
Rapid development of fuzzy logic control using jFuzzyLogic

Pablo Cingolani 1, Jesús Alcalá-Fdez 2

1 School of Computer Science, McGill University,
McConnell Engineering Bldg, Room 318,

Montreal, Quebec, H3A-1A4, Canada
E-mail: pablo.cingolani@mail.mcgill.ca

2 Department of Computer Science and Artificial Intelligence, University of Granada,
Research Center on Information and Communications Technology,

C/ Periodista Daniel Saucedo Aranda s/n,
Granada, 18071, Spain

E-mail: jalcala@decsai.ugr.es

Abstract

This work introduces jFuzzyLogic, a software framework that allows for rapid development of fuzzy
systems. JFuzzyLogic’s goal to facilitate and accelerate development of fuzzy systems is achieved by i)
using standard programming language that reduces learning curves; ii) providing a fully functional and
complete implementation of fuzzy inference system; iii) creating an API that developers can use or extend;
iv) implementing an Eclipse plugin to easily write and test FCL code; v) making the software platform
independent; and vi) distributing the software as open source. The use of jFuzzyLogic is illustrated
through the analysis of one case study.

Keywords: List of four to six keywords which characterize the article.

1. Introduction

Fuzzy rule based systems (FRBSs) are one of the
most important areas for the application of the Fuzzy
Set Theory1. Classical rule based systems deal with
IF-THEN rules. FRBSs constitute an extension to
classical systems, having antecedents and conse-
quents composed of fuzzy logic statements.

A Fuzzy Logic Controller (FLC) 2,3,4,5 is a FRBS
composed of: i-) a Knowledge Base that comprises
the information used by the expert operator in the
form of linguistic control rules; ii-) a Fuzzification
Interface, that transforms the crisp values of the in-
put variables into fuzzy sets; iii-) an Inference Sys-

tem, that uses the fuzzy values from the Fuzzifica-
tion Interface and the information from the Knowl-
edge Base to perform the reasoning process and iv-)
the Defuzzification Interface, which takes the fuzzy
action from the Inference System and translates it
into crisp values for the control variables.

FLCs are suitable for engineering applications
in which classical control strategies do not achieve
good results or when it is too difficult to obtain a
mathematical model. FLCs usually have two char-
acteristics: the need for human operator experience,
and a strong non linearity. Many real-world appli-
cations use FLCs 6 such as mobile robot naviga-
tion 7,8, air conditioning controllers 9,10, domotic

Pablo Cingolani, Jesús Alcalá-Fdez

control11,12, and industrial applications13,14.
FLCs are powerful for solving a wide range of

problems, but their implementation requires a cer-
tain programming expertise. In the last few years,
many fuzzy logic software tools have been devel-
oped to reduce this task. Some are commercially
distributed, for example MATLAB Fuzzy logic tool-
box(www.mathworks.com), while a few are avail-
able as open source software (see section 2).

In this work, we introduce an open source Java
library named jFuzzyLogic. This fuzzy systems li-
brary allows FLCs design and implementation, fol-
lowing the standard for Fuzzy Control Language
(FCL) published by the International Electrotechni-
cal Commission (IEC 61131-7)15.

The main goal of jFuzzyLogic is to bring the
benefits of open source software and standardization
to the fuzzy systems community. Our library offers
several advantages:

• Standardization, which reduces programming
work and learning curve. This library contains the
basic programming elements for the Standard IEC
61131-7, alleviating developers from boiler plate
programming tasks.

• Extensibility, the object model and API allows to
create a wide range of applications. This is of spe-
cial interest for the research community.

• Platform independence, allows to develop and run
on any hardware and operating system configura-
tion that supports Java.

This work is arranged as follows. The next
section presents a comparison on non-commercial
fuzzy software and the main benefits that the jFuzzy-
Logic offers with respect to other libraries. Sec-
tion 3 introduces the concepts of IEC standard (IEC-
61131) control programming languages. Section 4
describes jFuzzyLogic’s main features. Section 6,
illustrates how jFuzzyLogic can be used in a control
application. Conclusions are presented in Section 7.

2. Comparison of fuzzy logic software

In this section we present a comparison on non-
commercial fuzzy software (Table 1). We center

our interest on free software distributions because
of its important role in the scientific research com-
munity 16. Moreover, we do not want to establish a
comparison among all software tools or to empha-
size the advantages of one over another. Our objec-
tive is to detect the major differences in the software
and then to categorize jFuzzyLogic as an alternative
to these suites when other research requirements are
needed.

We analyze twenty five packages (including
jFuzzyLogic), mostly from SourceForge or Google-
Code, which are considered to be some of the most
respectable software repositories. The packages are
analyzed in the following categories:

• FCL support. Only four packages (∼ 17%) claim
to support IEC 61131-7 specification. Notably
two of them are based on jFuzzyLogic. Only
two packages that support FCL are not based on
our software. Unfortunately neither of them seem
to be maintained by their developers any more.
Furthermore, one of them has some code from
jFuzzyLogic.

• Programming language. This is an indicator of
code portability. There languages of choice were
mainly Java and C++/C (column Lang.). Java
being platform independent has the advantage of
portability. C++ has an advantage in speed and
also allows easier integration in industrial con-
trollers.

• Functionality. Seven packages (∼ 29%) were
made for specific purposes, marked as ‘specific’
(column Notes, Table 1). Specific code usually
has limited functionality, but it is simpler and has
a faster learning curve for the user.

• Membership functions. This is an indicator of
how comprehensive and flexible the package is.
Specific packages include only one type of mem-
bership function (typically trapezoid) and/or one
defuzzification method (data not shown). In
some cases, arbitrary combinations of member-
ship functions are possible. These packages are
marked with asterisk. For example, ‘M + N∗’
means that the software supports M membership
functions plus another N which can be arbitrarily
combined.

jFuzzyLogic

• Latest release. In eight cases (∼ 33%) there were
no released files for the last three years or more
(see Rel. column in the Table 1). This may in-
dicate that the package is no longer maintained,
and in some cases the web site explicitly mentions
this.

• Code availability and usability. Five of the pack-
ages (∼ 21%) had no files available, either be-
cause the project was no longer maintained or be-
cause the project never released any files at all.
Whenever the original sites were down, we tried
to retrieve the projects from alternative mirrors.
In three cases (∼ 13%) the packages did not com-
pile. We performed minimal testing by just fol-
lowing the instructions, if available, and make no
effort to correct any compilation problems.

In summary, only eight of the software packages
(∼ 33%) seemed to be maintained, compiled cor-
rectly, and had extensive functionality. Only two of
them (FuzzyPLC and jFuzzyQt) are capable of pars-
ing FCL (IEC-61131-7) files and both are based on
jFuzzyLogic.

3. IEC-61131 Languages

The IEC-61131 norm is well known for defining the
Programmable Controller Languages (PLC), com-
monly used in industrial applications. In the part 7,
this standard offers a well defined common under-
standing of the basic means to integrate fuzzy con-
trol applications in control systems. It also defines a
common language to exchange portable fuzzy con-
trol programs among different platforms.

The specification defines six programming lan-
guages: Instruction list (IL), Structured text (ST),
Fuzzy Control Language (FCL), Ladder diagram
(LD), Function block diagram (FBD), and Sequen-
tial function chart (SFC). While IL, ST, and FCL are
text based languages, LD, FBD and SFC are graphic
based languages.

IL is similar to assembly language: one instruc-
tion per line, low level and low expression com-
mands. ST, as the name suggests, intends to be more
structured and it is very easy to learn and understand
for anyone with a modest experience in program-
ming. The focus of this work is FCL, which has

a syntax is similar to ST and this is oriented to fuzzy
logic based control systems.

3.1. IEC Language concepts

All IEC-61131 languages are modular. The basic
module is called Programmable Organization Unit
(POU) and includes Programs, Functions or Func-
tion Blocks. A system is usually composed of many
POUs, and each of these POUs can be programmed
in a different language. For instance, in a system
consisting of two functions and one function block
(three POUs), one function may be programed in
LD, another function in IL and the function block
may be programmed in ST. The norm defines all
common data types (e.g. BOOL, REAL, INT, AR-
RAY, STRUCT, etc.) as well as ways to interconnect
POUs, assign process execution priorities, process
timers, CPU resource assignment, etc.

The concepts of a Program and Functions are
quite intuitive. Programs are simple set of state-
ments and variables. Functions are calculations that
can return only one value and are not supposed to
have state variables.

A Function Block resembles a very primitive ob-
ject. It can have multiple input and multiple output
variables, can be enabled by an external signal, and
can have local variables. Unlike an object, a func-
tion block only has one execution block (i.e. there
are no methods). The underlying idea for these lim-
itations is that you should be able to implement pro-
grams using either text-based or graphic-based lan-
guages. Having only one execution block, allows to
easily control execution when using graphic-based
language to interconnect POUs.

3.2. FCL Language concepts

Fuzzy Control Language is an industry standard
specification released by the International Elec-
trotechnical Commission (IEC) as part of the Pro-
grammable Controller Languages (PLC) defined in
the IEC-61131 specification.

At first glance FCL is similar to ST language
described in the previous sections. However, there
are some very important differences. FCL uses ex-
clusively a new POU type: Fuzzy Inference Sys-

Pablo Cingolani, Jesús Alcalá-Fdez

Table 1: Comparisson on open fuzzy logic software packages. Columns describe: Project name (Name), IEC
61131-7 language support (IEC), latest release year (Rel.), main programming language (Lang.), short descrip-
tion form website (Description), number of membership functions supported (MF) and Functionality (notes).
Name∗ : package is maintained, compiles correctly, and has extensive functionality.

Name IEC Rel. Lang. Description MF Notes
Akira No 2007 C++ Framework for complex AI agents. 4
AwiFuzz Yes 2008 C++ Fuzzy logic expert system 2 Does not compile
DotFuzzy No 2009 C# .NET library for fuzzy logic 1 Specific
FFLL Yes 2003 C++ Optimized for speed critical applications. 4 Does not compile
Fispro∗ No 2010 C++/Java Fuzzy inference design and optimization 6
FLUtE No 2004 C# A generic Fuzzy Logic Engine 1 Beta version
FOOL No 2002 C Fuzzy engine 5 Does not compile
FRBS No 2011 C++ Fuzzy Rule-Based Systems 1 Specific
funzy No 2007 Java Fuzzy Logic reasoning 2∗ Specific
Fuzzy Logic Tools∗ No 2011 C++ Framework fuzzy control systems, 12
FuzzyBlackBox No - - Implementing fuzzy logic - No files released
FuzzyClips No 2004 C/Lisp Fuzzy logic extension of CLIPS 3+2∗ No longer maintained
FuzzyJ ToolKit No 2006 Java Fuzzy logic extension of JESS 15 No longer maintained
FuzzyPLC∗ Yes 2011 Java Fuzzy controller for PLC Siemens s226 11+14∗ Uses jFuzzyLogic
GUAJE∗ No 2011 Java Development environment Uses FisPro
javafuzzylogicctrltool No - Java Framework for fuzzy rules - No files released
JFCM No 2011 Java Fuzzy Cognitive Maps (FCM) - Specific
JFuzzinator No 2010 Java Type-1 Fuzzy logic engine 2 Specific
jFuzzyLogic∗ Yes 2011 Java FCL and Fuzzy logic API 11+14∗ This paper
jFuzzyQt∗ Yes 2011 C++ jFuzzyLogic clone 8
libai No 2010 Java AI library, implements some fuzzy logic 3 Specific
libFuzzyEngine No 2010 C++ Fuzzy Engine for Java 1 Specific
nxtfuzzylogic No 2010 Java For Lego Mindstorms NXT 1 Specific
Octave FLT∗ No 2011 Octave Fuzzy logic for Toolkit 11
XFuzzy3∗ No 2003 Java Development environment 6 Implements XFL3 specification language

tem (FIS) which is a special case of a Function
Block. All fuzzy language definitions should be
within a FIS. Since a fuzzy system is inherently par-
allel, there is no concept of execution order, there-
fore there are no statements. For instance, there is
no way to create the typical “Hello world” example
since there is no print statement. A simple example
of a FIS using FCL is shown bellow, which calcu-
lates the tip in a restaurant (this trivial example is
the equivalent to a “Hello world” program for fuzzy
systems). Figure 1 shows the membership functions.

Fig. 1. Membership functions for tipper example.

FUNCTION BLOCK tipper

VAR INPUT

service, food : REAL;

END VAR

VAR OUTPUT

tip : REAL;

END VAR

FUZZIFY service

TERM poor := (0, 1) (4, 0) ;

TERM good := (1, 0) (4,1) (6,1) (9,0);

TERM excellent := (6, 0) (9, 1);

END FUZZIFY

FUZZIFY food

TERM rancid := (0, 1) (1, 1) (3,0);

TERM delicious := (7,0) (9,1);

END FUZZIFY

DEFUZZIFY tip

METHOD : COG; // Center of Gravity

TERM cheap := (0,0) (5,1) (10,0);

TERM average := (10,0) (15,1) (20,0);

TERM generous := (20,0) (25,1) (30,0);

END DEFUZZIFY

RULEBLOCK tipRules

Rule1: IF service IS poor OR food IS rancid

THEN tip IS cheap;

Rule2: IF service IS good THEN tip IS average;

Rule3: IF service IS excellent AND food IS delicious

THEN tip IS generous;

END RULEBLOCK

END FUNCTION BLOCK

A FIS inference system is usually composed
of one or more Function Blocks (FB). Every

jFuzzyLogic

FUNCTION BLOCK has the following sections: i) in-
put and output variables are define in VAR INPUT
and VAR OUTPUT sections respectively; ii) fuzzifica-
tion and defuzzification membership functions de-
fined in FUZZIFY and DEFUZZIFY sections respec-
tively; iii) fuzzy rules are written in the RULEBLOCK
section.

Variable definition sections are straightforward,
the variable name, type and possibly a default value
are specified.

Membership functions either in FUZZIFY or
DEFUZZIFY are defined for each linguistic term us-
ing the TERM statement followed by a function def-
inition. In the previously shown example, functions
are defined as piece-wise linear functions using se-
ries of points (x0,y0)(x1,y1)...(xn,yn). For instance
TERM average := (10,0) (15,1) (20,0) de-
fines a triangular membership function as shown (in
blue) at the bottom of Figure 1. Only two mem-
bership functions are defined in the IEC standard:
singleton and piece-wise linear. As we shown in
Section 4, jFuzzyLogic significantly extends these
concepts.

A FIS can contain one or more RULEBLOCK,
where fuzzy rule sets are defined. Since rules
are intrinsically parallel, no execution order is
implied or warranted by the specified order in
the program. Each rule is defined using stan-
dard “IF condition THEN conclusion [WITH
weight]” clauses. The optional WITH weight
statement allows weighting factors for each rule.
Conditions tested in each IF clause are of the form
“variable IS [NOT] linguistic term”. This test mem-
bership of variable to a linguistic term using the
membership function defined in the corresponding
FUZZIFY block. An optional NOT operand negates
the membership function (i.e. m(x) = 1−m(x)).
Obviously, several conditions can be combined us-
ing AND and OR connectors.

4. JFuzzyLogic

JFuzzyLogic’s main goal is to facilitate and accel-
erate development of fuzzy systems. We achieve
this goal by: i) using standard programming lan-
guage (FCL) that reduces learning curves; ii) pro-

viding a fully functional and complete implemen-
tation of fuzzy inference system (FIS); iii) creating
a programming interface (API) that developers can
use or extend; iv) implementing an Eclipse plugin to
easily write and test FCL code; v) making the soft-
ware platform independent. and vi) distributing the
software as open source. This allows to significantly
accelerate development and testing of fuzzy systems
in both industrial and academic environments.

In these sections we show how these design and
implementation goals were achieved. This should
be particularly useful for developers and researchers
looking to extend the functionality or use the avail-
able API.

4.1. jFuzzyLogic Implementation

jFuzzyLogic is fully implemented in Java, thus the
package is platform independent. ANTLR17 was
used to generate Java code for a lexer and parser
based on our FCL grammar definition. This gen-
erated parser uses a left to right leftmost derivation
recursive strategy, formally know as “LL(*)”.

Using the lexer and parser created by ANTLR
we are able to parse FCL files by creating an Ab-
stract Syntax Tree (AST), a well known structure
in compiler design. The AST is converted into
an Interpreter Syntax Tree (IST), which is capa-
ble of performing the required computations. This
means that the IST can represent the grammar, like
and AST, but it also capable of performing calcu-
lations. The parsed FIS can be evaluated by recur-
sively transversing the IST.

4.2. Membership functions

Only two membership functions are defined in
the IEC standard: singleton and piece-wise linear.
jFuzzyLogic also implements other commonly used
membership functions:

• Cosine : f (x|α,β) = cos[π

α
(x−β)],∀x ∈ [−α,α]

• Difference of sigmoidals: f (x|α1,β1,α2,β2) =
s(x,α1,β1) − s(x,α2,β2), where s(x,α,β) =
1/[1+ e−β (x−α)]

• Gaussian : f (x|µ,σ) = e(x−µ)2/2σ2

Pablo Cingolani, Jesús Alcalá-Fdez

• Gaussian double : f (x|µ1,σ1,µ2,σ2) =
e(x−µ1)2/2σ2

1 x < µ1
1 µ1 6 x 6 µ2

e(x−µ2)2/2σ2
2 x > µ2

• Generalized bell : f (x|µ1,a,b) = 1
1+|(x−µ)/a|2b

• Sigmoidal : f (x|β , t0) = 1
1+eβ (x−t0)

• Trapezoidal : f (x|min, low,high,max) =

0 x < min
x−min

low−min
min 6 x < low

1 low 6 x 6 high
x−high

max−high
high < x 6 max

0 x > max

• Triangular: f (x|min,mid ,max) =
0 x < min

x−mid
low−mid

min 6 x 6 mid
x−mid

max−mid
mid < x 6 max

0 x > max

• Piece-wise linear : Defined as the union of all
points by affine functions.

Furthermore, jFuzzyLogic allows to build arbi-
trary membership functions by combining mathe-
matical expressions. This is implemented by pars-
ing an Interpreter Syntax Tree (IST) of mathematical
expressions. IST is evaluated at running time, thus
allows including variables into the expressions. Cur-
rent implementation allows the use of the following
functions:Abs, Cos, Exp, Ln, Log, Modulus, Nop,
Pow, Sin, Tan, as well as addition, subtraction, mul-
tiplication and division.

4.3. Aggregation, Activation & Accumulation

As mentioned in section 3.2, rules are defined inside
the RULEBLOCK statement in a FIS. Each rule block
also specifies Aggregation, Activation and Accumu-
lation methods. All methods defined in the norm are
implemented in jFuzzyLogic. It should be noted that
we adhere to the definitions of Aggregation, Activa-
tion and Accumulation as defined by IEC-61131-7,

which may differ from the naming conventions from
other references.

Aggregation methods (sometimes be called
“combination” or “rule connection methods”) define
the t-norms and t-conorms playing the role of AND
& OR operators, which can be:

Name x AND y x OR y
Min/Max min(x,y) max(x,y)
Bdiff/Bsum max(0,x+ y−1) min(1,x+ y)
Prod/PobOr x y x+ y− x y
Drastic if(x == 1)→ y if(x == 0)→ y

if(y == 1)→ x if(y == 0)→ x
otherwise→ 0 otherwise→ 1

Nil potent if(x+ y > 1)→ min(x,y) if(x+ y < 1)→ max(x,y)
otherwise→ 0 otherwise→ 1

Needless to say, each set of operators must sat-
isfy De Morgans laws.

Activation method define how rule antecedents
modify rule consequents, i.e. once the IF part has
been evaluated, how this result is applied to the
THEN part of the rule. The most common activation
operators are Minimum and Product (see Figure 2).
Both methods are implemented in jFuzzyLogic.

Fig. 2. Activation methods: Min (left) and Prod (right).

Finally, accumulation method defines how the
consequents from multiple rules are combined
within a Rule Block (see Figure 4). Accumulation
methods implemented by jFuzzyLogic defined in the
norm include:

• Maximum : αcc = max(αcc,δ)
• Bounded sum: αcc = min(1,αcc +δ)
• Normalized sum: αcc = αcc+δ

max(1,αcc+δ)

• Probabilistic OR : αcc = αcc +δ −αcc δ

where αcc is the accumulated value (at point x)
and δ = m(x) is the membership function for de-

jFuzzyLogic

fuzzification (also at x).

Fig. 3. Accumulation method: Combining consequents
from multiple rules using Max accumulation method.

4.4. Defuzzification

In case of simple membership functions, such as
trapezoidal and piece-wise linear, defuzzicication
can be computed easily by applying know mathe-
matical equations. Although it can be done very ef-
ficiently, unfortunately it cannot be generalized to
arbitrary expressions.

Due to the flexibility in defining membership
functions, we use a more general method. We dis-
cretize membership functions at a number of points
and use a , more computational intensive, numeri-
cal integration method. The number of points used
for discretization, by default one thousand, can be
adjusted according to the precision-speed trade-off
required for a particular application. Inference is
performed by evaluating membership functions at
these discretization points. In order to perform a dis-
cretization, the “universe” for each variable, has to
be estimated. The universe is defined as the range
where the variable has non-neglectable value. For
each variable, each membership function and each
term is taken into account when calculating a uni-
verse. Once all rules have been analyzed, the accu-
mulation for each variable is complete.

The last step when evaluating a FIS is defuzzifi-
cation. The value for each variable is calculated us-
ing the selected defuzzification method, which can
be:

• Center of gravity :
∫

xµ(x)dx∫
µ(x)dx

• Center of gravity singleton : ∑i xiµi
∑i µi

• Center of area : u |
∫ u
−∞

µ(x)dx =
∫

∞

u µ(x)dx

• Rightmost Max : argmaxx [µ(x) = max(µ(x))]
• Leftmost Max : argminx [µ(x) = max(µ(x))]
• Mean max : mean(x) | µ(x) = max(µ(x))

4.5. API extensions

Some of the extensions and benefits provided by
jFuzzyLogic are described in this section.

Modularity. Modular design allows to extend
the language and the API easily. It is possible to
add custom aggregation, activation or accumulation
methods, defuzzifiers, or membership functions by
extending the provided object tree (see Figure 4).

Dynamic changes. Our API supports dynamic
changes made onto a fuzzy inference system: i)
variables can be used as membership function pa-
rameters; ii) rules can be added or deleted from
rule blocks, iii) rule weights can be modified; iv)
membership functions can use combinations of pre-
defined functions.

Data Types. Due to the nature of fuzzy sys-
tems and in order to reduce complexity, jFuzzyLogic
considers each variable as REAL variable which is
mapped to a double Java type.

Excecution order. By default it is assumed that
a FIS is composed of only one Function Block, so
evaluating the FIS means evaluating the default FB.
If a FIS has more than one FB, they are evaluated in
alphabetical order by FB name. Other execution or-
ders can be implemented by the user, which allows

Pablo Cingolani, Jesús Alcalá-Fdez

us to easily define hierarchical controllers.

Fig. 4. jFuzzyLogic object tree provides many extension
points.

4.6. Optimization API

An optimization API was developed in order to au-
tomatically fine tune FIS parameters. Our goal was
to define a very lightweight and easy to learn API,
which was flexible enough to be extended for gen-
eral purpose usage.

The most common parameters to be optimized
are membership functions and rule weights. For
instance if a variable has a fuzzifier term “TERM
rancid := TRIAN 0 1 3”, there are three pa-
rameters that can be optimized in this member-
ship function (whose initial values are 0, 1 and
3 respectively). Using the API, we can choose
to optimize any of subset of them. Similarly,
in the rule “IF service IS good THEN tip IS
average” we can optimize the weight of this rule
(implicit “WITH 1.0” statement).

The API, is composed of the following objects:

• ErrorFunction : An object that evaluates a Rule
Block and calculates the error. Extending Error-
Function is the bare minimum required to imple-
ment an optimization using one of the available
optimization methods.

• OptimizationMethod : An optimization method
object is an abstraction of an algorithm. It changes
Parameter based on the performance measured
using an ErrorFunction.

• Parameter : This class represents a parameter to
be optimized. Any change on a parameter, will
perform the corresponding change on the FIS,
thus changing the outcome. There are two basic
parameters: ParameterMembershipFunction and
ParameterRuleWeight which allows for changes
in membership functions and rule weights respec-
tively. Other parameters could be created, for in-
stance, in order to completely rewrite rules. We
plan to extend them in future releases. Most users
will not need to extend Parameter objects.

For most optimization applications, extending
only one or two objects is enough (i.e. ErrorFunc-
tion, and sometimes OptimizationMethod). We pro-
vide template and demo objects to show how this
can be done, all of them are included in our freely
available source code.

jFuzzyLogic

A few optimization algorithms are implemented,
such as gradient descent, partial derivative, and delta
algorithm. As we mentioned, other algorithms can
be easily implemented based on these templates or
by directly extending them. In the provided exam-
ples it is assumed that error functions can be evalu-
ated anywhere in the input space. Obviously, such
evaluation is usually not available in real world ap-
plications, otherwise we would probably not need to
implement a fuzzy system. This is not a limitation in
the API, since we can always develop an optimiza-
tion algorithm and the corresponding error function
that evaluates the FIS on a learning set.

5. Eclipse plugin

Eclipse is one of the most commonly used software
development platforms. It allows to specific lan-
guage development tool by using the Eclipse-plugin
framework. We developed a jFuzzyLogic plugin that
allows developers to easily and rapidly write FCL
code, and test it. Our plugin was developed using
Xtext, a well known framework for domain specific
languages based on ANTLR.

The plugin supports several features, such as
syntax coloring, content assist, validation, program
outlines and hyperlinks for variables and linguistic
terms, etc. Figure 5 shows an example of the plugin
being used to edit FCL code, the left panel shows an
editor providing syntax coloring while adding con-
tent assist at cursor position, the right panel shows
the corresponding code outline.

Running an FCL program (Figure 6) shows
membership functions for all input and output vari-
ables while output console shows the FCL code

parsed by jFuzzyLogic.

Fig. 5. jFuzzyLogic plugin for Eclipse. The editor (left win-
dow) provides syntax coloring and content assist. The right
window shows code outline.

Fig. 6. jFuzzyLogic plugin for Eclipse. Running an FCL
program (Figure 6) shows membership functions for all in-
put and output variables.

6. A case study

We present an example of creating an FLC controller
with jFuzzyLogic. This case study is focused on
the development of the wall following robot as ex-
plained in 18. Wall following behavior is well known
in mobile robotics. It is frequently used for the ex-
ploration of unknown indoor environments and for
the navigation between two points in a map.

The main requirement of a good wall-following
controller is to maintain a suitable distance from

Pablo Cingolani, Jesús Alcalá-Fdez

the wall that is being followed. The robot should
also move as fast as possible, while avoiding sharp
movements, making smooth and progressive turns
and changes in velocity.

In our fuzzy control system, the input variables
are: i) normalized distances from the robot to the
right (RD) and left walls (DQ); ii) orientation with
respect to the wall (O); and iii) linear velocity (V).

The output variables in this controller are the
normalized linear acceleration (LA) and the angular
velocity (AV). The linguistic partitions are shown
in Figure 7 which are comprised by linguistic terms
with uniformly distributed triangular membership
functions giving meaning to them.

Fig. 7. Membership functions for wall-following robot.

In order to implement the controller, the first
step is to declare the input and output variables and
to define the fuzzy sets. Variables are defined in
VAR INPUT and VAR OUTPUT sections. Fuzzy
sets are defined in FUZZIFY blocks for input vari-
ables and DEFUZZIFY blocks for output variables.

One FUZZIFY block is used for each input vari-
able. Each TERM line within a FUZZIFY block de-
fines a linguistic term and its corresponding mem-
bership function. In this example all membership
functions are triangular, so they are defined using
the ’trian’ keyword, followed by three parameters
defining left, center and right points (e.g. ‘TRIAN 1
2 3’).

Output variables define their membership func-
tions within DEFUZZIFY blocks. Linguistic terms
and membership functions are defined using the

TERM keyword as previously described for input
variables. In this case we also add parameters to
select the defuzzyfication method. The statement
’METHOD : COG’ indicates that we are using ’Cen-
ter of gravity’. The corresponding FCL code gener-
ated for the first step is as follows:

VAR INPUT

rd : REAL; // Right distance

dq : REAL; // Distance quotient

o : REAL; // Orientation

v : REAL; // Velocity

END VAR

VAR OUTPUT

la : REAL; // Linear acceleration

av : REAL; // Angular velocity

END VAR

FUZZIFY rd

TERM L := TRIAN 0 0 1;

TERM M := TRIAN 0 1 2;

TERM H := TRIAN 1 2 3;

TERM VH := TRIAN 2 3 3;

END FUZZIFY

FUZZIFY dq

TERM L := TRIAN 0 0 2;

TERM H := TRIAN 0 2 2;

END FUZZIFY

FUZZIFY o

TERM HL := TRIAN -45 -45 -22.5;

TERM LL := TRIAN -45 -22.5 0;

TERM Z := TRIAN -22.5 0 22.5;

TERM LR := TRIAN 0 22.5 45;

TERM HR := TRIAN 22.5 45 45;

END FUZZIFY

FUZZIFY v

TERM L := TRIAN 0 0 1;

TERM H := TRIAN 0 1 1;

END FUZZIFY

DEFUZZIFY la

TERM VHB := TRIAN -1 -1 -0.75;

TERM HB := TRIAN -1 -0.75 -0.5;

TERM MB := TRIAN -0.75 -0.5 -0.25;

TERM SB := TRIAN -0.5 -0.25 0;

TERM Z := TRIAN -0.25 0 0.25;

TERM SA := TRIAN 0 0.25 0.5;

TERM MA := TRIAN 0.25 0.5 0.75;

TERM HA := TRIAN 0.5 0.75 1;

TERM VHA := TRIAN 0.75 1 1;

METHOD : COG; // Center of Gravity

DEFAULT := 0;

END DEFUZZIFY

DEFUZZIFY av

TERM VHR := TRIAN -1 -1 -0.75;

TERM HR := TRIAN -1 -0.75 -0.5;

jFuzzyLogic

TERM MR := TRIAN -0.75 -0.5 -0.25;

TERM SR := TRIAN -0.5 -0.25 0;

TERM Z := TRIAN -0.25 0 0.25;

TERM SL := TRIAN 0 0.25 0.5;

TERM ML := TRIAN 0.25 0.5 0.75;

TERM HL := TRIAN 0.5 0.75 1;

TERM VHL := TRIAN 0.75 1 1;

METHOD : COG;

DEFAULT := 0;

END DEFUZZIFY

These membership functions can be plotted by
running jFuzzyLogic with the FCL file generated
as argument (e.g. java -jar jFuzzyLogic.jar
robot.fcl). The corresponding FCL file for
this case study is available for download as one
of the examples provided in jFuzzyLogic package
(jfuzzylogic.sourceforge.net).

The second step is to define the rules used for
inference. They are defined in RULEBLOCK state-
ments. For the wall-following robot controller, we
used ’minimum’ connection method (AND : MIN),
minimum activation method (ACT : MIN), and max-
imum accumulation method (ACCU : MAX). We
implemented the rule base generated in 18 by the
WCOR method 19. Each entry in the rule base was
converted to a single FCL rule. Within each rule, the
antecedent (i.e. the IF part) is composed of the input
variables connected by ‘AND’ operators. Since there
are more than one output variable, we can specify
multiple consequents (i.e. THEN part) separated by
semicolons. Finally, we add the desired weight us-
ing the ‘with’ keyword followed by the weight. This
completes the implementation of a controller for a
wall-following robot using FCL and jFuzzyLogic.
The Java code generated for the second step is as
follows:

RULEBLOCK rules

AND : MIN; // Use ’min’ for ’and’ (also implicit use

//’max’ for ’or’ to fulfill DeMorgan’s Law)

ACT : MIN; // Use ’min’ activation method

ACCU : MAX; // Use ’max’ accumulation method

RULE 01: IF rd is L and dq is L and o is LL

and v is L THEN la is VHB , av is VHR with 0.4610;

RULE 02: IF rd is L and dq is L and o is LL

and v is H THEN la is VHB , av is VHR with 0.4896;

RULE 03: IF rd is L and dq is L and o is Z

and v is L THEN la is Z , av is MR with 0.6664;

RULE 04: IF rd is L and dq is L and o is Z

and v is H THEN la is HB , av is SR with 0.5435;

RULE 05: IF rd is L and dq is H and o is LL

and v is L THEN la is MA , av is HR with 0.7276;

RULE 06: IF rd is L and dq is H and o is Z

and v is L THEN la is MA , av is HL with 0.4845;

RULE 07: IF rd is L and dq is H and o is Z

and v is H THEN la is HB , av is ML with 0.5023;

RULE 08: IF rd is L and dq is H and o is LR

and v is H THEN la is VHB , av is VHL with 0.7363;

RULE 09: IF rd is L and dq is H and o is HR

and v is L THEN la is VHB , av is VHL with 0.9441;

RULE 10: IF rd is M and dq is L and o is Z

and v is H THEN la is SA , av is HR with 0.3402;

RULE 11: IF rd is M and dq is L and o is LR

and v is H THEN la is Z , av is VHL with 0.4244;

RULE 12: IF rd is M and dq is L and o is HR

and v is L THEN la is SA , av is HL with 0.5472;

RULE 13: IF rd is M and dq is L and o is HR

and v is H THEN la is MB , av is VHL with 0.4369;

RULE 14: IF rd is M and dq is H and o is HL

and v is L THEN la is Z , av is VHR with 0.1770;

RULE 15: IF rd is M and dq is H and o is HL

and v is H THEN la is VHB , av is VHR with 0.4526;

RULE 16: IF rd is M and dq is H and o is LL

and v is H THEN la is SA , av is VHR with 0.2548;

RULE 17: IF rd is M and dq is H and o is Z

and v is L THEN la is HA , av is Z with 0.2084;

RULE 18: IF rd is M and dq is H and o is LR

and v is L THEN la is HA , av is VHL with 0.6242;

RULE 19: IF rd is M and dq is H and o is LR

and v is H THEN la is SA , av is VHL with 0.3779;

RULE 20: IF rd is M and dq is H and o is HR

and v is L THEN la is Z , av is VHL with 0.6931;

RULE 21: IF rd is M and dq is H and o is HR

and v is H THEN la is VHB , av is VHL with 0.7580;

RULE 22: IF rd is H and dq is L and o is Z

and v is L THEN la is HA , av is VHR with 0.5758;

RULE 23: IF rd is H and dq is L and o is LR

and v is H THEN la is SA , av is MR with 0.2513;

RULE 24: IF rd is H and dq is L and o is HR

and v is L THEN la is HA , av is VHL with 0.5471;

RULE 25: IF rd is H and dq is L and o is HR

and v is H THEN la is SA , av is HL with 0.5595;

RULE 26: IF rd is H and dq is H and o is HL

and v is L THEN la is VHB , av is VHR with 0.9999;

RULE 27: IF rd is H and dq is H and o is HL

and v is H THEN la is VHB , av is VHR with 0.9563;

RULE 28: IF rd is H and dq is H and o is LL

and v is L THEN la is HA , av is VHR with 0.9506;

RULE 29: IF rd is H and dq is H and o is Z

and v is L THEN la is HA , av is VHR with 0.4529;

RULE 30: IF rd is H and dq is H and o is Z

and v is H THEN la is SA , av is VHR with 0.2210;

RULE 31: IF rd is H and dq is H and o is LR

and v is L THEN la is HA , av is MR with 0.3612;

RULE 32: IF rd is H and dq is H and o is LR

and v is H THEN la is SA , av is MR with 0.2122;

RULE 33: IF rd is H and dq is H and o is HR

and v is L THEN la is HA , av is HL with 0.7878;

RULE 34: IF rd is H and dq is H and o is HR

and v is H THEN la is SA , av is VHL with 0.3859;

RULE 35: IF rd is VH and dq is L and o is LR

and v is L THEN la is HA , av is VHR with 0.5530;

RULE 36: IF rd is VH and dq is L and o is HR

and v is L THEN la is HA , av is HR with 0.4223;

Pablo Cingolani, Jesús Alcalá-Fdez

RULE 37: IF rd is VH and dq is L and o is HR

and v is H THEN la is SA , av is HR with 0.3854;

RULE 38: IF rd is VH and dq is H and o is LL

and v is L THEN la is HA , av is VHR with 0.0936;

RULE 39: IF rd is VH and dq is H and o is LR

and v is L THEN la is HA , av is VHR with 0.7325;

RULE 40: IF rd is VH and dq is H and o is LR

and v is H THEN la is SA , av is VHR with 0.5631;

RULE 41: IF rd is VH and dq is H and o is HR

and v is L THEN la is HA , av is HR with 0.5146;

END RULEBLOCK

The corresponding Java code that use jFuzzy-
Logic for running the FCL generated will be:

public class TestRobot {
public static void main(String[] args)

throws Exception {
FIS fis = FIS.load("fcl/robot.fcl", true);

FunctionBlock fb = fis.getFunctionBlock(null);

// Set inputs

fb.setVariable("rd", 0.3);

fb.setVariable("dq", 1.25);

fb.setVariable("o", 2.5);

fb.setVariable("v", 0.6);

// Evaluate

fb.evaluate();

// Get output

double la = fb.getVariable("la").getValue());

double av = fb.getVariable("av").getValue());

}
}

This can also be done using the command line
option “-e”, which assigns values in the command
line to input variables alphabetically (in this case:
“dp”, “o”, “rd” and “v”) and then evaluates the FIS.
This utility produces plots of memnbership func-
tions for all variables, as well as deffuzification ar-
eas for output all variables, in this example, “av”
and “la” shown in light grey in Figure 8). Here we
show the command, as well as part of the output:

$ java -jar jFuzzyLogic.jar -e robot.fcl \
1.25 2.5 0.3 0.6

FUNCITON_BLOCK robot

VAR_INPUT dq = 1.250000

VAR_INPUT o = 2.500000

VAR_INPUT rd = 0.300000

VAR_INPUT v = 0.600000

VAR_OUTPUT av = 0.061952

VAR_OUTPUT la = -0.108399

...(rule activations omitted)

Fig. 8. Memnbership functions and deffuzification areas
(light grey) for robots.fcl example.

7. Conclusions

In this paper, we have described jFuzzyLogic, an
open source Java library for fuzzy systems which al-
low us to design FLCs following the standard IEC
61131. It allows us to reduce programming work
and extend the range of possible users applying
fuzzy systems and FLCs.

We have shown a case study to illustrate the use
of jFuzzyLogic. In this case, we developed an FLC
controller for wall-following behavior in a robot.
The example shows how FCL can be used to easily
implement fuzzy logic systems.

The jFuzzyLogic software package is continu-
ously being updated and improved. At the moment,
we are developing an implementation of a C++ com-
piler for fuzzy inference systems. This will allow
easy implementation with embedded control sys-
tems using different processors.

Acknowledgments

jFuzzyLogic was designed and developed by P. Cin-
golani. He is supported in part by McGill Uninver-
sity, Genome Quebec. J. Alcala-Fdez is supported
by the Spanish Ministry of Education and Science
under Grant TIN2011-28488 and the Andalusian
Government under Grant P10-TIC-6858. We would

jFuzzyLogic

like to thank M. Blanchette and R. Sladek for their
comments.

References

1. L.A. Zadeh. Fuzzy sets. Information Control, 8:338–
353, 1965.

2. C.C. Lee. Fuzzy logic in control systems: Fuzzy logic
controller parts i and ii. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 20:404–435, 1990.

3. H. Hellendoorn D. Driankov and M. Reinfrank. An
Introduction to Fuzzy Control. Springer-Verlag, 1993.

4. RR Yager and DP Filev. Essentials of fuzzy modeling
and control. Wiley, New York, 1994.

5. P.P. Bonissone. Fuzzy logic controllers: An industrial
reality. In Computational Intelligence: Imitating Life,
pages 316–327. IEEE Press, 1994.

6. R Palm, D Driankov, and H Hellendoorn. Model based
fuzzy control. Springer, Berlin, 1997.

7. M. Mucientes, J. Alcalá-Fdez, R. Alcalá, and J. Casil-
las. A case study for learning behaviors in mobile
robotics by evolutionary fuzzy systems. Expert Sys-
tems With Applications, 37(2):1471–1493, 2010.

8. Ch.-F. Juang and Y.-Ch. Chang. Evolutionary-group-
based particle-swarm-optimized fuzzy controller with
application to mobile-robot navigation in unknown
environments. IEEE Transactions on Fuzzy Systems,
19(2):379–392, 2011.

9. M.J. Gacto, R. Alcalá, and F. Herrera. A multi-
objective evolutionary algorithm for an effective tun-
ing of fuzzy logic controllers in heating, ventilating
and air conditioning systems. Applied Intelligence,
36(2):330–347, 2012.

10. E. Cho, M. Ha, S. Chang, and Y. Hwang. Variable
fuzzy control for heat pump operation. Journal of
Mechanical Science and Technology, 25(1):201–208,
2011.

11. F. Chávez, F. Fernández, R. Alcalá, J. Alcalá-Fdez,

G. Olague, and F. Herrera. Hybrid laser pointer detec-
tion algorithm based on template matching and fuzzy
rule-based systems for domotic control in real home
enviroments. Applied Intelligence, 36(2):407–423,
2012.

12. G. Acampora and V. Loia. Fuzzy control interop-
erability and scalability for adaptive domotic frame-
work. IEEE Transactions on Industrial Informatics,
1(2):97 – 111, 2005.

13. Y. Zhao and H. Gao. Fuzzy-model-based control of an
overhead crane with input delay and actuator satura-
tion. IEEE Transactions on Fuzzy Systems, 20(1):181
–186, 2012.

14. O. Demir, I. Keskin, and S. Cetin. Modeling and con-
trol of a nonlinear half-vehicle suspension system: A
hybrid fuzzy logic approach. Nonlinear Dynamics,
67(3):2139–2151, 2012.

15. International Electrotechnical Commission technical
committee industrial process measurement and con-
trol. IEC 61131 - Programmable Controllers. IEC,
2000.

16. S. Sonnenburg, M.L. Braun, Ch.S. Ong, S. Ben-
gio, L. Bottou, G. Holmes, Y. LeCun, K.-R. Muller,
F. Pereira, C.E. Rasmussen, G. Ratsch, B. Scholkopf,
A. Smola, P. Vincent, J. Weston, and R. Williamson.
The need for open source software in machine learn-
ing. Journal of Machine Learning Research, 8:2443–
2466, 2007.

17. T. Parr. The definitive ANTLR reference: building
domain-specific languages. 2007.

18. M. Mucientes, R. Alcalá, J. Alcalá-Fdez, and J. Casil-
las. Learning weighted linguistic rules to control an
autonomous robot. International Journal of Intelli-
gent Systems, 24(3):226–251, 2009.

19. R. Alcalá, J. Alcalá-Fdez, J. Casillas, O. Cordón,
and F. Herrera. Hybrid learning models to get the
interpretability-accuracy trade-off in fuzzy modelling.
Soft Computing, 10(9):717–734, 2006.

