diff --git a/train.py b/train.py index 80b535a..2cd66be 100755 --- a/train.py +++ b/train.py @@ -21,7 +21,7 @@ logging.basicConfig(level=logging.WARN) logger = logging.getLogger(__name__) mlflow.set_tracking_uri("http://172.17.0.1:5000") -mlflow.set_experiment("s123456") +mlflow.set_experiment("s123456-new") def eval_metrics(actual, pred): rmse = np.sqrt(mean_squared_error(actual, pred)) @@ -94,6 +94,6 @@ if __name__ == "__main__": # There are other ways to use the Model Registry, which depends on the use case, # please refer to the doc for more information: # https://mlflow.org/docs/latest/model-registry.html#api-workflow - mlflow.sklearn.log_model(lr, "wines-model", registered_model_name="ElasticnetWineModel", signature=signature) + mlflow.sklearn.log_model(lr, "wines-model", registered_model_name="ElasticnetWineModel_s123456", signature=signature) else: mlflow.sklearn.log_model(lr, "model", signature=signature)