jFuzzyLogic/antlr_3_1_source/codegen/templates/ObjC/ObjC.stg
2014-12-19 08:30:46 -05:00

1503 lines
45 KiB
Plaintext

/*
[The "BSD licence"]
Copyright (c) 2006,2007 Kay Roepke
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Template group file for the Objective C code generator.
Heavily based on Java.stg
Written by Kay Roepke <kroepke(at)classdump.org>
This file is part of ANTLR and subject to the same license as ANTLR itself.
*/
group ObjC implements ANTLRCore;
objcTypeInitMap ::= [
"int":"0",
"long":"0",
"float":"0.0",
"double":"0.0",
"boolean":"false",
"byte":"0",
"short":"0",
"char":"0",
"id":"nil",
default:"nil" // anything other than an atomic type
]
className() ::= "<name><! if(LEXER)>Lexer<else><if(TREE_PARSER)>Tree<endif>Parser<endif !>"
/** The overall file structure of a recognizer; stores methods for rules
* and cyclic DFAs plus support code.
*/
outputFile(LEXER,PARSER,TREE_PARSER, actionScope, actions,
docComment, recognizer,
name, tokens, tokenNames, rules, cyclicDFAs,
bitsets, buildTemplate, buildAST, rewriteMode, profile,
backtracking, synpreds, memoize, numRules,
fileName, ANTLRVersion, generatedTimestamp, trace,
scopes, superClass,literals) ::=
<<
// $ANTLR <ANTLRVersion> <fileName> <generatedTimestamp>
<@imports>
#import "<name><!if(LEXER)>Lexer<else><if(TREE_PARSER)>Tree<endif>Parser<endif!>.h"
<@end>
<docComment>
<recognizer>
>>
headerFile(LEXER,PARSER,TREE_PARSER, actionScope, actions,
docComment, recognizer,
name, tokens, tokenNames, rules, cyclicDFAs,
bitsets, buildTemplate, buildAST, rewriteMode, profile,
backtracking, synpreds, memoize, numRules,
fileName, ANTLRVersion, generatedTimestamp, trace,
scopes, superClass,literals) ::=
<<
// $ANTLR <ANTLRVersion> <fileName> <generatedTimestamp>
<@imports>
#import \<Cocoa/Cocoa.h>
#import \<ANTLR/ANTLR.h>
<@end>
<actions.(actionScope).header>
<if(LEXER)>
<lexerHeaderFile(...)>
<endif>
<if(PARSER)>
<parserHeaderFile(...)>
<endif>
<if(TREE_PARSER)>
<treeParserHeaderFile(...)>
<endif>
>>
lexerHeaderFile() ::=
<<
<cyclicDFAs:cyclicDFAInterface()>
#pragma mark Rule return scopes start
<rules:{rule |
<rule:{ruleDescriptor | <returnScopeInterface(scope=ruleDescriptor.returnScope)>}>
}>
#pragma mark Rule return scopes end
#pragma mark Tokens
<tokens:{#define <name>_<it.name> <it.type>}; separator="\n">
@interface <className()> : ANTLRLexer {
<cyclicDFAs:{dfa | <name>DFA<dfa.decisionNumber> *dfa<dfa.decisionNumber>;}; separator="\n">
<synpreds:{p | SEL <p>SyntacticPredicate;}; separator="\n">
<actions.lexer.ivars>
}
<actions.lexer.methodsdecl>
<rules:{rule |
- (<rule.ruleDescriptor:{ruleDescriptor|<returnType()>}>) <if(!rule.ruleDescriptor.isSynPred)>m<endif><rule.ruleName><if(rule.ruleDescriptor.parameterScope)><rule.ruleDescriptor.parameterScope:parameterScope(scope=it)><endif>;
}>
@end
>>
lexer(grammar, name, tokens, scopes, rules, numRules, labelType="id<ANTLRToken> ",
filterMode) ::= <<
<cyclicDFAs:cyclicDFA()>
/** As per Terence: No returns for lexer rules!
#pragma mark Rule return scopes start
<rules:{rule |
<rule.ruleDescriptor:{ruleDescriptor | <returnScope(scope=ruleDescriptor.returnScope)>}>
}>
#pragma mark Rule return scopes end
*/
@implementation <className()>
static NSArray *tokenNames;
<actions.lexer.methods>
+ (void) initialize
{
// todo: get tokenNames into lexer - requires changes to CodeGenerator.java and ANTLRCore.sti
tokenNames = [[NSArray alloc] init];
}
- (id) initWithCharStream:(id\<ANTLRCharStream>)anInput
{
if (nil!=(self = [super initWithCharStream:anInput])) {
<if(memoize)>
// initialize the memoization cache - the indices are 1-based in the runtime code!
[ruleMemo addObject:[NSNull null]]; // dummy entry to ensure 1-basedness.
for (int i = 0; i \< <numRules>; i++) {
[[state ruleMemo] addObject:[NSMutableDictionary dictionary]];
}
<endif>
<synpreds:{p | <lexerSynpred(name=p)>};separator="\n">
<cyclicDFAs:{dfa | dfa<dfa.decisionNumber> = [[<name>DFA<dfa.decisionNumber> alloc] initWithRecognizer:self];}; separator="\n">
<actions.lexer.init>
}
return self;
}
- (void) dealloc
{
<cyclicDFAs:{dfa | [dfa<dfa.decisionNumber> release];}; separator="\n">
<actions.lexer.dealloc>
[super dealloc];
}
+ (NSString *) tokenNameForType:(int)aTokenType
{
return nil;
}
+ (NSArray *) tokenNames
{
return tokenNames;
}
- (NSString *) grammarFileName
{
return @"<fileName>";
}
<if(actions.lexer.reset)>
- (void) reset
{
<actions.lexer.reset>
[super reset];
}
<endif>
<if(filterMode)>
<filteringNextToken()>
<endif>
<rules; separator="\n\n">
@end
>>
/** A override of Lexer.nextToken() that backtracks over mTokens() looking
* for matches. No error can be generated upon error; just rewind, consume
* a token and then try again. backtracking needs to be set as well.
*/
filteringNextToken() ::= <<
- (id\<ANTLRToken>) nextToken
{
<sharedStateLocalVarDefinition()>
while (YES) {
if ( [input LA:1] == ANTLRCharStreamEOF ) {
return nil; // should really be a +eofToken call here -> go figure
}
[self setToken:nil];
[_state setChannel:ANTLRTokenChannelDefault];
[_state setTokenStartLine:[input line]];
[_state setTokenCharPositionInLine:[input charPositionInLine]];
[_state setTokenStartCharIndex:[self charIndex]];
@try {
int m = [input mark];
[_state setBacktracking:1];
[_state setIsFailed:NO];
[self mTokens];
[_state setBacktracking:0];
if ( [_state isFailed] ) {
[input rewind:m];
[input consume]; <! // advance one char and try again !>
} else {
[self emit];
return token;
}
}
@catch (ANTLRRecognitionException *re) {
// shouldn't happen in backtracking mode, but...
[self reportError:re];
[self recover:re];
}
}
}
>>
filteringActionGate() ::= "[_state backtracking] == 1"
treeParserHeaderFile(LEXER, PARSER, TREE_PARSER, actionScope, actions, docComment,
recognizer, name, tokens, tokenNames, rules, cyclicDFAs,
bitsets, buildTemplate, profile, backtracking, synpreds,
memoize, numRules, fileName, ANTLRVersion, generatedTimestamp, trace, scopes, superClass="ANTLRTreeParser") ::= <<
<parserHeaderFile(...)>
>>
parserHeaderFile(LEXER, PARSER, TREE_PARSER, actionScope, actions, docComment,
recognizer, name, tokens, tokenNames, rules, cyclicDFAs,
bitsets, buildTemplate, profile, backtracking, synpreds,
memoize, numRules, fileName, ANTLRVersion, generatedTimestamp, trace, scopes, superClass="ANTLRParser") ::=
<<
<cyclicDFAs:cyclicDFAInterface()>
#pragma mark Tokens
<tokens:{#define <name>_<it.name> <it.type>}; separator="\n">
#pragma mark Dynamic Global Scopes
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScopeDecl(scope=it)><endif>}>
#pragma mark Dynamic Rule Scopes
<rules:{rule |
<rule.ruleDescriptor:{ ruleDescriptor | <ruleAttributeScopeDecl(scope=ruleDescriptor.ruleScope)>}>
}>
#pragma mark Rule Return Scopes
<rules:{rule |
<rule.ruleDescriptor:{ ruleDescriptor | <returnScopeInterface(scope=ruleDescriptor.returnScope)>}>
}>
@interface <className()> : <@superClassName><superClass><@end> {
<cyclicDFAs:{dfa | <name>DFA<dfa.decisionNumber> *dfa<dfa.decisionNumber>;}; separator="\n">
<synpreds:{p | SEL <p>SyntacticPredicate;}; separator="\n">
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScopeIVar(scope=it)><endif>}>
<rules:{rule |
<rule.ruleDescriptor.ruleScope:ruleAttributeScopeIVar(scope=it)>
}>
<@ivars()>
<actions.(actionScope).ivars>
}
<actions.(actionScope).methodsdecl>
<rules:{rule |
- (<rule.ruleDescriptor:{ruleDescriptor|<returnType()>}>) <rule.ruleName><if(rule.ruleDescriptor.parameterScope)><rule.ruleDescriptor.parameterScope:parameterScope(scope=it)><endif>;
}>
<@methodsdecl()>
@end
>>
/** How to generate a parser */
genericParser(name, scopes, tokens, tokenNames, rules, numRules,
cyclicDFAs, bitsets, inputStreamType, superClass,
ASTLabelType="id", labelType, members) ::= <<
<cyclicDFAs:cyclicDFA()>
#pragma mark Bitsets
<bitsets:bitset(name={FOLLOW_<it.name>_in_<it.inName><it.tokenIndex>}, words64=it.bits)>
#pragma mark Dynamic Global Scopes
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScopeImpl(scope=it)><endif>}>
#pragma mark Dynamic Rule Scopes
<rules:{rule |
<rule.ruleDescriptor.ruleScope:ruleAttributeScopeImpl(scope=it)>
}>
#pragma mark Rule return scopes start
<rules:{rule |
<rule.ruleDescriptor:{ruleDescriptor | <returnScope(scope=ruleDescriptor.returnScope)>}>
}>
@implementation <className()>
static NSArray *tokenNames;
+ (void) initialize
{
<bitsets:bitsetInit(name={FOLLOW_<it.name>_in_<it.inName><it.tokenIndex>}, words64=it.bits)>
tokenNames = [[NSArray alloc] initWithObjects:@"\<invalid>", @"\<EOR>", @"\<DOWN>", @"\<UP>", <tokenNames:{@<it>}; separator=", ", wrap="\n ">, nil];
}
<if(PARSER)>
- (id) initWithTokenStream:(<inputStreamType>)aStream
{
if ((self = [super initWithTokenStream:aStream])) {
<else><!TREE_PARSER!>
- (id) initWithTreeNodeStream:(<inputStreamType>)aStream
{
if ((self = [super initWithTreeNodeStream:aStream])) {
<endif><\n>
<if(memoize)>
ruleMemo = [[NSMutableDictionary alloc] initWithCapacity:<numRules>+1];
<endif>
<cyclicDFAs:{dfa | dfa<dfa.decisionNumber> = [[<name>DFA<dfa.decisionNumber> alloc] initWithRecognizer:self];}; separator="\n">
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScopeInit(scope=it)><endif>}>
<rules:{rule |
<rule.ruleDescriptor.ruleScope:ruleAttributeScopeInit(scope=it)>
}>
<actions.(actionScope).init>
<@init()>
}
return self;
}
- (void) dealloc
{
<if(memoize)>
[ruleMemo release];
<endif>
<cyclicDFAs:{dfa | [dfa<dfa.decisionNumber> release];}; separator="\n">
<scopes:{<if(it.isDynamicGlobalScope)><globalAttributeScopeDealloc(scope=it)><endif>}>
<actions.(actionScope).dealloc>
<@dealloc()>
[super dealloc];
}
- (NSString *) grammarFileName
{
return @"<fileName>";
}
<actions.(actionScope).methods>
<rules; separator="\n\n">
<synpreds:{p | <synpred(p)>}>
<@methods()>
@end
>>
parser(grammar, name, scopes, tokens, tokenNames, rules, numRules, bitsets, ASTLabelType, superClass="ANTLRParser", labelType="id<ANTLRToken> ", members={<actions.parser.members>}) ::= <<
<genericParser(inputStreamType="id\<ANTLRTokenStream>", ...)>
>>
treeParser(grammar, name, scopes, tokens, tokenNames, globalAction, rules, numRules, bitsets, labelType={<ASTLabelType>}, ASTLabelType="id", superClass="ANTLRTreeParser", members={<actions.treeparser.members>}) ::= <<
<genericParser(inputStreamType="id\<ANTLRTreeNodeStream>", ...)>
>>
/** Maintain a local variable for the shared state object to avoid calling the accessor all the time. */
sharedStateLocalVarDefinition() ::= <<
<if(LEXER)>ANTLRLexerState<else>ANTLRBaseRecognizerState<endif> *_state = [self state];
>>
/** A simpler version of a rule template that is specific to the imaginary
* rules created for syntactic predicates. As they never have return values
* nor parameters etc..., just give simplest possible method. Don't do
* any of the normal memoization stuff in here either; it's a waste.
* As predicates cannot be inlined into the invoking rule, they need to
* be in a rule by themselves.
*/
synpredRule(ruleName, ruleDescriptor, block, description, nakedBlock) ::=
<<
- (void) <ruleName>
{
<sharedStateLocalVarDefinition()>
<if(trace)>NSLog(@"enter <ruleName> %d failed=%@ backtracking=%d", [input LA:1], [_state isFailed] ? @"YES" : @"NO", [_state backtracking]);
@try {
<block>
}
@finally {
NSLog(@"exit <ruleName> %d failed=%@ backtracking=%d", [input LA:1], [_state isFailed] ? @"YES" : @"NO", [_state backtracking]);
}
<else>
<block>
<endif>
}
>>
/** How to test for failure and return from rule */
checkRuleBacktrackFailure() ::= <<
<if(backtracking)>if ([_state isFailed]) return <ruleReturnValue()>;<endif>
>>
/** This rule has failed, exit indicating failure during backtrack */
ruleBacktrackFailure() ::= <<
<if(backtracking)>if ([_state isBacktracking]) {[_state setIsFailed:YES]; return <ruleReturnValue()>;}<endif>
>>
synpred(name) ::= <<
<!name>SyntacticPredicate = @selector(<name>); !>
>>
lexerSynpred(name) ::= <<
<synpred(name)>
>>
ruleMemoization(name) ::= <<
<if(memoize)>
if ([_state isBacktracking] && [self alreadyParsedRule:input ruleIndex:<ruleDescriptor.index>] ) { return <ruleReturnValue()>; }
<endif>
>>
/** How to generate code for a rule.
* The return type aggregates are declared in the header file (headerFile template)
*/
rule(ruleName,ruleDescriptor,block,emptyRule,description,exceptions,finally,memoize) ::= <<
// $ANTLR start <ruleName>
// <fileName>:<description>
- (<returnType()>) <ruleName><ruleDescriptor.parameterScope:parameterScope(scope=it)>
{
<if(trace)>NSLog(@"enter <ruleName> %@ failed=%@ backtracking=%d", [input LT:1], [_state isFailed] ? @"YES" : @"NO", [_state backtracking]);<endif>
<sharedStateLocalVarDefinition()>
<ruleScopeSetUp()>
<ruleDeclarations()>
<ruleLabelDefs()>
<ruleDescriptor.actions.init>
<@preamble()>
<ruleMemoization(name=ruleName)>
@try {
<block>
}
<if(exceptions)>
<exceptions:{e|<catch(decl=e.decl,action=e.action)><\n>}>
<else>
<if(!emptyRule)>
<if(actions.(actionScope).rulecatch)>
<actions.(actionScope).rulecatch>
<else>
@catch (ANTLRRecognitionException *re) {
[self reportError:re];
[self recover:input exception:re];
}<\n>
<endif>
<endif>
<endif>
@finally {
<if(trace)>NSLog(@"exit <ruleName> %@ failed=%@ backtracking=%d", [input LT:1], [_state isFailed] ? @"YES" : @"NO", [_state backtracking]);<endif>
<ruleCleanUp()>
<(ruleDescriptor.actions.finally):execAction()>
<ruleScopeCleanUp()>
}
<@postamble()>
return <ruleReturnValue()>;
}
// $ANTLR end <ruleName>
>>
catch(decl,action) ::= <<
catch (<e.decl>) {
<e.action>
}
>>
ruleDeclarations() ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
<returnType()> _retval = [[[<returnTypeName()> alloc] init] autorelease];
[_retval setStart:[input LT:1]];<\n>
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
<returnType()> _<ruleDescriptor.singleValueReturnName> = <initValue(typeName=returnType())>;
<endif>
<endif>
<if(memoize)>
int <ruleDescriptor.name>_StartIndex = [input index];
<endif>
>>
ruleScopeSetUp() ::= <<
<ruleDescriptor.useScopes:{[<name>_<it>_stack addObject:[[[<name><it>Scope alloc] init] autorelease]];}; separator="\n">
<ruleDescriptor.ruleScope:{[<name>_<it.name>_stack addObject:[[[<name><it.name>Scope alloc] init] autorelease]];}; separator="\n">
>>
ruleScopeCleanUp() ::= <<
<ruleDescriptor.useScopes:{[<name>_<it>_stack removeLastObject];}; separator="\n">
<ruleDescriptor.ruleScope:{[<name>_<it.name>_stack removeLastObject];}; separator="\n">
>>
ruleLabelDefs() ::= <<
<[ruleDescriptor.tokenLabels,ruleDescriptor.tokenListLabels]
:{<labelType> _<it.label.text> = nil;}; separator="\n"
>
<[ruleDescriptor.tokenListLabels,ruleDescriptor.ruleListLabels]
:{NSMutableArray *_list_<it.label.text> = nil;}; separator="\n"
>
<ruleDescriptor.ruleLabels:ruleLabelDef(label=it); separator="\n">
<ruleDescriptor.ruleListLabels:{ll|ANTLRRuleReturnScope <ll.label.text> = nil;}; separator="\n">
>>
ruleReturnValue() ::= <<
<if(!ruleDescriptor.isSynPred)>
<if(ruleDescriptor.hasReturnValue)>
<if(ruleDescriptor.hasSingleReturnValue)>
_<ruleDescriptor.singleValueReturnName>
<else>
_retval
<endif>
<endif>
<endif>
>>
ruleCleanUp() ::= <<
// token+rule list labels
<[ruleDescriptor.tokenListLabels,ruleDescriptor.ruleListLabels]:{[_list_<it.label.text> release];}; separator="\n">
<if(ruleDescriptor.hasMultipleReturnValues)>
<if(!TREE_PARSER)>
[_retval setStop:[input LT:-1]];<\n>
<endif>
<endif>
<if(memoize)>
<if(backtracking)>
if ( [_state isBacktracking] ) { [self memoize:input ruleIndex:<ruleDescriptor.index> startIndex:<ruleDescriptor.name>_StartIndex]; }
<endif>
<endif>
>>
/** How to generate a rule in the lexer; naked blocks are used for
* fragment rules.
*/
lexerRule(ruleName,nakedBlock,ruleDescriptor,block, memoize) ::= <<
- (void) m<ruleName><if(ruleDescriptor.parameterScope)><ruleDescriptor.parameterScope:parameterScope(scope=it)><endif>
{
<if(trace)>NSLog(@"enter <ruleName> %C line=%d:%d failed=%@ backtracking=%d", [input LA:1], [self line], [self charPositionInLine], [_state isFailed] ? @"YES" : @"NO", [_state backtracking]);<endif>
<sharedStateLocalVarDefinition()>
<ruleDeclarations()>
<ruleLabelDefs()>
<ruleMemoization(name=ruleName)>
@try {
<ruleDescriptor.actions.init>
<if(nakedBlock)>
<block><\n>
<else>
int _type = <name>_<ruleName>;
<block>
[_state setTokenType:_type];<\n>
<endif>
}
@finally {
<if(trace)>NSLog(@"exit <ruleName> %C line=%d:%d failed=%@ backtracking=%d", [input LA:1], [self line], [self charPositionInLine], [_state isFailed] ? @"YES" : @"NO", [_state backtracking]);<endif>
// rule cleanup
<ruleCleanUp()>
<(ruleDescriptor.actions.finally):execAction()>
}
return;
}
// $ANTLR end <ruleName>
>>
/** How to generate code for the implicitly-defined lexer grammar rule
* that chooses between lexer rules.
*/
tokensRule(ruleName,nakedBlock,args,block,ruleDescriptor) ::= <<
- (void) mTokens
{
<block><\n>
}
>>
// S U B R U L E S
/** A (...) subrule with multiple alternatives */
block(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description> // block
int alt<decisionNumber>=<maxAlt>;
<decls>
<@predecision()>
<decision>
<@postdecision()>
<@prebranch()>
switch (alt<decisionNumber>) {
<alts:altSwitchCase()>
}
<@postbranch()>
>>
/** A rule block with multiple alternatives */
ruleBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description> //ruleblock
int alt<decisionNumber>=<maxAlt>;
<decls>
<@predecision()>
<decision>
<@postdecision()>
switch (alt<decisionNumber>) {
<alts:altSwitchCase()>
}
>>
ruleBlockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
// <fileName>:<description> // ruleBlockSingleAlt
<decls>
<@prealt()>
<alts>
<@postalt()>
>>
/** A special case of a (...) subrule with a single alternative */
blockSingleAlt(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,description) ::= <<
// <fileName>:<description> // blockSingleAlt
<decls>
<@prealt()>
<alts>
<@postalt()>
>>
/** A (..)+ block with 0 or more alternatives */
positiveClosureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
// <fileName>:<description> // positiveClosureBlock
int cnt<decisionNumber>=0;
<decls>
<@preloop()>
do {
int alt<decisionNumber>=<maxAlt>;
<@predecision()>
<decision>
<@postdecision()>
switch (alt<decisionNumber>) {
<alts:altSwitchCase()>
default :
if ( cnt<decisionNumber> >= 1 ) goto loop<decisionNumber>;
<if(backtracking)>
<ruleBacktrackFailure()>
<endif>
ANTLREarlyExitException *eee = [ANTLREarlyExitException exceptionWithStream:input decisionNumber:<decisionNumber>];
<@earlyExitException()>
@throw eee;
}
cnt<decisionNumber>++;
} while (YES); loop<decisionNumber>: ;
<@postloop()>
>>
positiveClosureBlockSingleAlt ::= positiveClosureBlock
/** A (..)* block with 0 or more alternatives */
closureBlock(alts,decls,decision,enclosingBlockLevel,blockLevel,decisionNumber,maxK,maxAlt,description) ::= <<
<decls>
<@preloop()>
do {
int alt<decisionNumber>=<maxAlt>;
<@predecision()>
<decision>
<@postdecision()>
switch (alt<decisionNumber>) {
<alts:altSwitchCase()>
default :
goto loop<decisionNumber>;
}
} while (YES); loop<decisionNumber>: ;
<@postloop()>
>>
closureBlockSingleAlt ::= closureBlock
/** Optional blocks (x)? are translated to (x|) by before code generation
* so we can just use the normal block template
*/
optionalBlock ::= block
optionalBlockSingleAlt ::= block
/** A case in a switch that jumps to an alternative given the alternative
* number. A DFA predicts the alternative and then a simple switch
* does the jump to the code that actually matches that alternative.
*/
altSwitchCase() ::= <<
case <i> :
<@prealt()>
<it>
break;<\n>
>>
/** An alternative is just a list of elements; at outermost level */
alt(elements,altNum,description,autoAST,outerAlt,treeLevel) ::= <<
// <fileName>:<description> // alt
{
<@declarations()>
<elements:element()>
<@cleanup()>
}
>>
/** What to emit when there is no rewrite. For auto build
* mode, does nothing.
*/
noRewrite(rewriteBlockLevel, treeLevel) ::= ""
// E L E M E N T S
/** Dump the elements one per line */
element() ::= <<
<@prematch()>
<it.el><\n>
>>
/** match a token optionally with a label in front */
tokenRef(token,label,elementIndex,hetero) ::= <<
<if(label)>
_<label>=(<labelType>)[input LT:1];<\n>
<endif>
[self match:input tokenType:<token> follow:FOLLOW_<token>_in_<ruleName><elementIndex>]; <checkRuleBacktrackFailure()>
>>
/** ids+=ID */
tokenRefAndListLabel(token,label,elementIndex,hetero) ::= <<
<tokenRef(...)>
<listLabel(elem=label,...)>
>>
listLabel(label,elem) ::= <<
if (_list_<label> == nil)
_list_<label> = [[NSMutableArray alloc] init];
[_list_<label> addObject:_<elem>];
>>
/** match a character */
charRef(char,label) ::= <<
<if(label)>
int _<label> = [input LA:1];<\n>
<endif>
[self matchChar:<char>];
<checkRuleBacktrackFailure()><\n>
>>
/** match a character range */
charRangeRef(a,b,label) ::= <<
<if(label)>
_<label> = [input LA:1];<\n>
<endif>
[self matchRangeFromChar:<a> to:<b>];<checkRuleBacktrackFailure()>
>>
/** For now, sets are interval tests and must be tested inline */
matchSet(s,label,elementIndex,postmatchCode="") ::= <<
<if(label)>
_<label> = (<labelType>)[input LT:1];<\n>
<endif>
if (<s>) {
<postmatchCode>
[input consume];
<if(!LEXER)>
[_state setIsErrorRecovery:NO];
<endif>
<if(backtracking)>[_state setIsFailed:NO];<endif>
} else {
<ruleBacktrackFailure()>
ANTLRMismatchedSetException *mse = [ANTLRMismatchedSetException exceptionWithSet:nil stream:input];
<@mismatchedSetException()>
<if(LEXER)>
[self recover:mse];
<else>
[self recoverFromMismatchedSet:input exception:mse follow:FOLLOW_set_in_<ruleName><elementIndex>];
<endif>
@throw mse;
}<\n>
>>
matchSetAndListLabel(s,label,elementIndex,postmatchCode) ::= <<
<matchSet(...)>
<listLabel(...)>
>>
/** Match a string literal */
lexerStringRef(string,label) ::= <<
<if(label)>
int _<label>Start = [self charIndex];
[self matchString:<string>];
<checkRuleBacktrackFailure()>
_<label> = [[ANTLRCommonToken alloc] initWithInput:input tokenType:ANTLRTokenTypeInvalid channel:ANTLRTokenChannelDefault start:_<label>Start stop:[self charIndex]];
<else>
[self matchString:<string>];
<checkRuleBacktrackFailure()><\n>
<endif>
>>
wildcard(label,elementIndex) ::= <<
<if(label)>
_<label> = (<labelType>)[input LT:1];<\n>
<endif>
[self matchAny:input];
<checkRuleBacktrackFailure()>
>>
wildcardAndListLabel(label,elementIndex) ::= <<
<wildcard(...)>
<listLabel(...)>
>>
/** Match . wildcard in lexer */
wildcardChar(label, elementIndex) ::= <<
<if(label)>
int _<label> = [input LA:1];<\n>
<endif>
[self matchAny];
<checkRuleBacktrackFailure()><\n>
>>
wildcardCharListLabel(label, elementIndex) ::= <<
<wildcardChar(...)>
<listLabel(...)>
>>
/** Match a rule reference by invoking it possibly with arguments
* and a return value or values.
*/
ruleRef(rule,label,elementIndex,args,scope) ::= <<
[[_state following] addObject:FOLLOW_<rule.name>_in_<ruleName><elementIndex>];
<if(label)>
_<label> = [self <rule.name><if(args)>:<args; separator=" :"><endif>];<\n>
<else>
[self <rule.name><if(args)>:<args; separator=" :"><endif>];<\n>
<endif>
[[_state following] removeLastObject];
<checkRuleBacktrackFailure()><\n>
>>
/** ids+=r */
ruleRefAndListLabel(rule,label,elementIndex,args,scope) ::= <<
<ruleRef(...)>
<listLabel(...)>
>>
/** A lexer rule reference */
lexerRuleRef(rule,label,args,elementIndex,scope) ::= <<
<if(label)>
int _<label>Start<elementIndex> = [self charIndex];
[self m<rule.name><if(args)>:<args; separator=" :"><endif>];
<checkRuleBacktrackFailure()><\n>
_<label> = [[ANTLRCommonToken alloc] initWithInput:input tokenType:ANTLRTokenTypeInvalid channel:ANTLRTokenChannelDefault start:_<label>Start<elementIndex> stop:[self charIndex]-1];
[_<label> setLine:[self line]];
<else>
[self m<rule.name><if(args)>:<args; separator=" :"><endif>];
<checkRuleBacktrackFailure()><\n>
<endif>
>>
/** i+=INT in lexer */
lexerRuleRefAndListLabel(rule,label,args,elementIndex,scope) ::= <<
<lexerRuleRef(...)>
<listLabel(elem=label,...)>
>>
/** EOF in the lexer */
lexerMatchEOF(label,elementIndex) ::= <<
<if(label)>
int _<label>Start<elementIndex> = [self charIndex];
[self matchChar:ANTLRCharStreamEOF];
<checkRuleBacktrackFailure()><\n>
<labelType> _<label> = [[ANTLRCommonToken alloc] initWithInput:input tokenType:ANTLRTokenTypeEOF channel:ANTLRTokenChannelDefault start:_<label>Start<elementIndex> stop:[self charIndex]-1];
[_<label> setLine:[self line]];
<else>
[self matchChar:ANTLRCharStreamEOF];
<checkRuleBacktrackFailure()><\n>
<endif>
>>
/** match ^(root children) in tree parser */
tree(root, actionsAfterRoot, children, nullableChildList,
enclosingTreeLevel, treeLevel) ::= <<
<root:element()>
<actionsAfterRoot:element()>
<if(nullableChildList)>
if ( [input LA:1] == ANTLRTokenTypeDOWN ) {
[self match:input tokenType:ANTLRTokenTypeDOWN follow:nil]; <checkRuleBacktrackFailure()>
<children:element()>
[self match:input tokenType:ANTLRTokenTypeUP follow:nil]; <checkRuleBacktrackFailure()>
}
<else>
[self match:input tokenType:ANTLRTokenTypeDOWN follow:nil]; <checkRuleBacktrackFailure()>
<children:element()>
[self match:input tokenType:ANTLRTokenTypeUP follow:nil]; <checkRuleBacktrackFailure()>
<endif>
>>
/** Every predicate is used as a validating predicate (even when it is
* also hoisted into a prediction expression).
*/
validateSemanticPredicate(pred,description) ::= <<
if ( !(<evalPredicate(...)>) ) {
<ruleBacktrackFailure()>
@throw [ANTLRFailedPredicateException exceptionWithRuleName:@"<ruleName>" predicate:@"<description>" stream:input];
}
>>
// F i x e d D F A (if-then-else)
dfaState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
{
int LA<decisionNumber>_<stateNumber> = [input LA:<k>];
<edges; separator="\nelse ">
else {
<if(eotPredictsAlt)>
alt<decisionNumber> = <eotPredictsAlt>;
<else>
<ruleBacktrackFailure()>
ANTLRNoViableAltException *nvae = [ANTLRNoViableAltException exceptionWithDecision:<decisionNumber> state:<stateNumber> stream:input];
<@noViableAltException()>
@throw nvae;<\n>
<endif>
}
}
>>
/** Same as a normal DFA state except that we don't examine lookahead
* for the bypass alternative. It delays error detection but this
* is faster, smaller, and more what people expect. For (X)? people
* expect "if ( LA(1)==X ) match(X);" and that's it.
*/
dfaOptionalBlockState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
{
int LA<decisionNumber>_<stateNumber> = [input LA:<k>];
<edges; separator="\nelse ">
}
>>
/** A DFA state that is actually the loopback decision of a closure
* loop. If end-of-token (EOT) predicts any of the targets then it
* should act like a default clause (i.e., no error can be generated).
* This is used only in the lexer so that for ('a')* on the end of a rule
* anything other than 'a' predicts exiting.
*/
dfaLoopbackState(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
{
int LA<decisionNumber>_<stateNumber> = [input LA:<k>];
<edges; separator="\nelse "><\n>
<if(eotPredictsAlt)>
else {
alt<decisionNumber> = <eotPredictsAlt>;
}<\n>
<endif>
}
>>
/** An accept state indicates a unique alternative has been predicted */
dfaAcceptState(alt) ::= "alt<decisionNumber> = <alt>;"
/** A simple edge with an expression. If the expression is satisfied,
* enter to the target state. To handle gated productions, we may
* have to evaluate some predicates for this edge.
*/
dfaEdge(labelExpr, targetState, predicates) ::= <<
if ( <labelExpr> <if(predicates)>&& <predicates><endif>) {
<targetState>
}
>>
// F i x e d D F A (switch case)
/** A DFA state where a SWITCH may be generated. The code generator
* decides if this is possible: CodeGenerator.canGenerateSwitch().
*/
dfaStateSwitch(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
switch ([input LA:<k>]) {
<edges; separator="\n">
default:
<if(eotPredictsAlt)>
alt<decisionNumber> = <eotPredictsAlt>;
<else> {
<ruleBacktrackFailure()>
ANTLRNoViableAltException *nvae = [ANTLRNoViableAltException exceptionWithDecision:<decisionNumber> state:<stateNumber> stream:input];
<@noViableAltException()>
@throw nvae;<\n>
}
<endif>
}
>>
dfaOptionalBlockStateSwitch(k,edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
switch ([input LA:<k>]) {
<edges; separator="\n">
}<\n>
>>
dfaLoopbackStateSwitch(k, edges,eotPredictsAlt,description,stateNumber,semPredState) ::= <<
switch ([input LA:<k>]) {
<edges; separator="\n">
<if(eotPredictsAlt)>
default:
alt<decisionNumber> = <eotPredictsAlt>
break;<\n>
<endif>
}<\n>
>>
dfaEdgeSwitch(labels, targetState) ::= <<
<labels:{case <it>:}; separator="\n">
<targetState>
break;
>>
// C y c l i c D F A
/** The code to initiate execution of a cyclic DFA; this is used
* in the rule to predict an alt just like the fixed DFA case.
* The <name> attribute is inherited via the parser, lexer, ...
*/
dfaDecision(decisionNumber,description) ::= <<
alt<decisionNumber> = [dfa<decisionNumber> predict];
>>
/** Used in headerFile */
cyclicDFAInterface(dfa) ::= <<
#pragma mark Cyclic DFA interface start <name>DFA<dfa.decisionNumber>
@interface <name>DFA<dfa.decisionNumber> : ANTLRDFA {} @end<\n>
#pragma mark Cyclic DFA interface end <name>DFA<dfa.decisionNumber>
>>
/** Used in lexer/parser implementation files */
cyclicDFA(dfa) ::= <<
#pragma mark Cyclic DFA implementation start <name>DFA<dfa.decisionNumber>
@implementation <name>DFA<dfa.decisionNumber>
const static int <name>dfa<dfa.decisionNumber>_eot[<dfa.numberOfStates>] =
{<dfa.eot; wrap="\n ", separator=",", null="-1">};
const static int <name>dfa<dfa.decisionNumber>_eof[<dfa.numberOfStates>] =
{<dfa.eof; wrap="\n ", separator=",", null="-1">};
const static unichar <name>dfa<dfa.decisionNumber>_min[<dfa.numberOfStates>] =
{<dfa.min; wrap="\n ", separator=",", null="0">};
const static unichar <name>dfa<dfa.decisionNumber>_max[<dfa.numberOfStates>] =
{<dfa.max; wrap="\n ", separator=",", null="0">};
const static int <name>dfa<dfa.decisionNumber>_accept[<dfa.numberOfStates>] =
{<dfa.accept; wrap="\n ", separator=",", null="-1">};
const static int <name>dfa<dfa.decisionNumber>_special[<dfa.numberOfStates>] =
{<dfa.special; wrap="\n ", separator=",", null="-1">};
const static int <name>dfa<dfa.decisionNumber>_transition[] = {};
<dfa.edgeTransitionClassMap.keys:{ table |
const static int <name>dfa<dfa.decisionNumber>_transition<i0>[] = {<table; separator=", ", wrap="\n ", null="-1">};
}; null="">
- (id) initWithRecognizer:(ANTLRBaseRecognizer *) theRecognizer
{
if ((self = [super initWithRecognizer:theRecognizer]) != nil) {
eot = <name>dfa<dfa.decisionNumber>_eot;
eof = <name>dfa<dfa.decisionNumber>_eof;
min = <name>dfa<dfa.decisionNumber>_min;
max = <name>dfa<dfa.decisionNumber>_max;
accept = <name>dfa<dfa.decisionNumber>_accept;
special = <name>dfa<dfa.decisionNumber>_special;
if (!(transition = calloc(<dfa.numberOfStates>, sizeof(void*)))) {
[self release];
return nil;
}
<dfa.transitionEdgeTables:{whichTable|transition[<i0>] = <name>dfa<dfa.decisionNumber>_transition<whichTable>;}; separator="\n", null="">
}
return self;
}
<if(dfa.specialStateSTs)>
- (int) specialStateTransition:(int) s
{
int _s = s;
switch ( s ) {
<dfa.specialStateSTs:{state |
case <i0> : <! compressed special state numbers 0..n-1 !>
<state>}; separator="\n">
}
<if(backtracking)>
if ([recognizer isBacktracking]) {
[recognizer setIsFailed:YES];
return -1;
}<\n>
<endif>
ANTLRNoViableAltException *nvae = [ANTLRNoViableAltException exceptionWithDecision:<dfa.decisionNumber> state:_s stream:[recognizer input]];
<! [self error:nvae]; !> <! for debugger - do later !>
@throw nvae;
}<\n>
<endif>
- (void) dealloc
{
free(transition);
[super dealloc];
}
- (NSString *) description
{
return @"<dfa.description>";
}
<@errorMethod()>
@end
#pragma mark Cyclic DFA implementation end <name>DFA<dfa.decisionNumber>
<\n>
>>
cyclicDFAState(decisionNumber, stateNumber,edges,needErrorClause,semPredState) ::= <<
<if(semPredState)>
[[recognizer input] rewind];<\n>
<else>
int LA<decisionNumber>_<stateNumber> = [input LA:1];<\n>
<endif>
s = -1;
<edges; separator="\nelse ">
if ( s>=0 ) return s;
break;
>>
/** Just like a fixed DFA edge, test the lookahead and indicate what
* state to jump to next if successful.
*/
cyclicDFAEdge(labelExpr, targetStateNumber, edgeNumber, predicates) ::= <<
if ( (<labelExpr>) <if(predicates)>&& (<predicates>)<endif>) {s = <targetStateNumber>;}<\n>
>>
/** An edge pointing at end-of-token; essentially matches any char;
* always jump to the target.
*/
eotDFAEdge(targetStateNumber,edgeNumber, predicates) ::= <<
s = <targetStateNumber>;<\n>
>>
// D F A E X P R E S S I O N S
andPredicates(left,right) ::= "(<left>&&<right>)"
orPredicates(operands) ::= "(first(operands)<rest(operands):{o | ||<o>}>)"
notPredicate(pred) ::= "!(<evalPredicate(...)>)"
evalPredicate(pred,description) ::= "<pred>"
/** synpreds are b0rken in cyclic DFA special states
* Damn! For now, work around with using the selectors directly, and by providing a trampoline evalSynPred method in
* ANTLRDFA
*/
/* evalSynPredicate(pred,description) ::= "[self evaluateSyntacticPredicate:<pred>SyntacticPredicate stream:input]" */
evalSynPredicate(pred,description) ::= "[self evaluateSyntacticPredicate:@selector(<pred>)]"
lookaheadTest(atom,k,atomAsInt) ::= "LA<decisionNumber>_<stateNumber>==<atom>"
/** Sometimes a lookahead test cannot assume that LA(k) is in a temp variable
* somewhere. Must ask for the lookahead directly.
*/
isolatedLookaheadTest(atom,k,atomAsInt) ::= "[input LA:<k>]==<atom>"
lookaheadRangeTest(lower,upper,k,rangeNumber,lowerAsInt,upperAsInt) ::= <<
(LA<decisionNumber>_<stateNumber>\>=<lower> && LA<decisionNumber>_<stateNumber>\<=<upper>)
>>
isolatedLookaheadRangeTest(lower,upper,k,rangeNumber,lowerAsInt,upperAsInt) ::= "([input LA:<k>]\>=<lower> && [input LA:<k>]\<=<upper>)"
setTest(ranges) ::= "<ranges; separator=\"||\">"
// A T T R I B U T E S
globalAttributeScopeDecl(scope) ::= <<
@interface <name><scope.name>Scope : NSObject {
<scope.attributes:{<it.decl>;}; separator="\n">
}
// use KVC to access attributes!
@end
>>
globalAttributeScopeIVar(scope) ::= <<
NSMutableArray *<name>_<scope.name>_stack;
>>
globalAttributeScopeImpl(scope) ::= <<
@implementation <name><scope.name>Scope
@end
>>
globalAttributeScopeInit(scope) ::= <<
<name>_<scope.name>_stack = [[NSMutableArray alloc] init];
>>
globalAttributeScopeDealloc(scope) ::= <<
[<name>_<scope.name>_stack release];
>>
ruleAttributeScopeDecl(scope) ::= <<
<if(scope.attributes)>
@interface <name><scope.name>Scope : NSObject {
<scope.attributes:{<it.decl>;}; separator="\n">
}
// use KVC to access attributes!
@end
<endif>
>>
ruleAttributeScopeIVar(scope) ::= <<
NSMutableArray *<name>_<scope.name>_stack;
>>
ruleAttributeScopeImpl(scope) ::= <<
<if(scope.attributes)>
@implementation <name><scope.name>Scope
@end
<endif>
>>
ruleAttributeScopeInit(scope) ::= <<
<name>_<scope.name>_stack = [[NSMutableArray alloc] init];
>>
ruleAttributeScopeDealloc(scope) ::= <<
[<name>_<scope.name>_stack release];
>>
returnTypeName() ::= <<
<if(!ruleDescriptor.isSynPred)>
<if(ruleDescriptor.hasMultipleReturnValues)>
<className()>_<ruleDescriptor.name>_return
<else>
<if(ruleDescriptor.hasSingleReturnValue)>
<ruleDescriptor.singleValueReturnType>
<else>
void
<endif>
<endif>
<else>
void<! for synpreds this is always void !>
<endif>
>>
returnType() ::= <<
<returnTypeName()><if(!ruleDescriptor.isSynPred)><if(ruleDescriptor.hasMultipleReturnValues)> *<endif><endif>
>>
/** Generate the Objective-C type associated with a single or multiple return
* values.
*/
ruleLabelType(referencedRule) ::= <<
<if(referencedRule.hasMultipleReturnValues)>
<className()>_<referencedRule.name>_return *
<else>
<if(referencedRule.hasSingleReturnValue)>
<referencedRule.singleValueReturnType>
<else>
void
<endif>
<endif>
>>
/** Using a type to init value map, try to init a type; if not in table
* must be an object, default value is "null".
*/
initValue(typeName) ::= <<
<objcTypeInitMap.(typeName)>
>>
/** Define a rule label including default value */
ruleLabelDef(label) ::= <<
<ruleLabelType(referencedRule=label.referencedRule)> _<label.label.text> = <initValue(typeName=ruleLabelType(referencedRule=label.referencedRule))>;<\n>
>>
/** Define a return struct for a rule if the code needs to access its
* start/stop tokens, tree stuff, attributes, ... Leave a hole for
* subgroups to stick in members.
*/
returnScopeInterface(scope) ::= <<
<if(!ruleDescriptor.isSynPred)>
<if(ruleDescriptor.hasMultipleReturnValues)>
@interface <returnTypeName()> : ANTLR<if(TREE_PARSER)>Tree<endif>ParserRuleReturnScope {
<scope.attributes:{<it.decl>;}; separator="\n">
<@ivars()>
<actions.(actionScope).ruleReturnIvars>
}
<@methods()>
<actions.(actionScope).ruleReturnMethodsDecl>
@end
<endif>
<endif>
>>
returnScope(scope) ::= <<
<if(!ruleDescriptor.isSynPred)>
<if(ruleDescriptor.hasMultipleReturnValues)>
@implementation <returnTypeName()>
<@methods()>
<actions.(actionScope).ruleReturnMethods>
@end
<endif>
<endif>
>>
parameterScope(scope) ::= <<
<scope.attributes:{:(<it.type>)<it.name>}; separator=" ">
>>
parameterAttributeRef(attr) ::= "<attr.name>"
parameterSetAttributeRef(attr,expr) ::= "<attr.name> =<expr>;"
scopeAttributeRef(scope,attr,index,negIndex) ::= <<
[<scopeAttributeRefStack()> valueForKey:@"<attr.name>"]
>>
scopeSetAttributeRef(scope,attr,expr,index,negIndex) ::= <<
[<scopeAttributeRefStack()> setValue:<expr> forKey:@"<attr.name>"];
>>
scopeAttributeRefStack() ::= <<
<if(negIndex)>
[<name>_<scope>_stack objectAtIndex:[<name>_<scope>_stack count]-<negIndex>-1]
<else>
<if(index)>
[<name>_<scope>_stack objectAtIndex:<index>]
<else>
[<name>_<scope>_stack lastObject]
<endif>
<endif>
>>
/** $x is either global scope or x is rule with dynamic scope; refers
* to stack itself not top of stack. This is useful for predicates
* like {$function.size()>0 && $function::name.equals("foo")}?
*/
isolatedDynamicScopeRef(scope) ::= "<name>_<scope>_stack"
/** reference an attribute of rule; might only have single return value */
ruleLabelRef(referencedRule,scope,attr) ::= <<
<if(referencedRule.hasMultipleReturnValues)>
[<scope> valueForKey:@"<attr.name>"]
<else>
_<scope>
<endif>
>>
returnAttributeRef(ruleDescriptor,attr) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
[_retval setValue: forKey:@"<attr.name>"];
<else>
_<attr.name>
<endif>
>>
returnSetAttributeRef(ruleDescriptor,attr,expr) ::= <<
<if(ruleDescriptor.hasMultipleReturnValues)>
[_retval setValue:<expr> forKey:@"<attr.name>"];
<else>
_<attr.name> =<expr>;
<if(LEXER)>
// double check this after beta release!
[_<attr.name> retain];
<endif>
<endif>
>>
/** How to translate $tokenLabel */
tokenLabelRef(label) ::= "_<label>"
/** ids+=ID {$ids} or e+=expr {$e} */
listLabelRef(label) ::= "_list_<label>"
// not sure the next are the right approach; and they are evaluated early;
// they cannot see TREE_PARSER or PARSER attributes for example. :(
tokenLabelPropertyRef_text(scope,attr) ::= "[_<scope> text]"
tokenLabelPropertyRef_type(scope,attr) ::= "[_<scope> type]"
tokenLabelPropertyRef_line(scope,attr) ::= "[_<scope> line]"
tokenLabelPropertyRef_pos(scope,attr) ::= "[_<scope> charPositionInLine]"
tokenLabelPropertyRef_channel(scope,attr) ::= "[_<scope> channel]"
tokenLabelPropertyRef_index(scope,attr) ::= "[_<scope> tokenIndex]"
tokenLabelPropertyRef_tree(scope,attr) ::= "_<scope>_tree"
ruleLabelPropertyRef_start(scope,attr) ::= "[_<scope> start]"
ruleLabelPropertyRef_stop(scope,attr) ::= "[_<scope> stop]"
ruleLabelPropertyRef_tree(scope,attr) ::= "[_<scope> tree]"
ruleLabelPropertyRef_text(scope,attr) ::= <<
<if(TREE_PARSER)>
//[input textForNode:[_<scope> start]]
[input substringWithRange:NSMakeRange([[input treeAdaptor] startIndex:[_<scope> start]], [[input treeAdaptor] stopIndex:[_<scope> start]])]
<else>
[input substringWithRange:NSMakeRange([_<scope> start], [_<scope> stop]-[_<scope> start])]
<endif>
>>
ruleLabelPropertyRef_st(scope,attr) ::= "[_<scope> st]"
/** Isolated $RULE ref ok in lexer as it's a Token */
lexerRuleLabel(label) ::= "_<label>"
lexerRuleLabelPropertyRef_type(scope,attr) ::= "[_<scope> type]"
lexerRuleLabelPropertyRef_line(scope,attr) ::= "[_<scope> line]"
lexerRuleLabelPropertyRef_pos(scope,attr) ::= "[_<scope> charPositionInLine]"
lexerRuleLabelPropertyRef_channel(scope,attr) ::= "[_<scope> channel]"
lexerRuleLabelPropertyRef_index(scope,attr) ::= "[_<scope> tokenIndex]"
lexerRuleLabelPropertyRef_text(scope,attr) ::= "[_<scope> text]"
// Somebody may ref $template or $tree or $stop within a rule:
rulePropertyRef_start(scope,attr) ::= "[_retval start]"
rulePropertyRef_stop(scope,attr) ::= "[_retval stop]"
rulePropertyRef_tree(scope,attr) ::= "[_retval tree]"
rulePropertyRef_text(scope,attr) ::= "[input substringWithRange:NSMakeRange(_start, [input index]-_start)]"
rulePropertyRef_st(scope,attr) ::= "[_retval st]"
ruleSetPropertyRef_tree(scope,attr,expr) ::= "[_retval setValue:<expr> forKey:@\"tree\"]"
ruleSetPropertyRef_st(scope,attr,expr) ::= "<\n>#error StringTemplates are unsupported<\n>"
/* hideous: find a way to cut down on the number of templates to support read/write access */
/* TODO: also, which ones are valid to write to? ask Ter */
lexerRuleSetPropertyRef_text(scope,attr,expr) ::= "[_state setText:<expr>];"
lexerRuleSetPropertyRef_type(scope,attr,expr) ::= "_type"
lexerRuleSetPropertyRef_line(scope,attr,expr) ::= "[_state tokenStartLine]"
lexerRuleSetPropertyRef_pos(scope,attr,expr) ::= "[_state tokenCharPositionInLine]"
lexerRuleSetPropertyRef_index(scope,attr,expr) ::= "-1" // undefined token index in lexer
lexerRuleSetPropertyRef_channel(scope,attr,expr) ::= "[_state setChannel:<expr>];"
lexerRuleSetPropertyRef_start(scope,attr,expr) ::= "[_state tokenStartCharIndex]"
lexerRuleSetPropertyRef_stop(scope,attr,expr) ::= "([self charIndex]-1)"
lexerRulePropertyRef_text(scope,attr) ::= "[self text]"
lexerRulePropertyRef_type(scope,attr) ::= "_type"
lexerRulePropertyRef_line(scope,attr) ::= "[_state tokenStartLine]"
lexerRulePropertyRef_pos(scope,attr) ::= "[_state tokenCharPositionInLine]"
lexerRulePropertyRef_index(scope,attr) ::= "-1" // undefined token index in lexer
lexerRulePropertyRef_channel(scope,attr) ::= "[_state channel]"
lexerRulePropertyRef_start(scope,attr) ::= "[_state tokenStartCharIndex]"
lexerRulePropertyRef_stop(scope,attr) ::= "([self charIndex]-1)"
/** How to execute an action */
execAction(action) ::= <<
<if(backtracking)>
<if(actions.(actionScope).synpredgate)>
if ( <actions.(actionScope).synpredgate> ) {
<action>
}
<else>
if ( ![_state isBacktracking] ) {
<action>
}
<endif>
<else>
<action>
<endif>
>>
// M I S C (properties, etc...)
bitset(name, words64) ::= <<
const static unsigned long long <name>_data[] = {<words64:{<it>LL};separator=",">};
static ANTLRBitSet *<name>;
<! ANTLRBitSet *<name> = [[ANTLRBitSet alloc] initWithBits:<name>_data count:<length(words64)>];<\n> !>
>>
bitsetInit(name, words64) ::= <<
<name> = [[ANTLRBitSet alloc] initWithBits:<name>_data count:<length(words64)>];<\n>
>>
codeFileExtension() ::= ".m"
headerFileExtension() ::= ".h"
true() ::= "YES"
false() ::= "NO"