Xtext Documentation

August 17, 2011

Contents

Getting Started

Installation

1.1.
1.2.

Install Pre-Configured Eclipse With Xtext
Install Xtext From Update Site

5 Minutes Tutorial

2.1.
2.2.
2.3.
2.4.

Creating A New Xtext Project
Generating The Language Infrastructure
Try The Editor
Conclusion e

15 Minutes Tutorial

3.1.
3.2.
3.3.
3.4.
3.5.

Create A New Xtext Project
Write Your Own Grammar
Generate Language Artifacts oL
Run the Generated IDE Plug-in.
Second Iteration : Adding Packages and Imports

15 Minutes Tutorial - Extended

4.1.
4.2.
4.3.

Writing a Code Generator With Xtend
Unit Testing the Language
Creating Custom Validation Rules

Reference Documentation

Overview

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

What is Xtext? o
How Does It Work?
Xtext is Highly Configurable

9

10
10
10

11
11
11
12
13

15
15
16
19
19
20

26
28
33
33

35

36
36

6. The Grammar Language
6.1. A First Example
6.2. The Syntax e
6.2.1. Language Declaration
6.2.2. EPackage Declarations
6.2.3. Rules
6.2.4. Parser Rules
6.2.5. Hidden Terminal Symbols
6.2.6. Data TypeRules
6.27. Enum Rules
6.2.8. Syntactic Predicates
6.3. Ecore Model Inference
6.3.1. Type and Package Generation.
6.3.2. Feature and Type Hierarchy Generation
6.3.3. Enum Literal Generation
6.3.4. Feature Normalization
6.3.5. Customized Post Processing
6.3.6. Error Conditions
6.4. Grammar Mixins Lo
6.5. Common Terminals.,
. Configuration
7.1. The Language Generator
7.1.1. A Short Introduction to MWE2
7.1.2. General Architecture
7.1.3. Standard Generator Fragments
7.2. Dependency Injection in Xtext with Google Guice
7.2.1. The Module APT
7.2.2. Obtaining an Injector
. Runtime Concepts
8.1. Runtime Setup (ISetup) L.
8.2. Setup within Eclipse-Equinox (OSGi)
8.3. Logging e
8.4. Validation
8.4.1. Automatic Validation
8.4.2. Custom Validation,
8.4.3. Validating Manually,
8.4.4. Test Validators L
8.5. Linking L
8.5.1. Declaration of Crosslinks
8.5.2. Default Runtime Behavior (Lazy Linking)
8.6. Scoping
8.6.1. Global Scopes and Resource Descriptions

39
39
41
41
41
43
47
53
53
54
55
56
56
o7
58
58
58
59
99
60

61
61
61
63
65
66
67
68

8.6.2. Local Scoping 86

8.6.3. Imported Namespace-Aware Scoping 87
8.7. Value Converter e 89
8.8. Serialization 90
8.8.1. The Contract 90
8.8.2. Roles of the Semantic Model and the Node Model During Serial-
izationo 91
8.8.3. Parse Tree Constructor 91
8.8.4. Options 93
8.8.5. Preserving Comments from the Node Model 93
8.8.6. Transient Values 93
8.8.7. Unassigned Text 93
8.8.8. Cross-Reference Serializer 94
8.8.9. Merge White Space 94
8.8.10. Token Stream L 94
8.9. Formatting (Pretty Printing) 94
8.9.1. General FormattingConfig Settings 96
8.9.2. FormattingConfig Instructions 96
8.9.3. Grammar Element Finders 97
8.10. Fragment Provider (Referencing Xtext Models From Other EMF Artifacts) 98
8.11. Encoding in Xtext 99
8.11.1. Encoding at Language Design Time 99
8.11.2. Encoding at Language Runtime 100
8.11.3. Encoding of an XtextResource 101
8.11.4. Encoding in New Model Projects 101
8.11.5. Encoding of Xtext Source Code 101
. IDE Concepts 102
9.1. Label Provider 102
9.1.1. Label Providers For EObjects 102
9.1.2. Label Providers For Index Entries 104
9.2. Content Assist 104
9.3. Quick Fixes 105
9.3.1. Quickfixes for Linking Errors and Syntax Errors 107
9.4. Template Proposals. 107
9.4.1. Cross Reference Template Variable Resolver 108
9.4.2. Enumeration Template Variable Resolver 109
9.5. Outline View e 110
9.5.1. Influencing the outline structure 110
9.5.2. Styling the outline 112
9.5.3. Filtering actions L L 112
9.5.4. Sorting actions L e 113
9.5.5. Quick Outline. 114

9.6. Hyperlinking 114
9.6.1. Location Provider 114
9.6.2. Customizing Available Hyperlinks 115

9.7. Syntax Coloring 115
9.7.1. Lexical Highlighting 116
9.7.2. Semantic Highlighting 117

10. Xtext and Java 120

10.1. Plug-in Setup 120

10.2. Referring to Java Elements using JVM Types 121
10.2.1. Customization Points L. 122

10.3. Referring to Java Types Using Xbase 122

10.4. Inferring a JVM Model oo 125
10.4.1. Linking and Indexing 127
10.4.2. Generation Parameters For Inferred JVM Types 128

10.5. Using Xbase Expressions oo 128
10.5.1. Making Your Grammar Refer To Xbase 128
10.5.2. Populating the Scopes L. 129
10.5.3. Type Checking at the Boundaries. 130
10.5.4. Generating Java Code using the Xbase Compiler 132
10.5.5. Using the Xbase Interpreter 134

10.6. Xbase Language Reference 134

10.7. Lexical Syntax 135
10.7.1. Identifierso 136
10.7.2. Escaped Identifiers 136
10.7.3. String Literals oo 136
10.7.4. Integer Literalso oo 137
10.7.5. White Spaceo 138
10.7.6. Reserved Keywords 0. 138

10.8. Types . . . o o o o 139
10.8.1. Arrays L 139
10.8.2. Simple Type References 139
10.8.3. Function Types 139
10.8.4. Parameterized Type References 140
10.8.5. Primitives e 141
10.8.6. Conformance and Conversion 141
10.8.7. Common Super Type 141

10.9. Expressionso 142
10.9.1. Literals L 142
10.9.2. Type Casts 143
10.9.3. Infix Operators / Operator Overloading 143
10.9.4. Feature Calls 145
10.9.5. Constructor Call 147
10.9.6. Closures ot e 147

10.9.7. If Expression 149

10.9.8. Switch Expression oL oo 150
10.9.9. Variable Declarations 151
10.9.10Blocks 152
10.9.11For Loop o 153
10.9.12While Loop oo 154
10.9.13Do-While Loop 154
10.9.14Return Expression oo 155
10.9.15.Throwing Exceptions 155
10.9.16Try, Catch, Finally 155
10.10Extension Methods Lo 155
10.10.1Examples 156
11.MWE2 157
11.1. Examples oL 157
11.1.1. The Simplest Workflow 157
11.1.2. A Simple Transformation 158
11.1.3. A Stop-Watch 161
11.2. Language Reference Lo o . 162
11.2.1. Mapping to Java Classes 162
11.2.2. Module 163
11.2.3. Properties e 163
11.2.4. Mandatory Properties oL L. 164
11.2.5. Named Components 165
11.2.6. Auto Injection 165
11.3. Syntax Referenceo 166
11.3.1. Module e 166
11.3.2. Property e 167
11.3.3. Component 167
11.3.4. String Literalso oo 168
11.3.5. Boolean Literals 169
11.3.6. References 169

12. Xtend 170
12.1. Getting Started 170
12.2. Classes and Functions, 171
12.2.1. Package Declaration 171
12.2.2. Imports L 172
12.2.3. Class Declaration 172
12.2.4. Fields 173
12.2.5. Functions 174
12.2.6. Overriding Functions 174
12.2.7. Create Functions, 178
12.2.8. Annotations 180

12.3. Expressions e 180

12.3.1. Literals e 180
12.3.2. Type Casts oo 181
12.3.3. Infix Operators / Operator Overloading 182
12.3.4. Feature Calls 184
12.3.5. Constructor Call oo 185
12.3.6. Closures o o 185
12.3.7. If Expression 187
12.3.8. Switch Expression oo 188
12.3.9. Variable Declarations 189
12.3.10Blocks 190
12.3.11For Loop 191
12.3.12While Loop o o 192
12.3.13Do-While Loop 192
12.3.14Return Expressiono oo 193
12.3.15Throwing Exceptions 193
12.3.16Try, Catch, Finally 193
12.3.17Rich Stringso 193
12.3.18 Conditions in Rich Strings 194
12.3.19Loops in Rich Strings 0oL 194
12.3.20 Typing o 194
12.3.21.White Space Handling 194
13.Integration with EMF and Other EMF Editors 196
13.1. Model, Ecore Model, and Ecore 196
13.2. EMF Code Generation 199
13.3. XtextResource Implementation 199
13.4. Integration with GMF Editors 201

13.4.1. Stage 1: Make GMF Read and Write the Semantic Model As Text 202

I1l. Appendix 205
14. Migrating from Xtext 1.0.x to 2.0 206
14.1. Take the Shortcut 206
14.2. Migrating Step By Step oo 206
14.2.1. Update the Plug-in Dependencies and Import Statements 206

14.2.2. Introduction of the Qualified Name 206

14.2.3. Changes in the index and in find references 207

14.2.4. Rewritten Node Model oL, 207

14.2.5. New Outline 208

14.2.6. AutoEditStrategyo 208

14.2.7. Other Noteworthy API Changes 209

14.3. Now go for then new features, 209

15. Migrating from Xtext 0.7.x to 1.0 211

15.1. Migrating Step By Stepo 211
15.1.1. Update the Plug-in Dependencies and Import Statements 211
15.1.2. Rename the Packages in the dsl.ui-Plug-in 211
15.1.3. Update the Workflow 212
15.1.4. MANIFEST.MF and plugin.xml 212
15.1.5. Noteworthy API Changes 213

Part |I.

Getting Started

1. Installation

Eclipse Xtext is implemented in Java, so you must have a Java Runtime Environment

installed in order to proceed.

There are two easy ways to get Xtext up and running. A pre-configured Eclipse
distribution is available which has already all the necessary plug-ins installed. Alterna-
tively, you can install Xtext into your existing Eclipse by means of the Eclipse update
mechanism.

1.1. Install Pre-Configured Eclipse With Xtext

1. Go to http://xtext.itemis.com and select the distribution that matches your OS.

2.
Unzip the archive into the directory of your choice.

Windows Users should choose a directory close to the root since the zip contains
a deeply nested folder structure. The mazrimum path length on windows may not
exceed roughly 256 characters.

3. Launch Eclipse and select the workspace location. It’s basically the location for
your user data and project files and may be an empty directory.

1.2. Install Xtext From Update Site

If you have no existing Eclipse installed, it’s probably easier to choose a pre-configured
Eclipse (§1.1). Alternatively, you can go to http://www.eclipse.org and choose the
Eclipse IDE for Java Developers. Find the download link that matches your platform
and follow the instructions above (§2) to extract and launch Eclipse.

1. Choose Help -> Install New Software... from the menu bar and Add... the follow-
ing update site: http://download.itemis.de/updates/. This site aggregates all the
necessary and optional components of Xtext.

2. Select the Xtext SDK from the TMF Xtext category and hit Next until you can
Finish the wizard.

3. After a quick download and a restart of Eclipse, Xtext is ready to use.

10

http://www.oracle.com/technetwork/java/index.html
http://xtext.itemis.com/xtext/language=en/36553/downloads
http://www.eclipse.org/downloads/
http://download.itemis.de/updates/

2. 5 Minutes Tutorial

In this chapter you’ll learn how to create a new Xtext project, generate a fully working
language infrastructure and how to start a new Eclipse instance in order to test the
editor. But before we get started, make sure you have Eclipse Xtext properly installed.
If you are not sure about that, you should follow the installation instructions (§1).

2.1. Creating A New Xtext Project

The first step is to create a new Xtext project by choosing File -> New -> Project....
The dialog offers a couple of different project types. Select New Xtext Project from the
category Xtext and finish the wizard with the default settings. You’ll find 3 new projects
in your workspace which are mostly empty and the Xtext grammar editor will be opened
and show the definition of a very simple Hello World language.

grammar org.xtext.example.mydsl.MyDs| with
org.eclipse.xtext.common.Terminals

generate myDsl| "http://www.xtext.org/example/mydsl/MyDsl"

Model:
greetings+=Greetings;

Greeting:
'Hello” name=ID '!l’;

The only thing the language does, is to allow to write down a list of greetings. The
following would be proper input:

Hello Xtext!
Hello World!

2.2. Generating The Language Infrastructure

In order to test drive this language, you’ll have to generate the respective language
infrastructure. Therefore, choose Run As -> Generate Xtext Artifacts from the context
menu of the grammar editor. A new Java process will be spawned and afterwards you’ll
find a couple of new files in the projects that were created in the first step. What you see
now is a runnable language infrastructure with a powerful Eclipse editor for a brain-dead
language :-).

11

A O O | Java - org.xtext.example.mydsl/src/org/xtext/example/mydsl/MyDsl.xtext - Eclipse SDK - [Users/efftinge/Worksp...

fwis % %0 | HE | ®S S RG] 4 & [@haa
[£ Package Explorer 2 . = O m = O/ 2= outline 52 . =g
= <'===€>| - grammar org.xtext.example.mydsl.MyDs1l with org.eclipse.xt § E <‘:==»=> laz A
Vlﬁ%g.xlexl.example.mydsl generate myDsl "http://www.xtext.org/example/mydsl/MyDs1" v @ g/:ammar org.xtext.example
v src enerate myDs|
tigenerate my
¥ {2 org.xtext.example.mydsl = Model: = Model
[F] GenerateMyDsl.mwe2 greetings+=Greeting®; = Greeting
|=| MyDsl.xtext .
(##src-gen = Gree!l:;n%-l . o
(# xtend-gen ello' name= 1"

b =, JRE System Library [J25E-1.5
» =i Plug-in Dependencies
b (= META-INF
@ build.properties
|=| GenerateMyDsl.mwe2 launck
> IL?J org.xtext.example.mydsl.tests
> IL?J org.xtext.example.mydsl.ui

& =) RIS [BRI
Jr,'._\ Problems 5% . @ Ja\fadoc] @ Declaration] ¥ =0
0 errors, 5 warnings, O others
Description A | Resource Path Location Type

P i Warnings (5 items)

F = -

=)« v g .] M

J o® | Writable | Insert | 2:1 J J| “h | ,_3 & & J

2.3. Try The Editor

Let’s give the editor a try. If you select Run -> Run Configurations... from the Eclipse
menu, you can create a new Eclipse Application. Select the node FEclipse Application in
the left tree and add a new one. Choose a meaningful name and go to the tab Arguments
where you add the VM arguments

—XX:MaxPermSize=128m
—Xmx512m

to make sure that the memory settings are sufficient for a new Eclipse instance. Now
you can hit Run to create a new process.

A new project is necessary to create a file for the sample language. Select File ->
New -> Project... and choose a project type of your choice, e.g. Java Project, name it
Sample and create a new file in the src folder of the project: From the context menu
of the folder choose New -> File, name it Sample.mydsl hit Finish. The newly created
editor will open for you language and ask you in a dialog, whether you want to add the
Xtext nature to your project, which is a good idea. You can now test-drive the editor,
e.g. use content assist (Ctri+Space) to insert the keyword Hello and see how the input
is validated immediately.

12

8,06

Debug Configurations

Create, manage, and run configurations

Create a configuration to launch an Eclipse application in debug mode.

FMEEIEES

Name: Eclipse Application

[type filter text

[Apache Tomeat
ECNH + Application
[E]C/C++ Attach to Applicatior
ECIC++ Postmortem Debugg
¥ 4 Eclipse Application
4 Eclipse Application
E GCeneric Server
ﬁ Generic Server(External Laur
4] Java Applet
[Java Application
@ JavaScript
Ju JUnit
jﬁjUnit Plug-in Test
= Launch Group
IE MWE Workflow
¥ [F] Mwe2 Launch

=] Main (&= Nggwé i &= Plug—ins] Conﬁguralion] Tracing] g Enviro nment] =] Common]

Program arguments:

-os ${target.os} -ws S{target.ws} -arch ${target.arch} -nl ${target.nl} -consoleLog

) VM arguments:

-XX:MaxPermSize=128m |[-Xmx512m

~ Working directory:

®

DGeneraleMvDsl.mweZ @ Default: JUsers/efftinge/Eclipsefeclipse-3.7RC1/Eclipse.app/Contents/MacO5

&OSGi Framework o O Other:

@.Remotejava Application

.ﬁ)]Task Context Plug-in Test (Workspace... | [File System...) [Variables... |

Ju Task Context Test

¢ KSL

)
———— - o) (rewer)
Filter matched 22 of 22 items
(Close) (—B!hug—a

2.4. Conclusion

4

In your first five minutes with Xtext, you’ve learned how to create a new set of projects.
You’ve run Xtext’s code generation in order to get a fully working language infrastruc-
ture, and finally learned how to test the generated editor.

Next up you should go through the more comprehensive Domain Model Example (§3).
It explains the different concepts of the Xtext grammar language and illustrates how to
customize various aspects of the language.

13

[InAdSRER=NE A% -2y
[FERR T R =R

A | EHE | &SP]S

= (@l

lEPa R B H | = O|: 53 = 0[5= Outline 2 =0
G| & 2 Hello Xtext! TR
5[Hello World!| c 5l
vi==Sample ¥ I= <unnamed>
viEBsrc = Xtext
Sample.mydsl| I=World
» =i JRE System Library [
[Z! Problems 52 @ ja\rado-c\l [z, Del:larationw @ - O
0 items
Deseripton & |Resource [Path L
||) Nl
s . ;
J | ‘ Writable | Insert ‘ J 4

14

3. 15 Minutes Tutorial

In this tutorial we will implement a small domain-specific language to model entities and
properties similar to what you may know from Rails, Grails or Spring Roo. The syntax
is very suggestive :

datatype String

entity Blog {
title: String
many posts: Post

}

entity HasAuthor {
author: String

}

entity Post extends HasAuthor {
title: String
content: String
many comments: Comment

}

entity Comment extends HasAuthor {
content: String

After you've installed (§1) Xtext on your machine, start Eclipse and set up a fresh
workspace.

3.1. Create A New Xtext Project

In order to get started we first need to create some Eclipse projects. Use the Eclipse
wizard to do so:

File -> New -> Project... -> Xtext -> Xtext project

Choose a meaningful project name, language name and file extension, e.g.

Main project name: org.example.domainmodel
Language name: org.example.domainmodel.Domainmodel
DSL-File extension: dmodel

Click on Finish to create the projects.
After you've successfully finished the wizard, you’ll find three new projects in your
workspace.

15

800

Mew Xtext Project

New Xtext Project

This wizard creates a couple of projects for Xtext DSL.

Xtert

Project name: | org.example.domainmodel

IE Use default location

Lecation: [Usersfefftinge/Workspaces /ws-tets/org.example.domainmodel Browse...
Language
Marme: org.example. domainmodel.DomainModel
Extensions: dmodel
Layout
Generator Configuration: ' Use Experimental 2.0 Features (Compare Refactoring and new Serializer) | #]
Working sets
(] Add project to working sets
Working sets: = Select...
@:I [<Back) Mext > (Cancel 3 f: Finish)

org.example.domainmodel

org.example.domainmodel.tests
org.example.domainmodel.ui

3.2. Write Your Own Grammar

4

Contains the grammar definition and all
runtime components (parser, lexer, linker,
validation, etc.)

Unit tests go here.

The Eclipse editor and all the other work-
bench related functionality.

The wizard will automatically open the grammar file Domainmodel.ztext in the editor.
As you can see that it already contains a simple Hello World grammar:

grammar org.example.domainmodel.Domainmodel with
org.eclipse.xtext.common. Terminals

generate domainmodel "http://www.example.org/domainmodel /Domainmodel”

16

I~

& W35 O Qv

b (22 org.example.domainmodel.tests
> bdorg.exam ple.domainmodel.ui

generate domainModel "http://www.example.org/domainmodels

~Model:
greetings+=Greeting*;

— Greeting:
'Helle' name=ID '1';

= NCARD- F=R Ak - WRARR AR B | = &lava
[% Package Explorer 33 =0 M‘ =8 EE Outline &3 =8
= <)===>| - rammar org.example.domainmodel.DomainModel with org.ecli ‘§ ‘§ <*:==€> [CA
Pb‘lorg.example.domainmndel

¥ [iZ] grammar org.exampl
E-jgenerate domaini
= Model
= Greeting

€ > RIS | ——) XIC
E_g Problems &3 (@ javadoc} IQ) Declaraticnw = Consolq ¥ =0
0 items
p A }Resoun:e Path Location Tvi
= .] R RS
lo® Writable Insert il 7l | Building warkspace: (12%) . 'E/
4
Model:
greetings+=Greetingx;
Greeting:

'Hello’ name=ID '!I’;

Let’s now just replace that grammar definition with the one for our domain model

language:

grammar org.example.domainmodel.DomainModel with

generate domainmodel "http://www.example.org/domainmodel /Domainmodel”

Domainmodel :
elements += Typex

Type:
DataType | Entity

DataType:
'datatype’ name = ID

Entity:

org.eclipse.xtext.common. Terminals

17

‘entity’ name = ID (‘extends’ superType = [Entity])? '{’
features += Featurex
Y}V

Feature:
many?="many’'? name = ID "’ type = [Type]

Let’s have a more detailed look at what the different grammar rules mean:

1. The first rule in a grammar is always used as the entry or start rule.

Domainmodel :
elements += Typex

1

It says that a Domainmodel contains an arbitrary number (x) of Types which will
be added (+=) to a feature called elements.

2. The rule Type delegates to either the rule DataType or (|) the rule Entity.

Type:
DataType | Entity

3. The rule DataType starts with a keyword 'datatype’, followed by an identifier which
is parsed by a rule called ID. The rule ID is predefined in the super grammar
org.eclipse.xtext.common. Terminals and parses a single word, a.k.a identifier. You
can navigate to it by using F'8 on the rule call. The value returned by the call to
ID is assigned (x) to the feature name.

DataType:
'datatype’ name = ID

4. The rule Entity again starts with the definition of a keyword followed by a name.
Entity :

‘entity’ name = ID ("extends’ superType = [Entity])? '{'
features += Featurex
1}1

1

Next up there is the extends clause which is parenthesized and optional (?). Since
the feature named superType is a cross reference (note the square brackets), the
parser rule Entity is not called here, but only a single identifier (the ID-rule)
is parsed. The actual Entity will be resolved during the linking phase. Finally
between curly braces there can be any number of Features, which invokes the next
rule.

18

5. Last but not least, the rule Feature is defined as followed:

Feature:
(many ?= 'many’)? name = ID "' type = [Type]

The keyword many is used to model a multi valued feature in the domain model
DSL. The assignment operator (?=) implies that the feature many is of type
boolean. You are already familiar with the other syntax elements in this parser
rule.

This domain model grammar already uses the most important concepts of Xtext’s
grammar language. You've learned that keywords are written as string literals and a
simple assignment uses a plain equal sign (=) where the multi value assignment used a
plus-equals (+=). We’be also seen the boolean assignment operator (?=). Furthermore
we saw how a cross reference can be declared and learned about different cardinalities (?
= optional, * = any number, + = at least once). Please consult the Grammar Language
Reference (§6) for more details. Let’s now have a look what you can do with such a
language description.

3.3. Generate Language Artifacts

Now that we have the grammar in place and defined we need to execute the code gen-
erator that will derive the various language components. To do so locate the file Gener-
ateDomainmodel.mwe?2 file next to the grammar file in the package explorer view. From
its context menu, choose

Run As -> MWE2 Workflow.

This will trigger the Xtext language generator. It generates the parser and serializer
and some additional infrastructure code. You will see its logging messages in the Console
View.

3.4. Run the Generated IDE Plug-in

We are now able to test the IDE integration. If you select Run -> Run Configurations...
from the Eclipse menu, you can create a new Eclipse Application. Select the node Fclipse
Application in the left tree and add a new one. Choose a meaningful name and go to
the tab Arguments where you add the VM arguments

—XX:MaxPermSize=128m
—Xmx512m

to make sure that the memory settings are sufficient for a new Eclipse instance. Now
you can hit Run to create a new process.

This will spawn a new Eclipse workbench with your newly developed plug-ins in-
stalled. In the new workbench, create a new project of your choice, e.g. File -> New ->
Project... -> Java Project and therein a new file with the file extension you chose in the

19

|=| DomainModel. xtext I| = Domainmodel :

Sl
B erc-gen New >
B xtend-gen Open 3
8, JRE Systern Library [12 .
g, Plug-in Dependencie Open With _ a
= META-INF Show In W 2
ﬂhuild.prﬁperties =
£ GenerateDomainMed = Copy] #C (o
rg.example.domainmao =S| Eop‘y‘ Qua"ﬁEd Name L -
rg.example.domainme [Paste ¥y E —
& Delete = Im:] [, Declaration] E Cunsole]
= Remove from Context {381 B & |Resource
[| Mark as Landmark gt
Build Path 2
Refactor BT [
gx Import...
3 Export... F
GenerateDomainh q}‘h Refresh F5 xample/domainmodel J
1 Assign Working Sets... r

tor. It generates v
re code. You will Validate

5) 1 MWE2 Workflow
Debug As >
Profile As > Run Configurations...
[

@ mhla kn dack khe A Denfila Ac

beginning (*.dmodel). This will open the generated entity editor. Try it and discover
the default functionality for code completion, syntax highlighting, syntactic validation,
linking errors, the outline view, find references etc.

3.5. Second lteration : Adding Packages and Imports

After you’ve created the your first DSL and had a look at the editor, the language
should be refined and incrementally enhanced. The Domain Model language should
support the notion of Packages in order to avoid name clashes and to better fit with the
target environment (Java). A Package may contain Types and other packages. In order
to allow fort names in references, we will also add a way to declare imports.

In the end we want to be able to split the previously used model into to distinct files :

// datatypes.dmodel

datatype String

20

H_Nals]

Create, manage, and run configurations

Create a configuration to launch an Eclipse application.

Name: Mew_configuration

CEX[E 3

[type filter text

M‘@ Plugfimﬂ Conﬁguraﬁon} & Tracmﬂ) Envircnmenq = Cnmmonw

Program arguments

ﬁ Apache Tomcat

-os ${target.os} -ws S{target.ws} -arch S{target.arch} -nl S{target.nl} -consoleLog

[E]C/C++ Application
¥ & Eclipse Application

= New_eonfiguration
5 Generic Server
[Generic Server(External Launch)
] Java Applet
[3]Java Application
JuJUnit
3% JUnit Plug-in Test
= Launch Group

[FIMWE Workflow
VM arguments:

 [F] Mwez Launch

-XX:MaxPermSize=128m
-Xmx512m

[¥ GenerateDomainModel.mwe2
4% 0SGi Framework
J¥jTask Context Plug-in Test
Juy Task Context Test
3 XSL

Working directory:

® Default:
) other:

fUsers/efftinge/Eclipsefeclipse-3.7RCL/Eclipse.app/Contents/MacOS

(Workspace...

{ File System... Y (variables...)

Filter matched 18 of 18 items

©)

// commons.dmodel
package my.company.common {

entity HasAuthor {
author: String
}

// blogs.dmodel

package my.company.blog {
import my.company.common.x
entity Blog {

title: String
many posts: Post

}

entity Post extends my.company.common.HasAuthor {
title: String

21

Cam))
'

I RS % 3-0-Q | HG | ®S & [E G0 v v 4 &l
[# Package Explor &2 =l = O/ 5= Outline 2 =0
<'==={>| - datatype String &% Y
Vi=Zmy.project = entity Blog { vi= <ur|r|.amed>
v (@ src title: String I=String
= mymodel.dmodel many posts: [Post » I=Blog
» =hJRE System Library [Javas } » I=HasAuthor
—lentity HasAuthor { 'IEPESF
author: String [=title
} U= content
= comments
—lentity Post extends HasAuthor { » I=Comment
title: String
content: String
many comments: Comment
}
—entity Comment extends HasAuthor {
content: String
}
[Z Problems 2 @ javadoc} [, Declaratiorq =0
0 items
p iR e Path Location
) y< || @] s
| o | Writable | Insert | ” =) | D E ‘O}/]

content: String
many comments: Comment

}

entity Comment extends HasAuthor {
content: String
}

Let’s start enhancing the grammar.

1. Since a Domainmodel no longer contains types but packages, too, the entry rule
has to be modified. Furthermore, a common super type for Packages and Types

should be introduced: the AbstractElement.

Domainmodel:
(elements += AbstractElement)x

AbstractElement:
PackageDeclaration | Type

22

2. A PackageDeclaration in turn looks pretty much as expected. It contains a number
of Imports and AbstractElements. Since Imports should be allowed for the root-
Domainmodel, too, we add them as an alternative to the rule AbstractElement.

PackageDeclaration:
'package’ name = QualifiedName '{’
(elements += AbstractElement)sx
Y}l
AbstractElement:
PackageDeclaration | Type | Import

QualifiedName:
ID ("." ID)x

The QualifiedName is a little special. It does not contain any assignments. Therefore,
it serves as a data type rule, which returns a String. So the feature name of a
Package is still of type String.

3. Imports can be defined in a very convenient way with Xtext. If you use the name
importedNamespace in a parser rule, the framework will treat the value as an
import. It even supports wildcard and handles them as expected :

Import:
'import’ importedNamespace = QualifiedNameWithWildcard

QualifiedNameWithWildcard:
QualifiedName ".x'?

Similar to the rule QualifiedName, QualifiedNameWithWildcard returns a plain string.

23

4. The last step is to allow fully qualified names in cross references, too. Otherwise
one could not refer to an entity without adding an import statement.

Entity:
'entity’ name = ID
('extends’ superType = [Entity | QualifiedName])?

(features += Feature)x

Feature:
(many ?= "'many’)? name = ID "’ type = [Type | QualifiedName]

Please note that the bar (]) is not an alternative in the context of a cross reference,
but used to specify the syntax of the parsed string.

That’s all for the grammar. It should now read as

grammar org.example.domainmodel.Domainmodel with
org.eclipse.xtext.common.Terminals

generate domainmodel "http://www.example.org/domainmodel /Domainmodel”

Domainmodel:
(elements += AbstractElement)=

PackageDeclaration:
'package’ name = QualifiedName '{’
(elements += AbstractElement)=

)

AbstractElement:
PackageDeclaration | Type | Import

QualifiedName:
ID (. ID)x

Import:
'import’ importedNamespace = QualifiedNameWithWildcard

QualifiedNameWithWildcard:
QualifiedName ".x'?

24

Type:
DataType | Entity

DataType:
'datatype’ name=ID

Entity:
'entity’ name = ID
('extends’ superType = [Entity | QualifiedName])?
1{1

(features += Feature)x

3

Feature:
(many ?= "many’)? name = ID "’ type = [Type | QualifiedName]

You should regenerate the language infrastructure as described in the previous section,
and give the editor another try. You can even split up your model into smaller parts and
have cross-references across file boundaries.

8 0 O D DJav;--;n;f-.-p;r-(;jectfsrc;‘blogs.dmndel - Eclipse SDK.)
=i SRR 252X LUK R:-FC Al =g alE - M RR R R IR | & | &lava
: . | datatypes.dmodel &2 " =&

—package my.company.blog {

&] dotatype String
import my.company.common.*

= entity Blog {
title: String
many posts: Post

= entity Post extends my.company.common.HasAuthor {
title: String =
content: String |Zl commons.dmodel 3%
many comments: Comment

= package my.company.common {

= entity HasAuthor {
= entity Comment extends HasAuthor { author: String

content: String '=Blog - my.company.blog.Blog | Entity Blog

¥ I=Comment - my.company.blog.Comment
} I=HasAuthor - my.company.common.HasAuthor
I=Post - my.company.blog.Post
J =3
0 w+ @ &
‘ |e LY

25

4. 15 Minutes Tutorial - Extended

After you've developed you first own DSL, the question arises, how the behavior and the
semantics of the language can be customized. Therefore a couple of mini-tutorials are
available, that illustrate common use cases when crafting an own DSL.

These lessons are independent from each other. Fach of them will be based on the
language that was build in the first domain model tutorial (§3).

That is, the syntax and the grammar for the language look like this:

package java.lang {
datatype String
}

package my.company.blog {
import java.lang.x*
import my.company.common.

entity Blog {
title: String
many posts: Post

}

entity HasAuthor {
author: String
¥

entity Post extends HasAuthor {
title: String
content: String
many comments: Comment

}

entity Comment extends HasAuthor {
content: String

grammar org.eclipse.xtext.example.Domainmodel with
org.eclipse.xtext.common. Terminals

generate domainmodel "http://www.eclipse.org/xtext/example/Domainmodel”

Domainmodel:

26

(elements += AbstractElement)=

PackageDeclaration:
'package’ name = QualifiedName '{’
(elements += AbstractElement)=

)

AbstractElement:
PackageDeclaration | Type | Import

QualifiedName:
ID ("." ID)x
Import:
'import’ importedNamespace = QualifiedNameWithWildcard

QualifiedNameWithWildcard:
QualifiedName ".x'?

Type:
DataType | Entity

DataType:
'datatype’ name=ID

Entity:
'entity’ name = ID
('extends’ superType = [Entity | QualifiedName])?
Y{V

(features += Feature)x

3

Feature:
(many ?= "many’)? name = ID "’ type = [Type | QualifiedName]

27

4.1. Writing a Code Generator With Xtend

As soon as you generate the Xtext artifacts for a grammar, a code generator stub will
be put into the runtime project of your language. Let’s dive into Xtend and see how you
can integrate your own code generator with Eclipse.

In this lesson you’ll generate Java Beans for entities that are defined in the domain
model DSL. For each Entity, a Java class is generated and each Feature will lead to a
private field in that class and public getters and setters. For the sake of simplicity, we’ll
use fully qualified names for all over the generated code.

package my.company.blog;

public class HasAuthor {
private java.lang.String author;

public java.lang.String getAuthor() {
return author;
}

public void setAuthor(java.lang.String author) {
this.author = author;
}

}

First of all, locate the file DomainmodelGenerator.aztend in the package org.eclipse.xtext.example.generator
This Xtend class is used to generate code for your models in the standalone scenario and
in the interactive Eclipse environment.

package org.eclipse.xtext.example.generator

import org.eclipse.emf.ecore.resource.Resource
import org.eclipse.xtext.generator.|Generator
import org.eclipse.xtext.generator.|FileSystemAccess

class DomainmodelGenerator implements |Generator {
override void doGenerate(Resource resource, IFileSystemAccess fsa) {

}
}

Let’s make the implementation more meaningful and start the implementation. The
strategy is, to find all entities with a resource and trigger code generation for each one.

28

1. First of all, you’ll have to filter the contents of the resource down to the defined
entities. Therefore we need to iterate a resource with all it’s deeply nested elements.
Xtend ships with a utility that simplifies this greatly. The class ResourceExtensions
provides the useful function allContentslterable() which we want to import as a static
extension.

import static extension org.eclipse.xtext.xtend2.lib.ResourceExtensions.*
class DomainmodelGenerator implements |Generator {

Afterwards we can iterate all the objects and filter them by their type to find all
Entities.

override void doGenerate(Resource resource, IFileSystemAccess fsa) {
for(e: resource.allContentslterable.filter(typeof(Entity))) {

}

2. Now let’s answer the question, how we determine the file name of the Java class,
that each Entity should yield. This information should be derived from the qual-
ified name of the FEntity since Java enforces this pattern. The qualified name
itself has to be obtained from a special service that is available for each lan-
guage. Fortunately, Xtend allows to reuse that one easily. We simply inject the
IQualifiedNameProvider into the generator.

@Inject extension IQualifiedNameProvider nameProvider

This allows to ask for the name of an entity. It is straight forward to convert the
name into a file name:

override void doGenerate(Resource resource, IFileSystemAccess fsa) {
for(e: resource.allContentslterable.filter(typeof(Entity))) {
fsa.generateFile(
e.fullyQualifiedName.toString.replace(’.”, /") + "java”,
e.compile)

3. The next step is to write the actual template code for an entity. For now, the
function Entity.compile does not exist, but it’s easy to create it:

1

def compile(Entity e)
package «e.eContainer.fullyQualifiedNamey;

public class «e.name» {

}

1

29

4. This small template is basically the first shot at a Java Beans generator. However,
it’s currently rather incomplete and will fail, if the Entity is not contained in
a package. A small modification fixes this. The package-declaration has to be
wrapped in an IF expression:

1

def compile(Entity €)
«IF e.eContainer != null»
package «e.eContainer.fullyQualifiedName»;
«ENDIF»

public class «e.name» {

}

Let’s handle the superType of an Entity gracefully, too by using another IF expres-
sion:

111

def compile(Entity e)
«IF e.eContainer != nully»
package «e.eContainer.fullyQualifiedNamey;
«ENDIF»

public class «e.name» «IF e.superType != null
nextends «e.superType.fullyQualifiedName» «ENDIF»{
}

30

5. Even though the template will compile the Entities without any complains, it still
lacks support for the Java properties, that each of the declared features should
yield.

For that purpose, you’d have to create another Xtend function that compiles a
single feature to the respective Java code.

111

def compile(Feature f)
private «f.type.fullyQualifiedName» «f.namey;

public «f.type.fullyQualifiedName» get«f.name.toFirstUpper»() {
return «f.namey;
}

public void set«f.name.toFirstUpper» («f.type.fullyQualifiedName» «f.name») {
this.«f.name» = «f.namey;
}

As you can see, there’s nothing fancy about this one. Last but not least, we have
to make sure that the function is actually used.

def compile(Entity e)
«IF e.eContainer != null»
package «e.eContainer.fullyQualifiedNamey;
«ENDIF»

public class «e.name» «IF e.superType != null
nextends «e.superType.fullyQualifiedName» «ENDIF»{
«FOR f:e.features»
«f.compiley
«ENDFOR»

The final code generator looks pretty much like the following code snippet. Now you
can give it a try! Launch a new Eclipse Application (Run As -> Eclipse Application
on the Xtext project) and create a dmodel file in a Java Project. Now simply create a
new source folder src-gen in the that project and see how the compiler will pick up your
sample Entities and generate Java code for them.

package org.eclipse.xtext.example.generator

import org.eclipse.emf.ecore.resource.Resource
import org.eclipse.xtext.generator.|Generator
import org.eclipse.xtext.generator.|FileSystemAccess

import static extension org.eclipse.xtext.xtend?2.lib.ResourceExtensions.*

import org.eclipse.xtext.example.domainmodel.x

31

import org.eclipse.xtext.naming.|QualifiedNameProvider

import com.google.inject.Inject

class DomainmodelGenerator implements |Generator {
@Inject extension IQualifiedNameProvider nameProvider

override void doGenerate(Resource resource, IFileSystemAccess fsa) {
for(e: resource.allContentslterable.filter(typeof(Entity))) {
fsa.generateFile(
e.fullyQualifiedName.toString.replace(”.”, /") + "java”,
e.compile)

}

def compile(Entity e)
«IF e.eContainer != null»
package «e.eContainer.fullyQualifiedNamey;
«ENDIF»

111

public class «e.name» «IF e.superType != null
nextends «e.superType.fullyQualifiedName» «ENDIF»{
«FOR f:e.features»
«f.compiley
«ENDFOR»

1

def compile(Feature f)
private «f.type.fullyQualifiedNamey «f.namey;

public «f.type.fullyQualifiedName» get«f.name.toFirstUpper»() {
return «f.namey;
¥

public void set«f.name.toFirstUpper» («f.type.fullyQualifiedName» «f.name») {
this.«f.name» = «f.namey;

If you want to play around with Xtend, you can try to use the Xtend tutorial which
can be materialized into your workspace. Simply choose New -> Ezxample -> Xtend
Tutorial and have a look at Xtend’s features. As a small exercise, you could implement
support for the many attribute of a Feature or enforce naming conventions, e.g. field
names should start with an underscore.

32

4.2. Unit Testing the Language

Automated tests are crucial for the maintainability and the quality of a software product.
That’s why it is strongly recommended to write unit tests for your language, too. The
Xtext project wizard creates a test project for that purpose. It simplifies the setup
procedure both for the eclipse agnostic tests and the ui tests for Junit4.

This tutorial is about testing the parser and the linker for the Domainmodel. It
leverages Xtend to write the testcase.

1. First of all, a new Xtend class has to be created. Therefore, choose the src folder
of the test plugin, and select New -> Xtend Class from the context menu. Provide
a meaningful name and enter the package before you hit finish.
The core of the test infrastructure is the XtextRunner and the language specific
[InjectorProvider. Both have to be provided by means of class annotations:

@InjectWith(typeof(DomainmodellnjectorProvider))
ORunWith(typeof(XtextRunner))
class ParserTest {

}

2. The actual test case is pretty straight forward with Xtend. The utility class
org.eclipse.xtext.junity. util. ParseHelper allows to parse an arbitrary string into a
Domainmodel. The model itself can be traversed and checked afterwards. A static
import of Assert leads to concise a readable test cases.

@Inject
ParseHelper<Domainmodel> parser

@Test
def void parseDomainmodel() {
val model = parser.parse(
"entity MyEntity {
parent: MyEntity
)
val entity = model.elements.head as Entity
assertSame(entity, entity.features.head.type)

3. After saving the Xtend file, it is time to run the test. Please locate the generated
java class in the ztend-gen folder and select Run As -> JUnit Test from the context
menu.

4.3. Creating Custom Validation Rules

One of the main advantages of DSLs is the possibility to statically validate domain
specific constraints. This can be achieved by means of static analysis. Because this is
a common use case, Xtext provides a dedicated hook for this kind of validation rules.

33

In this lesson, we want to ensure that the name of an Entity starts with an upper-case
letter and that all features have distinct names across the inheritance relationship of an
Entity.
Try to locate the class DomainmodelJava Validator in the package org.eclipse.xtext. example.validation.
It can be found in the language plug-in. Defining the constraint itself is only a matter
of a few lines of code:

@Check
public void checkNameStartsWithCapital(Entity entity) {
if (!Character.isUpperCase(entity.getName().charAt(0))) {
warning("Name should start with a capital”,
DomainmodelPackage.Literals. TYPE_NAME);

}

Any name for the method will do. The important thing is the Check annotation that
advises the framework to use the method as a validation rule. If the name starts with a
lower case letter, a warning will be attached to the name of the Entity.

The second validation rule is straight-forward, too. We traverse the inheritance hier-
archy of the Entity and look for features with equal names.

@Check
public void checkFeatureNamelsUnique(Feature f) {
Entity superEntity = ((Entity) f.eContainer()).getSuperType();
while(superEntity != null) {
for(Feature other: superEntity.getFeatures()) {
if (f.getName().equals(other.getName())) {
error("Feature names have to be unique”,
DomainmodelPackage.Literals. FEATURE_NAME);
return;

}
}
superEntity = superEntity.getSuperType();

}

The sibling features, that are defined in the same entity, are automatically validated
by the Xtext framework. Therefore, they do not have to be checked twice.

34

Part Il.

Reference Documentation

35

5. Overview

5.1. What is Xtext?

No matter if you want to create a small textual domain-specific language (DSL) or you
want to implement a full-blown general purpose programming language. With Xtext
you can create your very own languages in a snap. Also if you already have an exist-
ing language but it lacks decent tool support, you can use Xtext to create a sophisti-
cated Eclipse-based development environment providing editing experience known from
modern Java IDEs in a surprisingly short amount of time. We call Xtext a language
development framework.

5.2. How Does It Work?

Xtext provides you with a set of domain-specific languages and modern APIs to describe
the different aspects of your programming language. Based on that information it gives
you a full implementation of that language running on the JVM. The compiler com-
ponents of your language are independent of Eclipse or OSGi and can be used in any
Java environment. They include such things as the parser, the type-safe abstract syntax
tree (AST), the serializer and code formatter, the scoping framework and the linking,
compiler checks and static analysis aka validation and last but not least a code generator
or interpreter. These runtime components integrate with and are based on the Eclipse
Modeling Framework (EMF), which effectively allows you to use Xtext together with
other EMF frameworks like for instance the Graphical Modeling Project GMF.

In addition to this nice runtime architecture, you will get a full blown Eclipse-IDE
specifically tailored for your language. It already provides great default functionality
for all aspects and again comes with DSLs and APIs that allow to configure or change
the most common things very easily. And if that’s not flexible enough there is Guice to
replace the default behavior with your own implementations.

5.3. Xtext is Highly Configurable

Xtext uses the lightweight dependency injection (DI) framework Google Guice to wire
up the whole language as well as the IDE infrastructure. A central, external module
is used to configure the DI container. As already mentioned, Xtext comes with decent
default implementations and DSLs and APIs for the aspect that are common sweet spots
for customization. But if you need something completely different, Google Guice gives
you the power to exchange every little class in a non-invasive way.

36

5.4. Who Uses Xtext?

Xtext is used in many different industries. It is used in the field of mobile devices,
automotive development, embedded systems or Java enterprise software projects and
game development. People use Xtext-based languages to drive code generators that
target Java, C, C++, C#, Objective C, Python, or Ruby code. Although the language
infrastructure itself runs on the JVM, you can compile Xtext languages to any existing
platform. Xtext-based languages are developed for well known Open-Source projects
such as Maven, Eclipse B3, the Eclipse Webtools platform or Google’s Protocol Buffers
and the framework is also widely used in research projects.

5.5. Who is Behind Xtext?

Xtext is a professional Open-Source project. We, the main developers and the project
lead, work for itemis, which is a well known consulting company specialized on model-
based development. Therefore we are able to work almost full-time on the project. Xtext
is an Eclipse.org project. Besides many other advantages this means that you don’t have
to fear any IP issues, because the Eclipse Foundation has their own lawyers who take
care that no intellectual property is violated.

You may ask: Where does the money for Open-Source development come from? Well,
we provide professional services around Xtext. Be it training or on-site consulting, be
it development of prototypes or implementation of full-blown IDEs for programming
languages. We do not only know the framework very well but we are also experts in
programming and domain-specific language design. Don’t hesitate to get in contact with
us (www.itemis.com).

5.6. What is a Domain-Specific Language

A Domain-Specific Language (DSL) is a small programming language, which focuses on
a particular domain. Such a domain can be more or less anything. The idea is that its
concepts and notation is as close as possible to what you have in mind when you think
about a solution in that domain. Of course we are talking about problems which can be
solved or processed by computers somehow.

The opposite of a DSL is a so called GPL, a General Purpose Language such as Java or
any other common programming language. With a GPL you can solve every computer
problem, but it might not always be the best way to solve it.

Imagine you want to remove the core from an apple. You could of course use a Swiss
army knife to cut it out, and this is reasonable if you have to do it just once or twice.
But if you need to do that on a regular basis it might be more efficient to use an apple
corer.

There are a couple of well-known examples of DSLs. For instance SQL is actually a
DSL which focuses on querying relational databases. Other DSLs are regular expres-
sions or even languages provided by tools like MathLab. Also most XML languages

37

http://xtext.itemis.com

are actually domain-specific languages. The whole purpose of XML is to allow for easy
creation of new languages. Unfortunately, XML uses a fixed concrete syntax, which is
very verbose and yet not adapted to be read by humans. Into the bargain, a generic
syntax for everything is a compromise.

Xtext is a sophisticated framework that helps to implement your very own DSL with
appropriate IDE support. There is no such limitation as with XML, you are free to
define your concrete syntax as you like. It may be as concise and suggestive as possible
being a best match for your particular domain. The hard task of reading your model,
working with it and writing it back to your syntax is greatly simplified by Xtext.

38

6. The Grammar Language

The grammar language is the corner stone of Xtext. It is a domain-specific language,
carefully designed for the description of textual languages. The main idea is to describe
the concrete syntax and how it is mapped to an in-memory representation - the semantic
model. This model will be produced by the parser on-the-fly when it consumes an input
file.

6.1. A First Example

To get an idea of how it works we’ll start by implementing a simple example introduced
by Martin Fowler. It’s mainly about describing state machines that are used as the
(un)lock mechanism of secret compartments. People who have secret compartments
control their access in a very old-school way, e.g. by opening a draw first and turning
on the light afterwards. Then the secret compartment, for instance a panel, opens up.
One of those state machines could look like this:

events
doorClosed D1CL
drawOpened D20P
lightOn L1ON
doorOpened D10OP
panelClosed PNCL
resetting doorOpened D10OP
end

commands
unlockPanel PNUL
lockPanel PNLK
lockDoor D1LK
unlockDoor D1UL
end

state idle
actions {unlockDoor lockPanel}
doorClosed => active

end

state active
drawOpened => waitingForLight
lightOn => waitingForDraw

end

39

http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
http://martinfowler.com/bliki/SyntacticNoise.html

state waitingForLight
lightOn => unlockedPanel
end

state waitingForDraw
drawOpened => unlockedPanel
end

state unlockedPanel
actions {unlockPanel lockDoor}
panelClosed => idle

end

What we have are a bunch of declared events, commands, and states. Within states
there are references to declared actions. Actions should be executed when entering the
state. Furthermore, there are transitions consisting of a reference to an event and a
state.

The first thing that you have to do in order to implement this tiny state machine
example with Xtext, is to provide a grammar. It could look like this example:

grammar org.xtext.example.SecretCompartments
with org.eclipse.xtext.common.Terminals

generate secrets "http://www.eclipse.org/secretcompartment”

Statemachine :

'events’
(events+=Event)+

'end’

('resetEvents'’
(resetEvents+=|[Event])+

'end")?

‘commands’
(commands+=Command)+

'end’

(states+=State)+;

Event :
name=ID code=ID;

Command :
name=ID code=ID;

State :
'state’ name=ID
("actions’ '{" (actions+=[Command])+ '}')?
(transitions+=Transition)x
‘end”;

40

Transition :
event=[Event] '=>" state=[State];

Martin Fowler uses this example throughout his book Domain Specific Languages to
implement external and internal DSLs using different technologies. Note, that none of his
implementations is nearly as readable and concise as the description in Xtext’s grammar
language above. That is of course because the grammar language is designed to do just
that, i.e. it is specific to the domain of language descriptions.

6.2. The Syntax

In the following the different concepts and syntactical constructs of the grammar lan-
guage are explained.

6.2.1. Language Declaration

Fach Xtext grammar starts with a header that defines some properties of the grammar.

grammar org.xtext.example.SecretCompartments
with org.eclipse.xtext.common.Terminals

The first line declares the name of the language. Xtext leverages Java’s classpath
mechanism. This means that the name can be any valid Java qualifier. The file name
needs to correspond to the language name and have the file extension .xtext. This means
that the name has to be SecretCompartments.xtext and must be placed in a package
org.xtext.example on your project’s classpath. In other words, your .xtext file has to
reside in a Java source folder to be valid.

The second aspect that can be deduced from the first line of the grammar is its rela-
tionship to other languages. An Xtext grammar can declare another existing grammar
to be reused. The mechanism is called grammar mixin (§6.4)).

6.2.2. EPackage Declarations

Xtext parsers create in-memory object graphs while consuming text. Such object-graphs
are instances of EMF Ecore models. An Ecore model basically consists of an EPackage
containing EClass, EDataType and EEnum (see the section on EMF (§13.1) for more details)
and describes the structure of the instantiated objects. Xtext can infer Ecore models
from a grammar (see Ecore model inference (§6.3)) but it is also possible to import
existing Ecore models. You can even mix both approaches and use multiple existing
Ecore models and infer some others from a single grammar. This allows for easy reuse of
existing abstractions while still having the advantage of short turnarounds with derived
Ecore models.

EPackage Generation

The easiest way to get started is to let Xtext infer the Ecore model from your grammar.
This is what is done in the secret compartment example. The generate declaration in

41

http://martinfowler.com/books.html#dsl

the grammar advises the framework to do so:

generate secrets 'http://www.eclipse.org/secretcompartment’

That statement could actually be read as: generate an EPackage with the name secrets
and the nsURI "http://www.eclipse.org/secretcompartment”. Actually these are the manda-
tory properties that are necessary to create an empty EPackage. Xtext will then add
EClass with EAttribute and EReference for the different parser rules in your grammar, as
described in Ecore model inference (§6.3).

EPackage Import

If you already have an existing EPackage, you can import it using either a namespace
URI or a resource URIL. An URI (Uniform Resource Identifier) provides a simple and
extensible means for identifying an abstract or physical resource. For all the nifty details
about EMF URIs please refer to its URI.

Using Resource URIs to Import Existing EPackages In order to import an existing
Ecore model, you’ll have to have the *.ecore file describing the EPackage you want to use
somewhere in your workspace. To refer to that file you make use of the platform:/resource
scheme. Platform URIs are a special EMF concept which allow to reference elements in
the workspace independent of the physical location of the workspace. It is an abstraction
that uses the Eclipse workspace concept as the logical root of each project.

An import statement referring to an Ecore file by a platform:/resource/-URI looks
like this:

import 'platform:/resource/my.project/model/SecretCompartments.ecore’

If you want to mix generated and imported Ecore models you’ll have to configure the
generator fragment in your MWE file responsible for EcoreGeneratorFragment with resource
URISs that point to the generator models (§13.2) of the referenced Ecore models.

The *.genmodel provides all kind of generator configuration used by EMF’s code
generator. Xtext will automatically create a generator model for derived EPackage, but if
it references an existing, imported Ecore model, the code generator needs to know how
that code was generated in order to generate valid Java code.

Example:

fragment = org.eclipse.xtext.generator.ecore.EcoreGeneratorFragment {
referencedGenModels =
"platform: /resource/my.project/model /SecretCompartments.genmodel”

Using Classpath URIs to Import Existing EPackages We like to leverage Java’s class-
path mechanism, because is is well understood and can be configured easily with Eclipse.
Furthermore it allows us to package libraries as jars. If you want to reference an existing
*.ecore file which is contained in a jar, you can make use of the classpath URI scheme
we’ve introduced. For instance if you want to reference Java elements, you can use the
JvmType Ecore model which is shipped as part of Xtext.

42

http://www.ietf.org/rfc/rfc2396.txt

Example:

import 'classpath:/model/JvmTypes.ecore'as types

As with platform resource URIs you’ll also have to tell the generator where the corre-
sponding *.genmodel can be found:

fragment = org.eclipse.xtext.generator.ecore.EcoreGeneratorFragment {
referencedGenModels =
"classpath:/model /JvmTypes.genmodel”
}

See the section on Referring Java Types (§10.2) for a full explanation of this useful
feature.

Using Namespace URIs to Import Existing EPackages You can also use nsURI in
order to import existing EPackage. Note that this is generally not preferrable, because
you’ll have to have the corresponding EPackage installed in the workbench. There’s
mainly just one exception, that is Ecore itself. So if you refer to Ecore it is best to use
its nsURI :

import "http://www.eclipse.org/emf/2002/Ecore"as ecore

Ecore Model Aliases for EPackages

If you want to use multiple EPackage you need to specify aliases in the following way:

generate secrets 'http://www.eclipse.org/secretcompartment’
import 'http://www.eclipse.org/anotherPackage’ as another

When referring to a type somewhere in the grammar you need to qualify the reference
using that alias (example another::SomeType). We'll see later where such type references
occur.

It is also supported to put multiple EPackage imports into one alias. This is no problem
as long as there are not any two EClassifier with the same name. In that case none of them
can be referenced. It is even possible to import multiple and generate one Ecore model
and declare all of them with same alias. If you do so, for a reference to an EClassifier
first the imported EPackage are scanned before it is assumed that a type needs to be
generated into the inferred package.

Note, that using this feature is not recommended, because it might cause problems,
which are hard to track down. For instance, a reference to classA would as well be linked
to a newly created EClass, because the corresponding type in http://www.eclipse.orq/packContainingClassA
is spelled with a capital letter.

6.2.3. Rules

Basically parsing can be separated in the following phases.

1. Lexing

2. Parsing

43

3. Linking

4. Validation

Terminal Rules

In the first stage called lexing, a sequence of characters (the text input) is transformed
into a sequence of so called tokens. In this context, a token is sort of a strongly typed
part or region of the input sequence. It consists of one or more characters and was
matched by a particular terminal rule or keyword and therefore represents an atomic
symbol. Terminal rules are also referred to as token rules or lexer rules. There is an
informal naming convention that names of terminal rules are all upper-case.

In the secret compartments example there are no explicitly defined terminal rules,
since it only uses the ID rule which is inherited from the grammar org.eclipse xtext.common
Terminals (cf. Grammar Mixins (§6.4)). Therein the ID rule is defined as follows:

terminal ID :
(a2 AL Z) (Al AL Z 0009)k,

It says that a token ID starts with an optional ’*” character (caret), followed by a
letter ("a’..’z’|'A’.."Z") or underscore '’ followed by any number of letters, underscores and
numbers ('0".."9").

The caret is used to escape an identifier if there are conflicts with existing keywords.
It is removed by the ID rule’s ValueConverter (§8.7).

This is the simplified formal definition of terminal rules:

TerminalRule :
"terminal’ name=ID ('returns’ type=TypeRef)? "'
alternatives=TerminalAlternatives ";’

Note, that the order of terminal rules is crucial for your grammar, as they may shadow
each other. This is especially important for newly introduced rules in connection with
imported rules from used grammars.

It’s almost in any case recommended to use data type rules instead. Let’s assume
you want to add a rule to allow fully qualified names in addition to simple IDs. Since
a qualified name with only one segment looks like a plain ID, you should implement it
as a data type rule (§6.2.6), instead of adding another terminal rule. The same rule of
thumb applies to floating point literals, too.

Return Types Each terminal rule returns an atomic value (an Ecore EDataType). By
default, it’s assumed that an instance of ecore::EString) should be returned. However, if
you want to provide a different type you can specify it. For instance, the rule INT is

defined as:

terminal INT returns ecore::Elint :
(’0’..’9’)—'—;

44

This means that the terminal rule INT returns instances of ecore::Elnt. It is possible to
define any kind of data type here, which just needs to be an instance of ecore::EDataType.
In order to tell the framework how to convert the parsed string to a value of the declared
data type, you need to provide your own implementation of IValueConverterService (cf.
value converters (§8.7)). The value converter is also the service that allows to remove
escape sequences or semantically unnecessary character like quotes from string literals
or the caret '*' from identifiers. Its implementation needs to be registered as a service
(cf. Service Framework (§7.2)).

Extended Backus-Naur Form Expressions

Terminal rules are described using Fxtended Backus-Naur Form-like (EBNF) expres-
sions. The different expressions are described in the following. Each of these expressions
allows to define a cardinality. There are four different possible cardinalities:

1. exactly one (the default, no operator)
2. one or none (operator ?)
3. any (zero or more, operator *)

4. one or more (operator +)

Keywords / Characters Keywords are a kind of terminal rule literals. The ID rule in
org.eclipse.xtext.common. Terminals for instance starts with a keyword:

terminal ID : 7’7 ... ;

The question mark sets the cardinality to none or one (i.e. optional) like explained
above.

Note that a keyword can have any length and contain arbitrary characters.

The following standard Java notations for special characters are allowed: \n, \r, \{,
\b, \f and the quoted unicode character notation, such as \u125.

Character Ranges A character range can be declared using the .. operator.

Example:

terminal INT returns ecore::Elnt: ('0".."9")+;

In this case an INT is comprised of one or more (note the + operator) characters
between (and including) '0’ and '9'.

Wildcard If you want to allow any character you can simple write the wildcard operator
. (dot): Example:

terminal FOO : 'f'. '0";

The rule above would allow expressions like foo, f0o or even f o.

45

Until Token With the until token it is possible to state that everything should be
consumed until a certain token occurs. The multi-line comment is implemented this
way:

terminal ML_COMMENT: "/%'—> "x/";

This is the rule for Java-style comments that begin with /+ and end with */.

Negated Token All the tokens explained above can be inverted using a preceding
exclamation mark:
terminal BETWEEN_HASHES: "#'(V'#')x "#;

Rule Calls Rules can refer to other rules. This is simply done by using the name of
the rule to be called. We refer to this as rule calls. Rule calls in terminal rules can only
point to terminal rules.

Example:

terminal DOUBLE : INT "INT;

Note: It is generally not a good idea to implement floating point literals with terminal
rules. You should use data type rules instead for the above mentioned reasons.

Alternatives Alternatives allow to define multiple valid options in the input file. For
instance, the white space rule uses alternatives like this:

terminal WS : (""'\t'|"\r'|'\n")+;

That is a WS can be made of one or more white space characters (including ", "\t', "\

r',\n").

Groups Finally, if you put tokens one after another, the whole sequence is referred to
as a group. Example:

terminal ASCII : '0x'('0"..'7))('0"..9''A"..'FY);

That is the 2-digit hexadecimal code of ASCII characters.

Terminal Fragments

Since terminal rules are used in an unscoped context, it’s not easily possible to reuse
parts of their definition. Fragments solve this problem. They allow the same EBNF
elements as terminal rules do but may not be consumed by the lexer. Instead, they have
to be used by other terminal rules. This allows to extract repeating parts of a definition:

terminal fragment ESCAPED_CHAR : "\\' ('n'|'t'|'r'|'\\");
terminal STRING :

" (ESCAPED_CHAR | I("\\']""))= "™ |

""" (ESCAPED_CHAR | 1("\\'[""™))* ™"

46

EOF - End Of File

The EOF (End Of File) token may be used to describe that the end of the input stream
is a valid situation at a certain point in a terminal rule. This allows to consume the
complete remaining input of a file starting with a special delimiter.

terminal UNCLOSED_COMMENT : '/« (IEOF)* EOF;

6.2.4. Parser Rules

The parser is fed with a sequence of terminals and walks through the so called parser
rules. Hence a parser rule - contrary to a terminal rule - does not produce a single
atomic terminal token but a tree of non-terminal and terminal tokens. They lead to a so
called parse tree (§77?) (in Xtext it is also referred as node model). Furthermore, parser
rules are handled as kind of a building plan for the creation of the EObject that form
the semantic model (the linked abstract syntax graph or AST). Due to this fact, parser
rules are even called production or EObject rules. Different constructs like actions and
assignments are used to derive types and initialize the semantic objects accordingly.

Extended Backus-Naur Form Expressions

Not all the expressions that are available in terminal rules can be used in parser rules.
Character ranges, wildcards, the until token and the negation as well as the EOF token
are only available for terminal rules.

The elements that are available in parser rules as well as in terminal rules are

1. Groups (§6.2.3),

2. Alternatives (§6.2.3),
3. Keywords (§6.2.3) and
4. Rule Calls (§6.2.3).

In addition to these elements, there are some expressions used to direct how the AST
is constructed. They are listed and explained in the following.

Assignments Assignments are used to assign the consumed information to a feature
of the currently produced object. The type of the current object, its EClass, is specified
by the return type of the parser rule. If it is not explicitly stated it is implied that the
type’s name equals the rule’s name. The type of the assigned feature is inferred from
the right hand side of the assignment.

Example:

State :
'state’ name=ID
(‘actions’ '{" (actions+=[Command])+ '}")?
(transitions+=Transition)=
'end’

47

The syntactic declaration for states in the state machine example starts with a keyword
state followed by an assignment:

name=ID

The left hand side refers to a feature name of the current object (which has the
EClass State in this case). The right hand side can be a rule call, a keyword, a cross-
reference (§6.2.4) or an alternative comprised by the former. The type of the feature
needs to be compatible with the type of the expression on the right. As ID returns an
EString in this case, the feature name needs to be of type String as well.

Assignment Operators

There are three different assignment operators, each with different semantics.

1. The simple equal sign = is the straight forward assignment, and used for features
which take only one element.

2. The += sign (the add operator) expects a multi-valued feature and adds the value
on the right hand to that feature, which is a list feature.

3. The 7= sign (boolean assignment operator) expects a feature of type Boolean and
sets it to true if the right hand side was consumed independently from the concrete
value of the right hand side.

The used assignment operator does not influence the cardinality of the expected sym-
bols on the right hand side.

Cross-References A unique feature of Xtext is the ability to declare crosslinks in the
grammar. In traditional compiler construction the crosslinks are not established during
parsing but in a later linking phase. This is the same in Xtext, but we allow to specify
crosslink information in the grammar. This information is used by the linker. The syntax
for crosslinks is:

CrossReference :
'[' type=TypeRef (

'|'" “terminal=CrossReferenceableTerminal)? ']’

For example, the transition is made up of two cross-references, pointing to an event
and a state:

Transition :
event=[Event] '=>' state=[State]

It is important to understand that the text between the square brackets does not
refer to another rule, but to an EClass - which is a type and not a parser rule! This
is sometimes confusing, because one usually uses the same name for the rules and the
returned types. That is if we had named the type for events differently like in the
following the cross-reference needs to be adapted as well:

48

Transition :
event=[MyEvent] '=>" state=[State]

Event returns MyEvent : ...;

Looking at the syntax definition for cross-references, there is an optional part starting
with a vertical bar (pipe) followed by CrossReferenceableTerminal. This is the part
describing the concrete text, from which the crosslink later should be established. If the
terminal is omitted, it is expected to be the rule with the name ID - if one can be found.
The terminal is mandatory for languages that do not define a rule with the name ID.

Have a look at the linking section (§8.5) in order to understand how linking is done.

Unordered Groups The elements of an unordered group can occur in any order but
each element must appear once. Unordered groups are separated by &. The following
rule Modifier allows to parse simplified modifiers of the Java language:

Modifier:
static?='static'? & final?="final’? & visibility=Visibility;

enum Visibility:
PUBLIC="public’ | PRIVATE="private' | PROTECTED="protected’;

Therefore, the following sequences of tokens are valid:

public static final
static protected
final private static
public

However, since no unordered groups are used in the rule Modifier, the parser refuses to
accept this input lines:

static final static // ERROR: static appears twice
public static final private // ERROR: visibility appears twice
final // ERROR: visibility is missing

Note that if you want an element of an unordered group to appear once or not at
all, you have to choose a cardinality of ?. In the example, the visibility is mandatory,
while static or final are optional. Elements with a cardinality of * or + have to appear
continuously without interruption, i.e.

Rule:
values+=INTx* & name=ID;

will parse these lines

08 15x
x 08 15

49

but not does not consume the following sequence without raising an error

0 x 8 15 // wrong, as values may be interrupted by a name (ID)

Simple Actions The object to be returned by a parser rule is usually created lazily on
the first assignment. Its type is determined from the specified return type of the rule
which may have been inferred from the rule’s name if no explicit return type is specified.

With Actions however, the creation of returned EObject can be made explicit. Xtext
supports two kinds of Actions:

1. Simple Actions, and

2. Assigned Actions.

If you want to enforce the creation of an instance with specific type you can use simple
actions. In the following example TypeB must be a subtype of TypeA. An expression A
ident should create an instance of TypeA, whereas B ident should instantiate TypeB.

If you don’t use actions, you’ll have to define an alternative and delegate rules to guide
the parser to the right types for the to-be-instantiated objects:

MyRule returns TypeA :
"A" name=ID |
MyOtherRule

MyOtherRule returns TypeB :
"B" name = ID

Actions however allow to make this explicit. Thereby they can improve the readability
of grammars.

MyRule returns TypeA :
"A” name=ID |
"B" {TypeB} name=ID

Generally speaking, the instance is created as soon as the parser hits the first as-
signment. However, actions allow to explicitly instantiate any EObject. The notation
{TypeB} will create an instance of TypeB and assign it to the result of the parser rule.
This allows to define parser rules without any assignment and to create objects without
the need to introduce unnecessary delegate rules.

Note: If a parser rule does not instantiate any object because it does not contain an
Action and no mandatory Assignment, you’ll likely end up with unexpected situations
for valid input files. Xtext detects this situation and will raise a warning for the parser
rules in question.

50

Unassigned Rule Calls We previously explained, that the EObject to be returned is
created lazily when the first assignment occurs or as soon as a simple action is evaluated.
There is another to find the EObject to be returned. The concept is called Unassigned
Rule Call.

Unassigned rule calls (the name suggests it) are rule calls to other parser rules, which
are not used within an assignment. The return value of the called rule becomes the
return value of the calling parser rule if it is not assigned to a feature.

With unassigned rule calls one can, for instance, create rules which just dispatch to
other rules:

AbstractToken :
TokenA |
TokenB |
TokenC

As AbstractToken could possibly return an instance of TokenA, TokenB or TokenC' its
type must be a super type for all these types. Since the return value of the called rule
becomes the result of the current rule, it is possible to further change the state of the
AST element by assigning additional features.

Example:

AbstractToken :
(TokenA |
TokenB |
TokenC) (cardinality=("?"'+'|'«"))?

This way the cardinality is optional (last question mark) and can be represented by a
question mark, a plus, or an asterisk. It will be assigned to either an instance of type
TokenA, TokenB, or TokenC which are all subtypes of AbstractToken. The rule in this
example will never create an instance of AbstractToken directly but always return the
instance that has been created by the invoked TokenX rule.

Assigned Actions Xtext leverages the powerful ANTLR parser which implements an LL
(x) algorithm. Even though LL parsers have many advantages with respect to readability,
debuggability and error recovery, there are also some drawbacks. The most important
one is that it does not allow left recursive grammars. For instance, the following rule is
not allowed in LL-based grammars, because Expression '+ Expression is left recursive:

Expression :
Expression '+’ Expression |
'(" Expression ')’ |
INT

Instead one has to rewrite such things by "left-factoring” it:

o1

Expression :
TerminalExpression ('+' TerminalExpression)?

TerminalExpression :
'(" Expression ')’ |
INT

In practice this is always the same pattern and therefore not too difficult. However, by
simply applying the Xtext AST construction features we’ve covered so far, a grammar

Expression :
{Operation} left=TerminalExpression (op="+" right=TerminalExpression)?

TerminalExpression returns Expression:
'(" Expression)" |
{IntLiteral} value=INT

. would result in unwanted elements in the AST. For instance the expression (42)
would result in a tree like this:

Operation {
left=Operation {
left=IntLiteral {
value=42

}
}
}

Typically one would only want to have one instance of IntLiteral instead.
This problem can be solved by using a combination of unassigned rule calls and as-
signed actions:

Expression :
TerminalExpression ({Operation.left=current}
op="+" right=Expression)?

TerminalExpression returns Expression:
'(" Expression)" |
{IntLiteral} value=INT

In the example above {Operation.left=current} is a so called tree rewrite action, which
creates a new instance of the stated EClass Operation and assigns the element currently
to-be-returned (the current variable) to a feature of the newly created object. The

92

example uses the feature left of the Operation instance to store the previously returned
Ezpression. In Java these semantics could be expressed as:

Operation temp = new Operation();
temp.setlLeft(current);
current = temp;

6.2.5. Hidden Terminal Symbols

Because parser rules describe not a single token, but a sequence of patterns in the
input, it is necessary to define the interesting parts of the input. Xtext introduces the
concept of hidden tokens to handle semantically unimportant things like white spaces,
comments, etc. in the input sequence gracefully. It is possible to define a set of terminal
symbols, that are hidden from the parser rules and automatically skipped when they are
recognized. Nevertheless, they are transparently woven into the node model, but not
relevant for the semantic model.

Hidden terminals may optionally appear between any other terminals in any cardinal-
ity. They can be described per rule or for the whole grammar. When reusing a single
grammar (§6.4) its definition of hidden tokens is reused, too. The grammar org.eclipse.
xtext.common.Terminals comes with a reasonable default and hides all comments and white
space from the parser rules.

If a rule defines hidden symbols, you can think of a kind of scope that is automatically
introduced. Any rule that is called transitively by the declaring rule uses the same
hidden terminals as the calling rule, unless it defines hidden tokens itself.

Person hidden(WS, ML_COMMENT, SL_.COMMENT):
name=Fullname age=INT "}’

Fullname:
(firstname=ID)? lastname=ID

The sample rule Person defines multiline comments (ML_.COMMENT), single-line com-
ments (SL_.COMMENT), and white space (WS) to be allowed between the name and the
age. Because the rule Fullname does not introduce an own set of hidden terminals, it
allows the same symbols to appear between firstname and lastname as the calling rule
Person. Thus, the following input is perfectly valid for the given grammar snippet:

John /% comment %/ Smith // line comment
/* comment */
42 ; // line comment

A list of all default terminals like WS can be found in section Grammar Mixins (§6.4).
6.2.6. Data Type Rules

Data type rules are parsing-phase rules, which create instances of EDataType instead of
EClass. Thinking about it, one may discover that they are quite similar to terminal rules.

93

However, the nice thing about data type rules is that they are actually parser rules and
are therefore

1. context sensitive and

2. allow for use of hidden tokens.

Assuming you want to define a rule to consume Java-like qualified names (e.g. "foo.bar.Baz”)
you could write:

QualifiedName :
ID (. ID)x

In contrast to a terminal rule this is only valid in certain contexts, i.e. it won’t conflict
with the rule ID. If you had defined it as a terminal rule, it would possibly hide the simple
ID rule.

In addition when the QualifiedName been defined as a data type rule, it is allowed
to use hidden tokens (e.g. /+comment */ between the segment IDs and dots (e.g. foo/x
comment x/. bar . Baz).

Return types can be specified in the same way as for terminal rules:

QualifiedName returns ecore::EString :
ID (. ID)x

Note that rules that do not call other parser rules and do neither contain any actions
nor assignments (§6.2.4), are considered to be data type rules and the data type String
is implied if none has been explicitly declared.

Value converters (§8.7) are used to transform the parsed string to the actually returned
data type value.

6.2.7. Enum Rules

Enum rules return enumeration literals from strings. They can be seen as a shortcut
for data type rules with specific value converters. The main advantage of enum rules is
their simplicity, type safety and therefore nice validation. Furthermore it is possible to
infer enums and their respective literals during the Ecore model transformation.

If you want to define a ChangeKind from org.eclipse.emf.ecore.change /model/Change.ecore
with ADD, MOVE and REMOVE you could write:

enum ChangeKind :
ADD | MOVE | REMOVE

It is even possible to use alternative literals for your enums or reference an enum value
twice:

54

http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/change/package-summary.html

enum ChangeKind :
ADD = 'add’ | ADD ="+ |
MOVE = 'move’ | MOVE = '—>" |
REMOVE = 'remove’ | REMOVE = '’

Please note, that Ecore does not support unset values for enums. If you define a
grammar like

Element: "element"name=ID (value=SomeEnum)?;

with the input of

element Foo

the resulting value of the element Foo will hold the enum value with the internal
representation of 0 (zero). When generating the EPackage from your grammar this will
be the first literal you define. As a workaround you could introduce a dedicated none-
value or order the enums accordingly. Note that it is not possible to define an enum
literal with an empty textual representation.

enum Visibility:
package | private | protected | public

You can overcome this by modifying the infered Ecore model through a model to model
transformation (§6.3.5). However, instead of post processing, an explicitly imported
metamodel is recommend.

6.2.8. Syntactic Predicates

It’s sometimes not easily possible to define an LL(x) grammar for a given language that
parses all possible valid input files and still produces abstract syntax graphs that mimic
the actual structure of the files. There are even cases that cannot be described with an
unambiguous grammar. There are solutions that allow to deal with this problem:

e Enable Backtracking: Xtext allows to enable backtracking for the ANTLR parser
generator. This is usually not recommended since it influences error message strate-
gies at runtime and shadows actually existing problems in the grammar.

e Syntactic Predicates: The grammar language enables users to guide the parser in
case of ambiguities. This mechanism is achieved by syntactic predicates. Since
they affect only a very small part of the grammar, syntactic predicates are the
recommended approach to handle ANTLR error messages during the parser gen-
eration.

The classical example for ambiguous language parts is the Dangling Else Problem. A
conditional in a programming language usually looks like this:
if (isTrue())
doStuff();

else
dontDoStuff();

95

The problems becomes more obvious as soon as nested conditions are used:

if (isTrue())
if (isTrueAsWell())
doStuff();
else
dontDoStuff();

Where does the else branch belong to? This question can be answered by a quick
look into the language specification which tells that the else branch is part of the inner
condition. However, the parser generator cannot be convinced that easy. We have to
guide it to this decision point by means of syntactic predicates which are expressed by
a leading => operator.

Condition:
'if" condition=Expression
"then’ then=Expression
(=>"'else’ else=Expression)?

The parser understands the predicate basically like this: If you are at this particular
decision point and you don’t know what to do, look for the else keyword and if it’s
present. Don’t try to choose the other option that would start with an else keyword,
too.

Well chosen predicates allow to solve most ambiguities and backtracking can often be
disabled.

6.3. Ecore Model Inference

The Ecore model (or meta model) of a textual language describes the structure of its
abstract syntax trees (AST).

Xtext uses Ecore’s EPackage to define Ecore models. Ecore models are declared to
be either inferred (generated) from the grammar or imported. By using the generate
directive, one tells Xtext to derive an EPackage from the grammar.

6.3.1. Type and Package Generation

Xtext creates

e an EPackage

— for each generate-package declaration. After the directive generate a list
of parameters follows. The mame of the EPackage will be set to the first
parameter, its nsURI to the second parameter. An optional alias as the
third parameter allows to distinguish generated EPackage later. Only one
generated package declaration per alias is allowed.

o6

an EClass

— for each return type of a parser rule. If a parser rule does not define a return
type, an implicit one with the same name as the rule itself is assumed. You
can specify more than one rule that return the same type but only one EClass
will be generated.

— for each type defined in an action or a cross-reference.

an EEnum

— for each return type of an enum rule.

an EDataType

— for each return type of a terminal rule or a data type rule.

All EClass, EEnum, and EDataType are added to the EPackage referred to by the alias
provided in the type reference they were created from.

6.3.2. Feature and Type Hierarchy Generation

While walking through the grammar, the algorithm keeps track of a set of the currently
possible return types to add features to.

Entering a parser rule the set contains only the return type of the rule.

Entering an element of an alternative the set is reset to the same state it was in
when entering the first option of the alternative.

Leaving an alternative the set contains the union of all types at the end of each of
its paths.

After an optional element, the set is reset to the same state it was before entering
it.

After a mandatory (non-optional) rule call or mandatory action the set contains
only the return type of the called rule or action.

An optional rule call does not modify the set.

A rule call is optional, if its cardinality is ? or x.

While iterating the parser rules Xtext creates

an EAttribute in each current return type

— of type Boolean for each feature assignment using the ?= operator. No further
EReference or EAttribute will be generated from this assignment.

— for each assignment with the = or += operator calling a terminal rule. Its
type will be the return type of the called rule.

o7

e an EReference in each current return type

— for each assignment with the = or += operator in a parser rule calling a
parser rule. The EReference type will be the return type of the called parser
rule.

— for each assigned action. The reference’s type will be set to the return type
of the current calling rule.

Each EAttribute or EReference takes its name from the assignment or action that caused
it. Multiplicities will be 0..1 for assignments with the = operator and 0..x for assignments
with the += operator.

Furthermore, each type that is added to the currently possible return types automat-
ically extends the current return type of the parser rule. You can specify additional
common super types by means of "artificial” parser rules, that are never called, e.g.

CommonSuperType:
SubTypeA | SubTypeB | SubTypeC;

6.3.3. Enum Literal Generation

For each alternative defined in an enum rule, the transformer creates an enum literal, as
long as no other literal with the same name can be found. The literal property of the
generated enum literal is set to the right hand side of the declaration. If it is omitted,
an enum literal with equal name and literal attributes is inferred.

enum MyGeneratedEnum:
NAME = 'literal' | EQUAL_NAME_AND_LITERAL;

6.3.4. Feature Normalization

In the next step the generator examines all generated EClass and lifts up similar features
to super types if there is more than one subtype and the feature is defined in every
subtypes. This does even work for multiple super types.

6.3.5. Customized Post Processing

As a last step, the generator invokes the post processor for every generated Ecore model.
The post processor expects an Xtendl file with name MyDslPostProcessor.ext (if the
name of the grammar file is MyDsl.ztext) in the same folder as the grammar file. Further,
for a successful invocation, the Xtend file must declare an extension with signature process
(xtext::GeneratedMetamodel). E.g.

process(xtext::GeneratedMetamodel this) :
process(ePackage)

process(ecore::EPackage this) :
... do something

o8

The invoked extension can then augment the generated Ecore model in place. Some
typical use cases are to:

e set default values for attributes,
e add container references as opposites of existing containment references, or
e add operations with implementation using a body annotation.

Great care must be taken to not modify the Ecore model in a way preventing the
Xtext parser from working correctly (e.g. removing or renaming model elements).

Note: If you face the situation where you think that post processing may help, you
should strongly consider to use imported packages instead of generated packages.

6.3.6. Error Conditions

The following conditions cause an error
e An EAttribute or EReference has two different types or different cardinality.

e There is an EAttribute and an EReference with the same name in the same EClass.

There is a cycle in the type hierarchy.

An new EAttribute, EReference or super type is added to an imported type.
e An EClass is added to an imported EPackage.

An undeclared alias is used.

e An imported Ecore model cannot be loaded.

6.4. Grammar Mixins

Xtext supports the reuse of existing grammars. Grammars that are created via the Xtext
wizard use org.eclipse.xtext.common.Terminals by default which introduces a common set of
terminal rules and defines reasonable defaults for hidden terminals.

grammar org.xtext.example.SecretCompartments
with org.eclipse.xtext.common.Terminals

generate secrets "http://www.eclipse.org/secretcompartment”
Statemachine: ..

Mixing another grammar into a language makes the rules defined in that grammar
referable. It is also possible to overwrite rules from the used grammar.
Example :

99

grammar my.SuperGrammar

RuleA : "a" stuff=RuleB:;
RuleB : "{" name=ID "}";

grammar my.SubGrammar with my.SuperGrammar
Model : (ruleAs+=RuleA)x;

// overrides my.SuperGrammar.RuleB
RuleB : '[' name=ID ']’;

Note that declared terminal rules always get a higher priority then imported terminal
rules.

6.5. Common Terminals

Xtext ships with a default set of predefined, reasonable and often required terminal rules.
The grammar for these common terminal rules is defined as follows:

grammar org.eclipse.xtext.common.Terminals

hidden(WS, ML_COMMENT, SL_.COMMENT)
import "http://www.eclipse.org/emf/2002/Ecore” as ecore
terminal ID :

Al ALZ) (A A2 0.9)%
terminal INT returns ecore::Elnt:

('0".."9")+;
terminal STRING :
WY OWTT) e
""" CAWCBTE PPl PP T IOWT™) e

terminal ML_LCOMMENT :
E—> k)

terminal SL_.COMMENT :
7 1O\ (V7 ')

terminal WS :
C T+

terminal ANY_OTHER:

60

7. Configuration

7.1. The Language Generator

Xtext provides a lot of generic implementations for your language’s infrastructure but
also uses code generation to generate some of the components. Those generated compo-
nents are for instance the parser, the serializer, the inferred Ecore model (if any) and a
couple of convenient base classes for content assist, etc.

The generator also contributes to shared project resources such as the plugin.zml,
MANIFEST.MF and the Guice modules (§7.2.1).

Xtext’s generator uses a special DSL called MWE2 - the modeling workflow en-
gine (§11) to configure the generator.

7.1.1. A Short Introduction to MWE2

MWE2 allows to compose object graphs declaratively in a very compact manner. The

nice thing about it is that it just instantiates Java classes and the configuration is done

through public setter and adder methods as one is used to from Java Beans encapsulation

principles. An in-depth documentation can be found in the chapter MWE2 (§11).
Given the following simple Java class (POJO):

package com.mycompany;
public class Person {
private String name;

public void setName(String name) {
this.name = name;

}

private final List<Person> children = new ArrayList<Person>();

public void addChild(Person child) {
this.children.add(child);

}
}

One can create a family tree with MWE2 easily by describing it in a declarative manner
without writing a single line of Java code and without the need to compile classes:

module com.mycompany.CreatePersons

61

Person {
name = "Grandpa”
child = {
name = "Father”
child = {
name = "Son”
}

}

These couple of lines will, when interpreted by MWE2, result in an object tree con-
sisting of three instances of com.mycompany.Person. The interpreter will basically do
the same as the following main method:

package com.mycompany;

public class CreatePersons {
public static void main(String[] args) {

Person grandpa = new Person();
grandpa.setName("Grandpa");
Person father = new Person();
father.setName("Father");
grandpa.addChild(father);
Person son = new Person();
son.setName("Son");
father.addChild(son);

<child> <child

Grandpa Father Son

And this is how it works: The root element is a plain Java class name. As the
module is a sibling to the class com.mycompany.Person it is not necessary to use use
fully qualified name. There are other packages implicitly imported into this workflow as
well to make it convenient to instantiate actual workflows and components, but these
ones are covered in depth in the appropriate chapter (§11). The constructed objects
are furthermore configured according to the declaration in the module, e.g. a second
instance of Person will be created and added to the list of children of "Grandpa” while
the third person - the class is inferred from the assigned feature - becomes a child of
"Father”. All three instances will have their respective name assigned via a reflective

62

invocation of the setName method. If one wants to add another child to "Father”, she
can simply repeat the child assignment:

child = com.mycompany.Person {
name = "Father”
child = {
name = "Son"

}
child = {

name = "Daughter”
¥

}

As you can see in the example above MWE2 can be used to instantiate arbitrary Java
object models without any dependency or limitation to MWE2 specific implementations.

Tip Whenever you are in an *.mwe?2 file and wonder what kind of configuration the
underlying component may accept: Just use the Content Assist in the MWE2 Editor or
navigate directly to the declaration of the underlying Java implementation by means of
F3 (Go To Declaration).

This is the basic idea of the MWE2 language. There are of course a couple of additional
concepts and features in the language and we also have not yet talked about the runtime
workflow model. Please refer to the dedicated MWE2 reference documentation (§11)
for additional information. We will now have a look at the component model used to
configure the Language Generator.

7.1.2. General Architecture

A language generator is composed of so called language configurations. For each language
configuration a URI pointing to its grammar file and the file extensions for the DSL must
be provided. In addition, a language is configured with a list of IGeneratorFragment. The
whole generator is composed of theses fragments. We have fragments for generating
parsers, the serializer, the EMF code, the outline view, etc.

Generator Fragments

The list of grammar fragments forms a chain of responsibility, that is they each get the
chance to contribute to the generation of language infrastructure components and are
called in the declared order. Each fragment gets the grammar of the language as an
EMF model passed in and is able to generate code in one of the configured locations
and contribute to several shared artifacts. A generator fragment must implement the
interface |GeneratorFragment.

There is usually no need to write your own generator fragments and only rarely you
might want to extend an existing one.

63

Generator

runtime. project="my. project”
ui.project="my.project.ui”
srefolder="src/™

Language Language
uri="my/path/Grammar.xtext” uri="my/OtherLang. xtext”
fileExtensions="myDsl" fileExtensions="myLang"

EcoreGeneratorFragment
genmodels="cool.genmodel"

(ParserFragment)

(SerializerFragment)
(ParserFragment)

(ContentAssistFragment)
(SerializerFragment)

Configuration

As already explained we use MWE2 from EMFT in order to instantiate, configure and
execute this structure of components. In the following we see an exemplary language
generator configuration written in MWE2 configuration code:

module org.xtext.example.MyDsl

import org.eclipse.emf.mwe.utils.*
import org.eclipse.xtext.generator.x
import org.eclipse.xtext.ui.generator.*

var grammarURI = "classpath: /org/xtext/example/MyDsl.xtext"
var file.extensions = "mydsl”

var projectName = "org.xtext.example.myds!”

var runtimeProject = "../${projectName}"

Workflow {

bean = StandaloneSetup {
platformUri = "${runtimeProject}/..”
}

64

component = DirectoryCleaner {
directory = "${runtimeProject} /src—gen”
¥

component = DirectoryCleaner {
directory = "${runtimeProject}.ui/src—gen”
}

component = Generator {
pathRtProject = runtimeProject
pathUiProject = "${runtimeProject}.ui”
projectNameRt = projectName
projectNameUi = "${projectName}.ui"

language = {
uri = grammarURI
fileExtensions = file.extensions

// Java API to access grammar elements
fragment = grammarAccess.GrammarAccessFragment {}

/* more fragments to configure the language */

}

Here the root element is Workflow and is part of the very slim runtime model shipped
with MWE2. It accepts beans and components. A var declaration is a first class concept
of MWE2’s configuration language and defines a variable which can be reset from out-
side, i.e. when calling the module. It allows to externalize some common configuration
parameters. Note that you can refer to the variables using the ${variable—name} notation.

The method Workflow does nothing but provides a means to apply global side-effects,
which unfortunately is required sometimes. In this example we do a so called EMF
stand-alone setup. This class initializes a bunch of things for a non-OSGi environment
that are otherwise configured by means of extension points, e.g. it allows to populate
EMF’s singletons like the EPackage.Registry.

Following the bean assignment there are three component elements. The Workflow
method accepts instances of IWorkflowComponent, which is the primary concept of MWE2’s

workflow model. The language generator component itself is an instance of IWorkflowComponent

and can therefore be used within MWE2 workflows.
7.1.3. Standard Generator Fragments

In the following table the most important standard generator fragments are listed. Please
refer to the Javadocs for more detailed documentation. Also have a look at what the
Xtext wizard provides and how the workflow configuration in the various example lan-
guages look like.

65

Class

EcoreGeneratorFragment
XtextAntlrGeneratorFragment

GrammarAccessFragment
ResourceFactoryFragment
ParseTreeConstructorFragment
ImportNamespacesScopingFragme

JavaValidatorFragment
FormatterFragment
LabelProviderFragment
OutlineTreeProviderFragment
JavaBasedContentAssistFragment

XtextAntlrUiGeneratorFragment

Generated Artifacts

EMF code for generated
models

ANTLR grammar, parser,
lexer and related services
Access to the grammar

EMF resource factory
Model-to-text serialization
tIndex-based scoping

Model validation

Code formatter

Label provider

Outline view configuration
Java-based content assist

Content assist helper based
on ANTLR

Related Documentation
Model inference (§6.3)

Xtext Resource (§13.3)
Serialization (§8.8)
Index-based namespace scop-
ing (§8.6.1)

Model validation (§8.4.2)
Code formatter (§8.9)

Label provider (§9.1)
Outline (§9.5)

Content assist (§9.2)

Content assist (§9.2)

7.2. Dependency Injection in Xtext with Google Guice

All Xtext components are assembled by means of Dependency Injection (DI). This means
basically that whenever some code is in need for functionality (or state) from another
component, one just declares the dependency rather then stating how to resolve it, i.e.

obtaining that component.

For instance when some code wants to use a scope provider, it just declares a field (or
method or constructor) and adds the Inject annotation:

public class MyLanguageLinker extends Linker {

QlInject

private IScopeProvider scopeProvider;

}

It is not the duty of the client code to care about where the IScopeProvider comes from
or how it is created. When above’s class is instantiated, Guice sees that it requires an
instance of IScopeProvider and assigns it to the specified field or method parameter.
This of course only works, if the object itself is created by Guice. In Xtext almost every
instance is created that way and therefore the whole dependency net is controlled and
configured by the means of Google Guice.

Guice of course needs to know how to instantiate real objects for declared depen-

dencies.

This is done in so called Module. A Module defines a set of mappings from

types to either existing instances, instance providers or concrete classes. Modules are
implemented in Java. Here’s an example:

66

public class MyDsIRuntimeModule
extends AbstractMyDsIRuntimeModule {

@Override
public void configure(Binder binder) {
super.configure(binder);
binder
.bind(IScopeProvider.class)
.to(MyConcreteScopeProvider.class);

}

With plain Guice modules one implements a method called configure and gets a Binder
passed in. That binder provides a fluent API to define the mentioned mappings. This
was just a very brief and simplified description. We highly recommend to have a look at
the website Google Guice to learn more.

7.2.1. The Module API

Xtext comes with a slightly enhanced module API. For your language you get two dif-
ferent modules: One for the runtime bundle which is used when executing your language
infrastructure outside of Eclipse such as on the build server. The other is located in
the UI bundle and adds or overrides bindings when Xtext is used within an Eclipse
environment.

The enhancement we added to Guice’s Module API is that we provide an abstract base
class, which reflectively looks for certain methods in order to find declared bindings. The
most common kind of method is :

public Class<? extends IScopeProvider> bindIScopeProvider() {
return MyConcreteScopeProvider.class;
}

which would do the same as the code snippet above. It simply declares a binding
from IScopeProvider to MyConcreteScopeProvider. That binding will make Guice instan-
tiate and inject a new instance of MyConcreteScopeProvider whenever a dependency to
IScopeProvider is declared.

Having a method per binding allows to deactivate individual bindings by overriding
the corresponding methods and either change the binding by returning a different target
type or removing that binding completely by returning null.

There are two additional kinds of binding-methods supported. The first one allows to
configure a provider. A Provider is an interface with just one method :

public interface Provider<T> {

* Provides an instance of {@code T}. Must never return {@code null}.
*/
T get();

67

http://code.google.com/p/google-guice/

}

This one can be used if you need a hook whenever an instance of a certain type is
created. For instance if you want to provide lazy access to a singleton or you need to do
some computation each time an instance is created (i.e. factory). If you want to point
to a provider rather than to a concrete class you can use the following binding method.

public Class<? extends Provider<IScopeProvider>>
providelScopeProvider() {
return MyConcreteScopeProviderFactory.class;

}

Note: Please forgive us the overuse of the term provider. The IScopeProvider is not a
Guice Provider.

That binding tells Guice to instantiate MyConcreteScopeProviderFactory and invoke
get() in order to obtain an instance of IScopeProvider for clients having declared a depen-
dency to that type. Both mentioned methods are allowed to return an instance instead
of a type. This may be useful if some global state should be shared in the application:

public Provider<IScopeProvider> providelScopeProvider() {
return new MyConcreteScopeProviderFactory();
}

or

public I1ScopeProvider bindlScopeProvider() {
return new MyConcreteScopeProvider();
}

respectively.

The last binding method provided by Xtext allows to do anything you can do with
Guice’s binding API, since it allows you to use the Binder directly. If your method’s
name starts with the name ’configure’, has a return type void and accepts one argument
of type Binder:

public void configurelScopeProvider(Binder binder) {
binder.bind(IScopeProvider.class).to(MyConcreteScopeProvider.class);
}

7.2.2. Obtaining an Injector

In every application wired up with Guice there is usually one point where you initialize
an Injector using the modules declared. That injector is used to create the root instance
of the whole application. In plain Java environments this is something that’s done in
the main method. It could look like this:

public static void main(String[] args) {
Injector injector = Guice.createlnjector(
new MyDs|RuntimeModule());
MyApplication application = injector.getlnstance(

68

MyApplication.class);
application.run();

}

In Xtext, you should never instantiate the injector of your language yourself. The
sections Runtime Setup (§8.1) and Equinox Setup (§8.2) explain how to access it in
different scenarios.

These are the basic ideas around Guice and the small extension Xtext provides on top.
For more information we strongly encourage you to read through the documentation on
the website of Google Guice.

69

http://code.google.com/p/google-guice/

8. Runtime Concepts

Xtext itself and every language infrastructure developed with Xtext is configured and
wired-up using dependency injection (§7.2). Xtext may be used in different environments
which introduce different constraints. Especially important is the difference between
OSGi managed containers and plain vanilla Java programs. To honor these differences
Xtext uses the concept of ISetup-implementations in normal mode and uses Eclipse’s
extension mechanism when it should be configured in an OSGi environment.

8.1. Runtime Setup (ISetup)

For each language there is an implementation of ISetup generated. It implements a
method called createlnjectorAndDoEMFRegistration(), which can be called to do the initial-
ization of the language infrastructure.

Caveat: The ISetup class is intended to be used for runtime and for unit testing, only.
if you use it in a Equinox scenario, you will very likely break the running application
because entries to the global registries will be overwritten.

The setup method returns an Injector, which can further be used to obtain a parser,
etc. It also registers the Resource.Factory and generated EPackage to the respective global
registries provided by EMF. So basically after having run the setup and you can start
using EMF API to load and store models of your language.

8.2. Setup within Eclipse-Equinox (OSGi)

Within Eclipse we have a generated Activator, which creates a Guice Injector using the
modules (§7.2.1). In addition an |IExecutableExtensionFactory is generated for each language,
which is used to create IExecutableExtension. This means that everything which is created
via extension points is managed by Guice as well, i.e. you can declare dependencies and
get them injected upon creation.

The only thing you have to do in order to use this factory is to prefix the class with
the factory MyDslExecutableExtensionFactory name followed by a colon.

<extension point="org.eclipse.ui.editors">
<editor

class="<MyDsl|>ExecutableExtensionFactory:
org.eclipse.xtext.ui.editor. XtextEditor"

contributorClass=
"org.eclipse.ui.editors.text. TextEditorActionContributor”

default="true"

extensions="myds|"

70

id="org.eclipse.xtext.example.MyDsl|"
name="MyDsl| Editor">
< /editor>
< /extension>

8.3. Logging

Xtext uses Apache’s log4j for logging. It is configured using files named log4j.properties,
which are looked up in the root of the Java classpath. If you want to change or pro-
vide configuration at runtime (i.e. non-OSGi), all you have to do is putting such a
log4j.properties in place and make sure that it is not overridden by other log4j.properties
in previous classpath entries.

In OSGi you provide configuration by creating a fragment for org.apache.logfj. In
this case you need to make sure that there is not any second fragment contributing a
log4j.properties file.

8.4. Validation

Static analysis or validation is one of the most interesting aspects when developing a pro-
gramming language. The users of your languages will be grateful if they get informative
feedback as they type. In Xtext there are basically three different kinds of validation.

8.4.1. Automatic Validation

Some implementation aspects (e.g. the grammar, scoping) of a language have an impact
on what is required for a document or semantic model to be valid. Xtext automatically
takes care of this.

Lexer/Parser: Syntactical Validation

The syntactical correctness of any textual input is validated automatically by the parser.
The error messages are generated by the underlying parser technology. One can use the
ISyntaxErrorMessageProvider-API to customize this messages. Any syntax errors can be
retrieved from the Resource using the common EMF API:

® Resource

e Resource

Linker: Crosslink Validation

Any broken crosslinks can be checked generically. As crosslink resolution is done lazily
(see linking (§8.5)), any broken links are resolved lazily as well. If you want to validate
whether all links are valid, you will have to navigate through the model so that all
installed EMF proxies get resolved. This is done automatically in the editor.

71

Similar to syntax errors, any unresolvable crosslinks will be reported and can be ob-
tained through:

e Resource

e Resource

Serializer: Concrete Syntax Validation

The IConcreteSyntaxValidator validates all constraints that are implied by a grammar.
Meeting these constraints for a model is mandatory to be serialized.
Example:

MyRule:
({MySubRule} "sub™)? (strVal+=ID intVal4+=INT)x;

This implies several constraints:

1. Types: only instances of MyRule and MySubRule are allowed for this rule. Sub-
types are prohibited, since the parser never instantiates unknown subtypes.

2. Features: In case the MyRule and MySubRule have EStructuralFeature besides strVal
and intVal, only strVal and intVal may have non-transient values (§8.8.6).

3. Quantities: The following condition must be true: strVal.size()== intVal.size().

4. Values: It must be possible to convert all values (§8.7) to valid tokens for terminal
rule STRING. The same is true for intVal and INT.

The typical use case for the concrete syntax validator is validation in non-Xtext-editors
that, however, use an XtextResource. This is, for example, the case when combining GMF
and Xtext. Another use case is when the semantic model is modified "manually” (not
by the parser) and then serialized again. Since it is very difficult for the serializer to
provide meaningful error messages (§8.8.3), the concrete syntax validator is executed by
default before serialization. A textual Xtext editor itself is not a valid use case. Here,
the parser ensures that all syntactical constraints are met. Therefore, there is no value
in additionally running the concrete syntax validator.

There are some limitations to the concrete syntax validator which result from the fact
that it treats the grammar as declarative, which is something the parser doesn’t always
do.

e Grammar rules containing assigned actions (e.g. {MyType.myFeature=current} are
ignored. Unassigned actions (e.g. {MyType}), however, are supported.

e Grammar rules that delegate to one or more rules containing assigned actions via
unassigned rule calls are ignored.

e Orders within list-features can not be validated. e.g. Rule: (foo+=R1 foo+=R2)x
implies that foo is expected to contain instances of R1 and R2 in an alternating
order.

72

To use concrete syntax validation you can let Guice inject an instance of IConcreteSyntaxValidator
and use it directly. Furthermore, there is an ConcreteSyntaxEValidator which allows to use
the concrete syntax validator as an EValidator. You can, for example, enable it in your
runtime module, by adding:

©SingletonBinding(eager = true)
public Class<? extends ConcreteSyntaxEValidator>
bindConcreteSyntaxEValidator() {
return ConcreteSyntaxEValidator.class;

}

To customize error messages please see IConcreteSyntaxDiagnosticProvider and subclass
ConcreteSyntaxDiagnosticProvider.

8.4.2. Custom Validation

In addition to the afore mentioned kinds of validation, which are more or less done
automatically, you can specify additional constraints specific for your Ecore model. We
leverage existing EValidator and have put some convenience stuff on top. Basically all you
need to do is to make sure that an EValidator is registered for your EPackage. The EValidator.
Registry can only be filled programmatically. That means contrary to the EPackage.Registry
and the Resource.Factory.Registry there is no Equinox extension point to populate the
validator registry.

For Xtext we provide a generator fragment (§7.1.2) for the convenient Java-based
EValidator API. Just add the following fragment to your generator configuration and you
are good to go:

fragment =
org.eclipse.xtext.generator.validation.JavaValidatorFragment {}

The generator will provide you with two Java classes. An abstract class generated
to src-gen/ which extends the library class AbstractDeclarativeValidator. This one just
registers the EPackage for which this validator introduces constraints. The other class is
a subclass of that abstract class and is generated to the src/ folder in order to be edited
by you. That is where you put the constraints in.

The purpose of the AbstractDeclarativeValidator is to allow you to write constraints in a
declarative way - as the class name already suggests. That is instead of writing exhaustive
if-else constructs or extending the generated EMF switch you just have to add the Check
annotation to any method and it will be invoked automatically when validation takes
place. Moreover you can state for what type the respective constraint method is, just
by declaring a typed parameter. This also lets you avoid any type casts. In addition to
the reflective invocation of validation methods the AbstractDeclarativeValidator provides a
couple of convenient assertions.

All in all this is very similar to how JUnit 4 works. Here is an example:

public class DomainmodelJavaValidator
extends AbstractDomainmodelJavaValidator {

73

@Check
public void checkTypeNameStartsWithCapital(Type type) {
if (!Character.isUpperCase(type.getName().charAt(0)))
warning("Name should start with a capital”,
DomainmodelPackage. TYPE_NAME);

}
}

You can also implement quick fixes for individual validation errors and warnings. See
the chapter on quick fixes (§9.3) for details.

8.4.3. Validating Manually

As noted above, Xtext uses EMFE’s EValidator API to register validators. You can run
the validators on your model programmatically using EMF’s Diagnostician, e.g.

EObject myModel = myResource.getContents().get(0);
Diagnostic diagnostic = Diagnostician.INSTANCE.validate(myModel);
switch (diagnostic.getSeverity()) {
case Diagnostic.ERROR:
System.err.printin("Model has errors: ", diagnostic);
break;
case Diagnostic. WARNING:
System.err.printIn("Model has warnings: ",diagnostic);

8.4.4. Test Validators

If you have implemented your validators by extending AbstractDeclarativeValidator, there
are helper classes which assist you when testing your validators.
Testing validators typically works as follows:

1. The test creates some models which intentionally violate some constraints.
2. The test runs some chosen Check from the validator.

3. The test asserts whether the Check have raised the expected warnings and errors.

To create models, you can either use EMF’s ResourceSet to load models from your
hard disk or you can utilize the MyDslFactory that EMF generates for each EPackage, to
construct the tested model elements manually. While the first option has the advantages
that you can edit your models in your textual concrete syntax, the second option has
the advantage that you can create partial models.

To run the Check and ensure they raise the intended errors and warnings, you can
utilize ValidatorTester as shown by the following example:

Validator:

public class MylLanguageValidator extends AbstractDeclarativeValidator {
©Check

74

public void checkFooElement(FooElement element) {
if(element.getBarAttribute().contains("foo”))
error("Only Foos allowed", element,
MyLanguagePackage. FOO_ELEMENT_BAR_ATTRIBUTE, 101);

JUnit-Test:

public class MyLanguageValidatorTest extends AbstractXtextTests {
private ValidatorTester<MylLanguageValidator> tester;

@Override

public void setUp() {
with(MyLanguageStandaloneSetup.class);
MyLanguageValidator validator = get(MyLanguageValidator.class);
tester = new Validator Tester<TestingValidator>(validator);

}

public void testError() {
FooElement model = MylLanguageFactory.eINSTANCE.createFooElement()
model.setBarAttribute("barbarbarbarfoo”);

tester.validator().checkFooElement(model);
tester.diagnose().assertError(101);

}

public void testError2() {
FooElement model = MylLanguageFactory.eINSTANCE.createFooElement()
model.setBarAttribute("barbarbarbarfoo");

tester.validate(model).assertError(101);

}
}

This example uses JUnit 3, but since the involved classes from Xtext have no depen-
dency on JUnit whatsoever, JUnit 4 and other testing frameworks will work as well.
JUnit runs the setUp()-method before each test case and thereby helps to create some
common state. In this example, the validator is instantiated by means of Google Guice.
As we inherit from the AbstractXtextTests there are a plenty of useful methods available
and the state of the global EMF singletons will be restored in the method tearDown().
Afterwards, the ValidatorTester is created and parameterized with the actual validator.
It acts as a wrapper for the validator, ensures that the validator has a valid state and
provides convenient access to the validator itself (tester.validator()) as well as to the util-
ity classes which assert diagnostics created by the validator (tester.diagnose()). Please be
aware that you have to call validator() before you can call diagnose(). However, you can
call validator() multiple times in a row.

75

While validator() allows to call the validator’s Check directly, validate(model) leaves it to

the framework to call the applicable Check. However, to avoid side-effects between tests,
it is recommended to call the Check directly.

diagnose() and validate(model) return an object of type AssertableDiagnostics which pro-

vides several assert-methods to verify whether the expected diagnostics are present:

e assertError(int code): There must be one diagnostic with severity ERROR and the

supplied error code.

assertErrorContains(String messageFragment): There must be one diagnostic with sever-
ity ERROR and its message must contain messageFragment.

assertError(int code, String messageFragment): Verifies severity, error code and mes-
sageFragment.

assertWarning(...): This method is available for the same combination of parameters
as assertError().

assertOK(): Expects that no diagnostics (errors, warnings etc.) have been raised.

assertDiagnostics(int severity, int code, String messageFragment): Verifies severity, error
code and messageFragment.

assertAll(DiagnosticPredicate... predicates): Allows to describe multiple diagnostics at
the same time and verifies that all of them are present. Class AssertableDiagnostics

contains static error() and warning() methods which help to create the needed
AssertableDiagnostics.DiagnosticPredicate. Example: assertAll(error(123), warning("some
part of the message”)).

assertAny(DiagnosticPredicate predicate): Asserts that a diagnostic exists which
matches the predicate.

8.5. Linking

The linking feature allows for specification of cross-references within an Xtext grammar.
The following things are needed for the linking;:

1. declaration of a crosslink in the grammar (at least in the Ecore model)

2. specification of linking semantics (usually provided via the scoping APT (§8.6))

8.5.1. Declaration of Crosslinks

In the grammar a cross-reference is specified using square brackets.

CrossReference :
[type=ReferencedEClass ('|" terminal=CrossReferenceTerminal)? ']’

76

Example:

ReferringType :
'ref’ referencedObject=[Entity|STRING]

The Ecore model inference (§6.3) would create an EClass Referring Type with an EReference
referencedObject of type Entity with its containment property set to false. The refer-
enced object would be identified either by a STRING and the surrounding information
in the current context (see scoping (§8.6)). If you do not use generate but import an
existing Ecore model, the class ReferringType (or one of its super types) would need to
have an EReference of type Entity (or one of its super types) declared. Also the EReference
containment and container properties needs to be set to false.

8.5.2. Default Runtime Behavior (Lazy Linking)

Xtext uses lazy linking by default and we encourage users to stick to this because it
provides many advantages. One of which is improved performance in all scenarios where
you don’t have to load the whole closure of all transitively referenced resources. Fur-
thermore it automatically solves situations where one link relies on other links. Though
cyclic linking dependencies are not supported by Xtext at all.

When parsing a given input string, say

ref Entity0l

the LazyLinker first creates an EMF proxy and assigns it to the corresponding EReference.
In EMF a proxy is described by a URI, which points to the real EObject. In the case of lazy
linking the stored URI comprises of the context information given at parse time, which
is the EObject containing the cross-reference, the actual EReference, the index (in case
it’s a multi-valued cross-reference) and the string which represented the crosslink in the
concrete syntax. The latter usually corresponds to the name of the referenced EObject.
In EMF a URI consists of information about the resource the EObject is contained in as
well as a so called fragment part, which is used to find the EObject within that resource.
When an EMF proxy is resolved, the current ResourceSet is asked. The resource set uses
the first part to obtain (i.e. load if it is not already loaded) the resource. Then the
resource is asked to return the EObject based on the fragment in the URI. The actual
cross-reference resolution is done by LazylLinkingResource which receives the fragment and
delegates to the implementation of the ILinkingService. The default implementation in
turn delegates to the scoping API (§8.6).

A DefaultLinkingService of the linking service is shipped with Xtext and used for any
grammar per default. Usually any necessary customization of the linking behavior can
best be described using the scoping APT (§8.6).

8.6. Scoping

Using the scoping API one defines which elements are referable by a certain reference. For
instance, using the introductory example (Fowler’s state machine language) a transition
contains two cross-references: One to a declared event and one to a declared state.

77

Example:

events
nothinglmportant MYEV
end

state idle
nothinglmportant => idle
end

The grammar rule for transitions looks like this:

Transition :
event=[Event] '=>" state=[State];

The grammar states that for the reference event only instances of the type Event are
allowed and that for the EReference state only instances of type State can be referenced.
However, this simple declaration doesn’t say anything about where to find the states or
events. That is the duty of scopes.

An IScopeProvider is responsible for providing an IScope for a given context EObject and
EReference. The returned IScope should contain all target candidates for the given object
and cross-reference.

public interface IScopeProvider {

/%
x Returns a scope for the given context. The scope
x provides access to the compatible visible EObjects
* for a given reference.
*
x @param context the element from which an element shall be
x referenced
x @param reference the reference to be used to filter the
* elements.
% Q@return {@link IScope} representing the inner most
* {@link IScope} for the passed context and reference.
x Note for implementors: The result may not be
* <code>null</code>. Return
* <code>IScope.NULLSCOPE< /code> instead.
*
/

IScope getScope(EObject context, EReference reference);

A single IScope represents an element of a linked list of scopes. That means that a
scope can be nested within an outer scope. Each scope works like a symbol table or a
map where the keys are strings and the values are so called |IEObjectDescription, which is
effectively an abstract description of a real EObject.

78

8.6.1. Global Scopes and Resource Descriptions

In the state machine example we don’t have references across model files. Neither is
there a concept like a namespace which would make scoping a bit more complicated.
Basically, every State and every Event declared in the same resource is visible by their
name. However, in the real world things are most likely not that simple: What if you
want to reuse certain declared states and events across different state machines and you
want to share those as library between different users? You would want to introduce
some kind of cross resource reference.

Defining what is visible from outside the current resource is the responsibility of
global scopes. As the name suggests, global scopes are provided by instances of the
IGlobalScopeProvider. The data structures used to store its elements are described in the
next section.

Resource and EObject Descriptions

In order to make states and events of one file referable from another file you need to
export them as part of a so called IResourceDescription.

A IResourceDescription contains information about the resource itself which primarily
its URI, a list of exported EObject in the form of IEObjectDescription as well as information
about outgoing cross-references and qualified names it references. The cross references
contain only resolved references, while the list of imported qualified names also con-
tain those names, which couldn’t be resolved. This information is leveraged by Xtext’s
indexing infrastructure in order to compute the transitive hull of dependent resources.

For users and especially in the context of scoping the most important information is
the list of exported EObject. An IEObjectDescription stores the URI of the actual EObject,
its QualifiedName, as well as its EClass. In addition one can export arbitrary information
using the user data map. The following diagram gives an overview on the description
classes and their relationships.

A language is configured with a default implementation of IResourceDescription.Manager

which computes the list of exported IEObjectDescription by iterating the whole EMF
model and applying the getQualifiedName(EObject obj) from IQualifiedNameProvider on each
EObject. If the object has a qualified name an IEObjectDescription is created and exported
(i.e. added to the list). If an EObject doesn’t have a qualified name, the element is
considered to be not referable from outside the resource and consequently not indexed.
If you don’t like this behavior, you can implement and bind your own implementation
of IResourceDescription.Manager.

There are also two different default implementations of IQualifiedNameProvider. Both
work by looking up an EAttribute 'name’. The SimpleNameProvider simply returns the plain
value, while the DefaultDeclarativeQualifiedNameProvider concatenates the simple name with
the qualified name of its parent exported EObject. This effectively simulates the qualified
name computation of most namespace-based languages (like e.g. Java).

As mentioned above, in order to calculate an IResourceDescription for a resource the
framework asks the IResourceDescription.Manager. To convert between a QualifiedName and

79

IResourceDescription.
Manager
getResourceDescription
(Resource):

IHesourceDescrielicn

I <<greatess>
|
IResourceDescription
uri: String
importedNames:
Iterable-::Stnng:a-
exportedEQbjects | * * | referenceDescriptions
IEObjectDescription IReferenceDescription
name: QualifiedMame sourceEObjectUri: URI
eObjectURI: URI targetECbjectUri: URI
eClass: EClass indexInList: int
userData: eReference:EReference
MaﬁString, Slrin2>

Figure 8.1.: The data model of Xtext’s index

its String representation you can use the IQualifiedNameConverter. Here is some Java code
showing how to do that:

@Inject IQualifiedNameConverter converter;

Manager manager = // obtain an instance of IResourceDescription.Manager
IResourceDescription description =

manager.getResourceDescription(resource);
for (IEObjectDescription eod : description.getExportedObjects()) {
System.out.printIn(converter.toString(eod.getQualifiedName()));

}

In order to obtain an IResourceDescription.Manager it is best to ask the correspond-
ing IResourceServiceProvider. That is because each language might have a totally differ-
ent implementation and as you might refer from your language to a different language
you cannot reuse your language’s IResourceDescription.Manager. One basically asks the
IResourceServiceProvider.Registry (there is usually one global instance) for an IResourceServiceProvider
, which in turn provides an IResourceDescription.Manager along other useful services.

If you are running in a Guice enabled scenario, the code looks like this:

@Inject
private IResourceServiceProvider.Registry rspr;

80

private |ResourceDescription.Manager getManager(Resource res) {
IResourceServiceProvider resourceServiceProvider =
rspr.getResourceServiceProvider(res.getURI());
return resourceServiceProvider.getResourceDescriptionManager();

}

If you don’t run in a Guice enabled context you will likely have to directly access the
singleton:

private |IResourceServiceProvider.Registry rspr =
IResourceServiceProvider.Registry.INSTANCE;

However, we strongly encourage you to use dependency injection. Now, that we know
how to export elements to be referable from other resources, we need to learn how those
exported IEObjectDescription can be made available to the referencing resources. That is
the responsibility of IGlobalScopeProvider which is described in the following chapter.

Global Scopes Based On Explicit Imports (ImportURI Mechanism)

A simple and straight forward solution is to have explicit references to other resources
in your file by explicitly listing pathes or URI to all referenced resources in your model
file. That is for instance what most include mechanisms use. In Xtext we provide a
handy implementation of an IGlobalScopeProvider which is based on a naming convention
and makes this semantics very easy to use. Talking of the introductory example and
given you would want to add support for referencing external States and Fwvents from
within your state machine, all you had to do is add something like the following to the
grammar definition:

Statemachine :
(imports+=Import)x // allow imports
'events'’
(events+=Event)+

'end’

('resetEvents’
(resetEvents+=[Event])+

‘end’)?

‘commands’
(commands+=Command)+

‘end’

(states+=State)+;

Import :
'import’ importURI=STRING; // feature must be named importURI

This effectively allows import statements to be declared before the events section. In
addition you will have to make sure that you have bound the ImportUriGlobalScopeProvider
for the type IGlobalScopeProvider by the means of Guice (§7.2). That implementation
looks up any EAttribute named ‘importURI’ in your model and interprets their values as
URIs that point to imported resources. That is it adds the corresponding resources to the

81

current resource’s resource set. In addition the scope provider uses the IResourceDescription
.Manager (§8.6.1) of that imported resource to compute all the IEObjectDescription returned
by the IScope.

Global scopes based on import URIs are available if you use the ImportURIScopingFragment
in the workflow of your language. It will bind an ImportUriGlobalScopeProvider that handles
importURI features.

Global Scopes Based On External Configuration (e.g. Classpath-Based)

Instead of explicitly referring to imported resources, the other possibility is to have some
kind of external configuration in order to define what is visible from outside a resource.
Java for instances uses the notion of the classpath to define containers (jars and class
folders) which contain any referenceable elements. In the case of Java also the order of
such entries is important.

Since version 1.0.0 Xtext provides support for this kind of global scoping. To enable
it, a DefaultGlobalScopeProvider has to be bound to the IGlobalScopeProvider interface.

By default Xtext leverages the classpath mechanism since it is well designed and
already understood by most of our users. The available tooling provided by JDT and
PDE to configure the classpath adds even more value. However, it is just a default: You
can reuse the infrastructure without using Java and independent from the JDT.

In order to know what is available in the "world” a global scope provider which relies
on external configuration needs to read that configuration in and be able to find all
candidates for a certain EReference. If you don’t want to force users to have a folder
and file name structure reflecting the actual qualified names of the referenceable EObject,
you’ll have to load all resources up front and either keep holding them in memory or
remembering all information which is needed for the resolution of cross-references. In
Xtext that information is provided by a so called IEObjectDescription (§8.6.1).

About the Index, Containers and Their Manager Xtext ships with an index which re-
members all IResourceDescription and their IEObjectDescription objects. In the IDE-context
(i.e. when running the editor, etc.) the index is updated by an incremental project
builder. As opposed to that, in a non-UI context you typically do not have to deal with
changes such that the infrastructure can be much simpler. In both situations the global
index state is held by an implementation of IResourceDescriptions (Note the plural form!).
The bound singleton in the Ul scenario is even aware of unsaved editor changes, such
that all linking happens to the latest maybe unsaved version of the resources. You will
find the Guice configuration of the global index in the Ul scenario in SharedModule.

The index is basically a flat list of instances of IResourceDescription. The index itself
doesn’t know about visibility constraints due to classpath restriction. Rather than that,
they are defined by the referencing language by means of so called IContainer: While
Java might load a resource via ClassLoader (i.e. using the classpath mechanism), another
language could load the same resource using the file system paths.

Consequently, the information which container a resource belongs to depends on the
referencing context. Therefore an IResourceServiceProvider provides another interesting

82

service, which is called IContainer.Manager. For a given IResourceDescription, the IContainer
.Manager provides you with the IContainer as well as with a list of all IContainer which
are visible from there. Note that the IResourceDescriptions is globally shared between
all languages while the IContainer.Manager which adds the semantics of containers, can
be very different depending on the language. The following method lists all resources
visible from a given Resource:

@Inject
IContainer.Manager manager;

public void listVisibleResources(
Resource myResource, IResourceDescriptions index) {
IResourceDescription descr =
index.getResourceDescription(myResource.getURI());
for(IContainer visibleContainer:
manager.getVisibleContainers(descr, index)) {
for(IResourceDescription visibleResourceDesc:
visibleContainer.getResourceDescriptions()) {
System.out.printIn(visibleResourceDesc.getURI());

}
}
}

Xtext ships two implementations of 1Container.Manager which are as usual bound with
Guice: The default binding is to SimpleResourceDescriptionsBasedContainerManager, which
assumes all IResourceDescription to be in a single common container. If you don’t care
about container support, you’ll be fine with this one. Alternatively, you can bind
StateBasedContainerManager and an additional IAllContainersState which keeps track of the
set of available containers and their visibility relationships.

Xtext offers a couple of strategies for managing containers: If you’re running an
Eclipse workbench, you can define containers based on Java projects and their class-
paths or based on plain Eclipse projects. Outside Eclipse, you can provide a set of file
system paths to be scanned for models. All of these only differ in the bound instance
of lAllContainersState of the referring language. These will be described in detail in the
following sections.

JDT-Based Container Manager As JDT is an Eclipse feature, this JDT-based con-
tainer management is only available in the Ul scenario. It assumes so called IPackageFragmentRoot

as containers. An IPackageFragmentRoot in JDT is the root of a tree of Java model
elements. It usually refers to

e a source folder of a Java project,
e a referenced jar,
e a classpath entry of a referenced Java project, or

e the exported packages of a required PDE plug-in.

83

IContainer.Manager
IContainer getContainer
(IResourceDescription,
IResourceDescriptions):
o IContainer
resourceDescriptions getVisibleContainers
(IResourceDescription,
IResourceDescription IHescurceDesc_rlptlons):
Iterable<|Container>
I
[TTmmTs—s———-— bommmmm - i
| |
| |
| |
| 1
Simple
c on?;?:\i?:'lsaiz er ResourceDescriptionBased
g ContainerManager
|
I
| @Inject
¥
IAliContainersState
i
T T T T JTT T T T T T T T FTTTT T oo ossoommos [
| | 1 |
I : .' :
Strict
JavaProjects JavaProjects WorkspaceProjects ResourceSetBased
State State State AllContainersState

Figure 8.2.: IContainer Management

So for an element to be referable, its resource must be on the classpath of the caller’s
Java project and it must be exported (as described above).

As this strategy allows to reuse a lot of nice Java things like jars, OSGi, maven, etc.
it is part of the default: You should not have to reconfigure anything to make it work.
Nevertheless, if you messed something up, make sure you bind

public Class<? extends IContainer.Manager> bindlContainer$Manager() {
return StateBasedContainerManager.class;

}

in the runtime module and

public Provider<lAllContainersState> providel AllContainersState() {
return org.eclipse.xtext.ui.shared.Access.getJavaProjectsState();

84

}

in the UI module of the referencing language. The latter looks a bit more difficult
than a common binding, as we have to bind a global singleton to a Guice provider.
A StrictJavaProjectsState requires all elements to be on the classpath, while the default
JavaProjectsState also allows models in non-source folders.

Eclipse Project-Based Containers If the classpath-based mechanism doesn’t work for
your case, Xtext offers an alternative container manager based on plain Eclipse projects:
Each project acts as a container and the project references Properties-> Project Refer-
ences are the visible containers.

In this case, your runtime module should define

public Class<? extends |Container.Manager> bindlContainer$Manager() {
return StateBasedContainerManager.class;

}
and the Ul module should bind

public Provider<|AllContainersState> providelAllContainersState() {
return org.eclipse.xtext.ui.shared.Access.getWorkspaceProjectsState();

}

ResourceSet-Based Containers If you need an IContainer.Manager that is independent
of Eclipse projects, you can use the ResourceSetBasedAllContainersState. This one can be
configured with a mapping of container handles to resource URIs.

It is unlikely you want to use this strategy directly in your own code, but it is used in
the back-end of the MWE2 workflow component Reader. This is responsible for reading
in models in a workflow, e.g. for later code generation. The Reader allows to either scan
the whole classpath or a set of paths for all models therein. When paths are given, each
path entry becomes an IContainer of its own. In the following snippet,

component = org.eclipse.xtext.mwe.Reader {
// lookup all resources on the classpath
// useJavaClassPath = true

// or define search scope explicitly

path = "src/models”
path = "src/further—models”

85

8.6.2. Local Scoping

We now know how the outer world of referenceable elements can be defined in Xtext.
Nevertheless, not everything is available in any context and with a global name. Rather
than that, each context can usually have a different scope. As already stated, scopes can
be nested, i.e. a scope can in addition to its own elements contain elements of a parent
scope. When parent and child scope contain different elements with the same name, the
parent scope’s element will usually be shadowed by the element from the child scope.

To illustrate that, let’s have a look at Java: Java defines multiple kinds of scopes
(object scope, type scope, etc.). For Java one would create the scope hierarchy as
commented in the following example:

// file contents scope
import static my.Constants.STATIC;

public class ScopeExample { // class body scope
private Object field = STATIC;

private void method(String param) { // method body scope
String localVar = "bar”;
innerBlock: { // block scope
String innerScopeVar = "foo’;
Object field = innerScopeVar;
// the scope hierarchy at this point would look like this:
// blockScope{field,innerScopeVar}—>
// methodScope{localVar, param}—>
// classScope{field} —> ('field" is shadowed)
// fileScope{STATIC}—>
// classpathScope{
// 'all qualified names of accessible static fields'} —>
// NULLSCOPE{}

//

field.add(localVar);

}
}

In fact the classpath scope should also reflect the order of classpath entries. For
instance:

classpathScope{stuff from bin/}

—> classpathScope{stuff from foo.jar/}

=2 oo

—> classpathScope{stuff from JRE System Library}
—> NULLSCOPE{}

Please find the motivation behind this and some additional details in this blog post .

86

http://blog.efftinge.de/2009/01/xtext-scopes-and-emf-index.html

Declarative Scoping

If you have to define scopes for certain contexts, the base class AbstractDeclarativeScopeProvider
allows to do that in a declarative way. It looks up methods which have either of the
following two signatures:

IScope scope_<RefDeclaringEClass>_<Reference>(
<ContextType> ctx, EReference ref)

IScope scope_<TypeToReturn>(<ContextType> ctx, EReference ref)

The former is used when evaluating the scope for a specific cross-reference and here
ContextReference corresponds to the name of this reference (prefixed with the name
of the reference’s declaring type and separated by an underscore). The ref parameter
represents this cross-reference.

The latter method signature is used when computing the scope for a given element
type and is applicable to all cross-references of that type. Here TypeToReturn is the
name of that type.

So if you for example have a state machine with a Transition object owned by its
source State and you want to compute all reachable states (i.e. potential target states),
the corresponding method could be declared as follows (assuming the cross-reference is
declared by the Transition type and is called target):

IScope scope_Transition_target(Transition this, EReference ref)

If such a method does not exist, the implementation will try to find one for the context
object’s container. Thus in the example this would match a method with the same name
but State as the type of the first parameter. It will keep on walking the containment
hierarchy until a matching method is found. This container delegation allows to reuse
the same scope definition for elements in different places of the containment hierarchy.
Also it may make the method easier to implement as the elements comprising the scope
are quite often owned or referenced by a container of the context object. In the example
the State objects could for instance be owned by a containing StateMachine object.

If no method specific to the cross-reference in question was found for any of the
objects in the containment hierarchy, the implementation will start looking for methods
matching the other signature. Again it will first attempt to match the context object.
Thus in the example the signature first matched would be:

IScope scope_State(Transition this, EReference ref)

If no such method exists, the implementation will again try to find a method matching
the context object’s container objects. In the case of the state machine example you
might want to declare the scope with available states at the state machine level:

IScope scope_State(StateMachine this, EReference ref)

This scope can now be used for any cross-references of type State for context objects
owned by the state machine.

8.6.3. Imported Namespace-Aware Scoping

The imported namespace aware scoping is based on qualified names and namespaces. It
adds namespace support to your language, which is comparable and similar to the one

87

in Scala and C#. Scala and C# both allow to have multiple nested packages within one
file and you can put imports per namespace, so that imported names are only visible
within that namespace. See the domain model example: its scope provider extends
ImportedNamespaceAwarelLocalScopeProvider.

IQualifiedNameProvider

The ImportedNamespaceAwarelLocalScopeProvider makes use of the so called IQualifiedNameProvider
service. It computes QualifiedName for EObject. A qualified name consists of several

segments

The DefaultDeclarativeQualifiedNameProvider uses a simple name look up composes the
qualified name of the simple names of all containers and the object itself.

It also allows to override the name computation declaratively. The following snippet
shows how you could make Transitions in the state machine example referable by giving
them a name. Don’t forget to bind your implementation in your runtime module.

FowlerDslQualifiedNameProvider
extends DefaultDeclarativeQualifiedNameProvider {
public QualifiedName qualifiedName(Transition t) {
if(t.getEvent() == null || !(t.eContainer() instanceof State))
return null;
else
return QualifiedName.create((State)t.eContainer()).getName(),
t.getEvent().getName());

Importing Namespaces

The ImportedNamespaceAwareLocalScopeProvider looks up EAttribute with name ’imported-
Namespace’ and interprets them as import statements. By default qualified names with
or without a wildcard at the end are supported. For an import of a qualified name the
simple name is made available as we know from e.g. Java, where

import java.util Set;

makes it possible to refer to Set by its simple name Set. Contrary to Java the import
is not active for the whole file but only for the namespace it is declared in and its child
namespaces. That is why you can write the following in the example DSL:

package foo {
import bar.Foo
entity Bar extends Foo {

}
}

package bar {
entity Foo {}

}

88

Of course the declared elements within a package are as well referable by their simple
name:

package bar {
entity Bar extends Foo {}
entity Foo {}

}

The following would as well be ok:

package bar {
entity Bar extends bar.Foo {}
entity Foo {}

}
See the JavaDocs and this blog post for details.

8.7. Value Converter

Value converters are registered to convert the parsed text into a data type instance and
vice versa. The primary hook is the IValueConverterService and the concrete implemen-
tation can be registered via the runtime Guice module (§7.2.1). Simply override the
corresponding binding in your runtime module like shown in this example:

@Override
public Class<? extends |ValueConverterService>
bindIValueConverterService() {
return MySpecialValueConverterService.class;

}

The most simple way to register additional value converters is to make use of AbstractDeclarativeValueConvert:
, which allows to declaratively register an IValueConverter by means of an annotated
method.

©@ValueConverter(rule = "MyRuleName”)

public IValueConverter<MyDataType> getMyRuleNameConverter() {
return new MyValueConverterlmplementation();

}

If you use the common terminals grammar org.eclipse xtext.common.Terminals you should
extend the DefaultTerminalConverters and override or add value converters by adding the
respective methods. In addition to the explicitly defined converters in the default im-
plementation, a delegating converter is registered for each available EDataType. The
delegating converter reuses the functionality of the corresponding EMF EFactory.

Many languages introduce a concept for qualified names, i.e. names composed of
namespaces separated by a delimiter. Since this is such a common use case, Xtext pro-
vides an extensible converter implementation for qualified names. The QualifiedNameValueConverter
handles comments and white space gracefully and is capable to use the appropriate value

89

http://blog.efftinge.de/2009/07/xtext-scopes-and-emf-index-in-action.html

converter for each segment of a qualified name. This allows for individually quoted seg-
ments. The domainmodel example shows how to use it.

The protocol of an IValueConverter allows to throw a ValueConverterException if some-
thing went wrong. The exception is propagated as a syntax error by the parser or as a
validation problem by the ConcreteSyntaxValidator if the value cannot be converted to a
valid string. The AbstractLexerBasedConverter is useful when implementing a custom value
converter. If the converter needs to know about the rule that it currently works with, it
may implement the interface 1ValueConverter.RuleSpecific. The framework will set the rule
such as the implementation may use it afterwards.

8.8. Serialization

Serialization is the process of transforming an EMF model into its textual representation.
Thereby, serialization complements parsing and lexing.
In Xtext, the process of serialization is split into the following steps:

1. Validating the semantic model. This is optional, enabled by default, done by the
concrete syntax validator (§8.4.1) and can be turned off in the save options (§8.8.4).

2. Matching the model elements with the grammar rules and creating a stream of
tokens. This is done by the parse tree constructor (§8.8.3).

3. Associating comments with semantic objects. This is done by the comment asso-
ciator (§8.8.5).

4. Associating existing nodes from the node model with tokens from the token stream.
5. Merging existing white space (§8.8.9) and line-wraps into the token stream.

6. Adding further needed white space or replacing all white space using a format-
ter (§8.9).

Serialization is invoked when calling XtextResource. Furthermore, the Serializer provides
resource-independent support for serialization. Another situation that triggers serial-
ization is applying Quick Fixes (§9.3) with semantic modifications. Serialization is not
called when a textual editors contents is saved to disk.

8.8.1. The Contract

The contract of serialization says that a model which is saved (serialized) to its textual
representation and then loaded (parsed) again yields a new model that is equal to the
original model. Please be aware that this does not imply, that loading a textual rep-
resentation and serializing it back produces identical textual representations. However,
the serialization algorithm tries to restore as much information as possible. That is,
if the parsed model was not modified in-memory, the serialized output will usually be
equal to the previous input. Unfortunately, this cannot be ensured for each and every
case. A use case where is is hardly possible, is shown in the following example:

90

MyRule:
(xval+=ID | yval+=INT)x;

The given MyRule reads ID- and INT-elements which may occur in an arbitrary order
in the textual representation. However, when serializing the model all ID-elements will
be written first and then all INT-elements. If the order is important it can be preserved
by storing all elements in the same list - which may require wrapping the ID- and
INT-elements into other objects.

8.8.2. Roles of the Semantic Model and the Node Model During
Serialization

A serialized document represents the state of the semantic model. However, if there is
a node model available (i.e. the semantic model has been created by the parser), the
serializer

e preserves existing white spaces (§8.8.9) from the node model.
e preserves existing comments (§8.8.5) from the node model.

e preserves the representation of cross-references: If a cross-referenced object can be
identified by multiple names (i.e. scoping returns multiple IEObjectDescription for
the same object), the serializer tries to keep the name that was used in the input
file.

e preserves the representation of values: For values handled by the value con-
verter (§8.7), the serializer checks whether the textual representation converted
to a value equals the value from the semantic model. If that is true, the textual
representation is kept.

8.8.3. Parse Tree Constructor

The parse tree constructor usually does not need to be customized since it is automat-
ically derived from the Xtext Grammar (§6). However, it can be helpful to look into it
to understand its error messages and its runtime performance.

For serialization to succeed, the parse tree constructor must be able to consume every
non-transient element of the to-be-serialized EMF model. To consume means, in this
context, to write the element to the textual representation of the model. This can turn
out to be a not-so-easy-to-fulfill requirement, since a grammar usually introduces implicit
constraints to the EMF model as explained for the concrete syntax validator (§8.4.1).

If a model can not be serialized, an XtextSerializationException is thrown. Possible reasons
are listed below:

91

e A model element can not be consumed. This can have the following reasons/solu-
tions:

— The model element should not be stored in the model.
— The grammar needs an assignment which would consume the model element.

— The transient value service (§8.8.6) can be used to indicate that this model
element should not be consumed.

e An assignment in the grammar has no corresponding model element. The default
transient value service considers a model element to be transient if it is unset or
equals its default value. However, the parse tree constructor may serialize default
values if this is required by a grammar constraint to be able to serialize another
model element. The following solution may help to solve such a scenario:

— A model element should be added to the model.

— The assignment in the grammar should be made optional.

e The type of the model element differs from the type in the grammar. The type of
the model element must be identical to the return type of the grammar rule or the
action’s type. Subtypes are not allowed.

e Value conversion (§8.7) fails. The value converter can indicate that a value is not
serializeable by throwing a ValueConverterException.

e An enum literal is not allowed at this position. This can happen if the referenced
enum rule only lists a subset of the literals of the actual enumeration.

To understand error messages and performance issues of the parse tree constructor it
is important to know that it implements a backtracking algorithm. This basically means
that the grammar is used to specify the structure of a tree in which one path (from
the root node to a leaf node) is a valid serialization of a specific model. The parse tree
constructor’s task is to find this path - with the condition, that all model elements are
consumed while walking this path. The parse tree constructor’s strategy is to take the
most promising branch first (the one that would consume the most model elements). If
the branch leads to a dead end (for example, if a model element needs to be consumed
that is not present in the model), the parse tree constructor goes back the path until a
different branch can be taken. This behavior has two consequences:

e In case of an error, the parse tree constructor has found only dead ends but no leaf.
It cannot tell which dead end is actually erroneous. Therefore, the error message
lists dead ends of the longest paths, a fragment of their serialization and the reason
why the path could not be continued at this point. The developer has to judge on
his own which reason is the actual error.

e For reasons of performance, it is critical that the parse tree constructor takes the
most promising branch first and detects wrong branches early. One way to achieve
this is to avoid having many rules which return the same type and which are called
from within the same alternative in the grammar.

92

8.8.4. Options

SaveOptions can be passed to XtextResource and to Serializer. Available options are:

e Formatting. Default: false. If enabled, it is the formatters (§8.9) job to determine
all white space information during serialization. If disabled, the formatter only
defines white space information for the places in which no white space information
can be preserved from the node model. E.g. When new model elements are inserted
or there is no node model.

e Validating. Default: true: Run the concrete syntax validator (§8.4.1) before seri-
alizing the model.

8.8.5. Preserving Comments from the Node Model

The ICommentAssociater associates comments with semantic objects. This is important in
case an element in the semantic model is moved to a different position and the model is
serialized, one expects the comments to be moved to the new position in the document
as well.

Which comment belongs to which semantic object is surely a very subjective issue.
The DefaultCommentAssociater behaves as follows, but can be customized:

e If there is a semantic token before a comment and in the same line, the comment
is associated with this token’s semantic object.

e In all other cases, the comment is associated with the semantic object of the next
following object.

8.8.6. Transient Values

Transient values are values or model elements which are not persisted (written to the
textual representation in the serialization phase). If a model contains model elements
which can not be serialized with the current grammar, it is critical to mark them transient
using the ITransientValueService, or serialization will fail. The default implementation
marks all model elements transient, which are eStructuralFeature.isTransient() or not eObject
.elsSet(eStructuralFeature). By default, EMF returns false for elsSet(..) if the value equals
the default value.

8.8.7. Unassigned Text

If there are calls of data type rules or terminal rules that do not reside in an assignment,
the serializer by default doesn’t know which value to use for serialization.
Example:

PluralRule:
‘contents:’ count=INT Plural;

terminal Plural:
'item’ | 'items’;

93

Valid models for this example are contents 1 item or contents 5 items. However, it is
not stored in the semantic model whether the keyword item or items has been parsed.
This is due to the fact that the rule call Plural is unassigned. However, the parse
tree constructor (§8.8.3) needs to decide which value to write during serialization. This
decision can be be made by customizing the ITokenSerializer.IValueSerializer.

8.8.8. Cross-Reference Serializer

The cross-reference serializer specifies which values are to be written to the textual
representation for cross-references. This behavior can be customized by implementing
ITokenSerializer.ICrossReferenceSerializer. The default implementation delegates to various
other services such as the IScopeProvider or the LinkingHelper each of which may be the
better place for customization.

8.8.9. Merge White Space

After the parse tree constructor (§8.8.3) has done its job to create a stream of to-
kens which are to be written to the textual representation, and the comment associa-
tor (§8.8.5) has done its work, existing white space form the node model is merged into
the stream.

The strategy is as follows: If two tokens follow each other in the stream and the
corresponding nodes in the node model follow each other as well, then the white space
information in between is kept. In all other cases it is up to the formatter (§8.9) to
calculate new white space information.

8.8.10. Token Stream

The parse tree constructor (§8.8.3) and the formatter (§8.9) use an ITokenStream for their
output, and the latter for its input as well. This allows for chaining the two components.
Token streams can be converted to a String using the TokenStringBuffer and to a Writer
using the WriterTokenStream.

public interface ITokenStream {

void flush() throws I0Exception;
void writeHidden(EObject grammarElement, String value);
void writeSemantic(EObject grammarElement, String value);

}

8.9. Formatting (Pretty Printing)

A formatter can be implemented via the IFormatter service. Technically speaking, a
formatter is a Token Stream (§8.8.10) which inserts/removes/modifies hidden tokens
(white space, line-breaks, comments).
The formatter is invoked during the serialization phase (§8.8) and when the user
triggers formatting in the editor (for example, using the CTRL4SHIFT+F shortcut).
Xtext ships with two formatters:

94

e The OneWhitespaceFormatter simply writes one white space between all tokens.

e The AbstractDeclarativeFormatter allows advanced configuration using a
FormattingConfig. Both are explained below.

A declarative formatter can be implemented by subclassing AbstractDeclarativeFormatter,
as shown in the following example:

public class ExampleFormatter extends AbstractDeclarativeFormatter {

@Override
protected void configureFormatting(FormattingConfig c) {
ExampleLanguageGrammarAccess f = getGrammarAccess();

c.setAutoLinewrap(120);

// find common keywords an specify formatting for them

for (Pair<Keyword, Keyword> pair : f.findKeywordPairs("(",)")) {
c.setNoSpace().after(pair.getFirst());
c.setNoSpace().before(pair.getSecond());

for (Keyword comma : f.findKeywords(",")) {
c.setNoSpace().before(comma);

}

// formatting for grammar rule Line
c.setLinewrap(2).after(f.getLineAccess().getSemicolonKeyword_1());
c.setNoSpace().before(f.getLineAccess().getSemicolonKeyword_1())

// formatting for grammar rule TestIndentation
c.setIndentationlncrement().after(
f.getTestIndentationAccess().getLeftCurlyBracketKeyword_1());
c.setIndentationDecrement().before(
f.getTestIndentationAccess().getRightCurlyBracketKeyword_3());
c.setLinewrap().after(
f.getTestIndentationAccess().getLeftCurlyBracketKeyword_1());
c.setLinewrap().after(
f.getTestIndentationAccess().getRightCurlyBracketKeyword_3());

// formatting for grammar rule Param
c.setNoLinewrap().around(f.getParamAccess().getColonKeyword_1());
c.setNoSpace().around(f.getParamAccess().getColonKeyword_1());

// formatting for Comments

cfg.setLinewrap(0, 1, 2).before(g.getSL_COMMENTRule());
cfg.setLinewrap(0, 1, 2).before(g.getML_COMMENTRule());
cfg.setLinewrap(0, 1, 1).after(g.getML_COMMENTRule());

95

The formatter has to implement the method configureFormatting(...) which declaratively
sets up a FormattingConfig.
The FormattingConfig consist of general settings and a set of formatting instructions:

8.9.1. General FormattingConfig Settings

setAutoLinewrap(int) defines the amount of characters after which a line-break should
be dynamically inserted between two tokens. The instructions setNoLinewrap().?77(),
setNoSpace().???() and setSpace(space).???() suppress this behavior locally. The default
is 80.

8.9.2. FormattingConfig Instructions

Per default, the declarative formatter inserts one white space between two tokens. In-
structions can be used to specify a different behavior. They consist of two parts: When
to apply the instruction and what to do.

To understand when an instruction is applied think of a stream of tokens whereas
each token is associated with the corresponding grammar element. The instructions are
matched against these grammar elements. The following matching criteria exist:

e after(element): The instruction is applied after the grammar element has been
matched. For example, if your grammar uses the keyword ;" to end lines, this
can instruct the formatter to insert a line break after the semicolon.

e before(element): The instruction is executed before the matched element. For exam-
ple, if your grammar contains lists which separate their values with the keyword

non

., you can instruct the formatter to suppress the white space before the comma.

e around(element): This is the same as before(element) combined with after(element).

e between(left, right): This matches if left directly follows right in the document. There
may be no other tokens in between left and right.

e bounds(left, right): This is the same as after(left) combined with before(right).

e range(start, end): The rule is enabled when start is matched, and disabled when end
is matched. Thereby, the rule is active for the complete region which is surrounded
by start and end.

The term tokens is used slightly different here compared to the parser/lexer. Here, a
token is a keyword or the string that is matched by a terminal rule, data type rule or
cross-reference. In the terminology of the lexer a data type rule can match a composition
of multiple tokens.

The parameter element can be a grammar’s AbstractElement or a grammar’s AbstractRule
. All grammar rules and almost all abstract elements can be matched. This includes rule
calls, parser rules, groups and alternatives. The semantic of before(element), after(element),
etc. for rule calls and parser rules is identical to when the parser would ”"pass” this part
of the grammar. The stack of called rules is taken into account. The following abstract
elements can not have assigned formatting instructions:

96

e Actions. E.g. {MyAction} or {MyAction.myFeature=current}.

e Grammar elements nested in data type rules. This is due to to the fact that tokens
matched by a data type rule are treated as atomic by the serializer. To format
these tokens, please implement a ValueConverter (§8.7).

e Grammar elements nested in CrossReference.
After having explained how rules can be activated, this is what they can do:

e setlndentationlncrement() increments indentation by one unit at this posi-
tion. Whether one unit consists of one tab-character or spaces is de-
fined by llndentationlnformation. The default implementation consults Eclipse’s
IPreferenceStore.

e setlndentationDecrement() decrements indentation by one unit.
e setlLinewrap(): Inserts a line-wrap at this position.
e setLinewrap(int count): Inserts count numbers of line-wrap at this position.

e setlLinewrap(int min, int def, int max): If the amount of line-wraps that have been
at this position before formatting can be determined (i.e. when a node model is
present), then the amount of of line-wraps is adjusted to be within the interval min,
maz and is then reused. In all other cases def line-wraps are inserted. Example:
setLinewrap(0, 0, 1) will preserve existing line-wraps, but won’t allow more than one
line-wrap between two tokens.

e setNoLinewrap(): Suppresses automatic line wrap, which may occur when the line’s
length exceeds the defined limit.

e setSpace(String space): Inserts the string space at this position. If you use this to
insert something else than white space, tabs or newlines, a small puppy will die
somewhere in this world.

e setNoSpace(): Suppresses the white space between tokens at this position. Be aware
that between some tokens a white space is required to maintain a valid concrete
syntax.

8.9.3. Grammar Element Finders

Sometimes, if a grammar contains many similar elements for which the same formatting
instructions ought to apply, it can be tedious to specify them for each grammar ele-
ment individually. The IGrammarAccess provides convenience methods for this. The find
methods are available for the grammar and for each parser rule.

o findKeywords(String... keywords) returns all keywords that equal one of the parameters.

e findKeywordPairs(String leftKw, String rightKw): returns tuples of keywords from the
same grammar rule. Pairs are matched nested and sequentially. Example: for Rule
. '('name=ID ('("foo=ID ")")")'| '('bar=ID ")’ findKeywordPairs("(", ")") returns three pairs.

97

8.10. Fragment Provider (Referencing Xtext Models From
Other EMF Artifacts)

Although inter-Xtext linking is not done by URIs, you may want to be able to reference
your EObject from non-Xtext models. In those cases URIs are used, which are made up of
a part identifying the resource and a second part that points to an object. Each EObject
contained in a resource can be identified by a so called fragment.

A fragment is a part of an EMF URI and needs to be unique per resource.

The generic resource shipped with EMF provides a generic path-like computation of
fragments. These fragment paths are unique by default and do not have to be serialized.
On the other hand, they can be easily broken by reordering the elements in a resource.

With an XMI or other binary-like serialization it is also common and possible to use
UUIDs. UUIDs are usually binary and technical, so you don’t want to deal with them
in human readable representations.

However with a textual concrete syntax we want to be able to compute fragments out
of the human readable information. We don’t want to force people to use UUIDs (i.e.
synthetic identifiers) or fragile, relative, generic paths in order to refer to EObject.

Therefore one can contribute an IFragmentProvider per language. It has two meth-
ods: getFragment(EObject, Fallback) to calculate the fragment of an EObject and getEObject
(Resource, String, Fallback) to go the opposite direction. The IFragmentProvider.Fallback in-
terface allows to delegate to the default strategy - which usually uses the fragment paths
described above.

The following snippet shows how to use qualified names as fragments:

public QualifiedNameFragmentProvider implements IFragmentProvider {

QInject
private IQualifiedNameProvider qualifiedNameProvider;

public String getFragment(EObject obj, Fallback fallback) {
String gqName = qualifiedNameProvider.getQualifiedName(obj);
return gName != null ? gName : fallback.getFragment(obj);

}

public EObject getEObject(Resource resource,
String fragment,
Fallback fallback) {
if (fragment != null) {
Iterator<EObject> i = EcoreUtil.getAllContents(resource, false);
while(i.hasNext()) {
EObject eObject = i.next();
String candidateFragment = (eObject.elsProxy())
? ((InternalEObject) eObject).eProxyURI().fragment()
: getFragment(eObject, fallback);
if (fragment.equals(candidateFragment))
return eObject;

98

}

return fallback.getEObject(fragment);

}
}

For performance reasons it is usually a good idea to navigate the resource based on
the fragment information instead of traversing it completely. If you know that your
fragment is computed from qualified names and your model contains something like
NamedFElements, you should split your fragment into those parts and query the root
elements, the children of the best match and so on.

Furthermore it’s a good idea to have some kind of conflict resolution strategy to be able
to distinguish between equally named elements that actually are different, e.g. properties
may have the very same qualified name as entities.

8.11. Encoding in Xtext

Encoding, aka character set, describes the way characters are encoded into bytes and
vice versa. Famous standard encodings are UTF-8 or ISO-8859-1. The list of available
encodings can be determined by calling Charset. There is also a list of encodings and
their canonical Java names in the API docs.

Unfortunately, each platform and/or spoken language tends to define its own native
encoding, e.g. CpI1258 on Windows in Vietnamese or Maclceland on Mac OS X in
Icelandic.

In an Eclipse workspace, files, folders, projects can have individual encodings, which
are stored in the hidden file .settings/org.eclipse.core.resources.prefs in each project. If a
resource does not have an explicit encoding, it inherits the one from its parent recursively.
Eclipse chooses the native platform encoding as the default for the workspace root.
You can change the default workspace encoding in the Eclipse preferences Preferences-
> Workspace-> Default text encoding. If you develop on different platforms, you should
consider choosing an explicit common encoding for your text or code files, especially if
you use special characters.

While Eclipse allows to define and inspect the encoding of a file, your file system
usually doesn’t. Given an arbitrary text file there is no general strategy to tell how it
was encoded. If you deploy an Eclipse project as a jar (even a plug-in), any encoding
information not stored in the file itself is lost, too. Some languages define the encoding
of a file explicitly, as in the first processing instruction of an XML file. Most languages
don’t. Others imply a fixed encoding or offer enhanced syntax for character literals, e.g.
the unicode escape sequences \uXXXX in Java.

As Xtext is about textual modeling, it allows to tweak the encoding in various places.

8.11.1. Encoding at Language Design Time

The plug-ins created by the New Xtext Project wizard are by default encoded in the
workspace’s standard encoding. The same holds for all files that Xtext generates in
there. If you want to change that, e.g. because your grammar uses/allows special

99

http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html

characters, you should manually set the encoding in the properties of these projects
after their creation. Do this before adding special characters to your grammar or at
least make sure the grammar reads correctly after the encoding change. To tell the
Xtext generator to generate files in the same encoding, set the encoding property in the
workflow next to your grammar, e.g.

Generator {
encoding ="UTF-8"

8.11.2. Encoding at Language Runtime

As each language could handle the encoding problem differently, Xtext offers a service
here. The IEncodingProvider has a single method getEncoding(URI) to define the encoding
of the resource with the given URI. Users can implement their own strategy but keep in
mind that this is not intended to be a long running method. If the encoding is stored
within the model file itself, it should be extractable in an easy way, like from the first
line in an XML file. The default implementation returns the default Java character set
in the runtime scenario.

In the UI scenario, when there is a workspace, users will expect the encoding of the
model files to be settable the same way as for other files in the workspace. The default
implementation of the |EncodingProvider in the UI scenario therefore returns the file’s
workspace encoding for files in the workspace and delegates to the runtime implemen-
tation for all other resources, e.g. models in a jar or from a deployed plug-in. Keep in
mind that you are going to loose the workspace encoding information as soon as you
leave this workspace, e.g. deploy your project.

Unless you want to enforce a uniform encoding for all models of your language, we
advise to override the runtime service only. It is bound in the runtime module using the
binding annotation DispatchingProvider.Runtime:

@Override
public void configureRuntimeEncodingProvider(Binder binder) {
binder.bind(IEncodingProvider.class)
.annotatedWith(DispatchingProvider.Runtime.class)
.to(MyEncodingProvider.class);

}

For the uniform encoding, bind the plain IEncodingProvider to the same implementation
in both modules:

@Override

public Class<? extends |IEncodingProvider> bindIEncodingProvider() {
return MyEncodingProvider.class;

}

100

8.11.3. Encoding of an XtextResource

An XtextResource uses the IEncodingProvider of your language by default. You can override
that by passing an option on load and save, e.g.

Map<?,?> options = new HashMap();
options.put(XtextResource. OPTION_ENCODING, "UTF—8");
myXtextResource.load(options);

options.put(XtextResource. OPTION_ENCODING, "ISO—8859—1");
myXtextResource.save(options);

8.11.4. Encoding in New Model Projects

The SimpleProjectWizardFragment generates a wizard that clients of your language can use
to create model projects. This wizard expects its templates to be in the encoding of the
Generator that created it (see above). As for every new project wizard, its output will
be encoded in the default encoding of the target workspace. If your language enforces a
special encoding that ignores the workspace settings, you’ll have to make sure that your
wizard uses the right encoding by yourself.

8.11.5. Encoding of Xtext Source Code

The source code of the Xtext framework itself is completely encoded in ISO 8859-1, which
is necessary to make the Xpand templates work everywhere (they use french quotation
markup). That encoding is hard coded into the Xtext generator code. You are likely
never going to change that.

101

9. IDE Concepts

For the following part we will refer to the state machine example (§6.1) to describe the
different aspects of Xtext’s Ul features.

0.1. Label Provider

There are various places in the Ul in which model elements have to be presented to
the user: In the outline view (§9.5), in hyperlinks (§9.6), in content proposals (§9.2),
find dialogs etc. Xtext allows to customize each of these appearances by individual
implementation of the ILabelProvider interface.

An ILabelProvider has two methods: getText(Object) returns the text in an object’s label,
while getlmage(Object) returns the icon. In addition, the Eclipse Ul framework offers the
DelegatingStyledCellLabelProvider.IStyledLabelProvider, which returns a StyledString (i.e. with
custom fonts, colors etc.) in the getStyledText(Object) method.

Almost all label providers in the Xtext framework inherit from the base class AbstractLabelProvider

which unifies both approaches. Subclasses can either return a styled string or a string
in the doGetText(Object) method. The framework will automatically convert it to a styled
text (with default styles) or to a plain text in the respective methods.

Dealing with images can be cumbersome, too, as image handles tend to be scarce
system resources. The AbstractLabelProvider helps you managing the images: In your
implementation of doGetlmage(Object) you can as well return an Image, an ImageDescriptor
or a string, representing a path in the icons/ folder of the containing plug-in. This path
is actually configurable by Google Guice. Have a look at the PluginlmageHelper to learn
about the customizing possibilities.

If you have the LabelProviderFragment in the list of generator fragments in the MWE2
workflow for your language, it will automatically create stubs and bindings for an
yLangMyLangEObjectLabelProvider (§9.1.1) and an yLangMyLangDescriptionLabelProvider (§9.1.2)
which you can implement manually.

9.1.1. Label Providers For EObjects

The EODbject label provider refers to actually loaded and thereby available model ele-
ments. By default, Xtext binds the DefaultEObjectLabelProvider to all use cases, but you
can change the binding individually for the Outline, Content Assist or other places. For
that purpose, there is a so called binding annotation for each use case. For example,
to use a custom MyContentAssistLabelProvider to display elements in the content as-
sist, you have to override configureContentProposalLabelProvider(..) in your language’s Ul
module:

102

Q@Override
public void configureContentProposalLabelProvider(Binder binder) {
binder.bind(ILabelProvider.class)
.annotatedWith(ContentProposalLabelProvider.class)
.to(MyContentAssistLabelProvider.class);

}

If your grammar uses an imported EPackage, there may be an existing edit-plug-in
generated by EMF that also provides label providers for model elements. To use this as
a fallback, your label provider should call the constructor with the delegate parameter
and use dependency injection for its initialization, e.g.

public class MyLabelProvider {
@Inject
public MyLabelProvider(AdapterFactorylLabelProvider delegate) {
super(delegate);
}

DefaultEObjectLabelProvider

The default implementation of the ILabelProvider interface utilizes the polymorphic dis-
patcher idiom to implement an external visitor as the requirements of the label provider
are kind of a best match for this pattern. It boils down to the fact that the only thing you
need to do is to implement a method that matches a specific signature. It either provides
a image filename or the text to be used to represent your model element. Have a look
at following example to get a more detailed idea about the DefaultEObjectLabelProvider.

public class SecretCompartmentsLabelProvider
extends DefaultLabelProvider {

public String text(Event event) {
return event.getName() + " (" + event.getCode() + ")";

}

public String image(Event event) {
return "event.gif”;

}

public String image(State state) {
return "state.gif";

}
}

What is especially nice about the default implementation is the actual reason for its
class name: It provides very reasonable defaults. To compute the label for a certain
model element, it will at first have a look for an EAttribute name and try to use this one.
If it cannot find such a feature, it will try to use the first feature, that can be used best

103

as a label. At worst it will return the class name of the model element, which is kind of
unlikely to happen.

You can a also customize error handling by overriding the methods handleTextError()
or handlelmageError().

9.1.2. Label Providers For Index Entries

Xtext maintains an index of all model elements to allow quick searching and linking
without loading the referenced resource (see the chapter on index-based scopes (§8.6.1)
for details). The elements from this index also appear in some UI contexts, e.g. in the
Find model elements dialog or in the Find references view. For reasons of scalability,
the UI should not automatically load resources, so we need another implementation of
a label provider that works with the elements from the index, i.e. IResourceDescription,
IEObjectDescription, and IReferenceDescription.

The default implementation of this service is the DefaultDescriptionLabelProvider. It em-
ploys the same polymorphic dispatch mechanism as the DefaultEObjectLabelProvider (§9.1.1).
The default text of an IEObjectDescription is its indexed name. The image is resolved by
dispatching to image(EClass) with the EClass of the described object. This is likely the
only method you want to override. Instances of IResourceDescription will be represented
with their path and the icon registered for your language’s editor.

To have a custom description label provider, make sure it is bound in your UI module:

public void configureResourceUlServiceLabelProvider(Binder binder) {
binder.bind(ILabelProvider.class)
.annotatedWith(ResourceServiceDescriptionLabelProvider.class)
.to(MyCustomDefaultDescriptionLabelProvider.class);

0.2. Content Assist

The Xtext generator, amongst other things, generates the following two content assist
related artifacts:

e An abstract proposal provider class named Abstract{MyLang}ProposalProvider gener-
ated into the src-gen folder within the wi project, and

e a concrete subclass in the src-folder of the ui project called {MyLang}ProposalProvider

First we will investigate the generated Abstract{MylLang}ProposalProvider with methods
that look like this:

public void complete{ TypeName}_{FeatureName}(
EObject model, Assignment assignment,
ContentAssistContext context, |CompletionProposalAcceptor acceptor) {
// clients may override

}

104

public void complete_{RuleName}(
EObject model, RuleCall ruleCall,
ContentAssistContext context, |CompletionProposalAcceptor acceptor) {
// clients may override

}

The snippet above indicates that the generated class contains a complete*-method
for each assigned feature in the grammar and for each rule. The braces in the snippet
are place-holders that should give a clue about the naming scheme used to create the
various entry points for implementors. The generated proposal provider falls back to
some default behavior for cross-references and keywords. Furthermore it inherits the
logic that was introduced in grammars that were mixed into the current language.

Clients who want to customize the behavior may override the methods from the
AbstractJavaBasedContentProposalProvider or introduce new methods with a specialized first
parameter. The framework inspects the type of the model object and dispatches method
calls to the most concrete implementation, that can be found.

It is important to know, that for a given offset in a model file, many possible grammar
elements exist. The framework dispatches to the method declarations for any valid
element. That means, that a bunch of complete* methods may be called.

To provide a dummy proposal for the code of an event instance, you may introduce a
specialization of the generated method and implement it as follows. This will propose
ZonkID for an event with the name Zonk.

public void completeEvent_Code(
Event event, Assignment assignment,
ContentAssistContext context, |CompletionProposalAcceptor acceptor) {
// call implementation of superclass
super.completeEvent_Code(model, assignment, context, acceptor);

// compute the plain proposal
String proposal = event.getName() + "ID";

// Create and register the completion proposal:

// The proposal may be null as the createCompletionProposal(..)
// methods check for valid prefixes and terminal token conflicts.
// The acceptor handles null—values gracefully.
acceptor.accept(createCompletionProposal(proposal, context));

9.3. Quick Fixes

For validations written using the AbstractDeclarativeValidator (§8.4.2) it is possible to
provide corresponding quick fixes in the editor. To be able to implement a quick fix for
a given diagnostic (a warning or error) the underlying cause of the diagnostic must be
known (i.e. what actual problem does the diagnostic represent), otherwise the fix doesn’t

105

know what needs to be done. As we don’t want to deduce this from the diagnostic’s
error message we associate a problem specific code with the diagnostic.

In the following example taken from the DomainmodelJava Validator the diagnostic’s
code is given by the third argument to the warning() method and it is a reference to the
static String field INVALID_TYPE_NAME in the validator class.

warning("Name should start with a capital”,
DomainmodelPackage. TYPE_NAME, INVALID_TYPE_NAME, type.getName());

Now that the validation has a unique code identifying the problem we can register
quick fixes for it. We start by adding the QuickfixProviderFragment to our workflow and
after regenerating the code we should find an empty class MyDslQuickfixProvider in our
DSL’s UI project and new entries in the plugin.cml_gen file.

Continuing with the INVALID_TYPE_NAME problem from the domain model example
we add a method with which the problem can be fixed (have a look at the Domainmod-
elQuickfixrProvider for details):

QFix(DomainmodelJavaValidator.INVALID_TYPE_NAME)
public void fixName(final Issue issue,
IssueResolutionAcceptor acceptor) {
acceptor.accept(issue,
"Capitalize name”, // quick fix label
"Capitalize name of " + issue.getData()[0] + ",
// description
"upcase.png”, // quick fix icon
new IModification() {
public void apply(IModificationContext context)
throws BadlocationException {
IXtextDocument xtextDocument = context.getXtextDocument();
String firstLetter = xtextDocument.get(issue.getOffset(), 1);
xtextDocument.replace(issue.getOffset(), 1,
Strings.toFirstUpper(firstLetter));
}

}
);
}

By using the correct signature (see below) and annotating the method with the @Fix

annotation referencing the previously specified issue code from the validator, Xtext

knows that this method implements a fix for the problem. This also allows us to annotate
multiple methods as fixes for the same problem.

The first three parameters given to the IssueResolutionAcceptor define the Ul represen-
tation of the quick fix. As the document is not necessarily loaded when the quick fix is
offered, we need to provide any additional data from the model that we want to refer
to in the Ul when creating the issue in the validator above. In this case, we provided
the existing type name. The additional data is available as Issue. As it is persisted in
markers, only strings are allowed.

106

The actual model modification is implemented in the IModification. The IModificationContext
provides access to the erroneous document. In this case, we’re using Eclipse’s IDocument
API to replace a text region.

If you prefer to implement the quick fix in terms of the semantic model use a ISemanticModification
instead. Its apply(EObject, IModificationContext) method will be invoked inside a modify-
transaction and the first argument will be the erroneous semantic element. This makes
it very easy for the fix method to modify the model as necessary. After the method
returns the model as well as the Xtext editor’s content will be updated accordingly. If
the method fails (throws an exception) the change will not be committed. The following
snippet shows a semantic quick fix for a similar problem.

OFix(DomainmodelJavaValidator.INVALID_FEATURE_NAME)
public void fixFeatureName(final Issue issue,
IssueResolutionAcceptor acceptor) {
acceptor.accept(issue,
"Uncapitalize name”, // label
"Uncapitalize name of " + issue.getData()[0] +
"upcase.png’, // icon
new |SemanticModification() {
public void apply(EObject element, IModificationContext context) {
((Feature) element).setName(
Strings.toFirstLower(issue.getData()[0]));

yyyyy

, // description

9.3.1. Quickfixes for Linking Errors and Syntax Errors

You can even define quick fixes for linking errors. The issue codes are assigned by the
ILinkingDiagnosticMessageProvider. Have a look at the domain model example how to add
quick fixes for these errors.

Hence, there is the ISyntaxErrorMessageProvider to assign issue codes to syntactical errors.

9.4. Template Proposals

Xtext-based editors automatically support code templates. That means that you get the
corresponding preference page where users can add and change template proposals. If
you want to ship a couple of default templates, you have to put a file named templates.zml
inside the templates directory of the generated Ul-plug-in. This file contains templates
in a format as described in the Eclipse online help .

By default Xtext registers contert types that follow certain patterns. A context type
will be created

1. for each rule ({languageName}.{RuleName}) and

2. for each keyword ({languageName}.kw_{keyword}).

107

http://help.eclipse.org/ganymede/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_imp_code_temp.htm

8.0 Preferences

type filter text Templates (Eh T
» General Create, edit or remove templates:
> Ant Narme Context Description Auto Insert (New... \
P Help M | actions Keyword 'actions' action definition on
» Install/Update ™ | command Command command definition on £ Edite)
F Java a empty Statemz Keyword ‘events' | template for an empty § on —_—
» Plug-in Development M |event Event event definition on " Remove)
¥ Run/Debug state State state definition on N’
P Team E transition Transition event transition on)
Xtend /Xpand Restore Removed
b Xtext
¥ Xtext Languages " Revert to Default
F Domainmodel
» EcoreDs|
¥ FowlerDs| \L/

Syntax Coloring

Templates Export...

» ReferenceGrammar

Preview:

${event:CrossReference('Transition.event')} => ${state:CrossReference('Transition.state')}

(" Restore Defaults) [Apply R

@j (cancel) (o)

/]

If you don’t like these defaults you’ll have to subclass XtextTemplateContext TypeRegistry
and configure it via Guice (§7.2.1).

In addition to the standard template proposal extension mechanism, Xtext ships with
a predefined set of TemplateVariableResolver to resolve special variable types in templates.
Besides the standard template variables available in GlobalTemplateVariables like ${user
}, ${date}, ${time}, ${cursor}, etc., these TemplateVariableResolver support the automatic
resolving of cross references enumeration values. Both resolvers are explained in the
following sections.

It is best practice to edit the templates in the preferences page, export them into the
templates.zml-file and put this one into the templates folder of your Ul-plug-in. However,
these templates will not be visible by default. To fix it, you have to manually edit the
xml-file and insert an id attribute for each template element. Note that the attribute
name is case sensitive.

9.4.1. Cross Reference Template Variable Resolver

Xtext comes with a specific template variable resolver called CrossReferenceTemplateVariableResolver
, which can be used to pre-populate placeholders for cross-references within a template.
The respective template variable is called CrossReference and its syntax is as follows:
${<displayText>:CrossReference([<MyPackageName>.]<MyType>.<myRef>)}
This small example yields the text event => state and allows selecting any events and

108

states using a drop down:

<template
name="transition"
description="event transition”
id="transition"
context="org.xtext.example.SecretCompartments. Transition”
enabled="true">

${event:CrossReference(' Transition.event’)} =>

${state:CrossReference(' Transition.state’)
</template>

(resst 3 =8

events
startEvent START1
stopEvent STOP2

end

commands
end

state start
startEvent =» start

=> start

| startEvent
end stapEvent
state stop

stopEvent =» stop
end

9.4.2. Enumeration Template Variable Resolver

The EnumTemplateVariableResolver resolves a template variable to EEnumlLiteral which are
assignment-compatible to the enumeration type declared as the first parameter of the
the Enum template variable.

The syntax is as follows:

${<display Text>:Enum([<MyPackage>.]<EnumType>)

For example the following template (taken from another example):

<template
name="Entity”
description="template for an Entity”
id="entity"
context="org.eclipse.xtext.example.Domainmodel.Entity"
enabled="true">

${public:Enum('Visibility’)} entity ${Name} {

${cursor}
}

109

< /template>

yields the text public entity Name {} where the text public is the default value of the
Visibility. The editor provides a drop down that is populated with the other literal values
as defined in the EEnum.

0.5. Outline View

Xtext provides an outline view to help you navigate your models. By default, it provides
a hierarchical view on your model and allows you to sort tree elements alphabetically.
Selecting an element in the outline will highlight the corresponding element in the text
editor. Users can choose to synchronize the outline with the editor selection by clicking
the Link with Editor button.

|2 sample.myds| 33 =0 M; in s 18 ¥ =0
datatype String ¥ = Model
datatype Integer [I=String
datatype Date = Integer
datatype Long = Date
I=Long
class Person {
attr name: String '= name
attr surName: String = surName
attr birthDay: Daote I'= birthDay
attr salary: Integer = salary
ref spouse: Person '= spouse
} w = Boss
I= bonus
class Boss { = employees
attr bonus: Integer
ref employees: Person
}

In its default implementation, the outline view shows the containment hierarchy of
your model. This should be sufficient in most cases. If you want to adjust the structure
of the outline, i.e. by omitting a certain kind of node or by introducing additional nodes,
you can customize the outline by implementing your own IOQutlineTreeProvider.

If your workflow defines the OutlineTreeProviderFragment, Xtext generates a stub for
your own |OutlineTreeProvider that allows you to customize every aspect of the outline by
inheriting the powerful customization methods of DefaultOutlineTreeProvider. The following
sections show how to do fill this stub with life.

9.5.1. Influencing the outline structure

Each node the outline tree is an instance of IQutlineNode. The outline tree is always
rooted in a DocumentRootNode. This node is automatically created for you. Its children
are the root nodes in the displayed view.
An EObjectNode represents a model element. By default, Xtext creates an EObjectNode
for each model element in the node of its container. Nodes are created by calling

110

the method createNode(parentNode, modelElement) which delegates to createEObjectNode(..)
if not specified differently.
To change the children of specific nodes, you have to implement the method

_createChildren(parentNode,
parentModelElement)

with the appropriate types. The following snippet shows you how to skip the root model
element of type DomainModel in the outline of our domain model example:

protected void _createChildren(DocumentRootNode parentNode,
DomainModel domainModel) {
for (AbstractElement element : domainModel.getElements()) {
createNode(parentNode, element);
}

}

You can choose not to create any node in the _createChildren() method. Because the
outline nodes are calculated on demand, the UI will show you an expandable node
that doesn’t reveal any children if expanded. This might be confuse your users a bit.
To overcome this shortcoming, you have to implement the method _isLeaf(modelElement)
with the appropriate argument type, e.g.

// feature nodes are leafs and not expandable

protected boolean _isLeaf(Feature feature) {
return true;

}

Xtext provides a third type of node: EStructuralFeatureNode. It is used to represent a
feature of a model element rather than element itself. The following simplified snippet
from Xtend?2 illustrates how to use it:

protected void _createChildren(DocumentRootNode parentNode,
XtendFile xtendFile) {
// show a node for the attribute XtendFile.package
createEStructuralFeatureNode(parentNode,
xtendFile,
Xtend2Package.Literals. XTEND_FILE__PACKAGE,
getlmageForPackage(),
xtendFile.getPackage(),
true);
// show a container node for the list reference XtendFile.imports
// the imports will be shown as individual child nodes automatically
createEStructuralFeatureNode(parentNode,
xtendFile,
Xtend2Package.Literals. XTEND_FILE__IMPORTS,
getlmageForlmportContainer(),
"import declarations”,
false);
createEObjectNode(parentNode, xtendFile.getXtendClass());

111

Of course you can add further custom types of nodes. For consistency, make sure to
inherit from AbstractOutlineNode. To instantiate these, you have to implement _createNode
(parentNode, semanticElement) with the appropriate parameter types.

9.5.2. Styling the outline

You can also customize the icons and texts for an outline node. By default, Xtext uses
the label provider (§9.1) of your language. If you want the labels to be specific to the
outline, you can override the methods _text(modelElement) and _image(modelElement) in
your DefaultOutlineTreeProvider.

Note that the method _text(modelElement) can return a String or a StyledString. The
StylerFactory can be used to create StyledString, like in the following example:

@Inject
private StylerFactory stylerFactory;

public Object _text(Entity entity) {
if(entity.isAbstract()) {
return new StyledString(entity.getName(),
stylerFactory
.createXtextStyleAdapterStyler(get TypeTextStyle())));
else
return entity.getName();

}

protected TextStyle getTypeTextStyle() {
TextStyle textStyle = new TextStyle();
textStyle.setColor(new RGB(149, 125, 71));
textStyle.setStyle(SWT.ITALIC);
return textStyle;

}

To access images we recommend to use the PluginlmageHelper.
9.5.3. Filtering actions

Often, you want to allow users to filter the contents of the outline to make it easier
to concentrate on the relevant aspects of the model. To add filtering capabilities to
your outline, you need to add a filter action to your outline. Filter actions must extend
AbstractFilterOutlineContribution to ensure that the action toggle state is handled correctly.
Here is an example form our domain model example:

public class FilterOperationsContribution
extends AbstractFilterOutlineContribution {

public static final String PREFERENCE_KEY =
"ui.outline.filterOperations”;

@Inject
private PluginlmageHelper imageHelper;

112

}

@Override
protected boolean apply(IOutlineNode node) {
return !(node instanceof EObjectNode)
|| '((EObjectNode) node).getEClass()
.equals(DomainmodelPackage.Literals. OPERATION);

}

@Override

public String getPreferenceKey() {
return PREFERENCE_KEY;

}

©@Override

protected void configureAction(Action action) {
action.setText("Hide operations”);
action.setDescription("Hide operations”);
action.setTool Tip Text("Hide operations”);
action.setlmageDescriptor(getlmageDescriptor());

}

protected ImageDescriptor getlmageDescriptor(String imagePath) {
return ImageDescriptor.createFromlmage(
imageHelper.getimage("Operation.gif"));

The contribution must be bound in the MyDslUiModule like this

public void configureFilterOperationsContribution(Binder binder) {

binder
.bind(I0utlineContribution.class).annotatedWith(
Names.named("FilterOperationsContribution”))
.to(FilterOperationsContribution.class);

9.5.4. Sorting actions

Xtext already adds a sorting action to your outline. By default, nodes are sorted lexically
by their text. You can change this behavior by binding your own OutlineFilterAndSorter.
IComparator.
A very common use case is to group the children by categories first, e.g. show the im-
ports before the types in a package declaration, and sort the categories separately. That
is why the SortOutlineContribution.DefaultComparator has a method getCategory(IOutlineNode)
that allows to specify such categories. The example shows how to use such categories:

public class MydslOutlineNodeComparator extends DefaultComparator {

113

@Override
public int getCategory(lIOutlineNode node) {
if (node instanceof EObjectNode)
switch((EObjectNode) node).getEClass().getClassifierlD())) {
case MydslPackage. TYPEO:

return —10;
case MydslPackage. TYPEL:
return —20;

}
return Integer. MIN_VALUE;

}

As always, you have to declare a binding for your custom implementation in your
MyDslUiModule:

@Override
public Class<? extends |Comparator>
bindOutlineFilterAndSorter$IComparator() {
return MydslOutlineNodeComparator.class;

9.5.5. Quick Qutline

Xtext also provides a quick outline: If you press CTRL-O in an Xtext editor, the
outline of the model is shown in a popup window. The quick outline also supports
drill-down search with wildcards. To enable the quick outline, you have to put the
QuickOutlineFragment into your workflow.

9.6. Hyperlinking

The Xtext editor provides hyperlinking support for any tokens corresponding to cross-
references in your grammar definition. You can either CTRL-click on any of these tokens
or hit F'8 while the cursor position is at the token in question and this will take you to
the referenced model element. As you’d expect this works for references to elements in
the same resource as well as for references to elements in other resources. In the latter
case the referenced resource will first be opened using the corresponding editor.

9.6.1. Location Provider

When navigating a hyperlink, Xtext will also select the text region corresponding to
the referenced model element. Determining this text region is the responsibility of the
ILocationInFileProvider. The DefaultLocationInFileProvider implements a best effort strategy
which can be summarized as:

1. If the model element’s EClass declares a feature name then return the region of the
corresponding token(s). As a fallback also check for a feature id.

114

2. If the model element’s node model contains any top-level tokens corresponding to
invocations of the rule ID in the grammar then return a region spanning all those
tokens.

3. As a last resort return the region corresponding to the first keyword token of the
referenced model element.

The location service offers different methods to obtain the region of interest for spe-
cial use cases. You can either obtain the complete region for an object or only the
identifying string which is usually the name of the instance (see getSignificant TextRegion(
EObject)). You can also query for the text region of a specific EStructuralFeature by means
of getFullTextRegion(EObject, EStructuralFeature, int).

As the default strategy is a best effort it may not always result in the selection you
want. If that’s the case you can override (§7.2.1) the ILocationInFileProvider binding in the
UI module as in the following example:

public class MyDslUiModule extends AbstractMyDslUiModule {
©Override
public Class<? extends |LocationInFileProvider>
bindILocationInFileProvider() {
return MyDslLocationlInFileProvider.class;

}
}

Often the default strategy only needs some guidance (e.g. selecting the text corre-
sponding to another feature than name). In that case you can simply subclass the
DefaultLocationInFileProvider and override the methods getldentifierFeature() or useKeyword()
to guide the first and last steps of the strategy as described above (see XtextLocationInFileProvider
for an example).

9.6.2. Customizing Available Hyperlinks

The hyperlinks are provided by the HyperlinkHelper which will create links for cross-
referenced objects by default. Clients may want to override createHyperlinksByOffset(
XtextResource, int, IHyperlinkAcceptor) to provide additional links or supersede the default
implementation.

9.7. Syntax Coloring

Besides the already mentioned advanced features like content assist (§9.2) and code
formatting (§8.9) the powerful editor for your DSL is capable to mark up your model-
code to improve the overall readability. It is possible to use different colors and fonts
according to the meaning of the different parts of your input file. One may want to
use some unintrusive colors for large blocks of comments while identifiers, keywords and
strings should be colored differently to make it easier to distinguish between them. This
kind of text decorating markup does not influence the semantics of the various sections
but helps to understand the meaning and to find errors in the source code.

115

antity Ferscn |
J4 line comment

property MName : String

The highlighting is done in two stages. This allows for sophisticated algorithms that
are executed asynchronously to provide advanced coloring while simple pattern matching
may be used to highlight parts of the text instantaneously. The latter is called lexical
highlighting while the first is based on the meaning of your different model elements and
therefore called semantic highlighting.

When you introduce new highlighting styles, the preference page for your DSL is
automatically configured and allows the customization of any registered highlighting
setting. They are automatically persisted and reloaded on startup.

W

{ MyDsl) | Syntax Coloring v ERS <
¥Xtext Languages
¥MyDsl Token Styles
Syntax Coloring Comment
Col (:)

Templates Default olor
Invalid Symbol
Keyword Background @
Number Stvl
Punctuation tyie
String] halic] Bold

[Underline [Strike through

Font Courier New-regular-12

(Restore Defaults :] [Apply)

® (Cancel :] E—Oll—a
P

9.7.1. Lexical Highlighting

The lexical highlighting can be customized by providing implementations of the interface
IHighlightingConfiguration and the abstract class AbstractTokenScanner. The latter fulfills the
interface ITokenScanner from the underlying JFace Framework, which may be implemented
by clients directly.

The IHighlightingConfiguration is used to register any default style without a specific
binding to a pattern in the model file. It is used to populate the preferences page and to
initialize the ITextAttributeProvider, which in turn is the component that is used to obtain

116

the actual settings for a style’s id. An implementation will usually be very similar to the
DefaultHighlightingConfiguration and read like this:

public class DefaultHighlightingConfiguration
implements |HighlightingConfiguration {

public static final String KEYWORD_ID = "keyword";
public static final String COMMENT_ID = "comment”;

public void configure(IHighlightingConfigurationAcceptor acceptor) {
acceptor.acceptDefaultHighlighting(
KEYWORD_ID, "Keyword", keyword TextStyle());
acceptor.acceptDefaultHighlighting(COMMENT_ID, "Comment”, // ...

}

public TextStyle keyword TextStyle() {
TextStyle textStyle = new TextStyle();
textStyle.setColor(new RGB(127, 0, 85));
textStyle.setStyle(SWT.BOLD);
return textStyle;

}
}

Implementations of the ITokenScanner are responsible for splitting the content of a
document into various parts, the so called tokens, and return the highlighting information
for each identified range. It is critical that this is done very fast because this component
is used on each keystroke. Xtext ships with a default implementation that is based on
the lexer that is generated by ANTLR which is very lightweight and fast. This default
implementation can be customized by clients easily. They simply have to bind another
implementation of the AbstractAntlrTokenToAttributeldMapper. To get an idea about it,
have a look at the DefaultAntlrTokenToAttributeldMapper.

9.7.2. Semantic Highlighting

The semantic highlighting stage is executed asynchronously in the background and can
be used to calculate highlighting states based on the meaning of the different model
elements. Users of the editor will notice a very short delay after they have edited the text
until the styles are actually applied to the document. This keeps the editor responsive
while providing aid when reading and writing your model.

As for the lexical highlighting the interface to register the available styles is the
IHighlightingConfiguration. The ISemanticHighlightingCalculator is the primary hook to imple-
ment the logic that will compute to-be-highlighted ranges based on the model elements.

The framework will pass the current XtextResource and an IHighlightedPositionAcceptor
to the calculator. It is ensured, that the resource will not be altered externally until
the called method provideHighlightingFor() returns. However, the resource may be null in
case of errors in the model. The implementor’s task is to navigate the semantic model
and compute various ranges based on the attached node information and associate styles
with them. This may read similar to the following snippet:

117

public void provideHighlightingFor(XtextResource resource,
IHighlightedPositionAcceptor acceptor) {
if (resource == null || resource.getParseResult() == null)
return;

INode root = resource.getParseResult().getRootNode();
for (INode node : root.getAsTreelterable()) {
if (node.getGrammarElement() instanceof CrossReference) {
acceptor.addPosition(node.getOffset(), node.getLength(),
MyHighlightingConfiguration. CROSS_REF);
}

}
}

This example refers to an implementation of the IHighlightingConfiguration that registers
an own style for each cross-reference. It is pretty much the same implementation as for
the previously mentioned sample of a lexical IHighlightingConfiguration.

public class HighlightingConfiguration
implements IHighlightingConfiguration {

// lexical stuff goes here

// -
public final static String CROSS_REF = "CrossReference”;

public void configure(IHighlightingConfigurationAcceptor acceptor) {
// lexical stuff goes here

// -
acceptor.acceptDefaultHighlighting(CROSS_REF,

"Cross—References”, crossReferenceTextStyle());
}

public TextStyle crossReferenceTextStyle() {
TextStyle textStyle = new TextStyle();
textStyle.setStyle(SWT.ITALIC);
return textStyle;

}
}

The implementor of an ISemanticHighlightingCalculator should be aware of performance
to ensure a good user experience. It is probably not a good idea to traverse everything of
your model when you will only register a few highlighted ranges that can be found easier
with some typed method calls. It is strongly advised to use purposeful ways to navigate
your model. The parts of Xtext’s core that are responsible for the semantic highlighting
are pretty optimized in this regard as well. The framework will only update the ranges
that actually have been altered, for example. This speeds up the redraw process. It will
even move, shrink or enlarge previously announced regions based on a best guess before
the next semantic highlighting pass has been triggered after the user has changed the

118

document.

119

10. Xtext and Java

The following chapter demonstrates how to integrate your own DSL with Java. We will
do this in four stages: First, you will learn how to refer to existing Java elements from
within your language. Then you will use Xbase to refer to generic types. In the third
step, you will map your own DSL’s concepts to Java concepts. Last but not least, you
will use both Java types and your concepts within Xbase expressions and execute it.

Throughout this chapter, we will step by step improve the domain model example
from the tutorial (§4).

10.1. Plug-in Setup

In the following, we are going to use the JVM types model and the Xbase language
library. To make these available to your language, you have to add a couple of depen-
dencies. In the runtime plug-in of your language, add dependencies to

e org.eclipse.xtext.common.types
e org.eclipse.xtext.zhase and

e org.eclipse.xtext.xtend2.lib if you are using Xtend to implement components.

Your UI plug-in needs dependencies to
e org.eclipse.xbase.ui
e org.eclipse.xtext.common.types.us

Additionally, you have to register the genmodel of Xbase to the standalone setup of
your MWE2 workflow and make sure the TypesGeneratorFragment and the XbaseGeneratorFragment
are included:

bean = StandaloneSetup {
registerGenModelFile =
"platform: /resource/org.eclipse.xtext.xbase/model /Xbase.genmodel”
}

fragment = types. TypesGeneratorFragment {}
fragment = xbase.XbaseGeneratorFragment {}

To avoid running out of memory when regenerating, you increase the maximum heap
size and the permanent generation space in the run configuration of your workflow. We
recommend at least

120

—Xmx512m —XX:MaxPermSize=128m
in the VM Arguments section of the Arguments tab. If you are experiencing ambiguity
warnings from Antlr, the usual countermeasures (§6.2.8) apply.

10.2. Referring to Java Elements using JVM Types

A common use case when developing languages is the requirement to refer to existing
concepts of other languages. Xtext makes this very easy for other self defined DSLs.
However, it is often very useful to have access to the available types of the Java Virtual
Machine. The JVM types Ecore model enables clients to do exactly this. It is possible
to create cross-references to classes, interfaces, and their fields and methods. Basically
every information about the structural concepts of the Java type system is available via
the JVM types. This includes annotations and their specific values and enumeration
literals as well.

The implementation will be selected transparently depending on how the client code
is executed. If the environment is a plain stand-alone Java or OSGi environment, the
java.lang.reflect API will be used to deduce the necessary data. On the contrary, the
type-model will be created from the live data of the JDT in an interactive Eclipse
environment. All this happens transparently for the clients behind the scenes via different
implementations that are bound to specific interfaces by means of Google Guice.

Using the JVM types model is very simple. First of all, the grammar has to import
the Java VM Types Ecore model. Thanks to content assist this is easy to spot in the list
of proposals.

import "http://www.eclipse.org/xtext/common/JavaVMTypes” as jvmTypes

The next step is to actually refer to an imported concept. Let’s define a mapping to
available Java types for the simple data types in the domain model language. This can
be done with a simple cross-reference:

// simple cross reference to a Java type
DataType:
'datatype’ name=ID
'mapped—to’ javaType=[jvmTypes::JvmType|QualifiedName];

After regenerating your language, it will be allowed to define a type Date that maps
to the Date like this:

datatype Date mapped—to java.util.Date
These two steps will provide a nice integration into the Eclipse JDT. There is Find
References on Java methods, fields and types that will reveal results in your language

files. Go To Declaration works as expected and content assist will propose the list of
available types. Even the import statements will also apply for Java types.

121

10.2.1. Customization Points

There are several customization hooks in the runtime layer of the JVM types and on the
editor side as well:

The AbstractTypeScopeProvider can be used to create scopes for members with respect
to the override semantics of the Java language. Of course it is possible to use this
implementation to create scopes for types as well.

As the Java VM types expose a lot of information about visibility, parameter- and
return types, generics, available annotations or enumeration literals, it is very easy to
define constraints for the referred types.

The ITypesProposalProvider can be used to provide optimized proposals based on various
filter criteria. The most common selector can be used directly via createSubTypeProposals
(-.)- The implementation is optimized and uses the JDT Index directly to minimize the
effort for object instantiation. The class TypeMatchFilters provides a comprehensive set of
reusable filters that can be easily combined to reduce the list of proposals to a smaller
number of valid entries.

import static org.eclipse.xtext.common.types.xtext.ui. TypeMatchFilters;

/] -

proposalProvider.createSubTypeProposals(
superType, factory, context,
MyDslPackage.Literals. TYPE_MAPPED_TO,
TypeMatchFilters.and(
TypeMatchFilters.not(
TypeMatchFilters.canlnstantiate()

),
TypeMatchFilters.isPublic()

), acceptor);

10.3. Referring to Java Types Using Xbase

While the JVM types approach from the last chapter allow to refer to any Java element,
it has its drawbacks when it comes to generics. Usually, a type reference in Java can
have type arguments which can also include wildcards, upper and lower bounds etc. A
simple cross-reference using a qualified name is not enough to express neither the syntax
nor the structure of such a type reference.

Xbase offers a parser rule JumTypeReference which supports the full syntax of a Java
type reference and instantiates an JVM element of type JvmTypeReference. So lets start
by letting our language inherit from Xbase

grammar org.eclipse.xtext.example.Domainmodel
with org.eclipse.xtext.xbase.Xbase

As we can express all kinds of Java type references directly now, the indirection for
DataTypes no longer makes sense. Let us turn all cross-references to Types to calls to

122

the JumTypeReferences rule. The rules DataType, Type, and Qualified Name become
obsolete (the latter is already defined in Xbase), and the Type in AbstractEntity must
be changed to Entity. The whole grammar now reads as

grammar org.eclipse.xtext.example.Domainmodel with
org.eclipse.xtext.xbase. Xbase

generate domainmodel "http://www.eclipse.org/xtext/example/Domainmodel”
import "http://www.eclipse.org/xtext/common/JavaVMTypes" as jvmTypes

Domainmodel:
(elements += AbstractElement)=

PackageDeclaration:
'package’ name = QualifiedName '{’
(elements += AbstractElement)=
I}V

AbstractElement:
PackageDeclaration | Entity | Import

Import:
'import’ importedNamespace = QualifiedNameWithWildcard

QualifiedNameWithWildcard:
QualifiedName ".x'?

Entity:
'entity’ name = ID
('extends’ superType = JvmTypeReference)?
Y{V

(features += Feature)x

. ’}v

Feature:
(many ?= "'many’)? name = ID "’ type = JvmTypeReference

As we changed the grammar, we have to regenerate the language now.

Being able to parse a Java type reference is good, but we also have to write them
back to their string representation when we generate Java code. Into the bargain, a
generic type reference with fully qualified class names can become a bit bulky. The
ImportManager shortens fully qualified names, keeps track of imported namespaces, avoids

123

name collisions, and serializes JvmTypeReference.

The following snippet shows our code generator using an ImportManager. We create a
new instance and pass it through the generation functions, collecting types on the way.
As the import section in a Java file precedes the class body, we create the body into a
String variable and assemble the whole file’s content in a second step.

class DomainmodelGenerator implements |Generator {
@Inject extension IQualifiedNameProvider nameProvider

override void doGenerate(Resource resource, IFileSystemAccess fsa) {
for(e: resource.allContentslterable.filter(typeof(Entity))) {
fsa.generateFile(
e.fullyQualifiedName.toString.replace(".", /") + ".java’,
e.compile)

}

def compile(Entity e)
«val importManager = new ImportManager(true)»
«val body = body(e, importManager)»

«IF e.eContainer != null»
package «e.eContainer.fullyQualifiedName»;
«ENDIF»

11y

«FOR i:importManager.imports»
import «iy;
«ENDFOR»

«body»

def body(Entity e, ImportManager importManager) "
public class «e.name» «IF e.superType != null»
extends «e.superType.shortName(importManager)» «ENDIF»{
«FOR f:e.features»
«f.compile(importManager)»
«ENDFOR»

1

def compile(Feature f, ImportManager importManager)
private «f.type.shortName(importManager)» «f.namen;

public «f.type.shortName(importManager)»

get«f.name.toFirstUpper»() {
return «f.namey;

124

public void set«f.name.toFirstUpper»(
«f.type.shortName(importManager)» «f.name») {
this.«f.name» = «f.namey;

def shortName(JvmTypeReference typeRef,
ImportManager importManager) {
val result = new StringBuilder()
importManager.append TypeRef(typeRef, result)
result.toString

10.4. Inferring a JVM Model

In many cases, you will want your DSLs concepts to be usable as Java elements. E.g.
an Fntity will become a Java class and should be usable as such. In the domain model
example, you can write

entity Employee extends Person {
boss: Person

entity Person {
friends: List<Person>

i.e. use entities instead of Java types or even mix Java types as List with entities such
as Person. One way to achieve this is to let your concepts inherit from a corresponding
JVM type, e.g. let Entity inherit from JvmGenericType. But this would result in a lot of
accidentally inherited properties in your domain model. In Xbase there is an alternative:
You can define how to derive a JVM model from your model. This inferred JVM model
is the representation of your concepts in the typesystem of Xbase.

The main component for the inferred JVM model is the IJvmModellnferrer. It has a
single method that gets a model element passed in and returns a list of JymGenericType.
As Xbase cannot guess how you would like to map your concepts to JVM elements,
you have to implement this component yourself. This usually boils down to use an
injected TypesFactory to create a hierarchy of JVM elements, initialize that with values
from the input model, and eventually use an injected 1JvmModelAssociator to associate the
model elements with the JVM elements. As this kind of transformation can be elegantly
implemented using polymorphic dispatch functions and extension methods, it is a good
choice to write the IJvmModellnferrer in Xtend.

For our domain model example, we call a recursive polymorphic dispatch function
transform to traverse the containment hierarchy of the source model and generate
JVM elements on the way. We transform each Entity to a JvmGenericType that holds

125

a JvmOperation for each Operation and a JvmField plus access methods for each Property.
Whenever we have to copy a subtree, e.g. for setting the supertype of the JymGenericType,
we use EcoreUtil2 .clone WithProzies() to avoid eager resolution of referenced types. The
resulting DomainmodelJvmModellnferrer looks like this:

class DomainmodelJvmModellnferrer implements |JvmModellnferrer {
@Inject TypesFactory typesFactory
@Inject extension |JvmModelAssociator jymModelAssociator

override List<JvmDeclaredType> inferJvmModel(EObject sourceObject) {
sourceObject.disassociate
transform(sourceObject).toList

}

def dispatch Iterable<JvmDeclaredType> transform(
Domainmodel model) {
model.elements.map(e | transform(e)).flatten

}

def dispatch Iterable<JvmDeclaredType> transform(
PackageDeclaration packageDecl) {
packageDecl.elements.map(e | transform(e)).flatten

}

def dispatch Iterable<JvmDeclaredType> transform(Entity entity) {
val jvmClass = typesFactory.createJvmGeneric Type
jvmClass.simpleName = entity.name
jvmClass.packageName =
(entity.eContainer as PackageDeclaration).name

entity.associatePrimary(jvmClass)
jvmClass.visibility = JvmVisibility::PUBLIC
if (entity.superType != null)

jvmClass.superTypes += cloneWithProxies(entity.superType)
for(f : entity.features) {

transform(f, jymClass)
}

newArrayList(jvmClass as JvmDeclared Type)

}

def dispatch lterable<JvmDeclared Type> transform(Import i) {
emptyList
}

def void transform(Feature feature, JymGenericType type) {
val jvmField = typesFactory.createJvmField
jvmField.simpleName = feature.name
jvmField.type = cloneWithProxies(feature.type)

126

jvmField.visibility = JvmVisibility::PRIVATE
type.members += jvmField
feature.associatePrimary(jvmField)

val jvmGetter = typesFactory.createJymOperation
jvmGetter.simpleName = "get” + feature.name.toFirstUpper
jvmGetter.returnType = cloneWithProxies(feature.type)
jvmGetter.visibility = JvmVisibility::PUBLIC

type.members += jvmGetter
feature.associatePrimary(jvmGetter)

val jvymSetter = typesFactory.createJvmOperation
jvmSetter.simpleName = "set” + feature.name.toFirstUpper
val parameter = typesFactory.createJvmFormalParameter
parameter.name = feature.name.toFirstUpper
parameter.parameterType = cloneWithProxies(feature.type)
jvmSetter.visibility = JvmVisibility::PUBLIC
jvmSetter.parameters += parameter

type.members += jvmSetter
feature.associatePrimary(jvmSetter)

10.4.1. Linking and Indexing

As Java elements and your concepts are now represented as JVM model elements, other
models can now transparently link to Java or your DSL. In other words, you can use a
mapped element of your DSL in the same places as the corresponding Java type.

The Xbase framework will automatically switch between the JVM element or the
DSL element when needed, e.g. when following hyperlinks. The component allowing to
navigate between the source model and the JVM model is called [JvmModelAssociations,

the read-only antagonist of the [JvmModelAssociator.

By default, the inferred model is indexed (§8.6.1), so it can be cross referenced from
other models. In Xtext 2.0.0 you still have to make sure the qualified names are computed
correctly by implementing and binding an appropriate |QualifiedNameProvider:

public class DomainmodelQualifiedNameProvider
extends DefaultDeclarativeQualifiedNameProvider {

@Inject
private IQualifiedNameConverter converter;

QualifiedName qualifiedName(JvmGenericType type) {

}

return converter.toQualifiedName(type.getQualifiedName());

127

https://bugs.eclipse.org/bugs/show_bug.cgi?id=350812

10.4.2. Generation Parameters For Inferred JVM Types

Several MWE generator fragments have additional properties for the JVM model infer-
ence (§10.4):

Fragment Property Purpose Default
XbaseGeneratorFragment | uselnferredJvmModel | Generate a | true
[JvmModellnferrer

stub and hooks for an
inferred JVM model
XbaseGeneratorFragment | generateXtendInferrer | Generate the | true
[JvmModellnferrer

stub in Xtend instead
of Java
RefactorElementNameFragmestJdt Refactoring Always trigger JDT | false
refactoring and reg-
ister element rename
refactoring as a par-
ticipant thereof

10.5. Using Xbase Expressions

Xbase is an expression language that can be embedded in Xtext languages. Its syntax is
close to Java, but it additionally offers type inferrence, closures, a rich switch statement
and a lot more. For details on the Xbase langugae itself, please consult the Xbase
documentation and the Xbase tutorial. Xbase ships with an interpreter and a compiler
to Java code. Thus, it is easy to add executable behavior to your DSLs. As Xbase
integrates tightly with Java, there is usually no additional code needed to run your DSL
as part of a Java application.

10.5.1. Making Your Grammar Refer To Xbase

If you want to refer to EClassifier from the Xbase model, you need to import it first. The
same holds for the common types model:

import "http://www.eclipse.org/xtext/xbase/Xbase" as xbase

Now identify the location in your grammar, where you want references to Java types
and Xbase expression to appear and call the appropriate rules of the super grammar.
C D
Have a look at the domainmodel example: An Operation’s parameters are JumFor-
malParamters, its return type refers to a Java type and its body is an XBlockExpression,
So its parser rule reads as

Operation:
visibility=Visibility? 'op’ name=ValidID ('
(params+=JvmFormalParameter ('," params+=JvmFormalParameter)«)? ')’
"' type=JvmTypeReference

128

body=XBlockExpression;

If you're unsure which entry point to choose for your expressions, consider the root
XFEzpression.

To integrate Operations in our models, we have to call this rule. We copy the previous
Feature to a new rule Property and let Feature become the supertype of Property and
Operation:

Feature:
Property | Operation

Property:
name = ID ":" type = JvmTypeReference

Note: You will have to adapt the [JvmModellnferrer to these changes, i.e. rename Feature
to Property and create a JvmOperation for each Operation. We leave that as an exercise

)
10.5.2. Populating the Scopes

If you're not familiar with Xtext’s concept of scopes yet, it would be a good idea to learn
about scopes (§8.6) before you go on reading this section.

The XbaseScopeProvider already builds a complex hierarchy of scopes that is necessary
to link your expressions. There are a few points you may want to customize.

Within the body of an operation, we want to have several variables on the scope. The
variable this should point to the JVM type of the entity, such that all its features are
callable. In addition, the operation’s parameters should be referrable by their name. The
XbaseScopeProvider has a template method createLocal VarScope for exactly this purpose.
The following code shows the Xtend implementation of the scope provider for our domain
model language:

class DomainmodelScopeProvider extends XbaseScopeProvider {
@Inject extension |JvmModelAssociations associations

override IScope createLocalVarScope(EObject context,
EReference reference, IScope parent,
boolean includeCurrentBlock, int idx) {
if (context instanceof Entity) {
val type = (context as Entity).jvmType
return new SimpleScope(parent, newlmmutableList(
EObjectDescription::create(XbaseScopeProvider:: THIS,

type)))
if(context instanceof Operation){

val descriptions = (context as Operation)
.params.map(e | e.createlEObjectDescription())

129

return MapBasedScope::createScope(
super.createLocalVarScope(context, reference,
parent, includeCurrentBlock, idx),
descriptions);
}
return super.createLocalVarScope(context, reference, parent,
includeCurrentBlock, idx)

}
def createlEObjectDescription(JvmFormalParameter jvmFormalParameter)
{

EObjectDescription::“create(
QualifiedName::"create(jvmFormalParameter.name),
jvmFormalParameter, null);

}

def JymType getJvmType(Entity entity) {
entity.jvmElements.filter(typeof(JvmType)).head

}
override JvmDeclaredType getContextType(EObject call) {
if (call == null)
return null
val containerClass = getContainerOfType(call, typeof(Entity));
if (containerClass != null)
return getJvmType(containerClass) as JvmDeclaredType
else
return super.getContextType(call)
}

}

In addition to the variable binding and some helper functions, we defined the function
getContextType to tell Xbase, which features are visible (callable) in the context of a
the given element. In out case, these are all features of the inferred type, including the
private ones.

10.5.3. Type Checking at the Boundaries

The scope provider from the last section allows Xbase to do static type analysis on the
operation bodies, as all callable properties now have types. The missing part is to make
sure that the declared return type conforms to the actual types of the method body’s
possible return values.

Type analysis in Xbase boils down to compare expected types with the actual types
returned by an expression. For example, the condition of an XlIfExpression is expected
to be a boolean, so any expression used as condition should conform to the boolean
type. The component the defines these types and expectations is the ITypeProvider. It
has several responsibilities

130

getType() returns the type of an expression

getExpected Type() returns the expected type of an expression
in a given context

getTypeForldentifiable() returns the expected type of an element that
is referenced

getCommonReturnType() returns the common supertype of all types
used in return expressions inside this expres-
sion

getThrownExceptions|() returns the types of all declared exceptions

thrown inside this expression

An additional flag rawType signals a raw type without resolved type parameters is
enough. This is needed to avoid cycles in the type inference while linking.

The XbaseTypeProvider implements polymorphic dispatch methods for the first three
of these. In the domain model example, we expect the return type of the body of an
Operation to conform to the declared return type. We can do so by specializing the
default XbaseTypeProvider as

@Singleton
public class Domainmodel TypeProvider extends XbaseTypeProvider {

protected JvmTypeReference _expected Type(Operation operation,
EReference reference, int index, boolean rawType) {
if(reference == DomainmodelPackage.Literals. OPERATION_BODY) {
return operation.getType();
}

return null;

}

and of course binding this new implementation in the languge’s module. By default,
Xbase only checks type conformance inside expressions. To address the validation at the
expression’s boundary, we have to add a validation rule (§8.4):

public class DomainmodelJavaValidator
extends AbstractDomainmodelJavaValidator {

@Inject
private XbaseTypeConformanceComputer typeConformanceComputer;

@Inject
private Domainmodel TypeProvider typeProvider;

©@Check
public void checkTypeConformanceOfOperation(Operation op){
JvmTypeReference expected Type = typeProvider
.getExpected Type(op.getBody());
JvmTypeReference commonReturnType = typeProvider
.getCommonReturnType(op.getBody(), true);

131

if(!typeConformanceComputer.isConformant(expected Type,
commonReturnType))
error('"Type does not conform to expected type!”,
DomainmodelPackage.Literals. OPERATION_BODY);

10.5.4. Generating Java Code using the Xbase Compiler

The XbaseCompiler compiles Xbase expressions to Java code. You will now learn how to
integrate it in the code generator of your DSL.
The following snippet shows how the code generator can call the compiler:

class DomainmodelGenerator implements |Generator {

@Inject DomainmodelCompiler domainmodelCompiler

1

def dispatch compile(Operation o, ImportManager importManager)
public «o.type.shortName(importManager)» «o.namey («
o.parameterList(importManager)») {
«domainmodelCompiler.compile(o, importManager)»

def parameterList(Operation o, ImportManager importManager) {
o.params.map(p| p.parameterType.shortName(importManager)
+ "' + p.name).join("",

11y

}

Now let us customize the compiler. The XbaseCompiler writes its code output into
an lAppendable. This component keeps track of the indentation, of local variables, and
of the generated code. Use an StringBuilderBasedAppendable to generate the code of an
XbaseExpression into a StringBuilder. Before calling the compiler, we add the operation’s
parameters to the local variables.

Remember that in the scope provider (§10.5.2) we bound the variable this to the
inferred type of the current Entity. The XbaseCompiler will by default assign the value
of all expressions to a new Java variable. If we just call this, we don’t need that, so we
override isVariableDeclarationRequired to return false in this case. Similarly, whenever
the compiler needs to put a variable name for the inferred Java type, it should use this.
This can be achieved by overriding getVarName(). In a similar way, we have to override
the IdentifiableSimpleNameProvider to return this for the type. It is likely that we will reduce
the last two tasks to one in the future.

Here’s the complete code for the customized compiler:

132

public class DomainmodelCompiler extends XbaseCompiler {

public String compile(Operation operation,
ImportManager importManager) {
StringBuilderBasedAppendable appendable =
new StringBuilderBasedAppendable(importManager);
for(JvmFormalParameter param: operation.getParams()) {
appendable.declareVariable(param, param.getName());

return compile(operation.getBody(), appendable,
operation.getType()).toString();

}

@Override
protected boolean isVariableDeclarationRequired (XExpression expr,
IAppendable b) {
if (expr instanceof XAbstractFeatureCall
& & ((XAbstractFeatureCall)expr).getFeature()
instanceof JvmGenericType) {
return false;

}

return super.isVariableDeclarationRequired(expr,b);

}

@Override
protected String getVarName(Object ex, |IAppendable appendable) {
if(ex instanceof JvmGenericType) {
return "this”;
}

return super.getVarName(ex, appendable);

class DomainmodelldentifiableSimpleNameProvider extends
IdentifiableSimpleNameProvider {

def dispatch getSimpleName(JvmType element) {
return "this";
}

def dispatch getSimpleName(JvmldentifiableElement element) {
return super.getSimpleName(element);
}

133

10.5.5. Using the Xbase Interpreter

Sometimes it is more convenient to interpret a model that uses Xbase than to generate
code from it. Xbase ships with the Xbaselnterpreter which makes this rather easy.

An interpreter is essentially an external visitor, that recursively processes a model
based on the model element’s types. By now you should be aware that polymorphic
dispatch is exactly the technology needed here. In the Xbaselnterpreter, the dispatch
method is called _evaluate< ElementType WithoutX> and takes two parameters, e.g.

protected Object _evaluateBlockExpression(XBlockExpression literal,
IEvaluationContext context,
Cancellndicator indicator)

The IEvaluationContext keeps the state of the running application, i.e. the local variables
and their values. Additionally, it can be forked, thus allowing to shadow the elements
of the original context. Here is an example code snippet how to call the Xbaselnterpreter:

@Inject private Xbaselnterpreter xbaselnterpreter;

@Inject private Provider<|EvaluationContext> contextProvider;

public Object evaluate(XExpression expression, Object thisElement) {
|IEvaluationContext evaluationContext = contextProvider.get();
evaluationContext.newValue(XbaseScopeProvider. THIS, thisElement);
|IEvaluationResult result = xbaselnterpreter.evaluate(expression,
evaluationContext, Cancellndicator.Nulllmpl);
if (result.getException() != null) {
// handle exception
}

return result.getResult();

10.6. Xbase Language Reference

This document describes the expression language library Xbase. Xbase is a partial
programming language implemented in Xtext and is meant to be embedded and extended
within other programming languages and domain-specific languages (DSL) written in
Xtext. Xtext is a highly extendable language development framework covering all aspects
of language infrastructure such as parsers, linkers, compilers, interpreters and even full-
blown IDE support based on Eclipse.

Developing DSLs has become incredibly easy with Xtext. Structural languages which
introduce new coarse-grained concepts, such as services, entities, value objects or state-
machines can be developed in minutes. However, software systems do not consist of
structures solely. At some point a system needs to have some behavior, which is usually
specified using so called expressions. Expressions are the heart of every programming

134

language and are not easy to get right. On the other hand, expressions are well un-
derstood and many programming languages share a common set and understanding of
expressions. That is why most people do not add support for expressions in their DSL,
but try to solve this differently. The most often used workaround is to define only the
structural information in the DSL and add behavior by modifying or extending the gen-
erated code. It is not only unpleasant to write, read and maintain information which
closely belongs together in two different places, abstraction levels and languages. Also,
modifying the generated source code comes with a lot of additional problems. But as
of today this is the preferred solution since adding support for expressions (and a corre-
sponding execution environment) for your language is hard - even with Xtext.

Xbase serves as a language library providing a common expression language bound
to the Java platform (i.e. Java Virtual Machine). It consists of an Xtext grammar, as
well as reusable and adaptable implementations for the different aspects of a language
infrastructure such as an AST structure, a compiler, an interpreter, a linker, and a static
analyzer. In addition it comes with implementations to integrate the expression language
within an Xtext-based Eclipse IDE. Default implementations for aspects like content
assistance, syntax coloring, hovering, folding and navigation can be easily integrated
and reused within any Xtext based language.

Conceptually and syntactically, Xbase is very close to Java statements and expressions,
but with a few differences:

e Runs on the JVM

e No checked exceptions

e Object-oriented

e Everything is an expression, there are no statements
e Closures

e Type inference

e Properties

e Simple operator overloading

e Powerful switch expressions

10.7. Lexical Syntax

Xbase comes with a small set of lexer rules, which can be overridden and hence changed
by users. However the default implementation is carefully chosen and it is recommended
to stick with the lexical syntax described in the following.

135

10.7.1. Identifiers

Identifiers are used to name all constructs, such as types, methods and variables. Xbase
uses the default Identifier-Syntax from Xtext - compared to Java, they are slightly sim-
plified to match the common cases while having less ambiguities. They start with a
letter a-z, A-Z or an underscore followed by more of these characters or a digit 0-9.

10.7.2. Escaped Identifiers

Identifiers may not have the same spelling as any reserved keyword. However, identifiers
starting with a ~ are so called escaped identifiers. Escaped identifiers are used in cases
when there is a conflict with a reserved keyword. Imagine you have introduced a keyword
service in your language but want to call a Java property service at some point. In such
cases you use an escaped identifier “service to reference the Java property.

Syntax

terminal ID:
Y/\l? (lay.-lzy

A2 (a2

1009

Examples

e Foo
o Foo42
e FOO
o 42

e _foo

“extends

10.7.3. String Literals

String literals can either use single quotes (') or double quotes (”) as their terminals.
When using double quotes all literals allowed by Java string literals are supported. In
addition new line characters are allowed, that is in Xbase all string literals can span
multiple lines. When using single quotes the only difference is that single quotes within
the literal have to be escaped and double quotes do not.

See § 3.10.5 String Literals

In contrast to Java, equal string literals within the same class do not neccessarily refer
to the same instance at runtime.

136

http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.10.5

Syntax

//TODO

Examples
e 'Foo Bar Baz'

e "Foo Bar Baz"

e the quick brown fox
jumps over the lazy dog.'

'Escapes : \'’

"Escapes : \""

10.7.4. Integer Literals

Integer literals consist of one or more digits. Only decimal literals are supported and
they always result in a value of type java.lang.Integer (it might result in native type int
when translated to Java, see Types (§10.8)). The compiler makes sure that only numbers
between 0 and Integer. MAX (OxT{HIfIf) are used.

There is no negative integer literal, instead the expression —23 is parsed as the prefix
operator — applied to an integer literal.

Syntax

terminal INT returns ecore::Elnt:
(vovuvgv)_"_

Comments

Xbase comes with two different kinds of comments: Single-line comments and multi-line
comments. The syntax is the same as the one known from Java (see § 3.7 Comments).

Syntax

terminal ML_LCOMMENT :
v/*v —> y*/y

;terminal SL_COMMENT :
/AR AR (\r'? \n')?

137

http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.7

10.7.5. White Space

The white space characters ' ', "\t’, "\n’, and "\r are allowed to occur anywhere between
the other syntactic elements.

10.7.6. Reserved Keywords

The following list of words are reserved keywords, thus reducing the set of possible
identifiers:

1. extends
2. super
3. instanceof
4. as

5. new
6. null

7. false
8. true
9. val

10. var
11. if

12. else
13. switch
14. case
15. default
16. do

17. while
18. for

19. typeof
20. throw
21. try

22. catch

138

23. finally

However, in case some of the keywords have to be used as identifiers, the escape
character for identifiers (§10.7.2) comes in handy.

10.8. Types

Basically all kinds of JVM types are available and referable.
10.8.1. Arrays

Arrays cannot be declared explicitly, but they can be passed around and if needed are
transparently converted to a List of the compound type.

In other words, the return type of a Java method that returns an array of ints (int//)
can be directly assigned to a variable of type java.util. List<java.lang.Integer> (in short
List<Integer>). Due to type inference you can also defer the conversion. The conversion
is bi-directional so any method, that takes an array as argument can be invoked with a
List instead.

10.8.2. Simple Type References
A simple type reference only consists of a qualified name. A qualified name is a name

made up of identifiers which are separated by a dot (like in Java).

Syntax

QualifiedName:
ID ("." ID)x

There is no parser rule for a simple type reference, as it is expressed as a parameterized
type references without parameters.
Examples

e java.lang.String

e String

10.8.3. Function Types

Xbase introduces closures, and therefore an additional function type signature. On the
JVM-Level a closure (or more generally any function object) is just an instance of one
of the types in org.eclipse xtext.xbase.lib.Functionx, depending on the number of arguments.
However, as closures are a very important language feature, a special sugared syntax for
function types has been introduced. So instead of writing Functionl<String,Boolean> one
can write (String)=>Boolean.

139

Primitives cannot be used in function types.
For more information on closures see subsection 10.9.6.

Syntax

XFunctionTypeRef:
('('JvmTypeReference ('," JymTypeReference)x')")?
'=>" JvmTypeReference;

Examples

e =>Boolean // predicate without parameters
e (String)=>Boolean // One argument predicate
o (Mutable)=>Void // A method doing side effects only — returns null

o (List<String>, Integer)=>String

10.8.4. Parameterized Type References

The general syntax for type references allows to take any number of type arguments.
The semantics as well as the syntax is almost the same as in Java, so please refer to the
third edition of the Java Language Specification.

The only difference is that in Xbase a type reference can also be a function type. In
the following the full syntax of type references is shown, including function types and

type arguments.

Syntax

JvmTypeReference:
JvmParameterized TypeReference
XFunctionTypeRef;

XFunctionTypeRef:
('(" JymTypeReference (', JymTypeReference)x ')')?
'=>" JymTypeReference;

JvmParameterized TypeReference:
type=QualifiedName ("<’ JvmTypeArgument ('," JymTypeArgument)x '>")?;

JvmTypeArgument:
JvmReference TypeArgument |
JvmWildcard TypeArgument;

JvmReferenceTypeArgument :
JvmTypeReference;

140

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

JvmWildcard TypeArgument:
'?" (JvymUpperBound | JvymLowerBound)?;

JvmLowerBound :
'super’ JvmTypeReference;

JvmUpperBound :
'extends’ JvmTypeReference;

Examples
e String
e java.lang.String

List<?>

List<? extends Comparable<? extends FooBar>

List<? super MylLowerBound>

List<? extends =>Boolean>

10.8.5. Primitives

Xbase supports all Java primitives. The conformance rules (e.g. boxing unboxing) are
also exactly like defined in the Java Language Specification.

10.8.6. Conformance and Conversion

Conformance is used in order to find out whether some expression can be used in a
certain situation. For instance when assigning a value to a variable, the type of the right
hand expression needs to conform to the type of the variable.

As Xbase implements the unchanegd type system of Java it also fully supports the
conformance rules defined in The Java Language Specification.

10.8.7. Common Super Type

Because of type inference Xbase sometimes needs to compute the most common super
type of a given set of types.

For a set [T1,T2,...Tn] of types the common super type is computed by using the
linear type inheritance sequence of T'I and is iterated until one type conforms to each
T2,..,Tn. The linear type inheritance sequence of T71 is computed by ordering all types
which are part if the type hierarchy of T1 by their specificity. A type T'1 is considered
more specific than T2 if T1 is a subtype of T2. Any types with equal specificity will be
sorted by the maximal distance to the originating subtype. CharSequence has distance 2
to StringBuilder because the supertype AbstractStringBuilder implements the interface,

141

http://java.sun.com/docs/books/jls/third_edition/html/conversions.html

too. Even if StringBuilder implements CharSequence directly, the interface gets distance
2 in the ordering because it is not the most general class in the type hierarchy that
implements the interface. If the distances for two classes are the same in the hierarchy,
their qualified name is used as the compare-key to ensure deterministic results.

10.9. Expressions

Expressions are the main language constructs which are used to express behavior and
computation of values. The concept of statements is not supported, but instead powerful
expressions are used to handle situations in which the imperative nature of statements
would be helpful, too. An expression always results in a value (might be the value null’
though). In addition every resolved expressions is of a static type.

10.9.1. Literals

A literal denotes a fixed unchangeable value. Literals for string, integers, booleans, null
and Java types are supported.

String Literals

A string literal as syntactically defined in subsection 10.7.3 is a valid expression and
returns an instance of java.lang.String of the given value.

e 'Hello World !

e "Hello World !"

o 'Hello
World 1"

Integer Literals

An integer literal as defined in subsection 10.7.4 creates an int. There is no signed int.
If you put a minus operator in front of an int literal it is taken as a UnaryOperator with
one argument (the positive int literal).

e 42

e 234254

Boolean Literals

There are two boolean literals, true and false which correspond to their Java counterpart
of type boolean.

e true

e false

142

Null Literal

The null pointer literal is, like in Java, null. It is a member of any reference type.

e null

Type Literals
Type literals are specified using the keyword typeof :

e typeof(java.lang.String) which yields java.lang.String.class

10.9.2. Type Casts

Type cast behave like casts in Java, but have a slightly more readable syntax. Type
casts bind stronger than any other operator but weaker than feature calls.
The conformance rules for casts are defined in the Java Language Specification.

Syntax

XCastedExpression:
Expression 'as’ JymTypeReference;

Examples

e my.foo as MyType

e (1 + 3x5x%(— 23))as BigInteger

10.9.3. Infix Operators / Operator Overloading

There are a couple of common predefined infix operators. In contrast to Java, the op-
erators are not limited to operations on certain types. Instead an operator-to-method
mapping allows users to redefine the operators for any type just by implementing the cor-
responding method signature. The following defines the operators and the corresponding
Java method signatures / expressions.

143

http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.5

el +=e2 el._operator_add(e2)

el || e2 el._operator_or(e2)

el && €2 el._operator_and(e2)

el ==e2 el._operator_equals(e2)

el lI=e2 el._operator_notEquals(e2)

el <e2 el._operator_lessThan(e2)

el > e2 el._operator_greaterThan(e2)
el <=e2 el._operator_lessEqualsThan(e2)
el >=e2 el._operator_greaterEqualsThan(e2)
el —> e2 el._operator_mappedTo(e2)

el .. e2 el._operator_upTo(e2)

el +e2 el._operator_plus(e2)

el —e2 el._operator_minus(e2)

el x e2 el._operator_multiply(e2)

el / e2 el._operator_divide(e2)

el % e2 el._operator_modulo(e2)

el sx e2 el._operator_power(e2)

lel el._operator_not()

—el el._operator_minus()

The table above also defines the operator precedence in ascending order. The blank
lines separate precedence levels. The assignment operator += is right-to-left associative
in the same way as the plain assignment operator = is. That is a = b = ¢ is executed as
a = (b = ¢), all other operators are left-to-right associative. Parenthesis can be used to
adjust the default precedence and associativity.

Short-Circuit Boolean Operators

If the operators || and && are used in a context where the left hand operand is of type
boolean, the operation is evaluated in short circuit mode, which means that the right
hand operand might not be evaluated at all in the following cases:

1. in the case of || the operand on the right hand side is not evaluated if the left
operand evaluates to true.

2. in the case of && the operand on the right hand side is not evaluated if the left
operand evaluates to false.

144

Examples

e my.foo = 23

e mylist += 23

o x>23&&y<23
o x&&vyllz

e 1+3x%5x%(—23)

o I(x)
e my.foo = 23
e my.foo = 23

Assignments

Local variables (§10.9.9) can be reassigned using the = operator. Also properties can be
set using that operator: Given the expression

myObj.myProperty = "foo”

The compiler first looks up whether there is an accessible Java Field called myProperty
on the type of myObj. If there is one it translates to the following Java expression :

myObj.myProperty = "foo";

Remember in Xbase everything is an expression and has to return something. In the
case of simple assignments the return value is the value returned from the corresponding
Java expression, which is the assigned value.

If there is no accessible field on the left operand’s type, a method called setMyProperty
(OneArg) (JavaBeans setter method) is looked up. It has to take one argument of the
type (or a super type) of the right hand operand. The return value will be whatever the
setter method returns (which usually is null). As a result the compiler translates to :

myObj.setMyProperty("foo”)

10.9.4. Feature Calls

A feature call is used to invoke members of objects, such as fields and methods, but also
can refer to local variables and parameters, which are made available for the current
expression’s scope.

145

Syntax

The following snippet is a simplification of the real Xtext rules, which cover more than
the concrete syntax.

FeatureCall :
ID |
Expression ("." ID ('(" Expression ('," Expression)x ")")?)x

Property Access

Feature calls are directly translated to their Java equivalent with the exception, that for
calls to properties an equivalent rule as described in section 10.9.3 applies. That is, for
the following expression

myObj.myProperty
the compiler first looks for an accessible field in the type of myObj. If no such field
exists it looks for a method called myProperty() before it looks for the getter methods

getMyProperty(). If none of these members can be found the expression is unbound and
a compiliation error is thrown.

Implicit ’this’ variable

If the current scope contains a variable named this, the compiler will make all its members
available to the scope. That is if

this.myProperty

is a valid expression
myProperty

is valid as well and is equivalent, as long as there is no local variable 'myProperty’ on
the scope, which would have higher precedence.

Null-Safe Feature Call

Checking for null references can make code very unreadable. In many situations it is ok
for an expression to return null if a receiver was null. Xbase supports the safe navigation
operator ?. to make such code more readable.

Instead of writing

if (myRef != null) myRef.doStuff()

one can write

myRef?.doStuff()

146

10.9.5. Constructor Call

Construction of objects is done by invoking Java constructors. The syntax is exactly as
in Java.

Examples

e hew String()

e New java.util.ArrayList<java.math.BigDecimal>()

Syntax

XConstructorCall:
'new’ QualifiedName
(<’ JvmTypeArgument (', JymTypeArgument)* '>")?
("("(XExpression ('," XExpression)*)?')")?;

10.9.6. Closures

A closure is a literal that defines an anonymous function. A closure also captures the
current scope, so that any final variables and parameters visible at construction time
can be referred to in the closure’s expression.

Syntax

XClosure:
T (JymFormalParameter ('," JymFormalParameter)x)?
'|'" XExpression ']’;

The surrounding square brackets are optional if the closure is the single argument of
a method invocation. That is you can write

myList.find(e|e.name==nuill)

instead of

myList.find([e|e.name==null])

But in all other cases the square brackets are mandatory:

val func = [String s| s.length>3]

147

Typing

Closures are expressions which produce function objects. The type is a function type (§10.8.3),
consisting of the types of the parameters as well as the return type. The return type
is never specified explicitly but is always inferred from the expression. The parameter
types can be inferred if the closure is used in a context where this is possible.

For instance, given the following Java method signature:

public T <T>getFirst(List<T> list, Function0<T,Boolean> predicate)
the type of the parameter can be inferred. Which allows users to write:
arrayList("Foo", "Bar").findFirst(e | e == "Bar")

instead of

arrayList("Foo”, "Bar").findFirst(String e | e == "Bar")

Function Mapping

An Xbase closure is a Java object of one of the Function interfaces shipped with the
runtime library of Xbase. There is an interface for each number of parameters (current
maximum is six parameters). The names of the interfaces are

o Function0< ReturnType> for zero parameters,

Function1<Paraml1Type, ReturnType> for one parameters,

Function2< Param1 Type, Param2Type, ReturnType> for two parameters,

Function6< Param1Type, Param2Type, Param3Type, ParamiType, ParamdbType,
Param6Type, ReturnType> for six parameters,

In order to allow seamless integration with existing Java libraries such as the JDK
or Google Guava (formerly known as Google Collect) closures are auto coerced to ex-
pected types if those types declare only one method (methods from java.lang.Object
don’t count).

As a result given the method java.util.Collections.sort(List<T>, Comparator<? super T>) is
available as an extension method, it can be invoked like this

newArrayList('aaa’, 'bb’, 'c’).sort(
el, e2 | if (el.length > e2.length) {
-1
} else if (el.length < e2.length) {
1
} else {

0
)

148

Examples

e [| "foo"] //closure without parameters
e [String s | s.toUpperCase()] //explicit argument type

e [a,b,a|a+b+c] //inferred argument types

10.9.7. If Expression

An if expression is used to choose two different values based on a predicate. While it
has the syntax of Java’s if statement it behaves like Java’s ternary operator (predicate ?
thenPart : elsePart), i.e. it is an expression that returns a value. Consequently, you can
use if expressions deeply nested within expressions.

Syntax

XIfExpression:
if" '(" XExpression ')’
XExpression
(‘else’ XExpression)?;

An expression if (p)el else e2 results in either the value el or 2 depending on whether
the predicate p evaluates to true or false. The else part is optional which is a shorthand
for else null. That means

if (foo) x

is the a short hand for

if (foo) x else null

Typing

The type of an if expression is calculated by the return types T1 and T2 of the two
expression el and e2. It uses the rules defined in subsection 10.8.7.

Examples

o if (isFoo)this else that
o if (isFoo){ this } else if (thatFoo){ that } else { other }

o if (isFoo)this

149

10.9.8. Switch Expression

The switch expression is a bit different from Java’s. First, there is no fall through which
means only one case is evaluated at most. Second, the use of switch is not limited to
certain values but can be used for any object reference instead.

For a switch expression

switch e {
case el :erl
case e2 : er2

case en : ern
default : er

}

the main expression e is evaluated first and then each case sequentially. If the switch ex-
pression contains a variable declaration using the syntax known from subsection 10.9.11,
the value is bound to the given name. Expressions of type java.lang.Boolean or boolean are
not allowed in a switch expression.

The guard of each case clause is evaluated until the switch value equals the result of
the case’s guard expression or if the case’s guard expression evaluates to true. Then the
right hand expression of the case evaluated and the result is returned.

If none of the guards matches the default expression is evaluated an returned. If no
default expression is specified the expression evaluates to null.

Example:

switch myString {
case myString.length>5 : 'a long string.’
case 'foo’ : 'lt's a foo.’
default : 'It's a short non—foo string.’

Type guards

In addition to the case guards one can add a so called Type Guard which is syntactically
just a type reference (§10.8.2) preceding the than optional case keyword. The compiler
will use that type for the switch expression in subsequent expressions. Example:

var Object x = ..;

switch x {
String case x.length()>0 : x.length()
List<?> : x.size()
default : —1

Only if the switch value passes a type guard, i.e. an instanceof operation returns true,
the case’s guard expression is executed using the same semantics explained in previously.

150

If the switch expression contains an explicit declaration of a local variable or the expres-
sion references a local variable, the type guard acts like a cast, that is all references to
the switch value will be of the type specified in the type guard.

Typing

The return type of a switch expression is computed using the rules defined in subsec-
tion 10.8.7. The set of types from which the common super type is computed corresponds
to the types of each case’s result expression. In case a switch expression’s type is com-
puted using the expected type from the context, it is sufficient to return the expected
type if all case branches types conform to the expected type.

Examples

e Switch foo {
Entity : foo.superType.name
Datatype : foo.name
default : throw new lllegalStateException

}

e Switch x : foo.bar.complicated(’hello’,42) {
case "hello42" : ...
case x.length<2 : ...
default : ...

Syntax

XSwitchExpression:
'switch’ (ID ":")? XExpression '{’
XCasePart+
('default’ ":" XExpression))?

v

XCasePart:
JvmTypeReference? ('case’ XExpression)? ;" XExpression);
¥

10.9.9. Variable Declarations

Variable declarations are only allowed within blocks (§10.9.10). They are visible in any
subsequent expressions in the block. Although overriding or shadowing variables from
outer scopes is allowed, it is usually only used to overload the variable name ’this’, in
order to subsequently access an object’s features in an unqualified manner.

A variable declaration starting with the keyword val denotes a so called value, which is
essentially a final (i.e. unsettable) variable. In rare cases, one needs to update the value

151

of a reference. In such situations the variable needs to be declared with the keyword var,
which stands for ’variable’.
A typical example for using var is a counter in a loop.

{
val max = 100
vari =0
while (i > max) {
printIn("Hi there!”)
i=i+1
}
}

Variables declared outside a closure using the var keyword are not accessible from
within a closure.

Syntax

XVariableDeclaration:
('val' | 'var') JymTypeReference? ID '='" XExpression;

Typing

The return type of a variable declaration expression is always void. The type of the
variable itself can either be explicitly declared or be inferred from the right hand side
expression. Here is an example for an explicitly declared type:

var List<String> msg = new ArrayList<String>();

In such cases, the right hand expression’s type must conform (§10.8.6) to the type on
the left hand side.

Alternatively the type can be left out and will be inferred from the initialization
expression:

var msg = new ArraylList<String>(); // —> type ArrayList<String>

10.9.10. Blocks

The block expression allows to have imperative code sequences. It consists of a se-
quence of expressions, and returns the value of the last expression. The return type
of a block is also the type of the last expression. Empty blocks return null. Variable
declarations (§10.9.9) are only allowed within blocks and cannot be used as a block’s
last expression.

A block expression is surrounded by curly braces and contains at least one expression.
It can optionally be terminated by a semicolon.

152

Examples

{
doSideEffect("foo")
result
}
{
var x = greeting();
if (x.equals("Hello ")) {
x+"World!";
} else {
X3
}
}
Syntax
XBlockExpression:
V{Y
(XExpressionlnsideBlock ';'?)x
Y});

10.9.11. For Loop

The for loop for (T1 variable : iterableOfT1)expression is used to execute a certain expression
for each element of an array of an instance of java.lang.lterable. The local variable is final,
hence canot be updated.

The return type of a for loop is void. The type of the local variable can be left out.
In that case it is inferred from the type of the array or java.lang.lterable returned by the
iterable expression.

e for (String s : myStrings) {
doSideEffect(s);

e for (s : myStrings)
doSideEffect(s)
Syntax
XForExpression:

'for’ '(" JymFormalParameter ":" XExpression ")’
XExpression

153

10.9.12. While Loop

A while loop while (predicate)expression is used to execute a certain expression unless the
predicate is evaluated to false. The return type of a while loop is void.

Syntax

XWhileExpression:
'while' '(" predicate=XExpression ')’
body=XExpression;

Examples

o While (true) {
doSideEffect("foo");
}

while ((i=i+1) < max)
doSideEffect("foo")

10.9.13. Do-While Loop

A do-while loop do expression while (predicate) is used to execute a certain expression unless
the predicate is evaluated to false. The difference to the while loop (§10.9.12) is that the
execution starts by executing the block once before evaluating the predicate for the first
time. The return type of a do-while loop is void.

Syntax

XDoWhileExpression:
'do’
body=XExpression
'while' (" predicate=XExpression ')’;

Examples

o do{
doSideEffect("foo");
} while (true)

do doSideEffect("foo") while ((i=i+1)<max)

154

10.9.14. Return Expression

Although an explicit return is often not necessary, it is supported. In a closure for
instance a return expression is always implied if the expression itself is not of type void.
Anyway you can make it explicit:

listOfStrings.map(e| {
if (e==null)
return "NULL"
e.toUpperCase

)

10.9.15. Throwing Exceptions

Like in Java it is possible to throw java.lang. Throwable. The syntax is exactly the same as
in Java.

{

if (myList.isEmpty)
throw new lllegalArgumentException("the list must not be empty”)

}
10.9.16. Try, Catch, Finally

The try-catch-finally expression is used to handle exceptional situations. You are not
forced to declare checked exceptions, if you don’t catch checked exceptions they are
rethrown in a wrapping runtime exception. Other than that the syntax again is like the
one known from Java.

try {
throw new RuntimeException()

} catch (NullPointerException e) {
// handle e

} finally {
// do stuff
}

10.10. Extension Methods

Languages extending Xbase might want to contribute to the feature scope. Besides that
one can of course change the whole implementation as it seems fit there is a special hook,
which can be used to add so called extension methods to existing types.
Xbase itself comes with a standard library of such extension methods adding support
for various operators for the common types, such as java.lang.String, java.util.List, etc.
These extension methods are declared in separate Java classes. There are various
ways how extension methods can be added. The simplest is, that the language designer

155

predefines, which extension methods are available. This means, that language users
cannot add additional library functions using this mechanism.

Another alternative is to have them looked up by a certain naming convention. Also
for more general languages it is possible to let users add extension methods using imports
or the like. This approach can be seen in the language Xtend2, where extension methods
are lexically imported through static imports and/or dependency injection.

The precedence of extension methods is always lower than real member methods, that
is you cannot override member features. Also the extension members are not invoked
polymorphic. If you have two extension methods on the scope (foo(Object) and foo(String))
the expression (foo as Object).foo would bind and invoke foo(Object).

10.10.1. Examples

e foo
e my.foo
e my.foo(x)

e oh.my.foo(bar)

156

11. MWE2

The Modeling Workflow Engine 2 (MWE2) is a rewritten backwards compatible imple-
mentation of the Modeling Workflow Engine (MWE). It is a declarative, externally con-
figurable generator engine. Users can describe arbitrary object compositions by means
of a simple, concise syntax that allows to declare object instances, attribute values and
references. One use case - that’s where the name had its origins - is the definition of
workflows. Such a workflow consists usually of a number of components that interact
with each other. There are components to read EMF resources, to perform operations
(transformations) on them and to write them back or to generate any number of other
artifacts out of the information. Workflows are typically executed in a single JVM.
However there are no constraints the prevent implementors to provide components that
spawn multiple threads or new processes.

11.1. Examples

Let’s start with a couple of examples to demonstrate some usage scenarios for MWE2.
The first example is a simple HelloWorld module that does nothing but print a message to
standard out. The second module is assembled of three components that read an Ecore
file, transform the contained classifier-names to upper-case and serialize the resource back
to a new file. The last example uses the life-cycle methods of the IWorkflowComponent to
print the execution time of the workflow.

11.1.1. The Simplest Workflow

The arguably shortest MWE2 module may look like the following snippet:
module HelloWorld

SayHello {
message = "Hello World!"

}

It configures a very simple workflow component with a message that should be printed
to System.out when the workflow is executed. The module begins with a declaration of
its name. It must fulfill the Java conventions for fully qualified class-names. That’s why
the module HelloWorld has to be placed into the default package of a Java source folder.
The second element in the module is the class-name SayHello which introduces the root
element of the module. The interpreter will create an instance of the given type and
configure it as declared between the curly braces. E.g. the assignment message = "Hello
World!” in the module will be interpreted as an invocation of the setMessage(String) on the

157

instantiated object. As one can easily imagine, the implementation of the class SayHello
looks straight forward:

import org.eclipse.emf.mwe2.runtime.workflow.|WorkflowComponent;
import org.eclipse.emf.mwe2.runtime.workflow.|WorkflowContext;

public class SayHello implements IWorkflowComponent {

private String message = "Hello World!";
public void setMessage(String message) {
this.message = message;

}

public String getMessage() {
return message;

}

public void invoke(IWorkflowContext ctx) {
System.out.printIn(getMessage());

}

public void postlnvoke() {}
public void prelnvoke() {}

}

It looks like a simple POJO and that’s the philosophy behind MWE2. 1t is easily
possible to assemble completely independent objects in a declarative manner. To make
the workflow executable with the Mwe2Runner, the component SayHello must be nested in
a root workflow:

module HelloWorld
Workflow {

component = SayHello {
message = "Hello World!"
}

}

The package org.eclipse.emf.mwe2.runtime.workflow of the class Workflow is implicitly im-
ported in MWE2 modules to make the the modules more concise. The execution result
of this workflow will be revealed after a quick Run As .. -> MWE2 Workflow in the
console as

Hello World!

11.1.2. A Simple Transformation

The following workflow solves the exemplary task to rename every EClassifier in an *.ecore
file. It consists of three components that read, modify and write the model file:

module Renamer
Workflow {

158

component = ResourceReader {
uri = "model.ecore”

component = RenamingTransformer {}
component = ResourceWriter {
uri = "uppercaseModel.ecore”

}

The implementation of these components is surprisingly simple. It is easily possible
to create own components even for minor operations to automate a process.

The ResourceReader simply reads the file with the given URI and stores it in a so called
slot of the workflow context. A slot can be understood as a dictionary or map-entry.

public class ResourceReader extends WorkflowComponentWithSlot {
private String uri;
public void invoke(IWorkflowContext ctx) {
ResourceSet resourceSet = new ResourceSetImpl();
URI fileURI = URI.createFileURI(uri);
Resource resource = resourceSet.getResource(fileURI, true);
ctx.put(getSlot(), resource);

public void setUri(String uri) {
this.uri = uri;

public String getUri() {
return uri;
}
}

The actual transformer takes the model from the slot and modifies it. It simply iterates
the content of the resource, identifies each EClassifier and sets its name.

public class RenamingTransformer extends WorkflowComponentWithSlot {
private boolean tolLowerCase = false;
public void invoke(IWorkflowContext ctx) {
Resource resource = (Resource) ctx.get(getSlot());
EcoreUtil.resolveAll(resource);
Iterator<Object> contents = EcoreUtil.getAllContents(resource, true);
Iterator<EClassifier> iter =
Iterators.filter(contents, EClassifier.class);
while(iter.hasNext()) {
EClassifier classifier = (EClassifier) iter.next();
classifier.setName(isToLowerCase()
? classifier.getName().toLowerCase()
. classifier.getName().toUpperCase());

159

public void setToLowerCase(boolean toLowerCase) {
this.toLowerCase = tolLowerCase;

public boolean isToLowerCase() {
return toLowerCase;

}
}

After the model has been modified it should be written to a new file. That’s what the
ResourceWriter does. It actually takes the resource from the given slot and saves it with
the configured URI:

public class ResourceWriter extends WorkflowComponentWithSlot {
private String uri;
public void invoke(IWorkflowContext ctx) {
Resource resource = (Resource) ctx.get(getSlot());
URI uri = URI.createFileURI(getUri());
uri = resource.getResourceSet().getURIConverter().normalize(uri);
resource.setURI(uri);
try {
resource.save(null);
} catch (IOException e) {
throw new WrappedException(e);

}
}

public void setUri(String uri) {
this.uri = uri;

}

public String getUri() {
return uri;

}
}

Last but not least, the common supertype for those components looks like this:

public abstract class WorkflowComponentWithSlot
implements |WorkflowComponent {
private String slot = "model”;
public void setSlot(String slot) {
this.slot = slot;

public String getSlot() {
return slot;

}

public void postlnvoke() {}
public void prelnvoke() {}

160

Each of the mentioned implementations is rather simple and can be done in a couple
of minutes. Many tedious tasks that developers face in their daily work can be addressed
by a chain of rather simple components. MWE2 can be used to automate these tasks
with minimum effort.

11.1.3. A Stop-Watch

The last example demonstrates how to combine the MWE2 concepts to create a simple
stop-watch that allows to measure the execution time of a set of components. The idea
is to add the very same stop-watch twice as a component to a workflow. It will measure
the time from the first pre-invoke to the last post-invoke event and print the elapsed
milliseconds to the console.

public class StopWatch implements |WorkflowComponent {
private long start;
private boolean shouldStop = false;
public void invoke(IWorkflowContext ctx) {}

public void postinvoke() {
if (shouldStop) {
long elapsed = System.currentTimeMillis() — start;
System.out.printIn("Time elapsed: " + elapsed + " ms");

}

shouldStop = true;

}

public void prelnvoke() {
start = System.currentTimeMillis();

}
}

Clients who want to leverage this kind of stop-watch may use the following pattern.
The instance of the class StopWatch has to be added as the first component and the last
component to a workflow. Every component in-between will be measured. In this case,
it is another workflow that does not need know about this decoration. The idea is to use
a local identifier for the instantiated StopWatch and reuse this one at the end to receive
the post-invoke life-cycle event twice.

module MeasuredWorkflow

Workflow {
component = StopWatch: stopWatch {}
component = @OtherWorkflow {}
component = stopWatch

}

161

11.2. Language Reference

MWE2 has a few well defined concepts which can be combined to assemble arbitrary
object graphs in a compact and declarative manner.

o A MWE2 file defines a module which exposes its root component as reusable artifact.
e Properties can be used to extract reusable, configurable parts of the workflow.

e Components are mapped to plain vanilla Java objects. Arbitrary setABC(..) and
addXYZ(..) methods are used to configure them.

Let’s consider the follow short example module and SampleClass to explain these con-
cepts.

module com.mycompany.Example
import java.util.x

SampleClass {
singleValue = 'a string’
multiValue = ArrayList {}
child = {}

}

package com.mycompany;
import java.util.List;

public class SampleClass {
public void setSingleValue(String value) {..}
public void addMultiValue(List<?> value) {..}
public void addChild(SampleClass value) {..}

}

11.2.1. Mapping to Java Classes

The module com.mycompany.Example defines a root component of type com.mycompany.
SampleClass. It is possible to use the simple class-name because MWE2 uses the very same
visibility rules as the Java compiler. Classes that are in the same package as the module
can be referenced by their simple name. The same rule applies for classes from the java.
lang package. For convenience reasons is the package org.eclipse.emf.mwe2.runtime.workflow
implicitly imported as well as it exposes some library workflow components. However,
the imports are more flexible then in Java since MWE2-imports can be relative, e.g. the
import java.x resolves the reference util. ArrayList to java.util. ArrayList.

The root instance of type SampleClass has to be configured after it has been created.
Therefore the method setSingleValue will be called at first. The given parameter is 'a
string’. The method is identified by its name which starts with set. To allow to assign
multi-value properties, MWE provides access to methods called add* as well.

162

If the right side of the assignment in the workflow file does not define a class explicitly,
its type is inferred from the method parameter. The line child = {} is equivalent to child
= SampleClass {} and creates a new instance of SampleClass.

MWE2 ships with nice tool support. The editor will provide content assist for the
allowed types and highlight incompatible assignments. The available properties for Java
classes will be proposed as well.

11.2.2. Module

As MWE2 modules have a fully qualified name, it is possible to refer to them from other
modules. The type of the module is derived from the type of its root component. The
com.mycompany.Example can be assigned at any place where a com.mycompany.SampleClass
is expected.

Let’s create a second module com.mycompany.Second like this:

module com.mycompany.sub.Second
import com.mycompany.x

SampleClass {
child = @Example {}

}

The child value will be assigned to an instance of SampleClass that is configured as in
the first example workflow. This enables nice composition and a very focused, reusable
component design.

As the same rules apply in MWE2 like in Java, the module com.mycompany.sub.Second
has to be defined in a file called Second.mwe2 in the package com.mycompany.sub. The
import semantic for other modules is the same as for classes. The import statement
allows to refer to com.mycompany.Example with a shortened name.

11.2.3. Properties

MWE2 allows to extract arbitrary information into properties to ensure that these pieces
are not cluttered around the workflow and to allow for easier external customization.
The exemplary component definition was only changed slightly by introducing a property
value.

module com.mycompany.Example
var value = 'a string’

SampleClass {
singleValue = value

}

The type of the property will be derived from the default value similar to the mech-
anism that is already known from set- and add-methods. If no default value is given,
String will be assumed. However, properties are not limited to strings. The second built

163

in type is boolean via the familiar literals true and false. More flexibility is available via
actual component literals.

module com.mycompany.Example

var childlnstance = SampleClass {
singleValue = "child”

}

SampleClass {
child = childlnstance

}

If one wants to define string properties that are actual reusable parts for other prop-
erties, she may use defined variables inside other literals like this:

var aString = "part”
var anotherString = "reuse the ${part} here”

This is especially useful for file paths in workflows as one would usually want to define
some common root directories only once in the workflow and reuse this fragment across
certain other file locations.

11.2.4. Mandatory Properties

It is not always feasible to define default values for properties. That is where mandatory
properties come into play. Modules define their interface not only via their fully qualified
name and the type of the root component but also by means of the defined properties.

module com.mycompany.Example

var optional = ’a string’
var mandatory

SampleClass {
singleValue = optional
child = {
singleValue = mandatory

}
}

This version of the example module exposes two externally assignable properties. The
second one has no default value assigned and is thereby considered to be mandatory. The
mandatory value must be assigned if we reuse org.mycompany.Example in another module

like this:

module com.mycompany.Second
var newMandatory

Q@Example {

164

mandatory = "mandatoryValue”
optional = newMandatory

}

Note that it is even possible to reuse another module as the root component of a new
module. In this case we set the mandatory property of Example to a specific constant
value while the previously optional value is now redefined as mandatory by means of a
new property without a default value.

It is not only possible to define mandatory properties for MWE2 modules but for
classes as well. Therefore MWE2 ships with the Mandatory annotation. If a set- or add-
method is marked as Mandatory, the module validation will fail if no value was assigned
to that feature.

11.2.5. Named Components

Properties are not the only way to define something that can be reused. It is possible
to assign a name to any instantiated component whether it’s created from a class literal
or from another component. This allows to refer to previously created and configured
instances. Named instances can come handy for notification and call-back mechanisms
or more general in terms of defined life-cycle events.

If we wanted to assign the created instance to a property of itself, we could use the
following syntax:

module com.mycompany.Example

SampleClass : self {
child = self

}

A named component can be referenced immediately after its creation but it is not
possible to use forward references in a MWE2 file.

11.2.6. Auto Injection

Existing modules or classes often expose a set of properties that will be assigned to
features of its root component or set- and add- methods respectively. In many cases its
quite hard to come up with yet another name for the very same concept which leads to
the situation where the properties itself have the very same name as the component’s
feature. To avoid the overall repetition of assignments, MWE2 offers the possibility to
use the auto—inject modifier on the component literal:

module com.mycompany.Example
var child = SampleClass {}

SampleClass auto—inject {

}

165

This example will implicitly assign the value of the property child to the feature child
of the root component. This is especially useful for highly configurable workflows that
expose dozens of optional parameters each of which can be assigned to one or more
components.

The auto—inject modifier can be used for a subset of the available features as well. It
will suppressed for the explicitly set values of a component.

11.3. Syntax Reference

The following chapter serves as a reference for the concrete syntax of MWE2. The
building blocks of a module will be described in a few words.

MWE2 is not sensitive to white space and allows to define line-comments and block
comments everywhere. The syntax is the same as one is used to from the Java language:

// This is a comment

This is another one.

*/

Every name in MWE2 can be a fully qualified identifier and must follow the Java
conventions. However, in contrast to Java identifiers it is not allowed to use German
umlauts or Unicode escape sequences in identifiers. A valid ID-segment in MWE2 starts
with a letter or an underscore and is followed by any number of letters, numbers or
underscores. An identifier is composed from one or more segments which are delimited
by a’.” dot.

Name: ID ('." ID)x;
ID: ("a’..'z’|'A".Z'|) (Cal 2 A2 009)%,

MWE2 does not use a semicolon as a statement delimiter at any place.

11.3.1. Module

—"I 'mudula'l {“353] l ; import] T l £ @—]—I—ﬁ cumpnnanl;)—-'l EOF l—l-—

A module consists of four parts. The very first statement in a *mwe2 file is the
module declaration. The name of the module must follow the naming convention for
Java classes. That MWE2 file’s name must therefore be the same as the last segment
of the module-name and it has to be placed in the appropriate package of a Java source
path.

It is allowed to define any number of import statements in a module. Imports are
either suffixed by a wildcard or they import a concrete class or module. MWE2 can
handle relative imports in case one uses the wildcard notation:

166

'import’ name '.x'?

11.3.2. Property

The list of declared properties follows the optional import section. It is allowed to define
modules without any properties.

Each declared property is locally visible in the module. It furthermore defines an
assignable feature of the module in case one refers to it from another module. Properties
may either have a default value or they are considered to be mandatory. If the type
of property is omitted it will be inferred from the default value. The default type of a
property is String. That is, if no default value is available, the property is mandatory
and of type String.

There are four types of values available in MWE2. One may either define a string,
boolean or component literal or a reference to a previously defined property.

11.3.3. Component

The building block of a module is the root component. It defines the externally visible
type of the module and may either be created from a Java type or from another module.

class l
‘ module I

‘auto-inject’ assignment

8

The type of the component can be derived in many cases except for the root com-
ponent. That’s why it’s optional in the component literal. If no type is given, it will
be inferred from the left side of the assignment. The assigned feature can either be a
declared property of the module or a set- or add-method of a Java class.

Components can be named to make them referable in subsequent assignments. Fol-
lowing the "’ keyword, one can define an identifier for the instantiated component. The
identifier is locally visible in the module and any assignment that is defined after the
named component can refer to this identifier and thereby exactly point to the instanti-
ated object.

167

The next option for a component is auto—inject. If this modifier is set on a compo-
nent, any available feature of the component that has the same name as a property or
previously created named component will be automatically assigned.

The core of a component is the list of assignments between the curly braces. An
arbitrary number of values can be set on the component by means of feature-to-value
pairs.

namnea H componant [™

boolean

il

reference

The available constructs on the right hand side of the assignment are the same as for
default values for properties.

11.3.4. String Literals

String values are likely to be the most used literals in MWE2. There is a convenient
syntax for string concatenation available due to the high relevance in a descriptive object
composition and configuration language. MWE2 strings are multi-line strings and can
be composed of several parts.

var aString = 'a value’
var anotherString = 'lt is possible to embed ${aString} into
a multi—line string’

This is especially convenient for path-substitution if one defines e.g. a common root
directory and wants to specify other paths relative to the base.

There are two different delimiters available for strings. Users are free to either use
single- or double-quotes to start and end strings. If a certain string contains a lot of
single-quotes one would better choose double-quotes as delimiter and vice versa. There
is no semantic difference between both notations.

The escape character in MWE2 is the back-slash "\\". It can be used to write line-
breaks or tabular characters explicitly and to escape the beginning of substitution vari-
ables ${ and the quotes itself. Allowed escape sequences are:

168

\\

Other escape sequence are illeg

11.3.5. Boolean Literals

al in MWE2 strings.

line break

carriage return

tabular character
single-quote (can be omitted
in double-quoted strings)
double-quote (can be omitted
in single-quoted strings)
escape the substitution vari-
able start ${

the back-slash itself

MWE2 has native support for the boolean type. The literals are true and false.

11.3.6. References

Each assigned value in MWE2 either as default for properties or in a component assign-
ment can be a reference to a previously declared property or named component. The
can be referenced intuitively by their name.

169

12. Xtend

Xtend is a statically-typed programming language which is tightly integrated with and
runs on the Java Virtual Machine. It has its roots in the Java programming language
but improves on a couple of concepts:

e Advanced Type Inference - You rarely need to write down type signatures

o Full support for Java Generics - Including all conformance and conversion rules
e (losures - concise syntax for anonymous function literals

e Operator overloading - make your libraries even more expressive

o Powerful switch expressions - type based switching with implicit casts

e No statements - Everything is an expression

e Template expressions - with intelligent white space handling

e Fatension methods - Enhance closed types with new functionality optionally in-
jected via JSR-330

e property access syntax - shorthands for getter and setter access
o multiple dispatch aka polymorphic method invocation

e translates to Java not bytecode - understand what’s going on and use your code
for platforms such as Android or GWT

It is not aiming at replacing Java all together. Therefore its library is a thin layer over
the Java Development Kit (JDK) and interacts with Java exactly the same as it interacts
with Xtend code. Also Java can call Xtend functions in a completely transparent way.
And of course, it provides a modern Eclipse-based IDE closely integrated with the Java
Development Tools (JDT).

12.1. Getting Started

The best way to get started is to materialize the Xtend Tutorial example project in your
workspace. You'll find it in the new project wizard dialog.

The project contains a couple of sample Xtend files, which show the different language
concepts in action. You should also have a look into the ztend-gen folder which contains
the generated Java-version of them.

170

[E} PersonExtensions.java &2

package com.acme package com.acme;
import xtend.tutorial.util.Person @import java.util.List;[]
“class PersonExtensions { @SuppressWarnings{"all")

public class PersonExtensions {
= sortedFriends(Person person) {
person.friends.tolist.sortBy(e | e.getFullName()) = public List<Person> sortedFriends(final Person person) {
} Set<Person> _friends - person.getFriends(};
List<Person> _list - IterableExtensions.<Person>tolist(_friends);
el getFullName(Person person) { el final Functionl<Person,String> _function = new Functionl<Person,String=() {
person.forename + " " + person.name - o public String apply(Person e} {
} String _fullName = PersonExtensions.this.getFullName(e);
1 return _FullName;

}

List<Person> _sortBy - ListExtensions.<Person, String=sortBy(_list, _function);
return _sortBy;

= public String getFullName(final Person person) {
String _forename = person.getForename();
String _operator_plus = StringExtensions.operator_plus(_forename, " "J;
String _name - person.getName();
String _operator_plus_1 - StringExtensions.operator_plus(_operator_plus, _name);
return _operator_plus_1;

Figure 12.1.: Xtend and Java Vis-a-Vis

12.2. Classes and Functions

On a first glance an Xtend file pretty much looks like a Java file. It starts with a package

declaration followed by an import section, and after that comes the class definition. That

class in fact is directly translated to a Java class in the corresponding Java package.
Here is an example:

package com.acme
import java.util.List

class MyClass {
String first(List<String> elements) {
return elements.get(0)
}

12.2.1. Package Declaration

Package declarations are like in Java, with the small difference, that an identifier can be
escaped with a “ in case it conflicts with a keyword. Also you don’t terminate a package
declaration with a semicolon.

package org.eclipse.xtext

package my. public.”package

171

12.2.2. Imports

The ordinary imports of type names are equivalent to the imports known from Java.
Again one can escape any names conflicting with keywords using the “. In constrast to
Java, the import statement is never terminated with a semicolon. Xtend also features
static imports but allows only a wildcard at the end. So far you cannot import single
members using a static import.
As in Java the package ’java.lang.*’ is implicitly imported.
import java.math.BigDecimal

import java.math.x
import static java.util.Collections.x

Xtend supports extension methods, which allows to add functions to existing classes
without modifying them. Static extension functions are just one possibility - simply
put the keyword extension after the static keyword and the static functions will be made
available as member functions on their first parameter’s type.

That is the following import declaration

import static extension java.util.Collections.x

allows to use its methods for example like this :
new Foo().singletonList()

Although this is supported it is generally much nicer to use injected extensions (§12.2.4),
because they don’t bind you to the actual implementation.

12.2.3. Class Declaration

The class declaration reuses a lot of Java’s syntax but still is a bit different in some
aspects. Firstly the default visibility of any class is public. It is possible to write it
explicitly but if not specified it defaults to public. You can change the visibility to
private or protected. Java’s default "package private” visibility does not exist.

To be implemented: The abstract as well as the final modifiers are directly translated
to Java and have the exact same meaning.

Inheritance

Also inheritance is directly reused from Java. Single inheritance of Java classes as well
as implementing multiple Java interfaces is supported.

Generics

Full Java Generics with the exact same syntax and semantics are supported. That is
you can declare type parameters just as in Java and provide type arguments to types
you refer to (i.e. extend or implement).

172

Examples

The most simple class :

class MyClass {

}

A more advanced class declaration in Xtend :

class ArraylList<E> extends AbstractList<E>
implements List<E>, RandomAccess,
Cloneable, java.io.Serializable {

12.2.4. Fields

Fields in Xtend are always private and are usually used together with an annotation for
a dependency injection container. Example:

@Inject MyService myService

This will translate to the following Java field:
@Inject

private MyService myService;

Note that the visibility is always private, is you want to provide access to an injected
object you need to write an accessor function.

Extension Methods

You can make the instance methods provided by the field available as extension methods,
by adding the keyword extension to the field declaration.

Imagine you want to add a method ’fullName’ to a closed type ’Entity’. With extension
methods, you could declare the following class

class PersonExtensions {
def getFullName(Person p) {
p.forename + " " + p.name

}
}

And if you have an instance of this class injected as extension like this:

@Inject extension PersonExtensions personExtensions

The method is being put on the member scope of Person. So you can write the
following

myPerson.getFullName()

173

which is the a shorthand for

personExtensions.getFullName(myPerson)

Of course the property shorthand is also available

myPerson.fullName

The nice thing with using dependency injection in combination with the extension
modifier as opposed to static extensions (§12.2.2) is, that in case there is a bug in the
extension or it is implemented inefficiently or you just need a different strategy, you
can simply exchange the component with another implementation. You do this without
modifying the library nor the client code. You'll only have to change the binding in your
guice module. Also this gives you a general hook for any AOP-like thing you would want
to do, or allows you to write against an SPI, where the concrete implementation can be
provided by a third party.

12.2.5. Functions

Xtend functions are declared within a class and are translated to a corresponding Java
method with the exact same signature. (The only exceptions are dispatch methods,
which are explained here (§12.2.6)).

Let’s start with a simple example

def boolean equalslgnoreCase(String sl, String s2) :
sl.toLowerCase() == s2.toLowerCase();

Visibility

So far the visibility of any function is public. It is planned to add support for protected
and private.

12.2.6. Overriding Functions

Functions can override a function/method from the super class or implemented interfaces
using the keyword override. If a function is annotated with the keyword final, it cannot
be overridden. IF a function overrides a function (or method) from a super type, the
override keyword is mandatory and replaces the keyword def.

Example:

override boolean equalslgnoreCase(String s1,String s2) :
sl.toLowerCase() == s2.toLowerCase();

Declared Exceptions

To be implemented:

Xtend doesn’t force you to catch checked exceptions. If a called method throws a
checked exception and it is not catched or explicitly declared to be rethrown it will be
wrapped in a runtime exception and rethrown.

174

A declared checked exception will not be wrapped automatically.

* throws an |OException
o/
def void throwlOException() throws |OException {
throw new I0Exception()
}
VE:
* throws a WrappedException
*/

def void throwWrappedException() {
throw new I0Exception()

}

Inferred Return Types

If the return type of a function can be inferred it does not need to be declared. That is
the function

def boolean equalslgnoreCase(String s1,String s2) :
sl.toLowerCase() == s2.toLowerCase();

could be declared like this:

def equalslgnoreCase(String s1,String s2) :
sl.toLowerCase() == s2.toLowerCase();

This doesn’t work for abstract function declarations as well as if the return type of a
function depends on a recursive call of the same function. The compiler tells the user
when it needs to be specified.

Generics

Full Java Generics with the exact same syntax and semantics as in Java are supported.

Dispatch Functions

Generally function binding works just like method binding in Java. That is function
calls are bound based on the static types of arguments. Sometimes this is not what you
want. Especially in the context of extension methods one would like to have polymorphic
behavior.

Dispatch functions make a set of overloaded functions polymorphic. That is the run-
time types of all given arguments are used to decide which of the overloaded methods is
being invoked. This essentially removes the need for the quite invasive visitor pattern.

A dispatch function is marked using the keyword dispatch.

175

1

def dispatch foo(Number x) { "it's a number" }
def dispatch foo(Integer x) { "it's an int” }

For a set of visible dispatch functions in the current type hierarchy, the compiler
infers a common signature using the common super type of all declared arguments and
generates a Java method made up of if-else cascades. It dispatches to the different
available functions. The actually declared methods are all compiled to a Java method
that is prefixed with an underscore.

For the two dispatch methods in the example above the following Java code would be
generated:

public String foo(Number x) {
if (x instanceof Integer) {
return _foo((Integer)x);
} else if (x instanceof Number) {
return _foo((Number)x);
} else {
throw new lllegal ArgumentException(
"Couldn’t handle argument x:"+x);

}

protected String _foo(Integer x) {
return "It's an int’;
}

protected String _foo(Number x) {
return "It's a number”;
}

Note that the instanceof cascade is ordered by how specific a type is. More specific
types come first.

In case there is no single most general signature, one is computed and the different
overloaded methods are matched in the order they are declared within the class file.
Example:

def dispatch foo(Number x, Integer y) { "it's some number and an int" }
def dispatch foo(Integer x, Number x) { "it's an int and a number” }

generates the following Java code :

public String foo(Number x, Number y) {
if ((x instanceof Number)
&& (y instanceof Integer)) {
return _foo((Number)x,(Integer)y);
} else if ((x instanceof Integer)
&& (y instanceof Number)){
return _foo((Integer)x,(Number)y);
} else {

176

throw new lllegalArgumentException(
"Couldn’t handle argument x:"+x+", argument y:"+y);

}

As you can see a null reference is never a match. If you want to fetch null you can
declare a parameter using the type java.lang.Void.

def dispatch foo(Number x) { "it's some number” }
def dispatch foo(Integer x) { "it's an int" }
def dispatch foo(Void x) { throw new NullPointerException("x") }

Which compiles to the following Java code:

public String foo(Number x) {
if (x instanceof Integer) {
return _foo((Integer)x);
} else if (x instanceof Number){
return _foo((Number)x);
} else if (x == null) {
return _foo((Void)null);
} else {
throw new lllegal ArgumentException(
"Couldn’t handle argument x:"+x);

Overloading Functions from Super Types

Any visible Java methods from super types conforming to the compiled form of a dispatch
method are also included in the dispatch. Conforming means they have the right number
of arguments and have the same name (starting with an underscore).

For example, consider the following Java class :

public abstract class AbstractLabelProvider {
protected String _label(Object o) {
// some generic implementation

}
}

and the following Xtend class which extends the Java class :

class MyLabelProvider extends AbstractLabelProvider {
def dispatch label(Entity this) {
name

}

def dispatch label(Method this) {
name+"("+params.toString(",")+"):"+type

}

177

def dispatch label(Field this) {
name-ttype

}
}

The resulting dispatch method in the generated Java class 'MyLabelProvider’ would
then look like this:

public String label(Object o) {

if (o instanceof Field) {
return _label((Field)o);

} else if (o instanceof Method){
return _foo((Method)o);

} else if (o instanceof Entity){
return _foo((Entity)o);

} else if (o instanceof Object){
return _foo((Object)o);

} else {

throw new lllegalArgumentException(
"Couldn’t handle argument o:"+0);

12.2.7. Create Functions

Create functions in Xtend allow to do graph transformation in one pass where it usually
needs two passes. That means you don’t need to separate a translation from one graph
to another in the typical two phases: tree construction and interlinking the tree nodes.
You basically just need to write the whole transformation using create functions and the
built-in identity preservation will take care of the rest.

Consider you want to create a copy of the following list of persons into a :

Fred Flintstone {
marriedTo Willma Flintstone
friendWith Barny Rubble

Willma Flintstone {
marriedTo Fred Flintstone
}

Barny Rubble {
friendWith Fred Flintstone
}

A function like the following could do the trick :

def List<Person> copyPersons(List<Person> persons) {
persons.map(p | p.copy)
}

178

def copy(Person p) {
val result = new Person()
result.name = p.name
// The following is wrong and results in a stack overflow
result.friendWith = p.friendWith.map(p | p.copy)
result.marriedWith = p.marriedWith.map(p | p.copy)

}

The problem with that code is that we don’t track the origins of the created copies.
This is the main problem with model transformations. The classic solution is to run
the copying in two passes. First we create all instances and then we establish the links.
Although it works it results in cluttered and non coherent code. Xtend’s create functions
handle this problem by introducing identity perservation by tracking the origin of each
created instance. Therefore, a create function takes two expressions. One to instantiate
the actual object and a second one to initialize it.

def create result: new Person() copy(Person p) {
result.name = p.name
// now it works
result.friendWith = p.friendWith.map(p | p.copy)
result.marriedWith = p.marriedWith.map(p | p.copy)

}

It is even possible to define the return type of a create function by means of

def Person create r: new Personlmpl() copy(Person p) {
r.name = p.name
r.friendWith = p.friendWith.map(p | p.copy)
r.marriedWith = p.marriedWith.map(p | p.copy)

How it works

In addition to the keyword create one specifies two expressions. The first expression
is the factory to create an instance while the second will initialize it further. Prior to
invoking the factory expression, a cache lookup is performed to find a previously created
instance for the very same arguments. If there is no such instance, the factory expression
is evaluated and the result is stored in the cache. Subsequently the main expression
(also called the initializer expression) is evaluated. This happens only if there was no
previously created instance available in the cache. If that expression in turn calls the
create function transitively using the same set of arguments the previously instantiated
and cached object is returned. Note that the object is probably currently initialized.
That is, its internal state may not yet be available.

The lifecycle of the cache is attached to the instance of the declaring Xtend class.
That is you can control how long the cache lives by means of Guice.

179

12.2.8. Annotations

Xtend supports Java annotations. The syntax is exactly like defined in the Java Language
Specification. Annotations are available on classes, fields, functions and parameters.
Example:

@TypeAnnotation(typeof(String))
class MyClass {
@FieldAnnotation(children = {@MyAnno(true), @MyAnnot(false)}

String myField

©@MethodAnnotation(children = {@MyAnno(true), @MyAnnot}
def String myMethod(@ParameterAnnotation String param) {

/]...
}

12.3. Expressions

The most important part of a function is of course its implementation, which in Xtend
is either a single block expression (§12.3.10) or a rich string expression (§12.3.17).

12.3.1. Literals

A literal denotes a fixed unchangeable value. Literals for string, integers, booleans, null
and Java types are supported.

String Literals

A string literal is a valid expression and returns an instance of java.lang.String of the given
value.

e 'Hello World I’

o "Hello World 1"

e Hello
World !"

Integer Literals

An integer literal creates an int. There is no signed int. If you put a minus operator in
front of an int literal it is taken as a UnaryOperator with one argument (the positive int
literal).

e 42

e 234254

180

Boolean Literals

There are two boolean literals, true and false which correspond to their Java counterpart
of type boolean.

e true
e false

Null Literal

The null pointer literal is, like in Java, null. It is a member of any reference type.
e null

Type Literals

Type literals are specified using the keyword typeof :

e typeof(java.lang.String) which yields java.lang.String.class

12.3.2. Type Casts

Type cast behave like casts in Java, but have a slightly more readable syntax. Type
casts bind stronger than any other operator but weaker than feature calls.
The conformance rules for casts are defined in the Java Language Specification.

Syntax

XCastedExpression:
Expression 'as’ JvmTypeReference;

Examples

e my.foo as MyType

e (14 3 x5 % (— 23))as BigInteger

181

http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.5

12.3.3. Infix Operators / Operator Overloading

There are a couple of common predefined infix operators. In contrast to Java, the op-
erators are not limited to operations on certain types. Instead an operator-to-method
mapping allows users to redefine the operators for any type just by implementing the cor-
responding method signature. The following defines the operators and the corresponding
Java method signatures / expressions.

el +=e2 el._operator_add(e2)

el || e2 el._operator_or(e2)

el && €2 el._operator_and(e2)

el ==e2 el._operator_equals(e2)

el 1= e2 el._operator_notEquals(e2)

el < e2 el._operator_lessThan(e2)

el > e2 el._operator_greaterThan(e2)
el <=e2 el._operator_lessEqualsThan(e2)
el >=e2 el._operator_greaterEqualsThan(e2)
el —> e2 el._operator_mappedTo(e2)

el .. e2 el._operator_upTo(e2)

el + e2 el._operator_plus(e2)

el —e2 el._operator_minus(e2)

el x e2 el._operator_multiply(e2)

el /e2 el._operator_divide(e2)

el % e2 el._operator_modulo(e2)

el sx e2 el._operator_power(e2)

lel el._operator_not()

—el el._operator_minus()

The table above also defines the operator precedence in ascending order. The blank
lines separate precedence levels. The assignment operator += is right-to-left associative
in the same way as the plain assignment operator = is. That is a = b = ¢ is executed as
a = (b = ¢), all other operators are left-to-right associative. Parenthesis can be used to
adjust the default precedence and associativity.

Short-Circuit Boolean Operators

If the operators || and && are used in a context where the left hand operand is of type
boolean, the operation is evaluated in short circuit mode, which means that the right

182

hand operand might not be evaluated at all in the following cases:

1. in the case of || the operand on the right hand side is not evaluated if the left
operand evaluates to true.

2. in the case of && the operand on the right hand side is not evaluated if the left
operand evaluates to false.

Examples
e my.foo = 23
e mylist += 23
o x>23&&y <23
o x&&vyl|lz

e 1+ 3x%5x%(—23)

o I(x)
e my.foo = 23
e my.foo = 23

Assignments

Local variables (§12.3.9) can be reassigned using the = operator. Also properties can be
set using that operator: Given the expression

myObj.myProperty = "foo”

The compiler first looks up whether there is an accessible Java Field called myProperty
on the type of myObj. If there is one it translates to the following Java expression :

myObj.myProperty = "foo”;

Remember in Xtend everything is an expression and has to return something. In the
case of simple assignments the return value is the value returned from the corresponding
Java expression, which is the assigned value.

If there is no accessible field on the left operand’s type, a method called setMyProperty
(OneArg) (JavaBeans setter method) is looked up. It has to take one argument of the
type (or a super type) of the right hand operand. The return value will be whatever the
setter method returns (which usually is null). As a result the compiler translates to :

myObj.setMyProperty(“foo")

183

12.3.4. Feature Calls

A feature call is used to invoke members of objects, such as fields and methods, but also
can refer to local variables and parameters, which are made available for the current
expression’s scope.

Syntax

The following snippet is a simplification of the real Xtext rules, which cover more than
the concrete syntax.

FeatureCall :
ID |
Expression ("." ID ('(" Expression (’," Expression)x ')")?)x

Property Access

Feature calls are directly translated to their Java equivalent with the exception, that for
calls to properties an equivalent rule as described in section 12.3.3 applies. That is, for
the following expression

myObj.myProperty
the compiler first looks for an accessible field in the type of myObj. If no such field
exists it looks for a method called myProperty() before it looks for the getter methods

getMyProperty(). If none of these members can be found the expression is unbound and
a compiliation error is thrown.

Implicit 'this’ variable

If the current scope contains a variable named this, the compiler will make all its members
available to the scope. That is if

this.myProperty
is a valid expression
myProperty

is valid as well and is equivalent, as long as there is no local variable 'myProperty’ on
the scope, which would have higher precedence.

Null-Safe Feature Call

Checking for null references can make code very unreadable. In many situations it is ok
for an expression to return null if a receiver was null. Xtend supports the safe navigation
operator ?. to make such code more readable.

Instead of writing

184

if (myRef != null) myRef.doStuff()

one can write

myRef?.doStuff()

12.3.5. Constructor Call
Construction of objects is done by invoking Java constructors. The syntax is exactly as

in Java.

Examples

e new String()

e New java.util.ArrayList<java.math.BigDecimal>()

Syntax

XConstructorCall:
'new’ QualifiedName
("<’ JymTypeArgument ('," JymTypeArgument)* '>')?
("("(XExpression (', XExpression)*)?')")?;

12.3.6. Closures

A closure is a literal that defines an anonymous function. A closure also captures the
current scope, so that any final variables and parameters visible at construction time
can be referred to in the closure’s expression.

Syntax

XClosure:
T (JymFormalParameter ('," JymFormalParameter)x)?
'|'" XExpression ']’;

The surrounding square brackets are optional if the closure is the single argument of
a method invocation. That is you can write

myList.find(e|e.name==null)

instead of

myList.find([e|e.name==null])

But in all other cases the square brackets are mandatory:

val func = [String s| s.length>3]

185

Typing

Closures are expressions which produce function objects. The type is a function type (§10.8.3),
consisting of the types of the parameters as well as the return type. The return type
is never specified explicitly but is always inferred from the expression. The parameter
types can be inferred if the closure is used in a context where this is possible.

For instance, given the following Java method signature:

public T <T>getFirst(List<T> list, Function0<T,Boolean> predicate)
the type of the parameter can be inferred. Which allows users to write:
arrayList("Foo", "Bar").findFirst(e | e == "Bar")

instead of

arrayList("Foo”, "Bar").findFirst(String e | e == "Bar")

Function Mapping

An Xtend closure is a Java object of one of the Function interfaces shipped with the
runtime library of Xtend. There is an interface for each number of parameters (current
maximum is six parameters). The names of the interfaces are

o Function0< ReturnType> for zero parameters,

Function1<Paraml1Type, ReturnType> for one parameters,

Function2< Param1 Type, Param2Type, ReturnType> for two parameters,

Function6< Param1Type, Param2Type, Param3Type, ParamiType, ParamdbType,
Param6Type, ReturnType> for six parameters,

In order to allow seamless integration with existing Java libraries such as the JDK
or Google Guava (formerly known as Google Collect) closures are auto coerced to ex-
pected types if those types declare only one method (methods from java.lang.Object
don’t count).

As a result given the method java.util.Collections.sort(List<T>, Comparator<? super T>) is
available as an extension method, it can be invoked like this

newArrayList('aaa’, 'bb’, 'c’).sort(
el, e2 | if (el.length > e2.length) {
-1
} else if (el.length < e2.length) {
1
} else {

0
)

186

Examples

e [| "foo"] //closure without parameters
e [String s | s.toUpperCase()] //explicit argument type

e [a,b,a|a+b+c] //inferred argument types

12.3.7. If Expression

An if expression is used to choose two different values based on a predicate. While it
has the syntax of Java’s if statement it behaves like Java’s ternary operator (predicate ?
thenPart : elsePart), i.e. it is an expression that returns a value. Consequently, you can
use if expressions deeply nested within expressions.

Syntax

XIfExpression:
if" '(" XExpression ')’
XExpression
(‘else’ XExpression)?;

An expression if (p)el else e2 results in either the value el or 2 depending on whether
the predicate p evaluates to true or false. The else part is optional which is a shorthand
for else null. That means

if (foo) x

is the a short hand for

if (foo) x else null

Typing

The type of an if expression is calculated by the return types T1 and T2 of the two
expression el and e2. It uses the rules defined in subsection 10.8.7.

Examples

o if (isFoo)this else that
o if (isFoo){ this } else if (thatFoo){ that } else { other }

o if (isFoo)this

187

12.3.8. Switch Expression

The switch expression is a bit different from Java’s. First, there is no fall through which
means only one case is evaluated at most. Second, the use of switch is not limited to
certain values but can be used for any object reference instead.

For a switch expression

switch e {
case el :erl
case e2 : er2

case en : ern
default : er

}

the main expression e is evaluated first and then each case sequentially. If the switch ex-
pression contains a variable declaration using the syntax known from subsection 12.3.11,
the value is bound to the given name. Expressions of type java.lang.Boolean or boolean are
not allowed in a switch expression.

The guard of each case clause is evaluated until the switch value equals the result of
the case’s guard expression or if the case’s guard expression evaluates to true. Then the
right hand expression of the case evaluated and the result is returned.

If none of the guards matches the default expression is evaluated an returned. If no
default expression is specified the expression evaluates to null.

Example:

switch myString {
case myString.length>5 : 'a long string.’
case 'foo’ : 'lt's a foo.’
default : 'It's a short non—foo string.’

Type guards

In addition to the case guards one can add a so called Type Guard which is syntactically
just a type reference (§10.8.2) preceding the than optional case keyword. The compiler
will use that type for the switch expression in subsequent expressions. Example:

var Object x = ...;

switch x {
String case x.length()>0 : x.length()
List<?> : x.size()
default : —1

Only if the switch value passes a type guard, i.e. an instanceof operation returns true,
the case’s guard expression is executed using the same semantics explained in previously.

188

If the switch expression contains an explicit declaration of a local variable or the expres-
sion references a local variable, the type guard acts like a cast, that is all references to
the switch value will be of the type specified in the type guard.

Typing

The return type of a switch expression is computed using the rules defined in subsec-
tion 10.8.7. The set of types from which the common super type is computed corresponds
to the types of each case’s result expression. In case a switch expression’s type is com-
puted using the expected type from the context, it is sufficient to return the expected
type if all case branches types conform to the expected type.

Examples

e Switch foo {
Entity : foo.superType.name
Datatype : foo.name
default : throw new lllegalStateException

}

e Switch x : foo.bar.complicated(’hello’,42) {
case "hello42" : ...
case x.length<2 : ...
default : ...

Syntax

XSwitchExpression:
'switch’ (ID ":")? XExpression '{’
XCasePart+
('default’ ":" XExpression))?

v

XCasePart:
JvmTypeReference? ('case’ XExpression)? ;" XExpression);
¥

12.3.9. Variable Declarations

Variable declarations are only allowed within blocks (§12.3.10). They are visible in any
subsequent expressions in the block. Although overriding or shadowing variables from
outer scopes is allowed, it is usually only used to overload the variable name ’this’, in
order to subsequently access an object’s features in an unqualified manner.

A variable declaration starting with the keyword val denotes a so called value, which is
essentially a final (i.e. unsettable) variable. In rare cases, one needs to update the value

189

of a reference. In such situations the variable needs to be declared with the keyword var,
which stands for ’variable’.
A typical example for using var is a counter in a loop.

{
val max = 100
vari =0
while (i > max) {
printIn("Hi there!”)
=i+l
}
}

Variables declared outside a closure using the var keyword are not accessible from
within a closure.

Syntax

XVariableDeclaration:
('val' | 'var') JymTypeReference? ID '='" XExpression;

Typing

The return type of a variable declaration expression is always void. The type of the
variable itself can either be explicitly declared or be inferred from the right hand side
expression. Here is an example for an explicitly declared type:

var List<String> msg = new ArrayList<String>();

In such cases, the right hand expression’s type must conform (§10.8.6) to the type on
the left hand side.

Alternatively the type can be left out and will be inferred from the initialization
expression:

var msg = new ArrayList<String>(); // —> type ArrayList<String>

12.3.10. Blocks

The block expression allows to have imperative code sequences. It consists of a se-
quence of expressions, and returns the value of the last expression. The return type
of a block is also the type of the last expression. Empty blocks return null. Variable
declarations (§12.3.9) are only allowed within blocks and cannot be used as a block’s
last expression.

A block expression is surrounded by curly braces and contains at least one expression.
It can optionally be terminated by a semicolon.

190

Examples

{
doSideEffect("foo")
result
}
{
var x = greeting();
if (x.equals("Hello ")) {
x+"World!";
} else {
X3
}
}
Syntax
XBlockExpression:
l{)
(XExpressionlnsideBlock ';'?)x
Y});

12.3.11. For Loop

The for loop for (T1 variable : iterableOfT1)expression is used to execute a certain expression
for each element of an array of an instance of java.lang.lterable. The local variable is final,
hence canot be updated.

The return type of a for loop is void. The type of the local variable can be left out.
In that case it is inferred from the type of the array or java.lang.lterable returned by the
iterable expression.

e for (String s : myStrings) {
doSideEffect(s);

e for (s : myStrings)
doSideEffect(s)
Syntax
XForExpression:

'for' '(" JvmFormalParameter ;" XExpression ')’
XExpression

191

12.3.12. While Loop

A while loop while (predicate)expression is used to execute a certain expression unless the
predicate is evaluated to false. The return type of a while loop is void.

Syntax

XWhileExpression:
'while' '(" predicate=XExpression ')’
body=XExpression;

Examples

e While (true) {
doSideEffect("foo");
}

while ((i=i4+1) < max)
doSideEffect("foo")

12.3.13. Do-While Loop

A do-while loop do expression while (predicate) is used to execute a certain expression unless
the predicate is evaluated to false. The difference to the while loop (§12.3.12) is that the
execution starts by executing the block once before evaluating the predicate for the first
time. The return type of a do-while loop is void.

Syntax

XDoWhileExpression:
'do’
body=XExpression
'while' (" predicate=XExpression ')’;

Examples

o dof{
doSideEffect("foo");
} while (true)

do doSideEffect("foo") while ((i=i+1)<max)

192

12.3.14. Return Expression

Although an explicit return is often not necessary, it is supported. In a closure for
instance a return expression is always implied if the expression itself is not of type void.
Anyway you can make it explicit:

listOfStrings.map(e| {
if (e==null)
return "NULL"
e.toUpperCase

)

12.3.15. Throwing Exceptions

Like in Java it is possible to throw java.lang. Throwable. The syntax is exactly the same as
in Java.

{

if (myList.isEmpty)
throw new lllegal ArgumentException("the list must not be empty”)

12.3.16. Try, Catch, Finally

The try-catch-finally expression is used to handle exceptional situations. You are not
forced to declare checked exceptions, if you don’t catch checked exceptions they are
rethrown in a wrapping runtime exception. Other than that the syntax again is like the
one known from Java.

try {
throw new RuntimeException()

} catch (NullPointerException e) {
// handle e

} finally {
// do stuff

12.3.17. Rich Strings

Rich Strings allow for readable string concatenation, which is the main thing you do when
writing a code generator. Let’s have a look at an example of how a typical function with
template expressions looks like:

toClass(Entity e)
package «e.packageNamey;

«placelmports»

193

public class «e.name» «IF e.extends!=nullyextends «e.extends» «tENDIF» {
«FOR e.membersy
«member.toMember»
«ENDFOR»

n

If you are familiar with Xpand, you’ll notice that it is exactly the same syntax. The
difference is, that the template syntax is actually an expression, which means it can occur
everywhere where an expression is expected. For instance in conjunction the powerful
switch expression (§12.3.8):

toMember(Member m) {
switch m {
Field : '"'private «m.type» «m.name» ;
Method case isAbstract : """ abstract «...""
Method : """

1

12.3.18. Conditions in Rich Strings

There is a special IF to be used within rich strings which is identical in syntax and
meaning to the old IF from Xpand. Note that you could also use the if expression, but
since it has not an explicit terminal token, it is not as readable in that context.

12.3.19. Loops in Rich Strings

Also the FOR statement is available and can only be used in the context of a rich string.
It also supports the SEPARATOR from Xpand. In addition, a BEFORE expression can
be defined that is only evaluated if the loop is at least evaluated once before the very
first iteration. Consequently AFTER is evaluated after the last iteration if there is any
element.

12.3.20. Typing

The rich string is translated to an efficient string concatenation and the return type of
a rich string is CharSequence which allows room for efficient implementation.

12.3.21. White Space Handling

One of the key features of rich strings is the smart handling of white space in the
template output. The white space is not written into the output data structure as is
but preprocessed. This allows for readable templates as well as nicely formatted output.
This can be achieved by applying three simple rules when the rich string is evaluated.

1. An evaluated rich string as part of another string will be prefixed with the current
indentation of the caller before it is inserted into the result.

194

2. Indentation in the template that is relative to a control structure will not be
propagated to the output string. A control structure is a FOR-loop or a condition
(IF) as well as the opening and closing marks of the rich string itself.

The indentation is considered to be relative to such a control structure if the
previous line ends with a control structure followed by optional white space. The
amount of white space is not taken into account but the delta to the other lines.

3. Lines that do not contain any static text which is not white space but do contain
control structures or invocations of other templates which evaluate to an empty

string, will not appear in the output.

The behavior is best described with a set of examples. The following table assumes a

data structure of nested nodes.

class Template {
print(Node n) '
node «n.namey {}

1

node NodeName{}

The indentation before node «n.name» will be skipped as it is relative to the opening
mark of the rich string and thereby not considered to be relevant for the output but only

for readability of the template itself.

class Template {
print(Node n) "
node «n.namey {
«IF hasChildren»
«n.childrenx.print»
«ENDIF»

node Parent{
node FirstChild {

node SecondChild {
node Leaf {

}

As in the previous example, there is no indentation on the root level for the same
reason. The first nesting level has only one indentation level in the output. This is
derived from the indentation of the IF hasChildren condition in the template which is
nested in the node. The additional nesting of the recursive invocation childrenx.print is
not visible in the output as it is relative the the surrounding control structure. The line
with IF and ENDIF contain only control structures thus they are skipped in the output.
Note the additional indentation of the node Leaf which happens due to the first rule:

Indentation is propagated to called templates.

195

13. Integration with EMF and Other EMF
Editors

Xtext relies heavily on EMF internally, but it can also be used as the serialization back-
end of other EMF-based tools. In this section we introduce the basic concepts of the
Eclipse Modeling Framework (EMF) in the context of Xtext. If you want to learn more
about EMF, we recommend reading the EMF book.

13.1. Model, Ecore Model, and Ecore

Xtext uses EMF models as the in-memory representation of any parsed text files. This
in-memory object graph is called the Abstract Syntaz Tree (AST). Depending on the
community this concepts is also called document object graph (DOM), semantic model,
or simply model. We use model and AST interchangeably. Given the example model
from the introduction (§?7), the AST looks similar to this

SimpleType Entity Property
name=Bool name=Speaker name=Sessions
multi=true

Entity
name=Person

SimpleType
name=String
Entity Entity
Property name=Session name=Conference

name=Title »
Property

Property
name=Name

Property
Property name=Name name= Speakers
name=isTutorial multi=true
Property
name=Attendees
multi=true

Figure 13.1.: Sample AST

The AST should contain the essence of your textual models. It abstracts over syn-
tactical information. It is used by later processing steps, such as validation, compilation
or interpretation. In EMF a model is made up of instances of EObjects which are con-
nected and an EObject is an instance of an EClass. A set of EClasses if contained in a
so called EPackage, which are both concepts of Fcore In Xtext, meta models are either

196

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

inferred from the grammar or predefined by the user (see the section on package decla-
rations (§6.2.2) for details). The next diagram shows the meta model of our example:

Model

elements
Type

—>| name: EString K}——

type
extends Entity SimpleType

properties

Property
name:EString
multi: EBoolean

Figure 13.2.: Sample meta model

The language in which the meta model is defined is called FEcore. In other words, the
meta model is the Ecore model of your language. Ecore an essential part of EMF. Your
models instantiate the meta model, and your meta model instantiates Ecore. To put an
end to this recursion, Ecore is defined in itself (an instance of itself).

The meta model defines the types of the semantic nodes as Ecore EClasses. EClasses
are shown as boxes in the meta mode diagram, so in our example, Model, Type, Simple-
Type, Entity, and Property are EClasses. An EClass can inherit from other EClasses.
Multiple inheritance is allowed in Ecore, but of course cycles are forbidden.

EClasses can have EAttributes for their simple properties. These are shown inside
the EClasses nodes. The example contains two EAttributes name and one EAttribute
isMulti. The domain of values for an EAttribute is defined by its EDataType. Ecore
ships with some predefined EDataTypes, which essentially refer to Java primitive types
and other immutable classes like String. To make a distinction from the Java types, the
EDataTypes are prefixed with an E. In our example, that is EString and EBoolean.

In contrast to EAttributes, EReferences point to other EClasses. The containment flag
indicates whether an EReference is a containment reference or a cross-reference. In the
diagram, references are edges and containment references are marked with a diamond.
At the model level, each element can have at most one container, i.e. another element
referring to it with a containment reference. This infers a tree structure to the models,
as can be seen in the sample model diagram. On the other hand, cross-references refer to

197

elements that can be contained anywhere else. In the example, elements and properties
are containment references, while type and extends are cross-references. For reasons of
readability, we skipped the cross-references in the sample model diagram. Note that in
contrast to other parser generators, Xtext creates ASTs with linked cross-references.

Other than associations in UML, EReferences in Ecore are always owned by one EClass
and only navigable in the direction form the owner to the type. Bi-directional associa-
tions must be modeled as two references, being eOpposite of each other and owned by
either end of the associations.

The superclass of EAttributes and EReferences is EStructuralFeature and allows to
define a name and a cardinality by setting lowerBound and upperBound. Setting the
latter to -1 means 'unbounded’.

The common supertype of EDataType and EClass is EClassifier. An EPackage acts as
a namespace and container of EClassifiers.

We have summarized these most relevant concepts of Ecore in the following diagram:

EPackage EClassifer
name: String * 'name:String

nsURI: Strinﬁ eClassifiers

eSuperTypes

EClass EDatatype
abstract: boolean
eReferenceType
eAttributeType
« | eStructuralFeatures
EStructuralFeature
name: String

lowerBound: int
upperBound: int

EReference eOpposite EAttribute

— containment: boolean 0.1 —

eOpposite | 0..1

Figure 13.3.: Ecore concepts

198

13.2. EMF Code Generation

EMF also ships with a code generator that generates Java classes from your Ecore model.
The code generators input is the so called EMF generator model. Tt decorates (references)
the Ecore model and adds additional information for the Ecore -> Java transformation.
Xtext will automatically generate a generator model with reasonable defaults for all
generated metamodels, and run the EMF code generator on them.

The generated classes are based on the EMF runtime library, which offers a lot of
infrastructure and tools to work with your models, such as persistence, reflection, refer-
ential integrity, lazy loading etc.

Among other things, the code generator will generate

e A Java interface and a Java class for each EClassifier in your Ecore model. By
default, all classes will implement the interface EObject, linking a lot of runtime
functionality.

e A Java bean property for each EStructuralFeature (member variable, accessor
methods)

e A package interface and class, holding singleton objects for all elements of your
Ecore model, allowing reflection. EPackages are also registered to the EPackage.
Registry to be usable at runtime.

e A factory interface and class for creating instances

e An abstract switch class implementing a visitor pattern to avoid if-instanceof-
cascades in your code.

13.3. XtextResource Implementation

Xtext provides an implementation of EMF’s resource, the XtextResource. This does not
only encapsulate the parser that converts text to an EMF model but also the serial-
izer (§8.8) working the opposite direction. That way, an Xtext model just looks like
any other Ecore-based model from the outside, making it amenable for the use by other
EMF based tools. In fact, the Xpand templates in the generator plug-in created by the
Xtext wizard do not make any assumption on the fact that the model is described in
Xtext, and they would work fine with any model based on the same Ecore model of the
language. So in the ideal case, you can switch the serialization format of your models to
your self-defined DSL by just replacing the resource implementation used by your other
modeling tools.

The generator fragment ResourceFactoryFragment registers a factory for the XtextResource
to EMF’s resource factory registry, such that all tools using the default mechanism to
resolve a resource implementation will automatically get that resource implementation.

Using a self-defined textual syntax as the primary storage format has a number of
advantages over the default XMI serialization, e.g.

199

| Code Generator GMF Editor Ar;:yoin;z.:::ted
- : =
T - :-.*.‘- ---
<<abstract>> _ - AN
Resource d XMIResource > XMI
T
XtextResource F---========== === > Text

Y
Y v {

Parser Linker Serializer
ValueConverter ScopeProvider Formatter

e You can use well-known and easy-to-use tools and techniques for manipulation,
such as text editors, regular expressions, or stream editors.

e You can use the same tools for version control as you use for source code. Com-
paring and merging is performed in a syntax the developer is familiar with.

e It is impossible to break the model such that it cannot be reopened in the editor
again.

e Models can be fixed using the same tools, even if they have become incompatible
with a new version of the Ecore model.

Xtext targets easy to use and naturally feeling languages. It focuses on the lexical
aspects of a language a bit more than on the semantic ones. As a consequence, a
referenced Ecore model can contain more concepts than are actually covered by the
Xtext grammar. As a result, not everything that is possibly expressed in the EMF
model can be serialized back into a textual representation with regards to the grammar.
So if you want to use Xtext to serialize your models as described above, it is good to
have a couple of things in mind:

e Prefer optional rule calls (cardinality ¢ or *) to mandatory ones (cardinality + or
default), such that missing references will not obstruct serialization.

200

e You should not use an Xtext-Editor on the same model instance as a self-
synchronizing other editor, e.g. a canonical GMF editor (see subsection 13.4.1
for details). The Xtext parser replaces re-parsed subtrees of the AST rather than
modifying it, so elements will become stale. As the Xtext editor continuously re-
parses the model on changes, this will happen rather often. It is safer to synchronize
editors more loosely, e.g. on file changes.

e Implement an IFragmentProvider (§8.10) to make the XtextResource return stable
fragments for its contained elements, e.g. based on composite names rather than
order of appearance.

e Implement an IQualifiedNameProvider and an IScopeProvider (§8.6) to make the names
of all linkable elements in cross-references unique.

e Provide an IFormatter (§8.9) to improve the readability of the generated textual
models.

e Register an IReferableElementsUnloader to turn deleted/replaced model elements into
EMF proxies. Design the rest of your application such that it does never keep
references to EObject or to cope with proxies. That will improve the stability of
your application drastically.

o Xtext will register an EMF Resource.Factory, so resources with the file extension
you entered when generating the Xtext plug-ins will be automatically loaded in an
XtextResource when you use EMF’s ResourceSet API to load it.

13.4. Integration with GMF Editors

We do no longer maintain the GMF example code and have removed it from our in-
stallation. You can still access the last version of the source code form our source code
repository.

The Graphical Modeling Framework (GMF) allows to create graphical diagram editors
for Ecore models. To illustrate how to build a GMF on top of an XtextResource we have
provided an example. You must have the Helios version 2.3 of GMF Notation, Runtime
and Tooling and their dependencies installed in your workbench to run the example.
With other versions of GMF it might work to regenerate the diagram code.

The example consists of a number of plug-ins

201

http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.xtext.xtext.ui.examples/contents
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.xtext.xtext.ui.examples/contents
http://www.eclipse.org/modeling/gmp/?project=gmf

Plug-in
o.e.x.example.gmf

o.e.x.e.g.ui
o.e.x.e.g.edit
o.e.x.e.g.models

o.e.x.e.g.diagram

o.e.x.e.g.d.extensions

o.e.x.gmf.glue

Framework
Xtext

Xtext

EMF

GMF

GMF

GMF and Xtext

Xtext and GMF

Purpose

Xtext runtime plug-in
Xtext UI plug-in
EMF.edit plug-in
GMF design models
GMF diagram editor

GMF diagram editor
extensions

Glue code

Contents

Grammar, derived
metamodel and lan-
guage infrastructure
Xtext editor and ser-
vices

UI services generated
from the metamodel
Input for the GMF
code generator
Purely generated
from the GMF design
models

Manual extensions to
the generated GMF
editor for integration
with Xtext

Generic code to inte-
grate Xtext and GMF

We will elaborate the example in three stages.
13.4.1. Stage 1: Make GMF Read and Write the Semantic Model As Text

A diagram editor in GMF by default manages two resources: One for the semantic model,
that is the model we’re actually interested in for further processing. In our example it
is a model representing entities and data types. The second resource holds the notation
model. It represents the shapes you see in the diagram and their graphical properties.
Notation elements reference their semantic counterparts. An entity’s name would be
in the semantic model, while the font to draw it in the diagram would be stored the
notation model. Note that in the integration example we’re only trying to represent the
semantic resource as text.

To keep the semantic model and the diagram model in sync, GMF uses a so called
CanonicalEditPolicy. This component registers as a listener to the semantic model and
automatically updates diagram elements when their semantic counterparts change, are
added or are removed. Some notational information can be derived from the semantic
model by some default mapping, but usually there is a lot of graphical stuff that the
user wants to change to make the diagram look better.

In an Xtext editor, changes in the text are transfered to the underlying XtextResource
by a call to the method XtextResource, which will trigger a partial parsing of the dirty
text region and a replacement of the corresponding subtree in the AST model (semantic
model).

Having an Xtext editor and a canonical GMF editor on the same resource can therefore
lead to loss of notational information, as a change in the Xtext editor will remove a
subtree in the AST, causing the CanonicalEditPolicy to remove all notational elements,
even though it was customized by the user. The Xtext rebuilds the AST and the notation

202

model is restored using the default mapping. It is therefore not recommended to let an
Xtext editor and a canonical GMF editor work on the same resource.

In this example, we let each editor use its own memory instance of the model and syn-
chronize on file changes only. Both frameworks already synchronize with external changes
to the edited files out-of-the-box. In the glue code, a org.eclipse.xtext.gmf. glue.concurrency. ConcurrentModif
warns the user if she tries to edit the same file with two different model editors concur-
rently.

In the example, we started with writing an Xtext grammar for an entity language.
As explained above, we preferred optional assignments and rather covered mandatory
attributes in a validator. Into the bargain, we added some services to improve the EMF
integration, namely a formatter, a fragment provider and an unloader. Then we let Xtext
generate the language infrastructure. From the derived Ecore model and its generator
model, we generated the edit plug-in (needed by GMF) and added some fancier icons.

From the GMF side, we followed the default procedure and created a gmfgraph model,
a gmftool model and a gmfmap model referring to the Ecore model derived form the
Xtext grammar. We changed some settings in the gmfgen model derived by GMF from
the gmfmap model, namely to enable printing and to enable validation and validation
decorators. Then we generated the diagram editor.

Voila, we now have a diagram editor that reads/writes its semantic model as text.
Also note that the validator from Xtext is already integrated in the diagram editor via
the menu bar.

Stage 2: Calling the Xtext Parser to Parse GMF Labels

GMF’s generated parser for the labels is a bit poor: It will work on attributes only, and
will fail for cross-references, e.g. an attribute’s type. So why not use the Xtext parser
to process the user’s input?

An XtextResource keeps track of it’s concrete syntax representation by means of a so
called node model (see subsection 6.2.4 for a more detailed description). The node model
represents the parse tree and provides information on the offset, length and text that
has been parsed to create a semantic model element. The nodes are attached to their
semantic elements by means of a node adapter.

We can use the node adapter to access the text block that represents an attribute,
and call the Xtext parser to parse the user input. The example code is contained
in org.eclipse.xtext. gmf.glue. edit. part. AntlrParser Wrapper. SimpleProperty WrapperEdit-
PartOverride shows how this is integrated into the generated GMF editor. Use the Enti-
tiesEdit PartFactoryOverride to instantiate it and the EntitiesEditPartProviderQOuverride
to create the overridden factory, and register the latter to the extension point. Note that
this is a non-invasive way to extend generated GMF editors.

When you test the editor, you will note that the node model will be corrupt after
editing a few labels. This is because the node model is only updated by the Xtext parser
and not by the serializer. So we need a way to automatically call the (partial) parser
every time the semantic model is changed. You will find the required classes in the
package org.eclipse.xtext.gmf. glue.editingdomain. To activate node model reconciling,

203

you have to add a line
XtextNodeModelReconciler.adapt(editingDomain);
in the method createEditingDomain() of the generated FEntitiesDocumentProvider. To

avoid changing the generated code, you can modify the code generation template for
that class by setting

Dynamic Templates —> true
Template Directory = "org.eclipse.xtext.example.gmf.models/templates”

in the GenEditorGenerator and

Required Plugins —> "org.eclipse.xtext.gmf.glue”

in the GenPlugin element of the gmfgen before generating the diagram editor anew.

Stage 3: A Popup Xtext Editor (experimental)

SimplePropertyPopup XtextEditor EditPartOverride demonstrates how to spawn an Xtext
editor to edit a model element. The editor pops up in its control and shows only the
section of the selected element. It is a fully fledged Xtext editor, with support of vali-
dation, code assist and syntax highlighting. The edited text is only transfered back to
the model if it does not have any errors.

Note that there still are synchronization issues, that’s why we keep this one marked
as experimental.

204

Part Il

Appendix

205

14. Migrating from Xtext 1.0.x to 2.0

Most of the tasks when migrating to Xtext 2.0 can be automated. Some changes will
be necessary in the manually written code where you have to carefully verify that your
implementation is still working with Xtext 2.0. A reliable test-suite helps a lot.

The grammar language is fully backward compatible. You should not have to apply
any changes in the primary artifact. However, we introduced some additional validation
rules that mark inconsistencies in your grammar. If you get any warnings in the grammar
editor, it should be straight forward to fix them.

Tip: You’ll learn something about the new features if you compare a freshly created
Xtext project based on 1.0.x with a new Xtext project based on 2.0. Especially the new
fragments in the workflow are a good indicator for useful new features.

14.1. Take the Shortcut

If you haven’t made too many customizations to the generated defaults and if you’re not
referencing many classes of your Xtext language from the outside, you might consider
starting with a new Xtext project, copying your grammar and then manually restoring
your changes step by step. If that does not work for you, go on reading!

14.2. Migrating Step By Step

Before you start the migration to Xtext 2.0, you should make sure that no old plug-ins
are in your target platform.

Tip: The following steps try to use the Eclipse compiler to spot any source-incompatible
changes while fixing them with only a few well described user actions. Doing these steps
in another order causes most likely a higher effort.

14.2.1. Update the Plug-in Dependencies and Import Statements

You should update the version constraints of the plug-in dependencies in your manifest
files from version 1.0.x to 2.0 if you specified any concrete versions. Also the constraint
of org.antlr.runtime must be updated from [3.0.0,3.0.2) to 3.2.0.

The next step is to fix the import statements in your classes to match the refactored
naming scheme in Xtext. This fixes most of the problems in the manually written code.

14.2.2. Introduction of the Qualified Name

With Xtext 2.0 an object for dealing with qualified names has been introduced: QualifiedName
. The qualified name is now split into segments which can be queried. The lower-case ver-

206

sion of the qualified name is cached so that the performance of case insensitive languages
is improved. The signature of the methods used by the DefaultDeclarativeQualifiedNameProvider
changed to QualifiedName qualifiedName(Object).

The IQualifiedNameConverter converts qualified names from/to their String representa-
tion. This is also where you specify the separator and wildcard strings. If you already
know the segments of a qualified name, you can also create it using QualifiedName.create(
String ...).

QualifiedName is the new type of the name properties in the IEObjectDescription. So if you
have customized indexing, e.g. implemented your own IResourceDescription.Manager, you
will have to create QualifiedName instead of String. |IEObjectDescription are also used in other
places such as scoping (§8.6), linking (§8.5), serialization (§8.8), content assist (§9.2)...

Furthermore, the method IQualifiedNameProvider has been renamed to getFullyQualifiedName
(EObject).

14.2.3. Changes in the index and in find references

In Xtext 1.0.x the interfaces IResourceDescriptions, IResourceDescription and IContainer have
several methods to query them for contained elements. In Xtext 2.0 there is a common
interface ISelectable for this use case which is extended by the interfaces mentioned above.
For further details have a look at the interface ISelectable.

The default indexing for Xtext resources as it is defined in DefaultResourceDescriptionManager
has changed. Only cross-references pointing to elements outside the current resource are
indexed. Furthermore, the DefaultResourceDescriptionManager can now be easier customized
with an IDefaultResourceDescriptionStrategy.

For Ecore files only EPackage, EClassifier and EStructuralFeature are indexed, each with
both, the nsURI and the name of the containing EPackage in their qualified name.

There is a new interface to find references to Xtext elements: IReferenceFinder. It allows
to distinguish searches in the local Resource from global index searches. Local searches
will yield all local cross references independent of the indexing strategy.

14.2.4. Rewritten Node Model

To reduce memory consumption, the node model has been redesigned in Xtext 2.0. We
no longer use EMF, but a chained list of compressed nodes instead.

The package org.eclipse.xtext.nodemodel now contains the relevant interfaces to pro-
gram against. The new interfaces follow the naming convention of other types in the
framework. They are called INode, ICompositeNode and ILeafNode. That way, most of the
migration will be done by prefixing the old names with an I and use the organize imports
tool. Please make sure not to program against concrete or abstract classes.

If you used the node model a lot, you should have a closer look at the new APIs. The
EObject API is no longer available on the nodes. Instead, you we offer a couple of lterable
for traversing the tree. Where appropriate, helper methods of the former Parse TreeUtil
and NodeUtil have become members of the nodes, e.g. NodeUtil.getAllContents(AbstractNode
) has become INode The remaining methods have been converted and moved to the new
NodeModelUtils.

207

14.2.5. New Outline

The outline view has been completely re-implemented. To use the new one remove the
following fragments from your workflow

fragment = outline. TransformerFragment{}
fragment = outline.OutlineNodeAdapterFactoryFragment{}

and add

fragment = outline.OutlineTreeProviderFragment {}

After generating a new class named MyDslOutlineTreeProvider is generated. The
API changed completely. For that reason you should take a closer look at the chapter
on the outline (§9.5). The old classes named MyDslTransformer and MyDslOutlineN-
odeAdapterFactory have become obsolete and should be removed after having migrated
your code to the new API.

14.2.6. AutoEditStrategy

In Xtext 1.0.x your AutoEditStrategy extends the class DefaultAutoEditStrategy which
implements the interface |AutoEditStrategy. In Xtext 2.0 the DefaultAutoEditStrategyProvider
should be extended instead. The only thing you have to do is to change the su-
perclass from DefaultAutoEditStrateqy to DefaultAutoEditStrategyProvider. The interface
AbstractEditStrategyProvider.|EditStrategyAcceptor changed from accept(lAutoEditStrategy) to
accept(lAutoEditStrategy, String). The last parameter represents the contentType of the doc-
ument. Constants could be found in the IDocument and in the TerminalsTokenTypeToPartitionMapper

As a example the configure method could look like this one:

@Override
protected void configure(IEditStrategyAcceptor acceptor) {
super.configure(acceptor);

acceptor.accept(new YourAutoEditStrategy(),
IDocument.DEFAULT_CONTENT_TYPE);

}

The last thing you have to do is to change the binding of the IAutoEditStrategy in the
MyDslUIModule from

public Class<? extends |AutoEditStrategy> bindlAutoEditStrategy()

to

public Class<? extends AbstractEditStrategyProvider>
bindAbstractEditStrategyProvider() { .. }

208

14.2.7. Other Noteworthy APl Changes

The src folders are generated once, so existing code will not be overwritten but has to
be updated manually.

You will face a couple of compilation problems due to changes in the API. Here’s a
list of the most prominent changes. It is usually only necessary to change your code, if
you face any compilation problems.

In the interface IGlobalScopeProvider the method getScope(EObject,EReference) has
been removed. Use getScope(Resource, EReference, Predicate<IEObjectDescription>) in-
stead.

The interface IAntirParser has been removed. Use the IParser instead.

The methods error(..) and warning(..) in the AbstractDeclarativeValidator used to ac-
cept integer constants representing the EStructuralFeature which caused the issues.
These integer parameters were replaced by the feature itself, e.g. from error(String,
Integer) to error(String, EStructuralFeature). Use the generated EPackage to access the
EStructuralFeature.

The enum DiagnosticSeverity has been renamed to Severity.

The class TextLocation has been replaced by the interface ITextRegion with an im-
mutable implementation TextRegion.

In Xtext 1.0.x the class EObjectAtOffsetHelper provided several static methods to
resolve elements. In Xtext 2.0 these methods aren’t static anymore. For that
reason you could create an instance of this class or let Guice do the job for you:

@Inject private EObjectAtOffsetHelper eObjectAtOffsetHelper;

The method EObjectAtOffsetHelper changed to resolveElementAt(XtextResource, int).
You have to use the ILocationInFileProvider to compute the TextRegion.

The ILocationInFileProvider now offers methods getSignificantTextRegion() and
getFullTextRegion() to make the distinction between the name and the full region
of an element. The old getLocation() method was removed.

If you experience further problems, please refer to the newsgroup.

14.3. Now go for then new features

After migrating, some of the new features in Xtext 2.0 will be automatically available.
Others require further configuration. We recommend exploring

Xbase,
the new Xtend,

rename refactorings

209

http://www.eclipse.org/forums/index.php?t=thread&frm_id=27

e the compare view,

e rich hovers,

e the Xtext syntax graph,

e support for syntactic predicates (§6.2.8),

e the generated debug grammar,

e terminal fragments (§6.2.3),

e document partitions and auto edit

e the redesigned outline view (§9.5),

e and the quick fixes for the Xtext grammar language (§9.3).

For an overview over the new features consult our New and Noteworthy online.

210

http://www.eclipse.org/Xtext/documentation/indigo/new_and_noteworthy.php

15. Migrating from Xtext 0.7.x to 1.0

For the sake of completeness, here is how you migrate from Xtext 0.7.x to Xtext 1.0, so
you might do a migration to 2.0 in two steps. Nevertheless, there have been so many new
features and changes that it probably makes more sense to just copy the grammar and
start with a new Xtext 2.0 project. The grammar language is fully backward compatible.

15.1. Migrating Step By Step

Once again, you should make sure that no old plug-ins are in your target platform. Some
plug-ins from Xtext 0.7.x have been merged and do no longer exist.

Tip: The following steps try to use the Eclipse compiler to spot any source-incompatible
changes while fixing them with only a few well described user actions. Doing these steps
in another order causes most likely a higher effort.

15.1.1. Update the Plug-in Dependencies and Import Statements

You should update the constraints from version 0.7.z to [1.0.0,2.0.0) in your mani-
fest files if you specified any concrete versions. Make sure that your dsl.ui-projects do
not refer to the plug-in org.eclipse.xtext.ui.common or org.eclipse.xtext.ui.core but to
org.eclipse.xtext.ui instead. The arguably easiest way is a global text-based search and
replace across the manifest files. The bundle org.eclipse.xtext.log4j is obsolete as well.
The generator will create import-package entries in the manifests later on.

The next step is to fix the import statements in your classes to match the refactored
naming scheme in Xtext. Perform a global search for import org.eclipse.xtext.ui.common.
and org.eclipse.xtext.ui.core. and replace the matches with import org.eclipse.xtext.ui.. This
fixes most of the problems in the manually written code.

15.1.2. Rename the Packages in the dsl.ui-Plug-in

We changed the naming pattern for artifacts in the dsl.ui-plug-in to match the OSGi
conventions. The easiest way to update your existing projects is to apply a "Rename
Package” refactoring on the packages in the src- and src-gen folder before you re-run the
workflow that regenerates your language. Make sure you ticked "Rename subpackages”
in the rename dialog. It is error-prone to enable the search in non-Java files as this
will perform incompatible changes in the manifest files. Furthermore, it is important to
perform the rename operation in the src-gen folder, too. This ensures that the references
in your manually written code are properly updated.

211

15.1.3. Update the Workflow

The JavaScopingFragment does no longer exist. It has been superseded by the ImportURIScopingFragment
in combination with the SimpleNamesFragment. Please replace

<fragment class=
"org.eclipse.xtext.generator.scoping.JavaScopingFragment”/>

with

<fragment class=
"org.eclipse.xtext.generator.scoping.ImportURIScopingFragment”/>

<fragment class=
"org.eclipse.xtext.generator.exporting.SimpleNamesFragment”/>

The PackratParserFragment has been abandoned as well. It is save to remove the
reference to that one if it is activated in your workflow. After you’ve changed your
workflow, it should be possible to regenerate your language without any errors in the
console. It is ok to have compilation errors prior to executing the workflow.

15.1.4. MANIFEST.MF and plugin.xml

The previous rename package refactoring updated most of the entries in the MANI-
FEST.MF and and some entries in the plugin.zml. Others have to be fixed manually.
The Eclipse compiler will point to many of the remaining problems in the manifest files
but it is unlikely that it will spot the erroneous references in the plugin.zml.

e In the generated Ul plug-in’s MANIFEST.MF, remove the package exports of no
longer existing packages and make sure the bundle activator points to the newly
generated one (with .ui. in its package name).

e It was already mentioned that the plug-ins org.eclipse.xtext.ui.core and
org.eclipse.ztext.ui.common have been merged into a new single plug-in
org.eclipse.xtext.ui. The same happened to the respective Java packages. Change
eventually remaining bundle-dependencies in all manifests.

e The plug-in org.eclipse.atext.log4j no longer exists. We use a package import of
org.apache.logjj instead. Also remove the buddy registration.

e Due to renamed packages, you have to fix all references to classes therein in the plu-
gin.xml. A comparison with the plugin.cml_gen will be a great help. If you haven’t
added a lot manually, consider merging these into the generated version instead of
going the other way around. Note that warnings in the plugin.xml can be consid-
ered to be real errors most of the time. Make sure the MyDslEzecutableExtension-
Factory has the .ui. package prefix. Classes from org.eclipse.xtext. ui.common and
org.eclipse.xtext. ui.core are now usually somewhere in org.eclipse.xtext.ui. They
are also referenced by the MyDslEzecutable ExtensionFactory and thus not covered
by the validation of the plugin.xml.

212

e A number of new features are being registered in the plugin.xml, e.g. Find refer-
ences, Quick Outline, and Quick Fizes. You can enable them by manually copying
the respective entries from plugin.zml_gen to plugin.zml.

e To run MWE2 workflows later on, you must change the plug-in dependencies from
org.eclipse.emf.mwe.core to org.eclipse.emf.mwe2.launch in your manifest. Op-
tional resolution is fine.

15.1.5. Noteworthy APl Changes

The src folders are generated once, so existing code will not be overwritten but has to
be updated manually. At least one new class has appeared in your src-folder of the
uwi plug-in. there will now be a MyDslStandaloneSetup inheriting form the generated
MyDslStandaloneSetup Generated to allow customization.

You will face a couple of compilation problems due to changes in the API. Here’s a
list of the most prominent changes. It is usually only necessary to change your code, if
you face any compilation problems.

e The method IScopeProvider has been removed. Use getScope(EObject,EReference) in-
stead.

e Renamed DefaultScopeProvider to SimpleLocalScopeProvider. There have been fur-
ther significant changes in the scoping API that allow for optimized implementa-
tions. Consult the section on scoping (§8.6) for details.

e The return type of AbstractlnjectableValidator was changed from List<? extends
EPackage> to List<EPackage>.

e The parser interfaces now use Reader instead of InputStream to explicitly address
encoding. Have a look at the section on encoding (§8.11) for details.

e The handling of ILabelProvider in various contexts has been refactored. The former
base class DefaultLabel Provider no longer exists. Use the DefaultEObjectLabelProvider
instead. See the section on label providers (§9.1) for details.

e We have introduced a couple of new packages to better separate concerns. Most
classes should be easy to relocate.

e The runtime and UI modules have separate base classes DefaultRuntimeModule and
DefaultUiModule now. We use Guice’s module overrides to combine them with the
newly introduced SharedModule. You have to add a constructor the your MyD-
slUiModule that takes an AbstractUIPlugin as argument and pass that one to the
super constructor. Tip: There is an Eclipse quick fix available for that one.

e The interfaces ILexicalHighlightigConfiguration and ISemanticHighlightingConfig-
uration have been merged into IHighlightingConfiguration.

e The DefaultTemplateProposalProvider takes an additional, injectable constructor pa-
rameter of type ContextTypeldHelper.

213

e The HyperlinkHelper uses field injection instead of constructor injection. The
method createHyperlinksByOffset(..) should be overridden instead of the former
findCrossLinkedEObject.

e The API to skip a node in the outline has changed. Instead of returning the HID-
DEN_NODE you’ll have to implement boolean consumeNode(MyType) and return
false.

Note: The outline has been re-implemented in Xtext 2.0.

e The Readonly*Storage implementations have been removed. There is a new API
to open editors for objects with a given URI. Please use the IURIEditorOpener to
create an editor or the IStorage2UriMapper to obtain an IStorage for a given URI.

e The interfaces IStateAccess and IEObjectHandle have been moved along with the
[UnitOfWork to the package org.eclipse.xtext.util. concurrent.
Note: IStateAccess was split into IReadAccess and [WriteAccess in Xtext 2.0.

e The ValidationJobFactory is gone. Please implement a custom IResourceValidator
instead.

e The grammar elements Alternatives and Group have a new common super type
CompoundElement. The methods getGroups() and getTokens() have been refactored
to getElements().

e Completion proposals take a StyledString instead of a plain string as display string.

e The AbstractLabelProvider does no longer expose its lImageHelper. Use convertTolmage
instead or inject your own lImageHelper.

e The implementation-classes from org.eclipse.xtext.index were superseded
by the builder infrastructure. Use the QualifiedNamesFragment and the
ImportNamespacesScopingFragment instead of the ImportedNamespacesScopingFrag-
ment. Please refer to the section about the builder infrastructure (§8.6.1) for
details.

e All the Xtend-based fragments were removed.

e ILinkingService was removed. Have a look at the LinkingHelper and the
CrossReferenceSerializer if you relied on this method.

e The SerializerUtil was renamed to Serializer. There were other heavy refactorings
that involved the serializer and its components like e.g. the ITransientValueService
but it should be pretty straight forward to migrate existing client code.

e The method-signatures of the IFragmentProvider have changed. The documenta-
tion (§8.10) will give a clue on how to update existing implementations.

e Some static methods were removed from utility classes such as EcoreUtil2 and Parse-
tree Util in favor of more sophisticated implementations.

For an overview over the new features in Xtext 1.0 consult our New and Noteworthy
online.

214

http://www.eclipse.org/Xtext/documentation/helios/new_and_noteworthy.php

List of External Links

https://bugs.eclipse.org/bugs/show_bug.cgi?id=350812
http://xtext.itemis.com/xtext/language=en/36553/downloads
http://blog.efftinge.de/2009/01/xtext-scopes-and-emf-index.html
http://www.ietf.org/rfc/rfc2396.txt

http://download.itemis.de/updates/
http://www.eclipse.org/modeling/gmp/?project=gmf
http://www.eclipse.org/Xtext/documentation/indigo/new_and_noteworthy.php
http://www.eclipse.org/downloads/
http://java.sun.com/docs/books/jls/third_edition/html/lexical .html#3.7
http://code.google.com/p/google-guice/

http://xtext.itemis.com
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.
xtext.xtext.ui.examples/contents
http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.
5

http://www.eclipse.org/Xtext/documentation/helios/new_and_noteworthy.php
http://www.eclipse.org/forums/index.php?t=thread&frm_id=27
http://www.oracle.com/technetwork/java/index.html
http://www.eclipse.org/modeling/emf/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/
ecore/change/package-summary.html
http://martinfowler.com/bliki/SyntacticNoise.html
http://blog.efftinge.de/2009/07/xtext-scopes-and-emf-index-in-action.html
http://java.sun.com/docs/books/jls/third_edition/html/conversions.html
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.
xtext/src/org/eclipse/xtext/Xtext.xtext
http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.10.5
http://martinfowler.com/books.html#dsl
http://help.eclipse.org/ganymede/topic/org.eclipse.cdt.doc.user/tasks/cdt_
t_imp_code_temp.htm
http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html

Todo list

215

https://bugs.eclipse.org/bugs/show_bug.cgi?id=350812
http://xtext.itemis.com/xtext/language=en/36553/downloads
http://blog.efftinge.de/2009/01/xtext-scopes-and-emf-index.html
http://www.ietf.org/rfc/rfc2396.txt
http://download.itemis.de/updates/
http://www.eclipse.org/modeling/gmp/?project=gmf
http://www.eclipse.org/Xtext/documentation/indigo/new_and_noteworthy.php
http://www.eclipse.org/downloads/
http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.7
http://code.google.com/p/google-guice/
http://xtext.itemis.com
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.xtext.xtext.ui.examples/contents
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.xtext.xtext.ui.examples/contents
http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.5
http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.5
http://www.eclipse.org/Xtext/documentation/helios/new_and_noteworthy.php
http://www.eclipse.org/forums/index.php?t=thread&frm_id=27
http://www.oracle.com/technetwork/java/index.html
http://www.eclipse.org/modeling/emf/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/change/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/change/package-summary.html
http://martinfowler.com/bliki/SyntacticNoise.html
http://blog.efftinge.de/2009/07/xtext-scopes-and-emf-index-in-action.html
http://java.sun.com/docs/books/jls/third_edition/html/conversions.html
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.10.5
http://martinfowler.com/books.html#dsl
http://help.eclipse.org/ganymede/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_imp_code_temp.htm
http://help.eclipse.org/ganymede/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_imp_code_temp.htm
http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html

Would be interesting to document how the following example translates to java . . 171

216

	Getting Started
	Installation
	Install Pre-Configured Eclipse With Xtext
	Install Xtext From Update Site

	5 Minutes Tutorial
	Creating A New Xtext Project
	Generating The Language Infrastructure
	Try The Editor
	Conclusion

	15 Minutes Tutorial
	Create A New Xtext Project
	Write Your Own Grammar
	Generate Language Artifacts
	Run the Generated IDE Plug-in
	Second Iteration : Adding Packages and Imports

	15 Minutes Tutorial - Extended
	Writing a Code Generator With Xtend
	Unit Testing the Language
	Creating Custom Validation Rules

	Reference Documentation
	Overview
	What is Xtext?
	How Does It Work?
	Xtext is Highly Configurable
	Who Uses Xtext?
	Who is Behind Xtext?
	What is a Domain-Specific Language

	The Grammar Language
	A First Example
	The Syntax
	Language Declaration
	EPackage Declarations
	Rules
	Parser Rules
	Hidden Terminal Symbols
	Data Type Rules
	Enum Rules
	Syntactic Predicates

	Ecore Model Inference
	Type and Package Generation
	Feature and Type Hierarchy Generation
	Enum Literal Generation
	Feature Normalization
	Customized Post Processing
	Error Conditions

	Grammar Mixins
	Common Terminals

	Configuration
	The Language Generator
	A Short Introduction to MWE2
	General Architecture
	Standard Generator Fragments

	Dependency Injection in Xtext with Google Guice
	The Module API
	Obtaining an Injector

	Runtime Concepts
	Runtime Setup (ISetup)
	Setup within Eclipse-Equinox (OSGi)
	Logging
	Validation
	Automatic Validation
	Custom Validation
	Validating Manually
	Test Validators

	Linking
	Declaration of Crosslinks
	Default Runtime Behavior (Lazy Linking)

	Scoping
	Global Scopes and Resource Descriptions
	Local Scoping
	Imported Namespace-Aware Scoping

	Value Converter
	Serialization
	The Contract
	Roles of the Semantic Model and the Node Model During Serialization
	Parse Tree Constructor
	Options
	Preserving Comments from the Node Model
	Transient Values
	Unassigned Text
	Cross-Reference Serializer
	Merge White Space
	Token Stream

	Formatting (Pretty Printing)
	General FormattingConfig Settings
	FormattingConfig Instructions
	Grammar Element Finders

	Fragment Provider (Referencing Xtext Models From Other EMF Artifacts)
	Encoding in Xtext
	Encoding at Language Design Time
	Encoding at Language Runtime
	Encoding of an XtextResource
	Encoding in New Model Projects
	Encoding of Xtext Source Code

	IDE Concepts
	Label Provider
	Label Providers For EObjects
	Label Providers For Index Entries

	Content Assist
	Quick Fixes
	Quickfixes for Linking Errors and Syntax Errors

	Template Proposals
	Cross Reference Template Variable Resolver
	Enumeration Template Variable Resolver

	Outline View
	Influencing the outline structure
	Styling the outline
	Filtering actions
	Sorting actions
	Quick Outline

	Hyperlinking
	Location Provider
	Customizing Available Hyperlinks

	Syntax Coloring
	Lexical Highlighting
	Semantic Highlighting

	Xtext and Java
	Plug-in Setup
	Referring to Java Elements using JVM Types
	Customization Points

	Referring to Java Types Using Xbase
	Inferring a JVM Model
	Linking and Indexing
	Generation Parameters For Inferred JVM Types

	Using Xbase Expressions
	Making Your Grammar Refer To Xbase
	Populating the Scopes
	Type Checking at the Boundaries
	Generating Java Code using the Xbase Compiler
	Using the Xbase Interpreter

	Xbase Language Reference
	Lexical Syntax
	Identifiers
	Escaped Identifiers
	String Literals
	Integer Literals
	White Space
	Reserved Keywords

	Types
	Arrays
	Simple Type References
	Function Types
	Parameterized Type References
	Primitives
	Conformance and Conversion
	Common Super Type

	Expressions
	Literals
	Type Casts
	Infix Operators / Operator Overloading
	Feature Calls
	Constructor Call
	Closures
	If Expression
	Switch Expression
	Variable Declarations
	Blocks
	For Loop
	While Loop
	Do-While Loop
	Return Expression
	Throwing Exceptions
	Try, Catch, Finally

	Extension Methods
	Examples

	MWE2
	Examples
	The Simplest Workflow
	A Simple Transformation
	A Stop-Watch

	Language Reference
	Mapping to Java Classes
	Module
	Properties
	Mandatory Properties
	Named Components
	Auto Injection

	Syntax Reference
	Module
	Property
	Component
	String Literals
	Boolean Literals
	References

	Xtend
	Getting Started
	Classes and Functions
	Package Declaration
	Imports
	Class Declaration
	Fields
	Functions
	Overriding Functions
	Create Functions
	Annotations

	Expressions
	Literals
	Type Casts
	Infix Operators / Operator Overloading
	Feature Calls
	Constructor Call
	Closures
	If Expression
	Switch Expression
	Variable Declarations
	Blocks
	For Loop
	While Loop
	Do-While Loop
	Return Expression
	Throwing Exceptions
	Try, Catch, Finally
	Rich Strings
	Conditions in Rich Strings
	Loops in Rich Strings
	Typing
	White Space Handling

	Integration with EMF and Other EMF Editors
	Model, Ecore Model, and Ecore
	EMF Code Generation
	XtextResource Implementation
	Integration with GMF Editors
	Stage 1: Make GMF Read and Write the Semantic Model As Text

	Appendix
	Migrating from Xtext 1.0.x to 2.0
	Take the Shortcut
	Migrating Step By Step
	Update the Plug-in Dependencies and Import Statements
	Introduction of the Qualified Name
	Changes in the index and in find references
	Rewritten Node Model
	New Outline
	AutoEditStrategy
	Other Noteworthy API Changes

	Now go for then new features

	Migrating from Xtext 0.7.x to 1.0
	Migrating Step By Step
	Update the Plug-in Dependencies and Import Statements
	Rename the Packages in the dsl.ui-Plug-in
	Update the Workflow
	MANIFEST.MF and plugin.xml
	Noteworthy API Changes

