
Learning Weighted Linguistic Rules to
Control an Autonomous Robot
M. Mucientes,1,∗ R. Alcalá,2,† J. Alcalá-Fdez,2,‡ J. Casillas2,§
1Department of Electronics and Computer Science, University of Santiago de
Compostela, 15782 Santiago de Compostela, Spain
2Department of Computer Science and Artificial Intelligence, University of
Granada, 18071 Granada, Spain

A methodology for learning behaviors in mobile robotics has been developed. It consists of a
technique to automatically generate input–output data plus a genetic fuzzy system that obtains
cooperative weighted rules. The advantages of our methodology over other approaches are that
the designer has to choose the values of only a few parameters, the obtained controllers are general
(the quality of the controller does not depend on the environment), and the learning process takes
place in simulation, but the controllers work also on the real robot with good performance. The
methodology has been used to learn the wall-following behavior, and the obtained controller has
been tested using a Nomad 200 robot in both simulated and real environments. C© 2009 Wiley
Periodicals, Inc.

1. INTRODUCTION

Control in mobile robotics requires different levels of action: planning (high
level) and reacting (low level). Usually, the reactive layer is composed of behaviors
that act directed by the planning level. These behaviors are implemented in different
ways, being one of the most usual a fuzzy controller. The characteristic that makes
specially useful a fuzzy controller for the implementation of a behavior is the ability
that fuzzy controllers have to cope with noisy inputs. This noise appears when the
sensors of the robot detect the surrounding environment and is particularly high
when using ultrasound sensors (specular reflection, low angular resolution, etc.).

The design of an effective fuzzy controller is a tedious task, and for this reason
some learning techniques such as evolutionary algorithms1−7 and neural networks8,9

have been applied. Evolutionary algorithms have some characteristics that make
them specially useful for the design of fuzzy controllers: they are flexible to design
different components of a controller, constraints can be easily included, and they

∗Author to whom all correspondence should be addressed; e-mail: manuel.mucientes@
usc.es.

†e-mail: alcala@decsai.ugr.es.
‡e-mail: jalcala@decsai.ugr.es.
§e-mail: casillas@decsai.ugr.es.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 24, 226–251 (2009)
C© 2009 Wiley Periodicals, Inc. Published online in Wiley InterScience

(www.interscience.wiley.com). • DOI 10.1002/int.20334

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 227

let the designer decide the most adequate interpretability-accuracy trade-off for a
specific controller.

However, some shortcomings appear when applying evolutionary learning to
the design of these behaviors for mobile robotics: long learning tasks,3,7,10−11 need
of an initial partial description of the knowledge base,2 and environment-dependent
designs.2,3,7,12,13 As a result, the learned behavior is not reliable and its imple-
mentation on the real robot is not adequate. In fact, in most cases only simulated
experiments are provided, or a deep tuning is made to adapt the learned fuzzy
controller to a real robot.

To deal with these drawbacks, we propose a simple but efficient and effec-
tive learning methodology (composed of a training data generation and a learning
method) that obtains general fuzzy controllers that can be applied to any kind of
environment. Besides, we are specially interested in not only generating fuzzy con-
trollers with good behavior in simulated experiments but also to use them directly
in the real robot, without any postprocessing or tuning task. Therefore, our method-
ology is able to quickly learn fuzzy controllers that can be directly applied to real
environments.

The advantages of the methodology over other approaches are the following:

• The designer has to choose the values of only a few parameters: the universe of discourse,
precision and granularity of each variable, and the scoring function. This characteristic
facilitates the reusability of the methodology for a wide range of very different behaviors:
wall-following, obstacle avoidance, moving object following, door crossing, and so on.

• The obtained controllers are general. This feature is very important because it ensures
that the quality and reliability of the controller will not be affected by the environment
in which the robot is placed. To get this characteristic, the learning process cannot be
done in an environment or set of environments, because this does not guarantee that all
the possible states of the robot have been tested. The solution is to learn from a set of
examples that cover the universe of discourse of all the variables with a certain precision
(values are discretized).

• Finally, learning on the real robot is usually not a good solution, as the learning process
takes a lot of time (the robot needs to recharge batteries interrupting the learning process)
and, also, during the learning stage the robot has to try control actions that can take it to
hazardous situations (the robot could, e.g., crash with a wall). For these reasons, it seems
much more appropriate to learn the behaviors in simulation, and then export the controllers
to the real robot. Usually this requires a new tuning stage, but with our methodology this
stage can be skipped and the learned controllers can be directly executed on the real robot
without any change, showing a good performance.

The proposed learning methodology for behavior design in mobile robotics is
twofold. First, a heuristic process is performed to automatically generate a data set
that represents the behavior to be designed. Then, supervised learning is applied on
this data set to extract an accurate fuzzy controller with good interpretability.

In this sense, we have used a learning method previously proposed in Ref. 14
that we believe fits perfectly with that purpose. Nevertheless, we have adapted
some parts of the learning algorithm (mainly the use of several output variables
and a different fitness function to regulate the number of rules) when applied to the
proposed mobile robot problem. As shown in this paper, the considered learning
methodology has been applied to the wall-following behavior with successful results

International Journal of Intelligent Systems DOI 10.1002/int

228 MUCIENTES ET AL.

in both simulated and real environments. Comparison with other learning algorithms
is also included.

The paper is structured as follows. Section 2 introduces the technique to gen-
erate data sets for the wall-following behavior, including the sensorial information
preprocessing in the real robot. Section 3 presents the considered learning algo-
rithm. Section 4 shows and discusses the obtained results in simulated and real
environments. Finally, Section 5 outlines some conclusions.

2. LEARNING THE WALL-FOLLOWING BEHAVIOR

The proposed methodology is general and can be applied to different behaviors.
To describe it in detail and evaluate its performance, we have selected the wall
following behavior. This behavior is well known in mobile robotics and frequently
used for the exploration of unknown indoor environments and also for the navigation
of a robot between two points in a map. The requirements of a good wall-following
controller are, first, to maintain a suitable distance from the wall that is being
followed. In second place, the robot should also move as fast as possible, and finally
the controller should avoid sharp movements, making smooth and progressive turns
and changes in velocity.

The controller can be configured, modifying the values of two parameters: the
reference distance (dwall), which is the desired distance between the robot and the
selected wall, and the maximum velocity attainable by the robot (vmax). In what
follows, we assume that the robot is going to follow a contour that is on its right
side. Of course, the robot could also follow the left-hand wall, but this can be easily
dealt with by simply interchanging the sensorial inputs.

The input variables of the control system are the distances from the robot to
the right (RD) and left walls (DQ), the orientation of the robot with respect to the
wall, and its linear velocity (LV).

RD = Right-hand distance

dwall
(1)

DQ = Left-hand distance

Right-hand distance
(2)

RD represents the relative right distance, thus a value of 1 indicates that the
robot is at the reference distance to the wall it is following, a value lower than 1
means that it is closer, whereas a value more than 1 reflects a distance higher than
the reference. In that way, any modification in the value of the reference distance
to the wall (dwall) will not affect the knowledge base that has been learned if we do
not choose values of dwall much lower than the one used for learning. DQ shows the
relative position of the robot inside a corridor. A high value for DQ means that the
robot is closer to the right-hand wall, whereas a low value indicates that the closer
wall is the left-hand one.

The orientation of the robot (OR) measures the angle between the wall and
the advance direction of the robot. Positive orientations indicate that the robot is

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 229

approaching to the wall, whereas negative values mean that the robot is moving
away. Finally, the linear velocity of the robot (LV) is

LV = vr

vmax
(3)

where vr is the real velocity of the robot. As it happened with dwall, vmax can be
modified in the learned behavior and the controller will have the same performance
if the selected value for vmax is lower than the value used for the learning stage. The
output variables of the controller are the linear acceleration (LA) and the angular
velocity (AV)

LA = Linear acceleration

amax
(4)

AV = Angular velocity

ωmax
(5)

where amax and ωmax are the maximum linear acceleration and the maximum angular
velocity of the robot, respectively.

2.1. Sensorial Information Preprocessing

The robot we have used in the experiments is a Nomad 200 (Figure 1a). The
most important characteristics of this robot are a diameter of 53 cm, a maximum
linear velocity of 61 cm/s, a maximum angular velocity of 45◦/s, and an ultrasound
range of between 15 and 647 cm. The robot is endowed with a ring of ultrasonic
sensors. This kind of sensors is cheap and covers a range of distances from a few
centimeters up to several meters. The disadvantage of these sensors is that they
are very noisy, mainly due to their low angular resolution and also the specular
reflection. The first problem appears when the robot is quite far from an obstacle
(Figure 1b). When an object is hit by the sonar beam, it is not possible to distinguish
in which area of the beam is the object placed. Thus, the sensor model places it in
the middle of the beam. For high distances, the sensor beam is quite wide and the
errors in the position of the objects can be high (1 m of error for objects placed at
5 m). For example, gap B in Figure 1b is not detected by the sonars, and obstacle A
is detected in a wrong position.

On the other hand, specular reflection (Figure 1c) occurs when the angle
between the sonar beam and the normal vector of the obstacle is high. The threshold
angle will depend on the surface material of the obstacle (glass, wood, etc.). When
a specular reflection occurs, a distance higher than the real one is measured in that
direction.

Because of this kind of errors of the ultrasound sensors, the estimation of the
position of the obstacles of the environment must take into account not only the
present measurements but also measurements from different times. In that way, it is
possible to build a local map of the environment that provides more reliability for
the calculation of the distances and the orientations of the robot to the obstacles.

International Journal of Intelligent Systems DOI 10.1002/int

230 MUCIENTES ET AL.

Figure 1. Nomad 200 robot and some sensorial problems.

The local map is a geometric map,15 thus it is composed of lines. The key idea
is to extract line segments from sonar range scans and to integrate the new lines with
the line segments stored in the map. The line segments are obtained from a scan
using the split-and-merge algorithm, which recursively subdivides the scan into sets
of neighboring points that can be approximated by lines.

To fit a set of points to a line, we have used the approach proposed in Ref. 16.
With this method, a line is defined by

tan(2φ) = −2
∑

i(x − xi)(y − yi)∑
i((y − yi)2 − (x − xi)2)

(6)

r = x cos φ + y sin φ (7)

where xi(yi) is the coordinate x(y) of point i, x(y) in the average value of that
coordinate over the point set, φ is the angle of the normal to the line, and r in the
normal distance from the line to the origin of coordinates.

The integration of the new lines with the previous existing lines of the map is
done in the following way:15 first, the algorithm looks for the line in the map that
is closer (and under a threshold) to the new line. The distance is measured adding

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 231

the distances of the endpoints of the new line to the map line. Then both lines will
be integrated if they overlap. Integration means that the points of the new line are
combined with the points of the map line, and the equation of the resulting line is
calculated again using Equations 6 and 7.

2.2. Generation of the Training Set

If we want to learn a behavior offline for a mobile robot, but the behavior
must work in any environment and on the real robot, then the examples training
set must be carefully chosen. Also the number of examples cannot be very high as
the learning algorithm must run in a reasonable amount of time. We can remove
redundant examples from the training set, but not those that are essential for learning.
As Jakobi17 points out, we have to distinguish those features of the world that are
behaviorally relevant from those that are not.

With the proposed methodology, the ability of the designer to distinguish those
examples that are relevant to the problem only modifies the size of the training
set, that is, the time that the learning algorithm lasts, but the performance of the
obtained behavior is not affected. To learn the wall-following behavior, a set of
5,070 examples has been chosen. The examples have been automatically generated
covering the whole universe of discourse of all the input variables. The process has
the following steps:

• First, the designer must define for each variable the universe of discourse. Using the real
universe of discourse, many values will not contribute to the learning process because
they represent a similar situation and, thus, the same control action is implemented. For
example, the RD variable can take any positive value (real universe of discourse), but the
control action that the robot must implement for a value of RD = 9.0 will be the same as
for RD = 3.0 (in both cases the robot is far away from the wall). For this reason, to learn
a behavior, a reduced universe of discourse containing only the meaningful values will
be defined for each variable. For the input variable OR (orientation), the real universe of
discourse is (−1800, 1800] (tenths of degree), but the one used for the generation of the
training examples is [−450, 450].

• For the same reason, the universes of discourse have been discretized, to minimize the
search space, with a step or precision pn, where n is the variable. For example, variable
OR has a precision of 75, as changes in the orientation of, for example, 10 tenths of
degree are not meaningful.

• The values that each one of the variables can take in the examples set are obtained using the
universes of discourse, and the precisions previously defined. These values are calculated
starting at the minimum value of a variable and increasing the value with pn in each step
until the maximum value of that variable is reached. For example, variable OR will take
values in the following set: −450, −375, −300, . . . , 450. Combining all the possible
values for all the input variables, the examples are generated.

• The examples training set has been generated, but it is incomplete, as the values of the
output variables for each example have not been calculated. This is done for each example
trying all the possible combinations of discretized output values and selecting the best
one, that is that which generates a lower value of the scoring function (Equation 8).

The process for the generation of the examples training set is quite fast, as it
takes around 1 s (with an Intel(R) Pentium(R) 4 CPU 3.20 GHz processor). Table I

International Journal of Intelligent Systems DOI 10.1002/int

232 MUCIENTES ET AL.

Table I. Characteristics of the variables (5,070 examples).

Variable Universe of discourse Precision (pn) Granularity Number of values

RD [0, 3.] 0.25 4 13
DQ [0, 2.] 0.5 2 5
OR [−450, 450] 75 5 13
LV [0, 1] 0.2 2 6
LA [−1, 1] 0.125 9 17
AV [−1, 1] 0.05 9 40

shows the details of the universes of discourse, precisions, granularities (number of
linguistic labels), and number of possible values for each variable. These values have
not been optimized and, probably, there are still many redundant examples. If, instead
of those values, higher precisions or wider universes of discourse are selected, then
the number of training examples will be higher (there will be redundant examples),
but the learned knowledge base will have a very similar performance.

2.3. Evaluation of the Knowledge Bases

The evaluation of a control action for the robot is done measuring how close is
the state reached by the robot after the control action to the best state that the robot
can reach for the same beginning state.

To obtain this evaluation for all the examples of the training set over a knowl-
edge base, it is necessary to define function SF (scoring function) that scores the
action of the rule base over an example. SF is a sum of values αn, where each
αn measures the deviation in the value of variable n from its ideal value. For the
wall-following behavior SF is

SF (RB(el)) = αRD + αLV + αOR (8)

where el is an example, and αRD, αLV , and αOR are, respectively,

αRD = 100 · |RD − dref|
pRD

(9)

αLV = 10 · |vmax − LV |
pLV

(10)

αOR = |OR|
pOR

(11)

αRD represents the difference between RD and the dref . dref takes generally the
value of dwall (the distance at which the robot should follow the wall). But when
the passageway is very narrow (values under two times dwall), dref will take half of
the passageway width. As the reader has realized, there is not αDQ. The reason is
that there is not an ideal value for DQ, but its value will depend on the environment

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 233

characteristics. Nevertheless, it is necessary to include DQ as an input variable of
the fuzzy controller, mainly for those situations in which the passageway is very
narrow.

Precisions (pn) are used in these equations to evaluate the deviations of the
values of the variables from the desired ones in a relative manner (the deviation of
the value of variable n from the desired one is measured in units of pn). This makes
possible the comparison of the deviations of different variables and, as a conse-
quence, the assignment of the weights for each one of the variables. These weights
(100, 10, and 1 for Equations 9, 10, and 11, respectively) have been heuristically
determined and indicate how important the deviation in the value of a variable is
with respect to the deviation of other variables. These weight values are the only
ones that have been tried. The highest weight has been assigned to the distance,
as small variations of RD with respect to the reference distance should be highly
penalized. An intermediate weight is associated with velocity and, finally, the least
important contribution to function SF is for the orientation of the robot.

Thus, low values of SF indicate a good control action. A score of 0 means that
the robot has reached the best state, i.e., that in which it is at the reference distance
to the wall, parallel to it and with the maximum speed. The index that measures the
global quality of the encoded rule set is

f (RB) = 1

2 · NE

NE∑
l=1

(
g(el)

)2
(12)

where NE is the number of examples, and g(el) is defined as

g(el) =
{(

1 − h(el)
) · ω + 1 if h(el) ≤ 1

exp
(
1 − h(el)

)
if h(el) > 1

}
(13)

being ω a scaling factor that has been set to 1000 (no other values have been tried),
and h(el):

h(el) = scoreEx
(
el

) + 1

SF
(
RB(el)

) + 1
(14)

where scoreEx(el) is the score obtained example by el after applying the control
action codified in the example, and SF (RB(el)) is the score for that example after
the control action of the knowledge base is executed. In this way, it is possible to
compare the output proposed by the example with the output selected during the
learning process by the current knowledge base.

Equation 14 indicates how good is the control action selected by the knowledge
base for example el . The higher the value of h(el), the better the action. It is interesting
to note that the output selected by the knowledge base can obtain a better (lower)
score (Equation 8) than the control action codified in the example. The reason is that
the generation of the training set uses discrete values for the variables (also for the

International Journal of Intelligent Systems DOI 10.1002/int

234 MUCIENTES ET AL.

output variables), but the knowledge base selects outputs in a continuous universe
of discourse. For example, the linear acceleration (LA) codified in an example can
be 0.75, but the best value for LA can be in the set (0.75 − pLA, 0.75 + pLA). Thus
a value of LA in this set could obtain a better score for this example.

2.4. Reusability of the Methodology

The proposed methodology has two main characteristics that make it specially
useful to learn behaviors in mobile robotics:

• The designer only has to define a few parameters: universe of discourse, precision, and
granularity of each variable, and the scoring function.

• The methodology can be applied to learn different behaviors just changing some of these
parameters.

The steps that a designer should follow to implement a new behavior are

1. Define the input and output variables.
2. Select the universe of discourse and precision of each variable to automatically generate

the examples training set. In the worst case, the designer will select as universe of
discourse the real universe of discourse of the variable, and as precision a very low value.
Accordingly, there will be redundant examples and the learning process will be slower
due to the higher number of examples, but the performance of the obtained controller will
be very similar.

3. Choose the granularity of each variable. Values over the optimal ones will increase the
number of rules of the learned knowledge base, but the performance will be similar.

4. Define the equations to evaluate the different knowledge bases during the learning process.
Equations 12–14 are general. This means that they can be applied without any modification
to the learning of different behaviors. Only the scoring function (Equation 8) must be
modified in a very simple way. As SF measures the deviation of a state from the ideal
state, an αn must be generated for each variable n. The equation for each αn will have the
following general form:

αn = weightn · |valuevariable − valueideal |
pn

(15)

where weightn must take into account the importance of that variable.

In the next section, the algorithm that has been used to learn the knowledge
bases is described.

3. LEARNING OF COOPERATIVE WEIGHTED LINGUISTIC RULES

A good technique to improve the cooperation of the rules is to use weighted
fuzzy rules,18,19 in which the modification of the linguistic model structure by an
importance factor (weight) is considered for each rule. By means of this technique,
the way in which these rules interact with their neighbor ones can be indicated.

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 235

In Ref. 14, the weighted COR (WCOR) methodology was presented to include
the weight learning within the original COR methodology (proposed in Ref. 20 and
extended in Ref. 21). In this way, considering a miso (multiple input single output)
fuzzy system, for each possible antecedent combination in the problem input space,
this method automatically learns the best consequent label and its associated weight.

To learn a fuzzy controller for the problem of mobile robot navigation, we have
adapted the learning algorithm proposed in Ref. 14, considering in this case a mimo
(multiple input multiple output) fuzzy system. The fitness function has also been
adapted from the one presented in Ref. 14 to penalize rule bases with too many
rules. This is an important issue in fuzzy control for mobile robot navigation, as the
actions of the robot are easily understandable in a model with less rules.

The WCOR methodology is guided by example covering criteria to obtain
antecedents (fuzzy input subspaces) and candidate consequents.14 Depending on
the combination of this technique with different ad hoc data-driven methods, dif-
ferent learning approaches can arise. In this work, we will consider the Wang and
Mendel’s method22 (WM) for this purpose—approach guided by examples. The
WCOR methodology following this approach consists of two main stages:

1. Search space construction: It obtains a set of candidate consequents for each rule.
2. Selection of the most cooperative fuzzy rule set and learning of weights: It performs a

combinatorial search among these sets looking for the combination of consequents with
the best global accuracy and learning rule weights to improve even more the interaction
among the different rules.

In this section, we present the adaptation of the WCOR methodology to ob-
tain a cooperative set of weighted linguistic rules in the mobile robotic navigation
problem. In the following, we describe the use of the weighted linguistic rules,
the mentioned WCOR methodology, and the evolutionary algorithm applied to the
WCOR methodology.

3.1. The Use of Weighted Linguistic Rules

Using rule weights18,19 has been usually considered to improve the way in
which rules interact, improving the accuracy of the learned model. In this way, rule
weights suppose an effective extension of the conventional fuzzy reasoning system
that allows the tuning of the system to be developed at the rule level.18,19

When weights are applied to complete rules, the corresponding weight is used
to modulate the firing strength of a rule in the process of computing the defuzzified
value. From human beings, it is very close to consider this weight as an important
degree associated with the rule, determining how this rule interacts with its neighbor
ones. We will follow this approach, because the interpretability of the system is
appropriately maintained. In addition, we will only consider weight values in [0, 1]
because it preserves the model readability. In this way, the use of rule weights
represents an ideal framework for extended linguistic fuzzy modeling when we
search for a trade-off between accuracy and interpretability. To do so, we will
follow the weighted rule structure and the inference system proposed in Ref. 19

International Journal of Intelligent Systems DOI 10.1002/int

236 MUCIENTES ET AL.

extended for multiple output variables:

IF X1 is A1 and . . . and Xn is An

THEN Y1 is B1 and . . . and Ym is Bm with [w], (16)

where Xi (Yj) are the linguistic input (output) variables, Ai(Bj) are the linguistic
labels used in the input (output) variables, w is the real-valued rule weight, and with
is the operator modeling the weighting of a rule.

With this structure, the fuzzy reasoning must be extended. The classical ap-
proach is to infer with the FITA (first infer, then aggregate) scheme and compute
the defuzzified output of the j th variable as the following weighted sum:

y(j) =
∑

h mh · wh · Ph(j)∑
h mh · wh

, (17)

with mh being the matching degree of the hth rule, wh being the weight associated
with the hth rule, and Ph(j) being the characteristic value of the output fuzzy set
corresponding to that rule in the j th variable. In this contribution, the center of
gravity will be considered as a characteristic value and the minimum t-norm will
play the role of the implication and conjunctive operators.

3.2. The Weighted COR Methodology

Let us assume the previous existence of the following input–output data set
and an initial fuzzy partition:

• Input–output data set- E = {e1, . . . , el, . . . , eN }, with el = (xl
1, . . . , x

l
n, yl

1, . . . , y
l
m), l ∈

{1, . . . , N}, N being the data set size, and n(m) being the number of input (output)
variables—representing the behavior of the problem being solved.

• Fuzzy partition of the variable spaces. In our case, uniformly distributed fuzzy sets are
created. Let Ai be the set of linguistic terms of the ith input variable, with i ∈ {1, . . . , n},
and Bj be the set of linguistic terms of the j th output variable, with j ∈ {1, . . . , m}, with
|Ai | (|Bj |) being the number of labels of the ith (j th) input (output) variable.

Considering this data set and once the initial fuzzy partition is determined, the
WCOR algorithm will consist of the following steps:

1. Search space construction:

1.1. Define the fuzzy input subspaces containing positive examples: To do so, we
should define the positive example set (E+(Ss)) for each fuzzy input subspace
Ss = (As

1, . . . , A
s
i , . . . , A

s
n), with As

i ∈ Ai being a label, s ∈ {1, . . . , NS}, and NS =∏n

i=1 |Ai | being the number of fuzzy input subspaces. In this paper, we use the fol-
lowing:

E+(Ss) = { el ∈ E | ∀i ∈ {1, . . . , n},
∀A′

i ∈ Ai , μAs
i
(xl

i) ≥ μA′
i
(xl

i) } (18)

with μAs
i
(·) being the membership function associated with the label As

i .

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 237

Among all the NS possible fuzzy input subspaces, consider only those con-
taining at least one positive example. To do so, the set of subspaces with positive
examples is defined as S+ = {Sh | E+(Sh)
= ∅}.

1.2. Generate the set of candidate rules in each subspace with positive examples: First,
the candidate consequent set associated with each subspace containing at least an
example, Sh ∈ S+, is defined. In this paper, we use the following:

C(Sh) = { (Bkh

1 , . . . , Bkh
m) ∈ B1 × . . . × Bm |

∃el ∈ E+(Sh) where ∀j ∈ {1, . . . , m},
∀B ′

j ∈ Bj , μ
B

kh
j

(yl
j) ≥ μB ′

j
(yl

j) }.
(19)

Then, the candidate rule set for each subspace is defined as CR(Sh) = {Rkh
= [IF

X1 is Ah
1 and ... and Xn is Ah

n THEN Y1 is B
kh

1 and ... and Ym is Bkh
m] such that

(Bkh

1 , . . . , Bkh
m) ∈ C(Sh)}.

To allow COR to reduce the initial number of fuzzy rules, the special element
R∅ (which means “do not care”) is added to each candidate rule set, i.e., CR(Sh) =
CR(Sh) ∪ R∅. If it is selected, no rules are used in the corresponding fuzzy input
subspace.

2. Selection of the most cooperative fuzzy rule set and learning of weights.

• Problem representation: For each final rule Rh, we have Sh, C(Sh), and wh ∈ [0, 1].
Since Sh is kept fixed, the problem will consist of determining the consequents and
the weight associated with each rule. Two vectors, c1 and c2, of size |S+| (number
of rules finally obtained), are defined to represent this information, where,

c1[h] = kh | Rkh
∈ CR(Sh) (20)

c2[h] = wh, ∀h ∈ {1, . . . , |S+|} (21)

In this way, the c1 part is an integer-valued vector in which each cell represents
the index of the consequents used to build the corresponding rule. The c2 part is
a real-valued vector in which each cell represents the weight associated with this
rule. Finally, a problem solution is represented as follows:

c = c1 c2 (22)

• Search algorithm: This stage is performed by running a combinatorial search
algorithm to look for the combination in the c vector that represents the RB with
the best accuracy. Since the tackled search space is usually large, approximate
search techniques should be used. To do that, we consider the use of the simple
genetic algorithm (GA) presented in the next subsection.

An index f (RB) measuring the global quality of the encoded rule set is
considered to evaluate the quality of each solution. To obtain solutions with a high
interpretability, the original function is modified to penalize excessive number of
rules:

f ′(RB) = f (RB) + β · f (RB0) · #RB

|S+| (23)

with β ∈ [0, 1] being a parameter defined by the designer to regulate the importance
of the number of rules, #RB being the number of rules used in the evaluated
solution (i.e., |S+| − |{Rh ∈ RB such that Rh = R∅}|), and RB0 being the initial
rule base considered by the search algorithm.

International Journal of Intelligent Systems DOI 10.1002/int

238 MUCIENTES ET AL.

Since it is based on the original COR methodology,20,21 the WCOR methodol-
ogy has some inherited advantages that make it very useful to learn fuzzy controllers
in mobile robot navigation. We can mainly highlight two characteristics:

1. Search space reduction: The WCOR methodology reduces the search space when
compared with other rule base learning methods23 and allows it to be quicker and to
make a better solution exploration in the space of the consequents, complementing this
search with the use of the weights that improves the interaction among the different rules.
It is due to two main reasons:

• The fact of assigning each example to only one subspace will involve to reduce the
number of candidate consequents, because the positive example sets are reduced.

• The use of a restrictive condition to construct C(Sh) (see Equation 19) that gener-
ates a low number of candidate rules.

This is an important issue for the learning of fuzzy controllers, where a high
number of examples are used. In the wall-following behavior presented in this paper,
5,070 examples have been used, and the employed methodology spends around 3 h (with
an Intel Centrino 1.73 GHz processor) to obtain the controller.

2. Interpretability issues: This methodology also has some interesting advantages from
the interpretability of the obtained fuzzy knowledge point of view. In this case, the
membership functions keep invariable although we have to consider the rule weights. As
said, these weights can be considered as importance factors because they present values
in the interval [0.0, 1.0]. Furthermore, the COR methodology achieves a rule reduction
process at the same time as the learning one with the aim of improving the accuracy (the
cooperation among rules and thus the system performance can be improved by removing
rules) and interpretability (a model with less rules is more interpretable) of the learned
model. In most of the cases, the learning of the rule weights helps to remove a major
number of rules. These are important issues in fuzzy control for mobile robot navigation,
as the actions of the robot are easily understandable.

3.3. Genetic Algorithm Applied to the WCOR Methodology

As said, a GA is used to perform an approximate search among the candidate
rules with the main aim of selecting the set of consequents with the best cooper-
ation and simultaneously learning the weights associated with the obtained rules.
It is based on a standard binary-coded genetic algorithm whose characteristics are
presented in the following. The general scheme for this basic GA is showed in
Figure 2.

• Selection and Reproduction: The selection probability calculation follows the Baker’s
linear ranking.24 Chromosomes are sorted in order of raw fitness, and then the selection
probability of each chromosome, ps(cp), is computed according to its rank, rank(cp)—
with rank(cbest) = 1— by using the following nonincreasing assignment function:

ps(c
p) = 1

NC

·
(

ηmax − (ηmax − ηmin) · rank(cp) − 1

NC − 1

)
, (24)

where NC is the number of chromosomes and ηmin ∈ [0, 1] specifies the expected number
of copies for the worst chromosome (the best one has ηmax = 2 − ηmin expected copies).

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 239

 Initial Population Generation

 Evaluation

t 0

Begin

 Selection

 Crossover

Mutationt t+1

t > t max

 End

no

yes

 Evaluation

Figure 2. Flowchart of the implemented GA.

Most of the works in the literature have fixed ηmin to 0.75, becoming a standard value
since this value works well practically in all the cases.

The classical generational25 scheme has been considered in this algorithm. In this
way, linear ranking is performed along with stochastic universal sampling.24 This proce-
dure guarantees that the number of copies of any chromosome is bounded by the floor
and by the ceiling of its expected number of copies. Together with the Baker’s stochastic
universal sampling procedure, an elitist mechanism (that ensures to maintain the best
individual of the previous generation) has been considered.

• Initial Gene Pool: The initial pool is obtained by generating a possible combination
at random for the c1 part of each individual in the population. And for the c2 part, it
is obtained with an individual having all the genes with value 1, and the remaining
individuals generated at random in [0, 1].

• Fitness Function: The fitness function will be the mentioned objective function, defined
in Equation 23.

• Crossover: Owing to the different nature of both parts considered for each chromosome,
different operators working in each part, c1 and c2, are required. Taking into account
this aspect, the following operators are considered: In the c1 part, the standard two-
point crossover26 is used, whereas in the c2 part, the max-min-arithmetical crossover27,28

is considered (see Figure 3). Two-point crossover is a classical operator for binary and
integer coding, which properly handles the search space for the c1 part, becoming one of the
most used operators for this coding type. Max-min-arithmetical crossover is an adequate
operator for real-coded genetic algorithms and allows different levels of exploitation and
exploration to be introduced simultaneously in the search process.29

Two-point crossover involves interchanging the fragments of the parents contained
between two points selected at random (resulting two descendants). On the other hand,

International Journal of Intelligent Systems DOI 10.1002/int

240 MUCIENTES ET AL.

C1 C22C11

 Two-point crossover
classical mutation

... ...

Max-min-arithmetical crossover
random mutation

C2......C21

C1 C2

|S |+ |S |+C2 |S |-1+

Figure 3. Genetic representation and operators’ application scope.

by using the max-min-arithmetical crossover, if cv
2 = (c[1], . . . , c[k], . . . , c[n]) and cw

2 =
(c′[1], . . . , c′[k], . . . , c′[n]) are crossed, the next four offsprings are obtained:

c1
2 = a · cw

2 + (1 − a) · cv
2 (25)

c2
2 = a · cv

2 + (1 − a) · cw
2 (26)

c3
2 with c3[k] = min{c[k], c′[k]} (27)

c4
2 with c4[k] = max{c[k], c′[k]} (28)

with a ∈ [0, 1] being a parameter chosen by the GA designer. Typically, a is fixed to 0.3,
which gives one offspring nearer to the first parent and the other nearer to the second
parent.27,29

In this case, eight offspring are generated by combining the two from the c1 part
(two-point crossover) with the four from the c2 part (max-min-arithmetical crossover).
The two best offspring obtained replace the two corresponding parents in the population.

• Mutation: The operator considered in the c1 part randomly selects a gene (h ∈ {1, . . . ,
|S+|}) and changes at random the current consequent Bkh

by other consequent Bkh
′ such

that Rk′
h

∈ CR(Sh). On the other hand, the selected gene in the c2 part takes a value at
random within the interval [0, 1].

Figure 3 shows the application scope of the different operators considered.

4. RESULTS

The quality of the learned controllers has been tested on a Nomad 200 robot,
both with the Nomad 200 simulation software and on the real robot. We present
a deep analysis of the different parameters that are specific of our methodology.
Nevertheless, a study on the parameters related to the GA has not been performed
because there are different studies on these parameters and we consider general
values that have demonstrated a good performance in different problems. The fol-
lowing values have been considered for the parameters that are specific for the GAa :

aWith these values, we have tried to select standard common parameters that work well
in most cases, instead of searching for very specific values to apply the GA to our specific
problem. Moreover, we have set a large number of generations to allow the algorithm to achieve
an appropriate convergence. No significant changes were achieved by increasing that number of
generations or by reasonably changing these parameters.

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 241

Figure 4. Convergence of the algorithm in one of the experiments.

61 individuals, 1000 generations, 0.1 and 0.6 as mutation and crossover probability
per chromosome, and 0.3 for the factor a in the max-min-arithmetical crossover.
Figure 4 shows the convergence of the algorithm in one of the experiments: As
the number of generations increases (x axis), the fitness of the best individual
(y axis) decreases. Over a threshold, new generations do not improve the results of
the algorithm.

4.1. Simulated Robot

Six environments have been chosen to test the learned controllers. These en-
vironments include very different situations that the robot usually faces during
navigation: straight walls of different lengths, followed and/or preceded by a num-
ber of concave and convex corners, gaps, and so on thus covering a wide range of
contours to follow and truly defining very complex test environments. It is impor-
tant to remark that none of these environments have been used during the learning
process. Thus, the training set has been a set of 5,070 examples that uniformly cover
the universe of discourse of the input variables.

Figure 5 shows the robot path along four of the test environments. The robot
trajectory is represented by circular marks. A higher concentration of marks indicates
lower velocity. The maximum velocity the robot can reach is 61 cm/s, and the
reference distance at which the robot should follow the right wall is 51 cm.

Several controllers have been learned for different values of β (Equation 23), a
parameter to regulate the importance of the number of rules. Finally, the controller
with β = 0.2 has been selected. The controller has 41 rules. Ten tests have been
done for each one of the analyzed environments. The average values measured for
some parameters that reflect the controllers performance are shown in Table II.
The parameters are the average distance to the right wall (the wall that is being
followed), the average linear velocity, the time spent by the robot along the path,
and the average velocity change. The latter parameter measures the change in the

International Journal of Intelligent Systems DOI 10.1002/int

242 MUCIENTES ET AL.

Movement
direction

Concave
corner

Convex
corner

Movement
direction

1meter

Movement
direction

Movement
direction

(a) Environment C (b) Environment F

(c) Environment E (d) Environment D

Figure 5. Path of the robot along some of the different simulated environments.

linear velocity between two consecutive cycles, reflecting the smoothness of the
behavior.

The learned controller obtains an average right distance very close to the
reference distance in most of the environments, whereas the average speed is very
high. At environment C, owing to the existence of a couple of narrow passageways,
this average distance is, logically, reduced, together with the average velocity.

The knowledge base of the model obtained by WCOR is presented in Figure 6.
In the rule base, each row of the table represents a fuzzy subspace and contains

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 243

Table II. Average values of some parameters for WCOR controller (41 rules)

Environment RD (cm) Velocity (cm/s) � Velocity (cm/s) Time (s)

A 51 52 7.94 101
B 52 54 8.14 62
C 45 43 5.90 90
D 52 53 8.88 111
E 47 49 9.82 111
F 51 54 7.03 96

its associated output consequents, that is the corresponding labels together with
the respective rounded rule weight. Moreover, the absolute importance weight for
each fuzzy rule has been graphically showed by means of the gray color scale,
from black (1.0) to white (0.0). In this way, we can easily see the importance of
a rule with respect to their neighbor ones, which could help the system experts to
identify important rules. Rules that have a higher weight than their neighbors or rules
that are the ones of their regions can be considered as important or predominant
rules. Rules that have a more or less similar weight than their neighbors can be
considered as cooperative rules in their corresponding zones. And rules that have
a lower weight than their neighbor ones can be considered as complementary rules
that help important rules to better model the control surface.

To show the quality of the controller, we are going to describe in detail the
path of the robot in environment E (Figure 5c). This environment is quite complex,
with 10 concave corners and 6 convex corners in a circuit of a length of 57 m. The
measurements of the ultrasound sensors are quite noisy due to the gaps present in the
wall and also because of the convex corners. The controller must also significantly
reduce velocity at corners. All these situations reduce the average distance and
velocity. As it can be seen, the robot follows the wall with a high precision, except
at the corners, where it approaches to the wall (concave corners) or gets away from
it (convex corners) to turn.

4.1.1. Analysis of Parameter β

Parameter β regulates the importance of the number of rules. The greater the
value of β, the lower the number of rules. The objective of this section is to show
that if we do not select a very high value of β, the performance of the controller is
very similar for different values of this parameter. Table III shows for several values
of β the number of rules of the knowledge bases, and the average value of some
parameters for environment E.

As the reader can see, values of β under 0.4 obtain a similar performance. Low
values of β have a higher number of rules and, as a consequence the smoothness
of the behavior is greater (lower value of parameter �Velocity). For β = 0.4 and
0.5, the number of rules is really low, so the behavior is not smooth and the average
velocity decreases. In particular, for β = 0.5 the average right distance takes a value
more than the 20% lower than the expected reference distance.

International Journal of Intelligent Systems DOI 10.1002/int

244 MUCIENTES ET AL.

(a) Data base

 0

 0.5

 1

 0 0.75 1.5 2.25 3

VHHML

Right distance (RD)

 0

 0.5

 1

 0 0.5 1 1.5 2

HL

Distances quotient (DQ)

 0

 0.5

 1

 0 225 450

HRLRZLLHL

Orientation (OR)

 0

 0.5

 1

 0 0.25 0.5 0.75 1

HL

Velocity (LV)

 0

 0.5

 1

−1 −0.5 0 0.5 1

VHAHAMASAZSBMBHBVHB

Linear acceleration (LA)

 0

 0.5

 1

−1 −0.5 0 0.5 1

VHLHLMLSLZSRMRHRVHR

Angular velocity (AV)

(b) Rule base

Rule RD DQ OR V LA AV Weight Rule RD DQ OR V LA AV Weight
R1 L L LL L VHB VHR 0.4610 R22 H L Z L HA VHR 0.5758
R2 L L LL H VHB VHR 0.4896 R23 H L LR H SA MR 0.2513
R3 L L Z L Z MR 0.6664 R24 H L HR L HA VHL 0.5471
R4 L L Z H HB SR 0.5435 R25 H L HR H SA HL 0.5595
R5 L H LL L MA HR 0.7276 R26 H H HL L VHB VHR 0.9999
R6 L H Z L MA HL 0.4845 R27 H H HL H VHB VHR 0.9563
R7 L H Z H HB ML 0.5023 R28 H H LL L HA VHR 0.9506
R8 L H LR H VHB VHL 0.7363 R29 H H Z L HA VHR 0.4529
R9 L H HR L VHB VHL 0.9441 R30 H H Z H SA VHR 0.2210
R10 M L Z H SA HR 0.3402 R31 H H LR L HA MR 0.3612
R11 M L LR H Z VHL 0.4244 R32 H H LR H SA MR 0.2122
R12 M L HR L SA HL 0.5472 R33 H H HR L HA HL 0.7878
R13 M L HR H MB VHL 0.4369 R34 H H HR H SA VHL 0.3859
R14 M H HL L Z VHR 0.1770 R35 VH L LR L HA VHR 0.5530
R15 M H HL H VHB VHR 0.4526 R36 VH L HR L HA HR 0.4223
R16 M H LL H SA VHR 0.2548 R37 VH L HR H SA HR 0.3854
R17 M H Z L HA Z 0.2084 R38 VH H LL L HA VHR 0.0936
R18 M H LR L HA VHL 0.6242 R39 VH H LR L HA VHR 0.7325
R19 M H LR H SA VHL 0.3779 R40 VH H LR H SA VHR 0.5631
R20 M H HR L Z VHL 0.6931 R41 VH H HR L HA HR 0.5146
R21 M H HR H VHB VHL 0.7580

Figure 6. Knowledge base generated by the WCOR method.

Table III. Average values of some parameters at environment E for different values of β.

β Rules RD (cm) Velocity (cm/s) �Vel. (cm/s) Time (s)

0.0 73 53 49 4.76 114
0.1 53 49 49 8.92 113
0.2 41 47 49 9.82 111
0.3 38 47 48 12.24 115
0.4 28 51 38 20.90 141
0.5 25 40 29 19.41 177

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 245

Table IV. Characteristics of the variables (24,624 examples).

Variable Universe of discourse Precision (pi) Granularity Number of values

RD [0, 3.] 0.2 4 16
DQ [0, 2.] 0.25 2 9
OR [−450, 450] 50 5 19
LV [0, 1] 0.125 2 9
LA [−1, 1] 0.125 9 17
AV [−1, 1] 0.05 9 40

4.1.2. Influence of the Number of Examples

Our objective is to show that the quality of the learned behavior is independent
of the size of the training set. Table IV shows the universe of discourse, precision,
granularity, and the number of values for each variable of the new training set. We
have modified all the precisions of the input variables of Table I, and instead of
5,070 examples, now the training set has 24,624. This increases the learning times,
but the performance of the learned behavior is not affected.

The average values of the usual parameters for the learned controller with
β = 0.2 and the training set of 24,624 examples are shown in Table V. The obtained
results are very similar to those of the original knowledge base (Table II).

4.1.3. Study of the Number of Labels

The third and last parameter analysis consists in testing a controller that has
been learned with the same training set and value of β, but with a different number
of labels for some of the variables. Instead of the granularities of Table I, we have
used those of Table VI.

We have tested the obtained controller in all the environments (Table VII).
The number of rules is higher because the initial number of rules (due to the new

Table V. Average values of some parameters for WCOR controller
with β = 0.2 and 24,624 examples (37 rules).

Environment RD (cm) Velocity (cm/s) �Velocity (cm/s) Time (s)

A 55 53 6.00 103
B 53 52 8.28 64
C 48 47 7.50 84
D 52 53 4.94 112
E 49 50 8.17 111
F 52 51 7.19 101

Table VI. New values for the granularities.

RD DQ OR LV LA AV

Granularities 7 2 7 3 9 9

International Journal of Intelligent Systems DOI 10.1002/int

246 MUCIENTES ET AL.

Table VII. Average values of some parameters for WCOR controller
with β = 0.2, 5,070 examples, and granularities of Table VI (182
rules).

Environment RD (cm) Velocity (cm/s) �Velocity (cm/s) Time (s)

A 56 54 3.15 100
B 55 54 4.45 62
C 55 55 2.48 71
D 56 56 2.89 106
E 51 50 6.09 113
F 55 55 4.49 95

granularities) is also higher, but the performance is again very similar to that of the
original controller (Table II). The average distance in worse in four environments,
and better in one, whereas the average speed is better in all the environments. On
the other hand, the smoothness of this controller is clearly better than the original
controller due to the much higher number of rules.

4.1.4. Comparison with Other Learning Methodologies

Our WCOR controller (Table II) has also been compared with other three con-
trollers obtained applying different methodologies. The first of the methodologies
was presented in Ref. 30, in which the COR methodology without weights was
applied for the same purpose, but in that case the search technique was an ant colony
optimization algorithm, whereas in this approach a genetic algorithm has been used.
Table VIII shows the values of average parameters for the COR controller,30 which
has 52 rules for β = 0.2.

As it can be seen, the controller learned using WCOR has increased the average
velocity and improved the average distance in most of the environments. Also the
smoothness of the behavior has been highly improved in all of the environments, in
spite of the lower number of rules of the knowledge base learned with WCOR (41
vs. 52 rules).

The second of the methodologies with which WCOR has been compared is
the well-known Wang and Mendel’s algorithm.22 It consists of an ad hoc algorithm
based on generating a candidate fuzzy rule for each available example and then
performs a selection among inconsistent set of rules. Table IX shows the results

Table VIII. Average values of some parameters for COR controller (52 rules)30

Environment RD (cm) Velocity (cm/s) �Velocity (cm/s) Time (s)

A 53 51 10.39 107
B 53 51 10.17 66
C 50 49 9.40 81
D 53 51 10.29 104
E 49 46 11.22 123
F 53 52 10.08 116

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 247

Table IX. Average values of some parameters for WM controller (80 rules).22

Environment RD (cm) Velocity (cm/s) �Velocity (cm/s) Time (s)

A 55 53 2.42 101
B 55 55 2.59 61
C 52 51 2.02 76
D 54 55 2.02 107
E 48 47 5.02 119
F 54 53 2.74 101

obtained with this methodology. WCOR (Table II) obtains a better average right
distance (between 4% and 10% of improvement) in all the environments but C,
whereas in E the distances are similar. The average velocities are similar in all the
environments, except again in C. The reason is that in the narrow passageways the
controller learned with WM does not reduce the speed and follows the left wall
closer than the right one, and although the average values of the parameters are
better, the behavior is worse in this environment than the one implemented with
WCOR. Finally, as the number of rules of WM is the double of WCOR (80 vs. 41
rules), the smoothness of WM is clearly better. However, the interpretability degree
is significantly higher in the knowledge base generated by WCOR.

The third comparison has been done with the accurate linguistic modeling
(ALM) learning method.31 This method consists of a first stage that generates a set
of candidate double-consequent fuzzy rules (for each data set example, two rules
with the antecedent that best matches the input variables and the two consequents
that best cover the output are generated) and then applies a genetic algorithm based
fuzzy rule selection process. The method obtains a lower interpretability degree
due to the fact that it considers inconsistent fuzzy rules (i.e., rules with the same
antecedent but different consequent) in exchange of improving the accuracy.

Table X presents the results obtained in all of the environments with the knowl-
edge base learned with this methodology. In most of the environments, the average
distance is far away from the reference distance. In some environments, the error is
of more than 20%, which is unacceptable as this is the most important parameter. On
the other hand, the average speed is clearly higher in two of the environments, and
similar in the others, whereas the smoothness is much higher in all the environments.
However, as said previously, the interpretability of the inconsistent fuzzy rule set
generated by ALM is worse.

Table X. Average values of some parameters for ALM controller (73 rules).31

Environment RD (cm) Velocity (cm/s) �Velocity (cm/s) Time (s)

A 51 54 1.24 99
B 55 59 1.25 56
C 43 53 1.86 73
D 46 55 1.10 106
E 37 48 3.73 115
F 41 51 1.94 102

International Journal of Intelligent Systems DOI 10.1002/int

248 MUCIENTES ET AL.

Table XI. Average values of some parameters for WCOR (41 rules) and COR
controllers (52 rules) on the real robot (environment of Figure 7)

Controller RD (cm) Velocity (cm/s) �Velocity (cm/s) Time (s)

WCOR 62.9 32.5 1.43 154
COR 60.1 29.5 2.16 172

4.2. Real Robot

The simulation results are a good indicator of the performance of the learned
controllers, but these are not completely tested until they are implemented on the
real robot. Several test were done in the Department of Electronics and Computer
Science of the University of Santiago de Compostela with a Nomad 200 robot. The
environment was not modified for the robot, and only one box was placed in one of
the passageways just to make the robot turn and reduce the length of the path. Table
XI shows the average values of some parameters for WCOR (41 rules) and COR
controllers (52 rules) along the same path (Figure 7).

The tested controllers are exactly the same used in the simulated environments.
The only difference is that the maximum speed of the robot has been limited from
61 cm/s to 38 cm/s, because at higher speeds the robot has not the capability to stop

O1

C1

C2

C3

D1

D2

D3

D4D5

D6

D7

D10

D11

Do8

Do12

Begin

End

Movement
direction

Noise due
to a door

D9

Figure 7. Path of the real robot for WCOR (β = 0.2).

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 249

in a short space (remember that it is following the wall at 51 cm). WCOR obtains
an average right distance 4% worse than COR, but improves the average velocity
10%. This means that it arrives to the goal 18 s before the robot controlled with
the COR knowledge base. Also the smoothness of WCOR is better, in spite of the
lower number of rules. This parameter is specially important on the real robot, as
frequent changes in the speed and angle of the robot visually spoil the behavior.
Finally, the average right distances are slightly worse than in simulation, because
the measurement of the input variables has much more noise on the real robot.

The path followed by the robot has a length of 49 m. Figure 7 shows both the
trace of the robot and the measurements of the ultrasound sensors (represented by
dots). When the robot moves and turns, small errors appear because the wheels can
slip, the turned angle is not exactly the one measured by the motors of the robot,
etc. All these kind of errors are known as odometry errors. In short distances, these
errors are not significant, but for long distances they become important for mapping
and localization tasks. Although they do not affect the performance of the learned
behaviors, they get evident when we display the map obtained with the ultrasound
sensors. Although, the wall placed on the right of the robot at the beginning is the
same wall that is on the right of the robot at the end, in the map they appear displaced
around 1 m.

The environment has 3 concave (Ci) and 1 convex corner (Oi) and 12 doors
(Di), 2 of them opened (Doi). The presence of doors increases drastically the number
of noisy measurements. When they are opened the gap is of 75 cm (the minimum
gap that the robot needs for crossing a door is 1 m), and the detected obstacles on
the other side of the door complicate the estimation of the wall. But also when the
doors are closed noise appears, because the surface of the doors is very smooth, and
the probability of specular reflection highly increases. These noisy measurements
appear in the middle of the passageway, increasing the errors in the detection of the
walls and, thus, affecting the performance of the learned controllers.

5. CONCLUSIONS

A methodology for the design of behaviors in mobile robotics has been pre-
sented. It is based on COR (cooperative rules) with weights (WCOR) and uses
a genetic algorithm to perform the search. Using rule weights improves the ac-
curacy of the knowledge base (the way rules interact), while maintaining a good
interpretability.

The methodology presents several advantages over other approaches for the
design of behaviors that must be implemented on the real robot. In first place,
the designer only needs to define a few parameters. Also, the learned behaviors
are general, so the performance and reliability of the controller in different real
environments is not affected. Finally, the controllers are learned on the simulated
robot, but they can be directly exported to the real robot without any change.

The system has been tested learning the wall-following behavior in mobile
robotics using a Nomad 200, showing a good performance in the different environ-
ments in which it has been tested, both in simulation and on the real robot. A deep

International Journal of Intelligent Systems DOI 10.1002/int

250 MUCIENTES ET AL.

parametric study has been done to show the independence of the performance of
the learned knowledge bases with the values of some selected parameters. Also, the
learned controller has been compared with other three controllers,22,30,31 showing a
better balance between interpretability and accuracy.

Acknowledgments

This work was supported in part by the Spanish Ministry of Science and Innova-
tion under grants TIN2008-00040 and TIN2005-08386-C05-01. Manuel Mucientes
is supported by the Ramóny Cajal program of the Spanish Ministry of Science and
Innovation.

References

1. Dahl T, Giraud-Carrier C. Evolution-inspired incremental development of complex au-
tonomous intelligence. In. Proc 8th Int Conf on Intelligent Autonomous Systems (IAS’04),
Amsterdam (The Netherlands), 2004; pp 395–402.

2. Gu D, Hu H, Reynolds J, Tsang E. GA-based learning in behaviour based robotics. In. Proc
2003 IEEE Int Symp on Computational Intelligence in Robotics and Automation, Kobe
(Japan), 2003; pp 1521–1526.

3. Hagras H, Callaghan V, Collin M. Learning and adaptation of an intelligent mobile robot
navigator operating in unstructured environment based on a novel online fuzzy-genetic
system. Fuzzy Sets Syst 2004; 141:107–160.

4. Izumi K, Watanabe K, Jin S-H. Obstacle avoidance of mobile robot using fuzzy behavior-
based control with module learning. In. Proc 1999 IEEE/RSJ Inte Conf on Intelligent Robots
and Systems 1999; pp 454–459.

5. Katagami D, Yamada S. Interactive classifier system for real robot learning. In: IEEE Int
Workshop on Robot-Human Interaction (ROMAN-2000), Osaka (Japan), 2000. pp. 258–
263.

6. Oh CK, Barlow GJ. Autonomous controller design for unmanned aerial vehicles using multi-
objective genetic programming. In: Proc Cong on Evolutionary Computation, Portland, 2004.
pp 1538–1545.

7. Yamada S. Evolutionary behavior learning for action-based environment modeling by a
mobile robot. Appl Soft Comp 2005; 5(2):245–257.

8. Berlanga A, Sanchis A, Isasi P, Molina JM. A general learning co-evolution method to
generalize autonomous robot navigation behavior. In. Proc 2000 Cong on Evolutionary
Computation, La Jolla, CA, 2000; pp 769–776.

9. Floreano D, Mondada F. Evolutionary neurocontrollers for autonomous mobile robots.
Neural Netw, 1998; 11:1461–1478.

10. Thongchai S, Behavior-based learning fuzzy rules for mobile robots. In: Proc American
Control Conference, Anchorage, AK, 2002. pp 995–1000.

11. Zhou C. Robot learning with ga-based fuzzy reinforcement learning agents. Inform Sci
2002; 145:45–68.

12. Fuentes O, Rao R, Van Wie M. Hierarchical learning of reactive behaviors in an autonomous
mobile robot. In. IEEE Int Conf on Systems, Man and Cybernetics 1995; pp 4691–4695.

13. Lee KJ, Zhang BT. Learning robot behaviors by evolving genetic programs. In: Proc of the
26th Int Conf on Industrial Electronics, Control and Instrumentation (IECON-2000), 2000.
Vol 4, pp 2867–2872.

14. Alcalá R, Casillas J, Cordón O, Herrera F. Improving simple linguistic fuzzy models by
means of the weighted COR methodology. In: 8th Ibero-American Conference on Artificial
Intelligence (IBERAMIA 2002), Advances in Artificial Intelligence - IBERAMIA 2002.

International Journal of Intelligent Systems DOI 10.1002/int

WEIGHTED LINGUISTIC RULES TO CONTROL AN AUTONOMOUS ROBOT 251

Sevilla (Spain), 2002. Lecture Notes in Artificial Intelligence, vol. 2527 pp 294–302. Berlin:
Springer-Verlag; 2002.

15. Sack D, Burgard W. A comparision of methods for line extraction from range data. In: Proc
5th IFAC Symp on Intelligent Autonomous Vehicles, 2004.

16. Lu F, Milios E. Robot pose estimation in unknown environments by matching 2d range scans.
In: Proc IEEE Computer Vision and Patern Recognition Conference, 1994; pp 935–938.

17. Jakobi N, Half-baked, ad-hoc, and noisy: minimal simulations for evolutionary robotics. In:
Proceedings of the fourth European Conference on Artificial Life. Boston, MA: MIT Press;
1993.

18. Cho JS, Park DJ. Novel fuzzy logic control based on weighting of partially inconsistent
rules using neural network. J Intell Fuzzy Syst 2000; 8:99–110.

19. Pal NR, Pal K. Handling of inconsistent rules with an extended model of fuzzy reasoning. J
Intell Fuzzy Syst 1999; 7:55–73.

20. Casillas J, Cordón O, Herrera F. COR: a methodology to improve ad hoc data-driven
linguistic rule learning methods by inducing cooperation among rules. IEEE Trans Syst,
Man, and Cybern, Part B: Cybernet 2002; 32(4):526–537.

21. Casillas J, Cordón O, Herrera F. COR methodology: a simple way to obtain linguistic
fuzzy models with good interpretability and accuracy. In: Casillas J, Cordón O, Herrera F,
Magdalena L. editors. Accuracy improvements in linguistic fuzzy modeling. Heidelberg,
Germany, Springer; 2003.

22. Wang L-X, Mendel JM. Generating fuzzy rules by learning from examples. IEEE Trans
Syst, Man, Cybern 1992; 22(6):1414–1427.

23. Thrift P. Fuzzy logic synthesis with genetic algorithms. In: Belew RK, Booker LB, editors.
Proceedings of the 4th International Conference on Genetic Algorithms, San Mateo, CA:
Morgan Kaufmann; 1991. pp 509–513.

24. Baker JE, Reducing bias and inefficiency in the selection algorithm. In: Proc 2nd Int Con-
ference on Genetic Algorithms, Hillsdale, NJ, 1987. pp 14–21.

25. Michalewicz Z. Genetic algorithms + data structures = evolution programs. Heidelberg,
Germany: Springer-Verlag; 1996.

26. Eshelman LJ, Caruana A, Schaffer JD. Biases in the crossover landscape. In: Schaffer JD,
editor. Proc 3rd Int Conf on Genetic Algorithms; San Mateo, CA: Morgan Kaufmann; 1989;
pp 86–91.

27. Herrera F, Lozano M, Verdegay JL. Tuning fuzzy logic controllers by genetic algorithms.
Int J Approx Reason 1995; 12:299–315.

28. Michalewicz Z. Genetic algorithms. Data structures. Evolutionary programs. Berlin:
Springer-Verlag; 1992.

29. Herrera F, Lozano M, Sánchez AM. A taxonomy for the crossover operator for real-coded
genetic algorithms: an experimental study. Int J Intell Syst 2003; 18:309–338.

30. Mucientes M, Casillas J. Obtaining a fuzzy controller with high interpretability in mobile
robots navigation. In: Proc IEEE Int Conf on Fuzzy Systems (Fuzz-IEEE 2004), Budapest
(Hungary), 2004. pp. 1637–1642.

31. Cordón O, Herrera F. A proposal for improving the accuracy of linguistic modeling. IEEE
Trans Fuzzy Syst 2000; 8(3):335–344.

International Journal of Intelligent Systems DOI 10.1002/int

