mirror of
https://github.com/marcin-szczepanski/jFuzzyLogic.git
synced 2025-01-07 05:10:28 +01:00
690 lines
23 KiB
Java
690 lines
23 KiB
Java
/*
|
|
[The "BSD licence"]
|
|
Copyright (c) 2005-2006 Terence Parr
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
3. The name of the author may not be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
package org.antlr.misc;
|
|
|
|
import org.antlr.analysis.Label;
|
|
import org.antlr.tool.Grammar;
|
|
|
|
import java.util.*;
|
|
|
|
/** A set of integers that relies on ranges being common to do
|
|
* "run-length-encoded" like compression (if you view an IntSet like
|
|
* a BitSet with runs of 0s and 1s). Only ranges are recorded so that
|
|
* a few ints up near value 1000 don't cause massive bitsets, just two
|
|
* integer intervals.
|
|
*
|
|
* element values may be negative. Useful for sets of EPSILON and EOF.
|
|
*
|
|
* 0..9 char range is index pair ['\u0030','\u0039'].
|
|
* Multiple ranges are encoded with multiple index pairs. Isolated
|
|
* elements are encoded with an index pair where both intervals are the same.
|
|
*
|
|
* The ranges are ordered and disjoint so that 2..6 appears before 101..103.
|
|
*/
|
|
public class IntervalSet implements IntSet {
|
|
public static final IntervalSet COMPLETE_SET = IntervalSet.of(0,Label.MAX_CHAR_VALUE);
|
|
|
|
/** The list of sorted, disjoint intervals. */
|
|
protected List<Interval> intervals;
|
|
|
|
/** Create a set with no elements */
|
|
public IntervalSet() {
|
|
intervals = new ArrayList<Interval>(2); // most sets are 1 or 2 elements
|
|
}
|
|
|
|
public IntervalSet(List<Interval> intervals) {
|
|
this.intervals = intervals;
|
|
}
|
|
|
|
/** Create a set with a single element, el. */
|
|
public static IntervalSet of(int a) {
|
|
IntervalSet s = new IntervalSet();
|
|
s.add(a);
|
|
return s;
|
|
}
|
|
|
|
/** Create a set with all ints within range [a..b] (inclusive) */
|
|
public static IntervalSet of(int a, int b) {
|
|
IntervalSet s = new IntervalSet();
|
|
s.add(a,b);
|
|
return s;
|
|
}
|
|
|
|
/** Add a single element to the set. An isolated element is stored
|
|
* as a range el..el.
|
|
*/
|
|
public void add(int el) {
|
|
add(el,el);
|
|
}
|
|
|
|
/** Add interval; i.e., add all integers from a to b to set.
|
|
* If b<a, do nothing.
|
|
* Keep list in sorted order (by left range value).
|
|
* If overlap, combine ranges. For example,
|
|
* If this is {1..5, 10..20}, adding 6..7 yields
|
|
* {1..5, 6..7, 10..20}. Adding 4..8 yields {1..8, 10..20}.
|
|
*/
|
|
public void add(int a, int b) {
|
|
add(Interval.create(a,b));
|
|
}
|
|
|
|
// copy on write so we can cache a..a intervals and sets of that
|
|
protected void add(Interval addition) {
|
|
//System.out.println("add "+addition+" to "+intervals.toString());
|
|
if ( addition.b<addition.a ) {
|
|
return;
|
|
}
|
|
// find position in list
|
|
// Use iterators as we modify list in place
|
|
for (ListIterator iter = intervals.listIterator(); iter.hasNext();) {
|
|
Interval r = (Interval) iter.next();
|
|
if ( addition.equals(r) ) {
|
|
return;
|
|
}
|
|
if ( addition.adjacent(r) || !addition.disjoint(r) ) {
|
|
// next to each other, make a single larger interval
|
|
Interval bigger = addition.union(r);
|
|
iter.set(bigger);
|
|
// make sure we didn't just create an interval that
|
|
// should be merged with next interval in list
|
|
if ( iter.hasNext() ) {
|
|
Interval next = (Interval) iter.next();
|
|
if ( bigger.adjacent(next)||!bigger.disjoint(next) ) {
|
|
// if we bump up against or overlap next, merge
|
|
iter.remove(); // remove this one
|
|
iter.previous(); // move backwards to what we just set
|
|
iter.set(bigger.union(next)); // set to 3 merged ones
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
if ( addition.startsBeforeDisjoint(r) ) {
|
|
// insert before r
|
|
iter.previous();
|
|
iter.add(addition);
|
|
return;
|
|
}
|
|
// if disjoint and after r, a future iteration will handle it
|
|
}
|
|
// ok, must be after last interval (and disjoint from last interval)
|
|
// just add it
|
|
intervals.add(addition);
|
|
}
|
|
|
|
/*
|
|
protected void add(Interval addition) {
|
|
//System.out.println("add "+addition+" to "+intervals.toString());
|
|
if ( addition.b<addition.a ) {
|
|
return;
|
|
}
|
|
// find position in list
|
|
//for (ListIterator iter = intervals.listIterator(); iter.hasNext();) {
|
|
int n = intervals.size();
|
|
for (int i=0; i<n; i++) {
|
|
Interval r = (Interval)intervals.get(i);
|
|
if ( addition.equals(r) ) {
|
|
return;
|
|
}
|
|
if ( addition.adjacent(r) || !addition.disjoint(r) ) {
|
|
// next to each other, make a single larger interval
|
|
Interval bigger = addition.union(r);
|
|
intervals.set(i, bigger);
|
|
// make sure we didn't just create an interval that
|
|
// should be merged with next interval in list
|
|
if ( (i+1)<n ) {
|
|
i++;
|
|
Interval next = (Interval)intervals.get(i);
|
|
if ( bigger.adjacent(next)||!bigger.disjoint(next) ) {
|
|
// if we bump up against or overlap next, merge
|
|
intervals.remove(i); // remove next one
|
|
i--;
|
|
intervals.set(i, bigger.union(next)); // set to 3 merged ones
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
if ( addition.startsBeforeDisjoint(r) ) {
|
|
// insert before r
|
|
intervals.add(i, addition);
|
|
return;
|
|
}
|
|
// if disjoint and after r, a future iteration will handle it
|
|
}
|
|
// ok, must be after last interval (and disjoint from last interval)
|
|
// just add it
|
|
intervals.add(addition);
|
|
}
|
|
*/
|
|
|
|
public void addAll(IntSet set) {
|
|
if ( set==null ) {
|
|
return;
|
|
}
|
|
if ( !(set instanceof IntervalSet) ) {
|
|
throw new IllegalArgumentException("can't add non IntSet ("+
|
|
set.getClass().getName()+
|
|
") to IntervalSet");
|
|
}
|
|
IntervalSet other = (IntervalSet)set;
|
|
// walk set and add each interval
|
|
int n = other.intervals.size();
|
|
for (int i = 0; i < n; i++) {
|
|
Interval I = (Interval) other.intervals.get(i);
|
|
this.add(I.a,I.b);
|
|
}
|
|
}
|
|
|
|
public IntSet complement(int minElement, int maxElement) {
|
|
return this.complement(IntervalSet.of(minElement,maxElement));
|
|
}
|
|
|
|
/** Given the set of possible values (rather than, say UNICODE or MAXINT),
|
|
* return a new set containing all elements in vocabulary, but not in
|
|
* this. The computation is (vocabulary - this).
|
|
*
|
|
* 'this' is assumed to be either a subset or equal to vocabulary.
|
|
*/
|
|
public IntSet complement(IntSet vocabulary) {
|
|
if ( vocabulary==null ) {
|
|
return null; // nothing in common with null set
|
|
}
|
|
if ( !(vocabulary instanceof IntervalSet ) ) {
|
|
throw new IllegalArgumentException("can't complement with non IntervalSet ("+
|
|
vocabulary.getClass().getName()+")");
|
|
}
|
|
IntervalSet vocabularyIS = ((IntervalSet)vocabulary);
|
|
int maxElement = vocabularyIS.getMaxElement();
|
|
|
|
IntervalSet compl = new IntervalSet();
|
|
int n = intervals.size();
|
|
if ( n ==0 ) {
|
|
return compl;
|
|
}
|
|
Interval first = (Interval)intervals.get(0);
|
|
// add a range from 0 to first.a constrained to vocab
|
|
if ( first.a > 0 ) {
|
|
IntervalSet s = IntervalSet.of(0, first.a-1);
|
|
IntervalSet a = (IntervalSet)s.and(vocabularyIS);
|
|
compl.addAll(a);
|
|
}
|
|
for (int i=1; i<n; i++) { // from 2nd interval .. nth
|
|
Interval previous = (Interval)intervals.get(i-1);
|
|
Interval current = (Interval)intervals.get(i);
|
|
IntervalSet s = IntervalSet.of(previous.b+1, current.a-1);
|
|
IntervalSet a = (IntervalSet)s.and(vocabularyIS);
|
|
compl.addAll(a);
|
|
}
|
|
Interval last = (Interval)intervals.get(n -1);
|
|
// add a range from last.b to maxElement constrained to vocab
|
|
if ( last.b < maxElement ) {
|
|
IntervalSet s = IntervalSet.of(last.b+1, maxElement);
|
|
IntervalSet a = (IntervalSet)s.and(vocabularyIS);
|
|
compl.addAll(a);
|
|
}
|
|
return compl;
|
|
}
|
|
|
|
/** Compute this-other via this&~other.
|
|
* Return a new set containing all elements in this but not in other.
|
|
* other is assumed to be a subset of this;
|
|
* anything that is in other but not in this will be ignored.
|
|
*/
|
|
public IntSet subtract(IntSet other) {
|
|
// assume the whole unicode range here for the complement
|
|
// because it doesn't matter. Anything beyond the max of this' set
|
|
// will be ignored since we are doing this & ~other. The intersection
|
|
// will be empty. The only problem would be when this' set max value
|
|
// goes beyond MAX_CHAR_VALUE, but hopefully the constant MAX_CHAR_VALUE
|
|
// will prevent this.
|
|
return this.and(((IntervalSet)other).complement(COMPLETE_SET));
|
|
}
|
|
|
|
/** return a new set containing all elements in this but not in other.
|
|
* Intervals may have to be broken up when ranges in this overlap
|
|
* with ranges in other. other is assumed to be a subset of this;
|
|
* anything that is in other but not in this will be ignored.
|
|
*
|
|
* Keep around, but 10-20-2005, I decided to make complement work w/o
|
|
* subtract and so then subtract can simply be a&~b
|
|
*
|
|
public IntSet subtract(IntSet other) {
|
|
if ( other==null || !(other instanceof IntervalSet) ) {
|
|
return null; // nothing in common with null set
|
|
}
|
|
|
|
IntervalSet diff = new IntervalSet();
|
|
|
|
// iterate down both interval lists
|
|
ListIterator thisIter = this.intervals.listIterator();
|
|
ListIterator otherIter = ((IntervalSet)other).intervals.listIterator();
|
|
Interval mine=null;
|
|
Interval theirs=null;
|
|
if ( thisIter.hasNext() ) {
|
|
mine = (Interval)thisIter.next();
|
|
}
|
|
if ( otherIter.hasNext() ) {
|
|
theirs = (Interval)otherIter.next();
|
|
}
|
|
while ( mine!=null ) {
|
|
//System.out.println("mine="+mine+", theirs="+theirs);
|
|
// CASE 1: nothing in theirs removes a chunk from mine
|
|
if ( theirs==null || mine.disjoint(theirs) ) {
|
|
// SUBCASE 1a: finished traversing theirs; keep adding mine now
|
|
if ( theirs==null ) {
|
|
// add everything in mine to difference since theirs done
|
|
diff.add(mine);
|
|
mine = null;
|
|
if ( thisIter.hasNext() ) {
|
|
mine = (Interval)thisIter.next();
|
|
}
|
|
}
|
|
else {
|
|
// SUBCASE 1b: mine is completely to the left of theirs
|
|
// so we can add to difference; move mine, but not theirs
|
|
if ( mine.startsBeforeDisjoint(theirs) ) {
|
|
diff.add(mine);
|
|
mine = null;
|
|
if ( thisIter.hasNext() ) {
|
|
mine = (Interval)thisIter.next();
|
|
}
|
|
}
|
|
// SUBCASE 1c: theirs is completely to the left of mine
|
|
else {
|
|
// keep looking in theirs
|
|
theirs = null;
|
|
if ( otherIter.hasNext() ) {
|
|
theirs = (Interval)otherIter.next();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// CASE 2: theirs breaks mine into two chunks
|
|
if ( mine.properlyContains(theirs) ) {
|
|
// must add two intervals: stuff to left and stuff to right
|
|
diff.add(mine.a, theirs.a-1);
|
|
// don't actually add stuff to right yet as next 'theirs'
|
|
// might overlap with it
|
|
// The stuff to the right might overlap with next "theirs".
|
|
// so it is considered next
|
|
Interval right = new Interval(theirs.b+1, mine.b);
|
|
mine = right;
|
|
// move theirs forward
|
|
theirs = null;
|
|
if ( otherIter.hasNext() ) {
|
|
theirs = (Interval)otherIter.next();
|
|
}
|
|
}
|
|
|
|
// CASE 3: theirs covers mine; nothing to add to diff
|
|
else if ( theirs.properlyContains(mine) ) {
|
|
// nothing to add, theirs forces removal totally of mine
|
|
// just move mine looking for an overlapping interval
|
|
mine = null;
|
|
if ( thisIter.hasNext() ) {
|
|
mine = (Interval)thisIter.next();
|
|
}
|
|
}
|
|
|
|
// CASE 4: non proper overlap
|
|
else {
|
|
// overlap, but not properly contained
|
|
diff.add(mine.differenceNotProperlyContained(theirs));
|
|
// update iterators
|
|
boolean moveTheirs = true;
|
|
if ( mine.startsBeforeNonDisjoint(theirs) ||
|
|
theirs.b > mine.b )
|
|
{
|
|
// uh oh, right of theirs extends past right of mine
|
|
// therefore could overlap with next of mine so don't
|
|
// move theirs iterator yet
|
|
moveTheirs = false;
|
|
}
|
|
// always move mine
|
|
mine = null;
|
|
if ( thisIter.hasNext() ) {
|
|
mine = (Interval)thisIter.next();
|
|
}
|
|
if ( moveTheirs ) {
|
|
theirs = null;
|
|
if ( otherIter.hasNext() ) {
|
|
theirs = (Interval)otherIter.next();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return diff;
|
|
}
|
|
*/
|
|
|
|
/** TODO: implement this! */
|
|
public IntSet or(IntSet a) {
|
|
IntervalSet o = new IntervalSet();
|
|
o.addAll(this);
|
|
o.addAll(a);
|
|
//throw new NoSuchMethodError();
|
|
return o;
|
|
}
|
|
|
|
/** Return a new set with the intersection of this set with other. Because
|
|
* the intervals are sorted, we can use an iterator for each list and
|
|
* just walk them together. This is roughly O(min(n,m)) for interval
|
|
* list lengths n and m.
|
|
*/
|
|
public IntSet and(IntSet other) {
|
|
if ( other==null ) { //|| !(other instanceof IntervalSet) ) {
|
|
return null; // nothing in common with null set
|
|
}
|
|
|
|
ArrayList myIntervals = (ArrayList)this.intervals;
|
|
ArrayList theirIntervals = (ArrayList)((IntervalSet)other).intervals;
|
|
IntervalSet intersection = null;
|
|
int mySize = myIntervals.size();
|
|
int theirSize = theirIntervals.size();
|
|
int i = 0;
|
|
int j = 0;
|
|
// iterate down both interval lists looking for nondisjoint intervals
|
|
while ( i<mySize && j<theirSize ) {
|
|
Interval mine = (Interval)myIntervals.get(i);
|
|
Interval theirs = (Interval)theirIntervals.get(j);
|
|
//System.out.println("mine="+mine+" and theirs="+theirs);
|
|
if ( mine.startsBeforeDisjoint(theirs) ) {
|
|
// move this iterator looking for interval that might overlap
|
|
i++;
|
|
}
|
|
else if ( theirs.startsBeforeDisjoint(mine) ) {
|
|
// move other iterator looking for interval that might overlap
|
|
j++;
|
|
}
|
|
else if ( mine.properlyContains(theirs) ) {
|
|
// overlap, add intersection, get next theirs
|
|
if ( intersection==null ) {
|
|
intersection = new IntervalSet();
|
|
}
|
|
intersection.add(mine.intersection(theirs));
|
|
j++;
|
|
}
|
|
else if ( theirs.properlyContains(mine) ) {
|
|
// overlap, add intersection, get next mine
|
|
if ( intersection==null ) {
|
|
intersection = new IntervalSet();
|
|
}
|
|
intersection.add(mine.intersection(theirs));
|
|
i++;
|
|
}
|
|
else if ( !mine.disjoint(theirs) ) {
|
|
// overlap, add intersection
|
|
if ( intersection==null ) {
|
|
intersection = new IntervalSet();
|
|
}
|
|
intersection.add(mine.intersection(theirs));
|
|
// Move the iterator of lower range [a..b], but not
|
|
// the upper range as it may contain elements that will collide
|
|
// with the next iterator. So, if mine=[0..115] and
|
|
// theirs=[115..200], then intersection is 115 and move mine
|
|
// but not theirs as theirs may collide with the next range
|
|
// in thisIter.
|
|
// move both iterators to next ranges
|
|
if ( mine.startsAfterNonDisjoint(theirs) ) {
|
|
j++;
|
|
}
|
|
else if ( theirs.startsAfterNonDisjoint(mine) ) {
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
if ( intersection==null ) {
|
|
return new IntervalSet();
|
|
}
|
|
return intersection;
|
|
}
|
|
|
|
/** Is el in any range of this set? */
|
|
public boolean member(int el) {
|
|
int n = intervals.size();
|
|
for (int i = 0; i < n; i++) {
|
|
Interval I = (Interval) intervals.get(i);
|
|
int a = I.a;
|
|
int b = I.b;
|
|
if ( el<a ) {
|
|
break; // list is sorted and el is before this interval; not here
|
|
}
|
|
if ( el>=a && el<=b ) {
|
|
return true; // found in this interval
|
|
}
|
|
}
|
|
return false;
|
|
/*
|
|
for (ListIterator iter = intervals.listIterator(); iter.hasNext();) {
|
|
Interval I = (Interval) iter.next();
|
|
if ( el<I.a ) {
|
|
break; // list is sorted and el is before this interval; not here
|
|
}
|
|
if ( el>=I.a && el<=I.b ) {
|
|
return true; // found in this interval
|
|
}
|
|
}
|
|
return false;
|
|
*/
|
|
}
|
|
|
|
/** return true if this set has no members */
|
|
public boolean isNil() {
|
|
return intervals==null || intervals.size()==0;
|
|
}
|
|
|
|
/** If this set is a single integer, return it otherwise Label.INVALID */
|
|
public int getSingleElement() {
|
|
if ( intervals!=null && intervals.size()==1 ) {
|
|
Interval I = (Interval)intervals.get(0);
|
|
if ( I.a == I.b ) {
|
|
return I.a;
|
|
}
|
|
}
|
|
return Label.INVALID;
|
|
}
|
|
|
|
public int getMaxElement() {
|
|
if ( isNil() ) {
|
|
return Label.INVALID;
|
|
}
|
|
Interval last = (Interval)intervals.get(intervals.size()-1);
|
|
return last.b;
|
|
}
|
|
|
|
/** Return minimum element >= 0 */
|
|
public int getMinElement() {
|
|
if ( isNil() ) {
|
|
return Label.INVALID;
|
|
}
|
|
int n = intervals.size();
|
|
for (int i = 0; i < n; i++) {
|
|
Interval I = (Interval) intervals.get(i);
|
|
int a = I.a;
|
|
int b = I.b;
|
|
for (int v=a; v<=b; v++) {
|
|
if ( v>=0 ) return v;
|
|
}
|
|
}
|
|
return Label.INVALID;
|
|
}
|
|
|
|
/** Return a list of Interval objects. */
|
|
public List<Interval> getIntervals() {
|
|
return intervals;
|
|
}
|
|
|
|
/** Are two IntervalSets equal? Because all intervals are sorted
|
|
* and disjoint, equals is a simple linear walk over both lists
|
|
* to make sure they are the same. Interval.equals() is used
|
|
* by the List.equals() method to check the ranges.
|
|
*/
|
|
public boolean equals(Object obj) {
|
|
if ( obj==null || !(obj instanceof IntervalSet) ) {
|
|
return false;
|
|
}
|
|
IntervalSet other = (IntervalSet)obj;
|
|
return this.intervals.equals(other.intervals);
|
|
}
|
|
|
|
public String toString() {
|
|
return toString(null);
|
|
}
|
|
|
|
public String toString(Grammar g) {
|
|
StringBuffer buf = new StringBuffer();
|
|
if ( this.intervals==null || this.intervals.size()==0 ) {
|
|
return "{}";
|
|
}
|
|
if ( this.intervals.size()>1 ) {
|
|
buf.append("{");
|
|
}
|
|
Iterator iter = this.intervals.iterator();
|
|
while (iter.hasNext()) {
|
|
Interval I = (Interval) iter.next();
|
|
int a = I.a;
|
|
int b = I.b;
|
|
if ( a==b ) {
|
|
if ( g!=null ) {
|
|
buf.append(g.getTokenDisplayName(a));
|
|
}
|
|
else {
|
|
buf.append(a);
|
|
}
|
|
}
|
|
else {
|
|
if ( g!=null ) {
|
|
buf.append(g.getTokenDisplayName(a)+".."+g.getTokenDisplayName(b));
|
|
}
|
|
else {
|
|
buf.append(a+".."+b);
|
|
}
|
|
}
|
|
if ( iter.hasNext() ) {
|
|
buf.append(", ");
|
|
}
|
|
}
|
|
if ( this.intervals.size()>1 ) {
|
|
buf.append("}");
|
|
}
|
|
return buf.toString();
|
|
}
|
|
|
|
public int size() {
|
|
int n = 0;
|
|
int numIntervals = intervals.size();
|
|
if ( numIntervals==1 ) {
|
|
Interval firstInterval = this.intervals.get(0);
|
|
return firstInterval.b-firstInterval.a+1;
|
|
}
|
|
for (int i = 0; i < numIntervals; i++) {
|
|
Interval I = (Interval) intervals.get(i);
|
|
n += (I.b-I.a+1);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
public List toList() {
|
|
List values = new ArrayList();
|
|
int n = intervals.size();
|
|
for (int i = 0; i < n; i++) {
|
|
Interval I = (Interval) intervals.get(i);
|
|
int a = I.a;
|
|
int b = I.b;
|
|
for (int v=a; v<=b; v++) {
|
|
values.add(Utils.integer(v));
|
|
}
|
|
}
|
|
return values;
|
|
}
|
|
|
|
/** Get the ith element of ordered set. Used only by RandomPhrase so
|
|
* don't bother to implement if you're not doing that for a new
|
|
* ANTLR code gen target.
|
|
*/
|
|
public int get(int i) {
|
|
int n = intervals.size();
|
|
int index = 0;
|
|
for (int j = 0; j < n; j++) {
|
|
Interval I = (Interval) intervals.get(j);
|
|
int a = I.a;
|
|
int b = I.b;
|
|
for (int v=a; v<=b; v++) {
|
|
if ( index==i ) {
|
|
return v;
|
|
}
|
|
index++;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
public int[] toArray() {
|
|
int[] values = new int[size()];
|
|
int n = intervals.size();
|
|
int j = 0;
|
|
for (int i = 0; i < n; i++) {
|
|
Interval I = (Interval) intervals.get(i);
|
|
int a = I.a;
|
|
int b = I.b;
|
|
for (int v=a; v<=b; v++) {
|
|
values[j] = v;
|
|
j++;
|
|
}
|
|
}
|
|
return values;
|
|
}
|
|
|
|
public org.antlr.runtime.BitSet toRuntimeBitSet() {
|
|
org.antlr.runtime.BitSet s =
|
|
new org.antlr.runtime.BitSet(getMaxElement()+1);
|
|
int n = intervals.size();
|
|
for (int i = 0; i < n; i++) {
|
|
Interval I = (Interval) intervals.get(i);
|
|
int a = I.a;
|
|
int b = I.b;
|
|
for (int v=a; v<=b; v++) {
|
|
s.add(v);
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
public void remove(int el) {
|
|
throw new NoSuchMethodError("IntervalSet.remove() unimplemented");
|
|
}
|
|
|
|
/*
|
|
protected void finalize() throws Throwable {
|
|
super.finalize();
|
|
System.out.println("size "+intervals.size()+" "+size());
|
|
}
|
|
*/
|
|
}
|