jFuzzyLogic/antlr_3_1_source/codegen/templates/CSharp2/CSharp2.stg
2014-12-19 08:30:46 -05:00

1448 lines
44 KiB
Plaintext

/*
[The "BSD licence"]
Copyright (c) 2007-2008 Johannes Luber
Copyright (c) 2005-2007 Kunle Odutola
Copyright (c) 2005 Terence Parr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
group CSharp2 implements ANTLRCore;
/** The overall file structure of a recognizer; stores methods for rules
* and cyclic DFAs plus support code.
*/
outputFile(LEXER,PARSER,TREE_PARSER, actionScope, actions,
docComment, recognizer,
name, tokens, tokenNames, rules, cyclicDFAs,
bitsets, buildTemplate, buildAST, rewriteMode, profile,
backtracking, synpreds, memoize, numRules,
fileName, ANTLRVersion, generatedTimestamp, trace,
scopes, superClass, literals) ::=
<<
// $ANTLR <ANTLRVersion> <fileName> <generatedTimestamp>
<if(actions.(actionScope).namespace)>
// The variable 'variable' is assigned but its value is never used.
#pragma warning disable 168, 219
// Unreachable code detected.
#pragma warning disable 162
namespace <actions.(actionScope).namespace>
{
<endif>
<actions.(actionScope).header>
<@imports>
using System;
using Antlr.Runtime;
<if(TREE_PARSER)>
using Antlr.Runtime.Tree;
<endif>
using IList = System.Collections.IList;
using ArrayList = System.Collections.ArrayList;
using Stack = Antlr.Runtime.Collections.StackList;
<if(backtracking)>
using IDictionary = System.Collections.IDictionary;
using Hashtable = System.Collections.Hashtable;
<endif>
<@end>
<docComment>
<recognizer>
<if(actions.(actionScope).namespace)>
}
<endif>
>>
lexer(grammar, name, tokens, scopes, rules, numRules, labelType="IToken",
filterMode, superClass="Lexer") ::= <<
public partial class <grammar.recognizerName> : <@superClassName><superClass><@end> {
<tokens:{public const int <it.name> = <it.type>;}; separator="\n">
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScope(scope=it)><endif>}>
<actions.lexer.members>
// delegates
<grammar.delegates:
{g|public <g.recognizerName> <g:delegateName()>;}; separator="\n">
// delegators
<grammar.delegators:
{g|public <g.recognizerName> <g:delegateName()>;}; separator="\n">
<last(grammar.delegators):{g|public <g.recognizerName> gParent;}>
public <grammar.recognizerName>() <! needed by subclasses !>
{
InitializeCyclicDFAs();
}
public <grammar.recognizerName>(ICharStream input<grammar.delegators:{g|, <g.recognizerName> <g:delegateName()>}>)
: this(input, null<grammar.delegators:{g|, <g:delegateName()>}>) {
}
public <grammar.recognizerName>(ICharStream input, RecognizerSharedState state<grammar.delegators:{g|, <g.recognizerName> <g:delegateName()>}>)
: base(input, state) {
InitializeCyclicDFAs(); <! Necessary in C#??? Not removed yet. !>
<if(memoize)>
<if(grammar.grammarIsRoot)>
state.ruleMemo = new Hashtable[<numRules>+1];<\n> <! index from 1..n !>
<endif>
<endif>
<grammar.directDelegates:
{g|<g:delegateName()> = new <g.recognizerName>(input, state<trunc(g.delegators):{p|, <p:delegateName()>}>, this);}; separator="\n">
<grammar.delegators:
{g|this.<g:delegateName()> = <g:delegateName()>;}; separator="\n">
<last(grammar.delegators):{g|gParent = <g:delegateName()>;}>
}
override public string GrammarFileName
{
get { return "<fileName>";}
}
<if(filterMode)>
<filteringNextToken()>
<endif>
<rules; separator="\n\n">
<synpreds:{p | <lexerSynpred(p)>}>
<cyclicDFAs:{dfa | protected DFA<dfa.decisionNumber> dfa<dfa.decisionNumber>;}; separator="\n">
private void InitializeCyclicDFAs()
{
<cyclicDFAs:{dfa | this.dfa<dfa.decisionNumber> = new DFA<dfa.decisionNumber>(this<@debugAddition()>);}; separator="\n">
<cyclicDFAs:{dfa | <if(dfa.specialStateSTs)>this.dfa<dfa.decisionNumber>.specialStateTransitionHandler = new DFA.SpecialStateTransitionHandler(DFA<dfa.decisionNumber>_SpecialStateTransition);<endif>}; separator="\n">
}
<cyclicDFAs:cyclicDFA()> <! dump tables for all DFA !>
}
>>
/** A override of Lexer.nextToken() that backtracks over mTokens() looking
* for matches. No error can be generated upon error; just rewind, consume
* a token and then try again. backtracking needs to be set as well.
*
* Make rule memoization happen only at levels above 1 as we start mTokens
* at backtracking==1.
*/
filteringNextToken() ::= <<
override public IToken NextToken()
{
while (true)
{
if ( input.LA(1) == (int)CharStreamConstants.EOF )
{
return Token.EOF_TOKEN;
}
state.token = null;
state.channel = Token.DEFAULT_CHANNEL;
state.tokenStartCharIndex = input.Index();
state.tokenStartCharPositionInLine = input.CharPositionInLine;
state.tokenStartLine = input.Line;
state.text = null;
try
{
int m = input.Mark();
state.backtracking = 1; <! means we won't throw slow exception !>
state.failed = false;
mTokens();
state.backtracking = 0;
<!
mTokens backtracks with synpred at backtracking==2
and we set the synpredgate to allow actions at level 1.
!>
if ( state.failed )
{
input.Rewind(m);
input.Consume(); <! // advance one char and try again !>
}
else
{
Emit();
return state.token;
}
}
catch (RecognitionException re)
{
// shouldn't happen in backtracking mode, but...
ReportError(re);
Recover(re);
}
}
}
override public void Memoize(IIntStream input, int ruleIndex, int ruleStartIndex)
{
if ( state.backtracking > 1 )
base.Memoize(input, ruleIndex, ruleStartIndex);
}
override public bool AlreadyParsedRule(IIntStream input, int ruleIndex)
{
if ( state.backtracking>1 )
return base.AlreadyParsedRule(input, ruleIndex);
return false;
}
>>
filteringActionGate() ::= "(state.backtracking == 1)"
/** How to generate a parser */
genericParser(grammar, name, scopes, tokens, tokenNames, rules, numRules,
bitsets, inputStreamType, superClass,
ASTLabelType="object", labelType, members, rewriteElementType) ::= <<
public partial class <grammar.recognizerName> : <@superClassName><superClass><@end>
{
<if(grammar.grammarIsRoot)>
public static readonly string[] tokenNames = new string[]
{
"\<invalid>",
"\<EOR>",
"\<DOWN>",
"\<UP>",
<tokenNames; separator=", \n">
};<\n>
<endif>
<tokens:{public const int <it.name> = <it.type>;}; separator="\n">
// delegates
<grammar.delegates:
{g|public <g.recognizerName> <g:delegateName()>;}; separator="\n">
// delegators
<grammar.delegators:
{g|public <g.recognizerName> <g:delegateName()>;}; separator="\n">
<last(grammar.delegators):{g|public <g.recognizerName> gParent;}>
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScope(scope=it)><endif>}>
<@members>
<! WARNING. bug in ST: this is cut-n-paste into Dbg.stg !>
public <grammar.recognizerName>(<inputStreamType> input<grammar.delegators:{g|, <g.recognizerName> <g:delegateName()>}>)
: this(input, new RecognizerSharedState()<grammar.delegators:{g|, <g:delegateName()>}>) {
}
public <grammar.recognizerName>(<inputStreamType> input, RecognizerSharedState state<grammar.delegators:{g|, <g.recognizerName> <g:delegateName()>}>)
: base(input, state) {
InitializeCyclicDFAs();
<parserCtorBody()>
<grammar.directDelegates:
{g|<g:delegateName()> = new <g.recognizerName>(input, state<trunc(g.delegators):{p|, <p:delegateName()>}>, this);}; separator="\n">
<grammar.indirectDelegates:{g | <g:delegateName()> = <g.delegator:delegateName()>.<g:delegateName()>;}; separator="\n">
<last(grammar.delegators):{g|gParent = <g:delegateName()>;}>
}
<@end>
override public string[] TokenNames {
get { return <grammar.composite.rootGrammar.recognizerName>.tokenNames; }
}
override public string GrammarFileName {
get { return "<fileName>"; }
}
<members>
<rules; separator="\n\n">
<! generate rule/method definitions for imported rules so they
appear to be defined in this recognizer. !>
// Delegated rules
<grammar.delegatedRules:{ruleDescriptor|
public <returnType()> <ruleDescriptor.name>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>) // throws RecognitionException
\{
<if(ruleDescriptor.hasReturnValue)>return <endif><ruleDescriptor.grammar:delegateName()>.<ruleDescriptor.name>(<ruleDescriptor.parameterScope.attributes:{a|<a.name>}; separator=", ">);
\}}; separator="\n">
<synpreds:{p | <synpred(p)>}>
<cyclicDFAs:{dfa | protected DFA<dfa.decisionNumber> dfa<dfa.decisionNumber>;}; separator="\n">
private void InitializeCyclicDFAs()
{
<cyclicDFAs:{dfa | this.dfa<dfa.decisionNumber> = new DFA<dfa.decisionNumber>(this);}; separator="\n">
<cyclicDFAs:{dfa | <if(dfa.specialStateSTs)>this.dfa<dfa.decisionNumber>.specialStateTransitionHandler = new DFA.SpecialStateTransitionHandler(DFA<dfa.decisionNumber>_SpecialStateTransition);<endif>}; separator="\n">
}
<cyclicDFAs:cyclicDFA()> <! dump tables for all DFA !>
<bitsets:bitset(name={FOLLOW_<it.name>_in_<it.inName><it.tokenIndex>},
words64=it.bits)>
}
>>
parserCtorBody() ::= <<
<if(memoize)>
<if(grammar.grammarIsRoot)>
this.state.ruleMemo = new Hashtable[<length(grammar.allImportedRules)>+1];<\n> <! index from 1..n !>
<endif>
<endif>
<grammar.delegators:
{g|this.<g:delegateName()> = <g:delegateName()>;}; separator="\n">
>>
parser(grammar, name, scopes, tokens, tokenNames, rules, numRules, bitsets, ASTLabelType, superClass="Parser", labelType="IToken", members={<actions.parser.members>}) ::= <<
<genericParser(inputStreamType="ITokenStream", rewriteElementType="Token", ...)>
>>
/** How to generate a tree parser; same as parser except the input
* stream is a different type.
*/
treeParser(grammar, name, scopes, tokens, tokenNames, globalAction, rules, numRules, bitsets, labelType={<ASTLabelType>}, ASTLabelType="object", superClass="TreeParser", members={<actions.treeparser.members>}) ::= <<
<genericParser(inputStreamType="ITreeNodeStream", rewriteElementType="Node", ...)>
>>
/** A simpler version of a rule template that is specific to the imaginary
* rules created for syntactic predicates. As they never have return values
* nor parameters etc..., just give simplest possible method. Don't do
* any of the normal memoization stuff in here either; it's a waste.
* As predicates cannot be inlined into the invoking rule, they need to
* be in a rule by themselves.
*/
synpredRule(ruleName, ruleDescriptor, block, description, nakedBlock) ::=
<<
// $ANTLR start "<ruleName>"
public void <ruleName>_fragment(<ruleDescriptor.parameterScope:parameterScope(scope=it)>) //throws RecognitionException
{
<if(trace)>
TraceIn("<ruleName>_fragment", <ruleDescriptor.index>);
try
{
<block>
}
finally
{
TraceOut("<ruleName>_fragment", <ruleDescriptor.index>);
}
<else>
<block>
<endif>
}
// $ANTLR end "<ruleName>"
>>
synpredDecls(name) ::= <<
SynPredPointer <name>;<\n>
>>
synpred(name) ::= <<
public bool <name>()
{
state.backtracking++;
<@start()>
int start = input.Mark();
try
{
<name>_fragment(); // can never throw exception
}
catch (RecognitionException re)
{
Console.Error.WriteLine("impossible: "+re);
}
bool success = !state.failed;
input.Rewind(start);
<@stop()>
state.backtracking--;
state.failed = false;
return success;
}<\n>
>>
lexerSynpred(name) ::= <<
<synpred(name)>
>>
ruleMemoization(name) ::= <<
<if(memoize)>
if ( (state.backtracking > 0) && AlreadyParsedRule(input, <ruleDescriptor.index>) )
{
return <ruleReturnValue()>;
}
<endif>
>>
/** How to test for failure and return from rule */
checkRuleBacktrackFailure() ::= <<
<if(backtracking)>if (state.failed) return <ruleReturnValue()>;<endif>
>>
/** This rule has failed, exit indicating failure during backtrack */
ruleBacktrackFailure() ::= <<
<if(backtracking)>if ( state.backtracking > 0 ) {state.failed = true; return <ruleReturnValue()>;}<endif>
>>
/** How to generate code for a rule. This includes any return type
* data aggregates required for multiple return values.
*/
rule(ruleName,ruleDescriptor,block,emptyRule,description,exceptions,finally,memoize) ::= <<
<ruleAttributeScope(scope=ruleDescriptor.ruleScope)>
<returnScope(scope=ruleDescriptor.returnScope)>
// $ANTLR start "<ruleName>"
// <fileName>:<description>
public <returnType()> <ruleName>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>) // throws RecognitionException [1]
{
<if(trace)>TraceIn("<ruleName>", <ruleDescriptor.index>);<endif>
<ruleScopeSetUp()>
<ruleDeclarations()>
<ruleLabelDefs()>
<ruleDescriptor.actions.init>
<@preamble()>
try
{
<ruleMemoization(name=ruleName)>
<block>
<ruleCleanUp()>
<(ruleDescriptor.actions.after):execAction()>
}
<if(exceptions)>
<exceptions:{e|<catch(decl=e.decl,action=e.action)><\n>}>
<else>
<if(!emptyRule)>
<if(actions.(actionScope).rulecatch)>
<actions.(actionScope).rulecatch>
<else>
catch (RecognitionException re)
{
ReportError(re);
Recover(input,re);
<@setErrorReturnValue()>
}<\n>
<endif>
<endif>
<endif>
finally
{
<if(trace)>TraceOut("<ruleName>", <ruleDescriptor.index>);<endif>
<memoize()>
<ruleScopeCleanUp()>
<finally>
}
<@postamble()>
return <ruleReturnValue()>;
}
// $ANTLR end "<ruleName>"
>>
catch(decl,action) ::= <<
catch (<e.decl>)
{
<e.action>
}
>>
ruleDeclarations() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<returnType()> retval = new <returnType()>();
retval.Start = input.LT(1);<\n>
<else>
<ruleDescriptor.returnScope.attributes:{ a |
<a.type> <a.name> = <if(a.initValue)><a.initValue><else><initValue(a.type)><endif>;
}>
<endif>
<if(memoize)>
int <ruleDescriptor.name>_StartIndex = input.Index();
<endif>
>>
ruleScopeSetUp() ::= <<
<ruleDescriptor.useScopes:{<it>_stack.Push(new <it>_scope());}; separator="\n">
<ruleDescriptor.ruleScope:{<it.name>_stack.Push(new <it.name>_scope());}; separator="\n">
>>
ruleScopeCleanUp() ::= <<
<ruleDescriptor.useScopes:{<it>_stack.Pop();}; separator="\n">
<ruleDescriptor.ruleScope:{<it.name>_stack.Pop();}; separator="\n">
>>
ruleLabelDefs() ::= <<
<[ruleDescriptor.tokenLabels,ruleDescriptor.tokenListLabels]
:{<labelType> <it.label.text> = null;}; separator="\n"
>
<[ruleDescriptor.tokenListLabels,ruleDescriptor.ruleListLabels]
:{IList list_<it.label.text> = null;}; separator="\n"
>
<ruleDescriptor.ruleLabels:ruleLabelDef(label=it); separator="\n">
<ruleDescriptor.ruleListLabels:{ll|<ruleLabelType(referencedRule=ll.referencedRule)> <ll.label.text> = null;}; separator="\n">
>>
lexerRuleLabelDefs() ::= <<
<[ruleDescriptor.tokenLabels,
ruleDescriptor.tokenListLabels,
ruleDescriptor.ruleLabels]
:{<labelType> <it.label.text> = null;}; separator="\n"
>
<ruleDescriptor.charLabels:{int <it.label.text>;}; separator="\n">
<[ruleDescriptor.tokenListLabels,
ruleDescriptor.ruleListLabels,
ruleDescriptor.ruleListLabels]
:{IList list_<it.label.text> = null;}; separator="\n"
>
>>
ruleReturnValue() ::= <<
<if(!ruleDescriptor.isSynPred)>
<if(ruleDescriptor.hasReturnValue)>
<if(ruleDescriptor.hasSingleReturnValue)>
<ruleDescriptor.singleValueReturnName>
<else>
retval
<endif>
<endif>
<endif>
>>
ruleCleanUp() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<if(!TREE_PARSER)>
retval.Stop = input.LT(-1);<\n>
<endif>
<endif>
>>
memoize() ::= <<
<if(memoize)>
<if(backtracking)>
if ( state.backtracking > 0 )
{
Memoize(input, <ruleDescriptor.index>, <ruleDescriptor.name>_StartIndex);
}
<endif>
<endif>
>>
/** How to generate a rule in the lexer; naked blocks are used for
* fragment rules.
*/
lexerRule(ruleName,nakedBlock,ruleDescriptor,block,memoize) ::= <<
// $ANTLR start "<ruleName>"
public void m<ruleName>(<ruleDescriptor.parameterScope:parameterScope(scope=it)>) // throws RecognitionException [2]
{
<ruleAttributeScope(scope=ruleDescriptor.ruleScope)>
<if(trace)>TraceIn("<ruleName>", <ruleDescriptor.index>);<endif>
<ruleScopeSetUp()>
<ruleDeclarations()>
try
{
<if(nakedBlock)>
<ruleMemoization(name=ruleName)>
<lexerRuleLabelDefs()>
<ruleDescriptor.actions.init>
<block><\n>
<else>
int _type = <ruleName>;
int _channel = DEFAULT_TOKEN_CHANNEL;
<ruleMemoization(name=ruleName)>
<lexerRuleLabelDefs()>
<ruleDescriptor.actions.init>
<block>
<ruleCleanUp()>
state.type = _type;
state.channel = _channel;
<(ruleDescriptor.actions.after):execAction()>
<endif>
}
finally
{
<if(trace)>TraceOut("<ruleName>", <ruleDescriptor.index>);<endif>
<ruleScopeCleanUp()>
<memoize()>
}
}
// $ANTLR end "<ruleName>"
>>
/** How to generate code for the implicitly-defined lexer grammar rule
* that chooses between lexer rules.
*/
tokensRule(ruleName,nakedBlock,args,block,ruleDescriptor) ::= <<
override public void mTokens() // throws RecognitionException
{
<block><\n>
}
>>
// S U B R U L E S
/** A (...) subrule with multiple alternatives */
block(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description>
int alt<decisionNumber> = <maxAlt>;
<decls>
<@predecision()>
<decision>
<@postdecision()>
<@prebranch()>
switch (alt<decisionNumber>)
{
<alts:altSwitchCase()>
}
<@postbranch()>
>>
/** A rule block with multiple alternatives */
ruleBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description>
int alt<decisionNumber> = <maxAlt>;
<decls>
<@predecision()>
<decision>
<@postdecision()>
switch (alt<decisionNumber>)
{
<alts:altSwitchCase()>
}
>>
ruleBlockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
// <fileName>:<description>
<decls>
<@prealt()>
<alts>
<@postalt()>
>>
/** A special case of a (...) subrule with a single alternative */
blockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
// <fileName>:<description>
<decls>
<@prealt()>
<alts>
<@postalt()>
>>
/** A (..)+ block with 1 or more alternatives */
positiveClosureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description>
int cnt<decisionNumber> = 0;
<decls>
<@preloop()>
do
{
int alt<decisionNumber> = <maxAlt>;
<@predecision()>
<decision>
<@postdecision()>
switch (alt<decisionNumber>)
{
<alts:altSwitchCase()>
default:
if ( cnt<decisionNumber> >= 1 ) goto loop<decisionNumber>;
<ruleBacktrackFailure()>
EarlyExitException eee =
new EarlyExitException(<decisionNumber>, input);
<@earlyExitException()>
throw eee;
}
cnt<decisionNumber>++;
} while (true);
loop<decisionNumber>:
; // Stops C# compiler whinging that label 'loop<decisionNumber>' has no statements
<@postloop()>
>>
positiveClosureBlockSingleAlt ::= positiveClosureBlock
/** A (..)* block with 1 or more alternatives */
closureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description>
<decls>
<@preloop()>
do
{
int alt<decisionNumber> = <maxAlt>;
<@predecision()>
<decision>
<@postdecision()>
switch (alt<decisionNumber>)
{
<alts:altSwitchCase()>
default:
goto loop<decisionNumber>;
}
} while (true);
loop<decisionNumber>:
; // Stops C# compiler whining that label 'loop<decisionNumber>' has no statements
<@postloop()>
>>
closureBlockSingleAlt ::= closureBlock
/** Optional blocks (x)? are translated to (x|) by before code generation
* so we can just use the normal block template
*/
optionalBlock ::= block
optionalBlockSingleAlt ::= block
/** A case in a switch that jumps to an alternative given the alternative
* number. A DFA predicts the alternative and then a simple switch
* does the jump to the code that actually matches that alternative.
*/
altSwitchCase() ::= <<
case <i> :
<@prealt()>
<it>
break;<\n>
>>
/** An alternative is just a list of elements; at outermost level */
alt(elements,altNum,description,autoAST,outerAlt,treeLevel,rew) ::= <<
// <fileName>:<description>
{
<@declarations()>
<elements:element()>
<rew>
<@cleanup()>
}
>>
/** What to emit when there is no rewrite. For auto build
* mode, does nothing.
*/
noRewrite(rewriteBlockLevel, treeLevel) ::= ""
// E L E M E N T S
/** Dump the elements one per line */
element() ::= <<
<@prematch()>
<it.el><\n>
>>
/** match a token optionally with a label in front */
tokenRef(token,label,elementIndex,hetero) ::= <<
<if(label)><label>=(<labelType>)<endif>Match(input,<token>,FOLLOW_<token>_in_<ruleName><elementIndex>); <checkRuleBacktrackFailure()>
>>
/** ids+=ID */
tokenRefAndListLabel(token,label,elementIndex,hetero) ::= <<
<tokenRef(...)>
<listLabel(elem=label,...)>
>>
listLabel(label,elem) ::= <<
if (list_<label> == null) list_<label> = new ArrayList();
list_<label>.Add(<elem>);<\n>
>>
/** match a character */
charRef(char,label) ::= <<
<if(label)>
<label> = input.LA(1);<\n>
<endif>
Match(<char>); <checkRuleBacktrackFailure()>
>>
/** match a character range */
charRangeRef(a,b,label) ::= <<
<if(label)>
<label> = input.LA(1);<\n>
<endif>
MatchRange(<a>,<b>); <checkRuleBacktrackFailure()>
>>
/** For now, sets are interval tests and must be tested inline */
matchSet(s,label,elementIndex,postmatchCode="") ::= <<
<if(label)>
<if(LEXER)>
<label>= input.LA(1);<\n>
<else>
<label> = (<labelType>)input.LT(1);<\n>
<endif>
<endif>
if ( <s> )
{
input.Consume();
<postmatchCode>
<if(!LEXER)>
state.errorRecovery = false;
<endif>
<if(backtracking)>state.failed = false;<endif>
}
else
{
<ruleBacktrackFailure()>
MismatchedSetException mse = new MismatchedSetException(null,input);
<@mismatchedSetException()>
<if(LEXER)>
Recover(mse);
throw mse;
<else>
throw mse;
<! use following code to make it recover inline; remove throw mse;
RecoverFromMismatchedSet(input,mse,FOLLOW_set_in_<ruleName><elementIndex>);
!>
<endif>
}<\n>
>>
matchRuleBlockSet ::= matchSet
matchSetAndListLabel(s,label,elementIndex,postmatchCode) ::= <<
<matchSet(...)>
<listLabel(elem=label,...)>
>>
/** Match a string literal */
lexerStringRef(string,label) ::= <<
<if(label)>
int <label>Start = CharIndex;
Match(<string>); <checkRuleBacktrackFailure()>
<label> = new CommonToken(input, Token.INVALID_TOKEN_TYPE, Token.DEFAULT_CHANNEL, <label>Start, CharIndex-1);
<else>
Match(<string>); <checkRuleBacktrackFailure()><\n>
<endif>
>>
wildcard(label,elementIndex) ::= <<
<if(label)>
<label> = (<labelType>)input.LT(1);<\n>
<endif>
MatchAny(input); <checkRuleBacktrackFailure()>
>>
wildcardAndListLabel(label,elementIndex) ::= <<
<wildcard(...)>
<listLabel(elem=label,...)>
>>
/** Match . wildcard in lexer */
wildcardChar(label, elementIndex) ::= <<
<if(label)>
<label> = input.LA(1);<\n>
<endif>
MatchAny(); <checkRuleBacktrackFailure()>
>>
wildcardCharListLabel(label, elementIndex) ::= <<
<wildcardChar(...)>
<listLabel(elem=label,...)>
>>
/** Match a rule reference by invoking it possibly with arguments
* and a return value or values. The 'rule' argument was the
* target rule name, but now is type Rule, whose toString is
* same: the rule name. Now though you can access full rule
* descriptor stuff.
*/
ruleRef(rule,label,elementIndex,args,scope) ::= <<
PushFollow(FOLLOW_<rule.name>_in_<ruleName><elementIndex>);
<if(label)>
<label> = <if(scope)><scope:delegateName()>.<endif><rule.name>(<args; separator=", ">);<\n>
<else>
<if(scope)><scope:delegateName()>.<endif><rule.name>(<args; separator=", ">);<\n>
<endif>
state.followingStackPointer--;
<checkRuleBacktrackFailure()>
>>
/** ids+=r */
ruleRefAndListLabel(rule,label,elementIndex,args,scope) ::= <<
<ruleRef(...)>
<listLabel(elem=label,...)>
>>
/** A lexer rule reference.
*
* The 'rule' argument was the target rule name, but now
* is type Rule, whose toString is same: the rule name.
* Now though you can access full rule descriptor stuff.
*/
lexerRuleRef(rule,label,args,elementIndex,scope) ::= <<
<if(label)>
int <label>Start<elementIndex> = CharIndex;
<if(scope)><scope:delegateName()>.<endif>m<rule.name>(<args; separator=", ">); <checkRuleBacktrackFailure()>
<label> = new CommonToken(input, Token.INVALID_TOKEN_TYPE, Token.DEFAULT_CHANNEL, <label>Start<elementIndex>, CharIndex-1);
<else>
<if(scope)><scope:delegateName()>.<endif>m<rule.name>(<args; separator=", ">); <checkRuleBacktrackFailure()>
<endif>
>>
/** i+=INT in lexer */
lexerRuleRefAndListLabel(rule,label,args,elementIndex,scope) ::= <<
<lexerRuleRef(...)>
<listLabel(elem=label,...)>
>>
/** EOF in the lexer */
lexerMatchEOF(label,elementIndex) ::= <<
<if(label)>
int <label>Start<elementIndex> = CharIndex;
Match(EOF); <checkRuleBacktrackFailure()>
<labelType> <label> = new CommonToken(input, EOF, Token.DEFAULT_CHANNEL, <label>Start<elementIndex>, CharIndex-1);
<else>
Match(EOF); <checkRuleBacktrackFailure()>
<endif>
>>
/** match ^(root children) in tree parser */
tree(root, actionsAfterRoot, children, nullableChildList,
enclosingTreeLevel, treeLevel) ::= <<
<root:element()>
<actionsAfterRoot:element()>
<if(nullableChildList)>
if ( input.LA(1) == Token.DOWN )
{
Match(input, Token.DOWN, null); <checkRuleBacktrackFailure()>
<children:element()>
Match(input, Token.UP, null); <checkRuleBacktrackFailure()>
}
<else>
Match(input, Token.DOWN, null); <checkRuleBacktrackFailure()>
<children:element()>
Match(input, Token.UP, null); <checkRuleBacktrackFailure()>
<endif>
>>
/** Every predicate is used as a validating predicate (even when it is
* also hoisted into a prediction expression).
*/
validateSemanticPredicate(pred,description) ::= <<
if ( !(<evalPredicate(...)>) )
{
<ruleBacktrackFailure()>
throw new FailedPredicateException(input, "<ruleName>", "<description>");
}
>>
// F i x e d D F A (if-then-else)
dfaState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
int LA<decisionNumber>_<stateNumber> = input.LA(<k>);<\n>
<edges; separator="\nelse ">
else
{
<if(eotPredictsAlt)>
alt<decisionNumber> = <eotPredictsAlt>;
<else>
<ruleBacktrackFailure()>
NoViableAltException nvae_d<decisionNumber>s<stateNumber> =
new NoViableAltException("<description>", <decisionNumber>, <stateNumber>, input);<\n>
<@noViableAltException()>
throw nvae_d<decisionNumber>s<stateNumber>;<\n>
<endif>
}
>>
/** Same as a normal DFA state except that we don't examine lookahead
* for the bypass alternative. It delays error detection but this
* is faster, smaller, and more what people expect. For (X)? people
* expect "if ( LA(1)==X ) match(X);" and that's it.
*/
dfaOptionalBlockState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
int LA<decisionNumber>_<stateNumber> = input.LA(<k>);<\n>
<edges; separator="\nelse ">
>>
/** A DFA state that is actually the loopback decision of a closure
* loop. If end-of-token (EOT) predicts any of the targets then it
* should act like a default clause (i.e., no error can be generated).
* This is used only in the lexer so that for ('a')* on the end of a rule
* anything other than 'a' predicts exiting.
*/
dfaLoopbackState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
int LA<decisionNumber>_<stateNumber> = input.LA(<k>);<\n>
<edges; separator="\nelse "><\n>
<if(eotPredictsAlt)>
<if(!edges)>
alt<decisionNumber>=<eotPredictsAlt>; <! if no edges, don't gen ELSE !>
<else>
else
{
alt<decisionNumber> = <eotPredictsAlt>;
}<\n>
<endif>
<endif>
>>
/** An accept state indicates a unique alternative has been predicted */
dfaAcceptState(alt) ::= "alt<decisionNumber> = <alt>;"
/** A simple edge with an expression. If the expression is satisfied,
* enter to the target state. To handle gated productions, we may
* have to evaluate some predicates for this edge.
*/
dfaEdge(labelExpr, targetState, predicates) ::= <<
if ( (<labelExpr>) <if(predicates)>&& (<predicates>) <endif>)
{
<targetState>
}
>>
// F i x e d D F A (switch case)
/** A DFA state where a SWITCH may be generated. The code generator
* decides if this is possible: CodeGenerator.canGenerateSwitch().
*/
dfaStateSwitch(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
switch ( input.LA(<k>) )
{
<edges; separator="\n">
default:
<if(eotPredictsAlt)>
alt<decisionNumber> = <eotPredictsAlt>;
break;
<else>
<ruleBacktrackFailure()>
NoViableAltException nvae_d<decisionNumber>s<stateNumber> =
new NoViableAltException("<description>", <decisionNumber>, <stateNumber>, input);<\n>
<@noViableAltException()>
throw nvae_d<decisionNumber>s<stateNumber>;<\n>
<endif>
}<\n>
>>
dfaOptionalBlockStateSwitch(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
switch ( input.LA(<k>) )
{
<edges; separator="\n">
}<\n>
>>
dfaLoopbackStateSwitch(k, edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
switch ( input.LA(<k>) )
{
<edges; separator="\n"><\n>
<if(eotPredictsAlt)>
default:
alt<decisionNumber> = <eotPredictsAlt>;
break;<\n>
<endif>
}<\n>
>>
dfaEdgeSwitch(labels, targetState) ::= <<
<labels:{case <it>:}; separator="\n">
{
<targetState>
}
break;
>>
// C y c l i c D F A
/** The code to initiate execution of a cyclic DFA; this is used
* in the rule to predict an alt just like the fixed DFA case.
* The <name> attribute is inherited via the parser, lexer, ...
*/
dfaDecision(decisionNumber,description) ::= <<
alt<decisionNumber> = dfa<decisionNumber>.Predict(input);
>>
/* Dump DFA tables.
*/
cyclicDFA(dfa) ::= <<
const string DFA<dfa.decisionNumber>_eotS =
"<dfa.javaCompressedEOT; wrap="\"+\n \"">";
const string DFA<dfa.decisionNumber>_eofS =
"<dfa.javaCompressedEOF; wrap="\"+\n \"">";
const string DFA<dfa.decisionNumber>_minS =
"<dfa.javaCompressedMin; wrap="\"+\n \"">";
const string DFA<dfa.decisionNumber>_maxS =
"<dfa.javaCompressedMax; wrap="\"+\n \"">";
const string DFA<dfa.decisionNumber>_acceptS =
"<dfa.javaCompressedAccept; wrap="\"+\n \"">";
const string DFA<dfa.decisionNumber>_specialS =
"<dfa.javaCompressedSpecial; wrap="\"+\n \"">}>";
static readonly string[] DFA<dfa.decisionNumber>_transitionS = {
<dfa.javaCompressedTransition:{s|"<s; wrap="\"+\n\"">"}; separator=",\n">
};
static readonly short[] DFA<dfa.decisionNumber>_eot = DFA.UnpackEncodedString(DFA<dfa.decisionNumber>_eotS);
static readonly short[] DFA<dfa.decisionNumber>_eof = DFA.UnpackEncodedString(DFA<dfa.decisionNumber>_eofS);
static readonly char[] DFA<dfa.decisionNumber>_min = DFA.UnpackEncodedStringToUnsignedChars(DFA<dfa.decisionNumber>_minS);
static readonly char[] DFA<dfa.decisionNumber>_max = DFA.UnpackEncodedStringToUnsignedChars(DFA<dfa.decisionNumber>_maxS);
static readonly short[] DFA<dfa.decisionNumber>_accept = DFA.UnpackEncodedString(DFA<dfa.decisionNumber>_acceptS);
static readonly short[] DFA<dfa.decisionNumber>_special = DFA.UnpackEncodedString(DFA<dfa.decisionNumber>_specialS);
static readonly short[][] DFA<dfa.decisionNumber>_transition = DFA.UnpackEncodedStringArray(DFA<dfa.decisionNumber>_transitionS);
protected class DFA<dfa.decisionNumber> : DFA
{
<@debugMember()>
public DFA<dfa.decisionNumber>(BaseRecognizer recognizer)
{
this.recognizer = recognizer;
this.decisionNumber = <dfa.decisionNumber>;
this.eot = DFA<dfa.decisionNumber>_eot;
this.eof = DFA<dfa.decisionNumber>_eof;
this.min = DFA<dfa.decisionNumber>_min;
this.max = DFA<dfa.decisionNumber>_max;
this.accept = DFA<dfa.decisionNumber>_accept;
this.special = DFA<dfa.decisionNumber>_special;
this.transition = DFA<dfa.decisionNumber>_transition;
}
<@dbgCtor()>
override public string Description
{
get { return "<dfa.description>"; }
}
<@errorMethod()>
}<\n>
<if(dfa.specialStateSTs)>
protected internal int DFA<dfa.decisionNumber>_SpecialStateTransition(DFA dfa, int s, IIntStream _input) //throws NoViableAltException
{
<if(LEXER)>
IIntStream input = _input;
<endif>
<if(PARSER)>
ITokenStream input = (ITokenStream)_input;
<endif>
<if(TREE_PARSER)>
ITreeNodeStream input = (ITreeNodeStream)_input;
<endif>
int _s = s;
switch ( s )
{
<dfa.specialStateSTs:{state |
case <i0> : <! compressed special state numbers 0..n-1 !>
<state>}; separator="\n">
}
<if(backtracking)>
if (state.backtracking > 0) {state.failed = true; return -1;}<\n>
<endif>
NoViableAltException nvae =
new NoViableAltException(dfa.Description, <dfa.decisionNumber>, _s, input);
dfa.Error(nvae);
throw nvae;
}<\n>
<endif>
>>
/** A state in a cyclic DFA; it's a special state and part of a big switch on
* state.
*/
cyclicDFAState(decisionNumber,stateNumber,edges,needErrorClause,semPredState) ::= <<
int LA<decisionNumber>_<stateNumber> = input.LA(1);<\n>
<if(semPredState)> <! get next lookahead symbol to test edges, then rewind !>
int index<decisionNumber>_<stateNumber> = input.Index();
input.Rewind();<\n>
<endif>
s = -1;
<edges; separator="\nelse ">
<if(semPredState)> <! return input cursor to state before we rewound !>
input.Seek(index<decisionNumber>_<stateNumber>);<\n>
<endif>
if ( s >= 0 ) return s;
break;
>>
/** Just like a fixed DFA edge, test the lookahead and indicate what
* state to jump to next if successful.
*/
cyclicDFAEdge(labelExpr, targetStateNumber, edgeNumber, predicates) ::= <<
if ( (<labelExpr>) <if(predicates)>&& (<predicates>) <endif>) { s = <targetStateNumber>; }<\n>
>>
/** An edge pointing at end-of-token; essentially matches any char;
* always jump to the target.
*/
eotDFAEdge(targetStateNumber,edgeNumber, predicates) ::= <<
s = <targetStateNumber>;<\n>
>>
// D F A E X P R E S S I O N S
andPredicates(left,right) ::= "(<left> && <right>)"
orPredicates(operands) ::= "(<first(operands)><rest(operands):{o | || <o>}>)"
notPredicate(pred) ::= "!(<evalPredicate(...)>)"
evalPredicate(pred,description) ::= "(<pred>)"
evalSynPredicate(pred,description) ::= "<pred>()"
lookaheadTest(atom,k,atomAsInt) ::= "LA<decisionNumber>_<stateNumber> == <atom>"
/** Sometimes a lookahead test cannot assume that LA(k) is in a temp variable
* somewhere. Must ask for the lookahead directly.
*/
isolatedLookaheadTest(atom,k,atomAsInt) ::= "input.LA(<k>) == <atom>"
lookaheadRangeTest(lower,upper,k,rangeNumber,lowerAsInt,upperAsInt) ::= <<
(LA<decisionNumber>_<stateNumber> \>= <lower> && LA<decisionNumber>_<stateNumber> \<= <upper>)
>>
isolatedLookaheadRangeTest(lower,upper,k,rangeNumber,lowerAsInt,upperAsInt) ::= "(input.LA(<k>) \>= <lower> && input.LA(<k>) \<= <upper>)"
setTest(ranges) ::= "<ranges; separator=\" || \">"
// A T T R I B U T E S
globalAttributeScope(scope) ::= <<
<if(scope.attributes)>
protected class <scope.name>_scope
{
<scope.attributes:{protected internal <it.decl>;}; separator="\n">
}
protected Stack <scope.name>_stack = new Stack();<\n>
<endif>
>>
ruleAttributeScope(scope) ::= <<
<if(scope.attributes)>
protected class <scope.name>_scope
{
<scope.attributes:{protected internal <it.decl>;}; separator="\n">
}
protected Stack <scope.name>_stack = new Stack();<\n>
<endif>
>>
returnStructName() ::= "<it.name>_return"
returnType() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<ruleDescriptor.grammar.recognizerName>.<ruleDescriptor:returnStructName()>
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
<ruleDescriptor.singleValueReturnType>
<else>
void
<endif>
<endif>
>>
/** Generate the C# type associated with a single or multiple return
* values.
*/
ruleLabelType(referencedRule) ::= <<
<if(referencedRule.hasMultipleReturnValues)>
<referencedRule.grammar.recognizerName>.<referencedRule.name>_return
<else>
<if(referencedRule.hasSingleReturnValue)>
<referencedRule.singleValueReturnType>
<else>
void
<endif>
<endif>
>>
delegateName() ::= <<
<if(it.label)><it.label><else>g<it.name><endif>
>>
/** Using a type to init value map, try to init a type; if not in table
* must be an object, default value is "null".
*/
initValue(typeName) ::= <<
default(<typeName>)
>>
/** Define a rule label including default value */
ruleLabelDef(label) ::= <<
<ruleLabelType(referencedRule=label.referencedRule)> <label.label.text> = <initValue(typeName=ruleLabelType(referencedRule=label.referencedRule))>;<\n>
>>
/** Define a return struct for a rule if the code needs to access its
* start/stop tokens, tree stuff, attributes, ... Leave a hole for
* subgroups to stick in members.
*/
returnScope(scope) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
public class <ruleDescriptor:returnStructName()> : <if(TREE_PARSER)>Tree<else>Parser<endif>RuleReturnScope
{
<scope.attributes:{public <it.decl>;}; separator="\n">
<@ruleReturnMembers()>
};
<endif>
>>
parameterScope(scope) ::= <<
<scope.attributes:{<it.decl>}; separator=", ">
>>
parameterAttributeRef(attr) ::= "<attr.name>"
parameterSetAttributeRef(attr,expr) ::= "<attr.name> = <expr>;"
scopeAttributeRef(scope,attr,index,negIndex) ::= <<
<if(negIndex)>
((<scope>_scope)<scope>_stack[<scope>_stack.Count-<negIndex>-1]).<attr.name>
<else>
<if(index)>
((<scope>_scope)<scope>_stack[<index>]).<attr.name>
<else>
((<scope>_scope)<scope>_stack.Peek()).<attr.name>
<endif>
<endif>
>>
scopeSetAttributeRef(scope,attr,expr,index,negIndex) ::= <<
<if(negIndex)>
((<scope>_scope)<scope>_stack[<scope>_stack.Count-<negIndex>-1]).<attr.name> = <expr>;
<else>
<if(index)>
((<scope>_scope)<scope>_stack[<index>]).<attr.name> = <expr>;
<else>
((<scope>_scope)<scope>_stack.Peek()).<attr.name> = <expr>;
<endif>
<endif>
>>
/** $x is either global scope or x is rule with dynamic scope; refers
* to stack itself not top of stack. This is useful for predicates
* like {$function.size()>0 && $function::name.equals("foo")}?
*/
isolatedDynamicScopeRef(scope) ::= "<scope>_stack"
/** reference an attribute of rule; might only have single return value */
ruleLabelRef(referencedRule,scope,attr) ::= <<
<if(referencedRule.hasMultipleReturnValues)>
((<scope> != null) ? <scope>.<attr.name> : <initValue(attr.type)>)
<else>
<scope>
<endif>
>>
returnAttributeRef(ruleDescriptor,attr) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
retval.<attr.name>
<else>
<attr.name>
<endif>
>>
returnSetAttributeRef(ruleDescriptor,attr,expr) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
retval.<attr.name> = <expr>;
<else>
<attr.name> = <expr>;
<endif>
>>
/** How to translate $tokenLabel */
tokenLabelRef(label) ::= "<label>"
/** ids+=ID {$ids} or e+=expr {$e} */
listLabelRef(label) ::= "list_<label>"
// not sure the next are the right approach
tokenLabelPropertyRef_text(scope,attr) ::= "((<scope> != null) ? <scope>.Text : null)"
tokenLabelPropertyRef_type(scope,attr) ::= "((<scope> != null) ? <scope>.Type : 0)"
tokenLabelPropertyRef_line(scope,attr) ::= "((<scope> != null) ? <scope>.Line : 0)"
tokenLabelPropertyRef_pos(scope,attr) ::= "((<scope> != null) ? <scope>.CharPositionInLine : 0)"
tokenLabelPropertyRef_channel(scope,attr) ::= "((<scope> != null) ? <scope>.Channel : 0)"
tokenLabelPropertyRef_index(scope,attr) ::= "((<scope> != null) ? <scope>.TokenIndex : 0)"
tokenLabelPropertyRef_tree(scope,attr) ::= "<scope>_tree"
tokenLabelPropertyRef_int(scope,attr) ::= "(<scope>!=null?int.Parse(<scope>.Text):0)"
ruleLabelPropertyRef_start(scope,attr) ::= "((<scope> != null) ? ((<labelType>)<scope>.Start) : null)"
ruleLabelPropertyRef_stop(scope,attr) ::= "((<scope> != null) ? ((<labelType>)<scope>.Stop) : null)"
ruleLabelPropertyRef_tree(scope,attr) ::= "((<scope> != null) ? ((<ASTLabelType>)<scope>.Tree) : null)"
ruleLabelPropertyRef_text(scope,attr) ::= <<
<if(TREE_PARSER)>
((<scope> != null) ? input.TokenStream.ToString(
input.TreeAdaptor.GetTokenStartIndex(<scope>.Start),
input.TreeAdaptor.GetTokenStopIndex(<scope>.Start)) : null)
<else>
((<scope> != null) ? input.ToString((IToken)(<scope>.Start),(IToken)(<scope>.Stop)) : null)
<endif>
>>
ruleLabelPropertyRef_st(scope,attr) ::= "((<scope> != null) ? <scope>.ST : null)"
/** Isolated $RULE ref ok in lexer as it's a Token */
lexerRuleLabel(label) ::= "<label>"
lexerRuleLabelPropertyRef_type(scope,attr) ::= "((<scope> != null) ? <scope>.Type : 0)"
lexerRuleLabelPropertyRef_line(scope,attr) ::= "((<scope> != null) ? <scope>.Line : 0)"
lexerRuleLabelPropertyRef_pos(scope,attr) ::= "((<scope> != null) ? <scope>.CharPositionInLine : -1)"
lexerRuleLabelPropertyRef_channel(scope,attr) ::= "((<scope> != null) ? <scope>.Channel : 0)"
lexerRuleLabelPropertyRef_index(scope,attr) ::= "((<scope> != null) ? <scope>.TokenIndex : 0)"
lexerRuleLabelPropertyRef_text(scope,attr) ::= "((<scope> != null) ? <scope>.Text : null)"
lexerRuleLabelPropertyRef_int(scope,attr) ::= "(<scope>!=null?int.Parse(<scope>.Text):0)"
// Somebody may ref $template or $tree or $stop within a rule:
rulePropertyRef_start(scope,attr) ::= "((<labelType>)retval.Start)"
rulePropertyRef_stop(scope,attr) ::= "((<labelType>)retval.Stop)"
rulePropertyRef_tree(scope,attr) ::= "((<ASTLabelType>)retval.Tree)"
rulePropertyRef_text(scope,attr) ::= <<
<if(TREE_PARSER)>
input.TokenStream.ToString(
input.TreeAdaptor.GetTokenStartIndex(retval.Start),
input.TreeAdaptor.GetTokenStopIndex(retval.Start) )
<else>
input.ToString((IToken)retval.Start,input.LT(-1))
<endif>
>>
rulePropertyRef_st(scope,attr) ::= "retval.ST"
lexerRulePropertyRef_text(scope,attr) ::= "Text"
lexerRulePropertyRef_type(scope,attr) ::= "_type"
lexerRulePropertyRef_line(scope,attr) ::= "state.tokenStartLine"
lexerRulePropertyRef_pos(scope,attr) ::= "state.tokenStartCharPositionInLine"
lexerRulePropertyRef_index(scope,attr) ::= "-1" // undefined token index in lexer
lexerRulePropertyRef_channel(scope,attr) ::= "_channel"
lexerRulePropertyRef_start(scope,attr) ::= "state.tokenStartCharIndex"
lexerRulePropertyRef_stop(scope,attr) ::= "(CharIndex-1)"
lexerRulePropertyRef_int(scope,attr) ::= "int.Parse(<scope>.Text)"
// setting $st and $tree is allowed in local rule. everything else
// is flagged as error
ruleSetPropertyRef_tree(scope,attr,expr) ::= "retval.Tree = <expr>;"
ruleSetPropertyRef_st(scope,attr,expr) ::= "retval.ST = <expr>;"
/** How to execute an action (only when not backtracking) */
execAction(action) ::= <<
<if(backtracking)>
<if(actions.(actionScope).synpredgate)>
if ( <actions.(actionScope).synpredgate> )
{
<action>
}
<else>
if ( state.backtracking == 0 )
{
<action>
}
<endif>
<else>
<action>
<endif>
>>
/** How to always execute an action even when backtracking */
execForcedAction(action) ::= "<action>"
// M I S C (properties, etc...)
bitset(name, words64) ::= <<
public static readonly BitSet <name> = new BitSet(new ulong[]{<words64:{<it>UL};separator=",">});<\n>
>>
codeFileExtension() ::= ".cs"
true() ::= "true"
false() ::= "false"