/>
<parents-selector type="org.ayrna.jclec.selector.TournamentSelector">

<tournament-size>2</tournament-size>
</parents-selector>
<recombinator type="org.ayrna.jclec.binarray.OnePointCrossover" rec-prob="0.8"/>
<mutator type="org.ayrna.jclec.binarray.OneLocusMutator" mut-prob="0.10"/>

</algorithm>
<listeners>

<listener type="BasePopulationReport">
<report-dir-name>report1</report-dir-name>
<report-frequency>5</report-frequency>
<include-individuals>false</include-individuals>

</listener>
</listeners>

</process>
</experiment>

Figure 5 Configuration for a SGA run

<base-population-report-entry xmlns:j="http://javolution.org" generation="15">
<absolutely-best j:class="org.ayrna.jclec.binarray.BinArrayIndividual">

<genotype value="1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0"/>
<fitness j:class="org.ayrna.jclec.fitness.SimpleValueFitness" value="1110.0"/>

</absolutely-best>
<best-individual j:class="org.ayrna.jclec.binarray.BinArrayIndividual">

<genotype value="1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0"/>
<fitness j:class="org.ayrna.jclec.fitness.SimpleValueFitness" value="1110.0"/>

</best-individual>
<worst-individual j:class="org.ayrna.jclec.binarray.BinArrayIndividual">

<genotype value="1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1"/>
<fitness j:class="org.ayrna.jclec.fitness.SimpleValueFitness" value="0.0"/>

</worst-individual>
<median-individual j:class="org.ayrna.jclec.binarray.BinArrayIndividual">

<genotype value="0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1"/>
<fitness j:class="org.ayrna.jclec.fitness.SimpleValueFitness" value="955.0"/>

</median-individual>
<average-fitness value="974.9"/>
<fitness-variance value="23658.49"/>

</base-population-report-entry>

Figure 6 Fragment of a report file obtained in a SGA run.

vidual and it uses a SimpleValueFitness object that is as-
signed to the individual in execution. The second method
is getComparator() and it returns an object which estab-
lishes an ordering relation between the IFitness objects
produced during the evaluation process (ValueFitness-
Comparator object). This object is used to sort individ-
uals in several algorithm parts. The SimpleValueFitness
and ValueFitnessComparator classes are defined in the
system, so the user only has to know their meaning and
to use them whenever he needs them.

Once the evaluator of the problem is defined (Knap-
sackEvaluator object in our case) we can resolve the
problem without it being necessary to write more source
code. Indeed, we can execute a Simple Generational Al-
gorithm (SGA), a steady state algorithm (SSA) or a
CHC algorithm. For each of them, we can also choose
among different selection methods, crossover operators
(one-point, two point and uniform) and mutation oper-
ators (one locus or uniform). We can use the GenLab
application if we want to do an interactive execution or
we can write a JRE configuration file to execute a batch
of executions. Figure 5 shows the configuration file of a

SGA algorithm with a population of 50 individuals, a se-
lection scheme by means of tournament of size 2, and it
uses as genetic operators the one point crossover opera-
tor (with a probability of 0.8) and the one locus mutation
operator (with a probability of 0.1). The algorithm will
be iterated during 100 generations. With respect to the
listener, we have used a basic report generator that pro-
duces a file with the best, worst and medium individuals,
the average fitness and its variance, every 5 generations.
In Figure 6 we can see a fragment of the generated report
to the 15th generation of the evolutionary process.

4.2 Second solving approach

We can also solve the knapsack problem using a multi-
objective perspective [51,57]. In this case, there are two
confronted objectives: the knapsack value to maximize
and the knapsack weight to minimize. Obviously, these
two objectives are conflicting and cannot be optimized
at the same time: Maximizing the overall profit means
putting as many items as possible in the knapsack, mini-
mum weight is achieved when no item is in the knapsack.
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There is a trade-off between profit and weight. Thus, in
contrast to the single-objective 0/1 knapsack problem,
there is not a single optimal solutions but rather a set
of optimal trade-offs which consists of all solutions that
cannot be improved in one criterion without degrading
another. The corresponding set is denoted as Pareto-
optimal set.

Mathematically, the concept of Pareto optimality can
be defined in terms of a dominance relation (with regard
to the 0/1 knapsack problem):

– Given set of solutions and two members A,B of the
set. A is said to dominate B if and only if the profit
of A is equal or greater than the profit of B and the
weight of A is equal or less than the weight of B; and
A is better in one objective, i.e., either the profit is
greater or the weight is less.

– A solution A is denoted as nondominated regarding
a given set if and only if no member of the set dom-
inates A.

– Those solutions that are nondominated regarding the
entire search space are called Pareto optimal.

Therefore, the optimization goal of the multiobjec-
tive 0/1 knapsack problem is to find the set of Pareto-
optimal solutions. In this case, we can also use the bi-
nary representation described above, but the evaluation
process is different because it has to calculate a multi-
objective fitness. This process is performed by the Knap-
sackMultiObjectiveEvaluator class, whose code is shown
in Figure 7. As can be seen, this class also implements the
evaluator and the getComparator methods but, in this
case, the methods return objects from the Composite-
Fitness and ParetoComparator classes respectively. The
first of these classes represents a fittness that is formed
by several ISimpleFitness objects. In our case, the class
stores two SimpleValueFitness objects (the two objec-
tives to optimize) that have been generated when apply-
ing the evaluate0 and evaluate1 methods on the indi-
vidual’s genotype (see Figure 7). The ParetoCompara-
tor class implements the dominance relation previously
discussed.

Finally, in order to solve the problem, we can use one
of the multiobjective algorithms provided by the system
(in our case, SPEA2, NSGA-II or MOGLS algorithms)
or implement our own multiobjective algorithm. As the
experiment file for any of these experiments is very sim-
ilar to the one shown in Figure 5, it is not repeated here.

5 Conclusions and Future Work

In this work we have described JCLEC, a Java frame-
work for Evolutionary Computing. We have shown its
main features: a modular architecture, that is very easy
to extend and that implements a lot of evolutionary
computation paradigms. We have analyzed the develop-
ment of applications using it and the GenLab tool that

public KnapsackMultiObjectiveEvaluator
extends AbstractEvaluator<BinArrayIndividual>

{
...

/** Pareto comparator for this problem */

private static final Comparator<IFitness> COMPARATOR =
new ParetoComparator (

new ValueFitnessComparator(true),
new ValueFitnessComparator(false)

);

/** Evaluation method */

public void evaluate(BinArrayIndividual ind)
{

// Individual genotype
byte [] genotype = ind.getGenotype();
// Resulting fitness
CompositeFitness fitness = new CompositeFitness(2);
fitness.setComponent(0, evaluate0(genotype));
fitness.setComponent(1, evaluate1(genotype));
ind.setFitness(fitness);

}

/** Evaluate first objective (profit) */

private final SimpleValueFitness evaluate0(byte [] genotype)
{

// Total profit
int totalprofit = 0;
// Calculate profit
for (int i=0; i<GENOTYPE_LENGTH; i++) {

totalprofit += PROFIT[i];
}
// Return partial fitness
return new SimpleValueFitness(totalprofit);

}

/** Evaluate second objective (weight) */

private final SimpleValueFitness evaluate1(byte [] genotype)
{

// Total weight
int totalweight = 0;
// Calculate weight
for (int i=0; i<GENOTYPE_LENGTH; i++) {

totalweight += WEIGHT[i];
}
// Return partial fitness
return new SimpleValueFitness(totalweight);

}

/** Return a valid comparator for generated fitnesses */

public Comparator<IFitness> getComparator()
{

return COMPARATOR;
}

}

Figure 7 Multiobjective evaluator used in the 0|1 knapsack
problem

executes algorithms defined by an XML configuration
file. We have also shown an example about how to use
JCLEC as a tool to resolve a problem using two different
approaches.

The JCLEC system is continuously updating and im-
proving. At the moment, we are working on the devel-
opment of a real optimization toolkit with the following
algorithms: evolution strategies [2], differential evolution
[52], minimal generation gap [25] and generalized gen-
eration gap [12,11] algorithms. We are also developing
new GP algorithms like the Token Competition algo-
rithm [56] used to discover classification rules with GP



JCLEC: A Java framework for Evolutionary Computation 11

and improving the JRE and the GenLab tools in order
to be able to execute concurrently several evolutionary
algorithms using the Java Threads API [35]. In the case
of JRE, we will use parallel architecture to speed up the
execution of batch-jobs and, in the case of GenLab, we
will do a simultaneous pursuit of several algorithms. Fi-
nally, we are working on the development of a native
version of JCLEC, using the compiler GCJ of GNU [16].
This version aims to resolve problems that are heavily
demanding from a computational point of view, and it
will allow the performance of the JCLEC applications to
be comparable to that of others developed in C++ sys-
tems (for example, Open BEAGLE or EO). The prelim-
inary results are very promising (the increases in speed
have reached up to 10 times those of the pure Java ver-
sion), although there are still many other questions to be
resolved. These improvements will be incorporated into
the future versions of the system.
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Evolutionary learning of a fuzzy controller for wall-
following behavior in mobile robotics. Soft Computing,
10(10):1432–7643, August 2006.

42. M. O’Neill and C. Ryan. Grammatical Evolution: Evo-
lutionary Automatic Programming in an Arbitrary Lan-
guage, volume 3 of Genetic Programming. Kluwer Aca-
demic Publishers, Boston (MA), 2003.

43. B. Punch and D. Zongker. lil-gp 1.1 beta.
http://garage.cse.msu.edu/software/lil-gp, 1998.

44. A. Ratle and M. Sebag. Grammar-guided genetic pro-
gramming and dimensional consistency: application to
non-parametric identification in mechanics. Applied Soft
Computing, 1(1):105–118, 2001.

45. L. H. Rodrigues. The Awesome Power of Java Beans.
Manning, Greenwich, CT, 1998.

46. C. Romero, S. Ventura, and P. de Bra. Knowledge dis-
covery with genetic programming for providing feedback
to courseware author. User Modeling and User-Adapted
Interaction. The Journal of Personalization Research,
14(5):425–465, 2004.

47. A. Rummler. Evolvica: a Java framework for evolution-
ary algorithms. http://www.evolvica.org, 2006.

48. A. Rummler and G. Scarbata. eaLib - a Java frame-
work for implementation of evolutionary algorithms. In
B. Reusch, editor, Fuzzy Days 2001, volume 2206 of Lec-
ture Notes in Computer Science, pages 92–102, Berlin
Heidelberg, 2001. Springer-Verlag.
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