forked from tzietkiewicz/ium-helloworld
MLflow in Docker on Jenkins
This commit is contained in:
parent
ff653f6233
commit
be0e247d2f
5
Dockerfile
Normal file
5
Dockerfile
Normal file
@ -0,0 +1,5 @@
|
||||
FROM ubuntu:20.04
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y python3 python3-pip
|
||||
RUN pip install mlflow
|
17
Jenkinsfile
vendored
Normal file
17
Jenkinsfile
vendored
Normal file
@ -0,0 +1,17 @@
|
||||
node {
|
||||
def img
|
||||
stage('Preparation') { // for display purposes
|
||||
img = docker.build('ium-helloworld')
|
||||
}
|
||||
stage('Train') {
|
||||
img.inside('-v /tmp/mlruns:/tmp/mlruns -v /mlruns:/mlruns ') {
|
||||
sh 'ls -l /tmp/mlruns'
|
||||
sh 'ls -l /mlruns'
|
||||
sh './train.py'
|
||||
sh 'ls -l /tmp/mlruns'
|
||||
sh 'ls -l /mlruns'
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
99
train.py
Normal file
99
train.py
Normal file
@ -0,0 +1,99 @@
|
||||
# The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality
|
||||
# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
|
||||
# Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
|
||||
|
||||
import os
|
||||
import warnings
|
||||
import sys
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.linear_model import ElasticNet
|
||||
from urllib.parse import urlparse
|
||||
import mlflow
|
||||
import mlflow.sklearn
|
||||
|
||||
import logging
|
||||
|
||||
logging.basicConfig(level=logging.WARN)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
mlflow.set_tracking_uri("http://localhost:5001")
|
||||
mlflow.set_experiment("s123456")
|
||||
|
||||
def eval_metrics(actual, pred):
|
||||
rmse = np.sqrt(mean_squared_error(actual, pred))
|
||||
mae = mean_absolute_error(actual, pred)
|
||||
r2 = r2_score(actual, pred)
|
||||
return rmse, mae, r2
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
warnings.filterwarnings("ignore")
|
||||
np.random.seed(40)
|
||||
|
||||
# Read the wine-quality csv file from the URL
|
||||
csv_url = (
|
||||
"http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
|
||||
)
|
||||
try:
|
||||
data = pd.read_csv(csv_url, sep=";")
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
"Unable to download training & test CSV, check your internet connection. Error: %s", e
|
||||
)
|
||||
|
||||
# Split the data into training and test sets. (0.75, 0.25) split.
|
||||
train, test = train_test_split(data)
|
||||
|
||||
# The predicted column is "quality" which is a scalar from [3, 9]
|
||||
train_x = train.drop(["quality"], axis=1)
|
||||
test_x = test.drop(["quality"], axis=1)
|
||||
train_y = train[["quality"]]
|
||||
test_y = test[["quality"]]
|
||||
|
||||
|
||||
alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5
|
||||
#alpha = 0.5
|
||||
l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5
|
||||
#l1_ratio = 0.5
|
||||
|
||||
with mlflow.start_run() as run:
|
||||
print("MLflow run experiment_id: {0}".format(run.info.experiment_id))
|
||||
print("MLflow run artifact_uri: {0}".format(run.info.artifact_uri))
|
||||
|
||||
lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
|
||||
lr.fit(train_x, train_y)
|
||||
|
||||
predicted_qualities = lr.predict(test_x)
|
||||
|
||||
(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
|
||||
|
||||
print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))
|
||||
print(" RMSE: %s" % rmse)
|
||||
print(" MAE: %s" % mae)
|
||||
print(" R2: %s" % r2)
|
||||
|
||||
mlflow.log_param("alpha", alpha)
|
||||
mlflow.log_param("l1_ratio", l1_ratio)
|
||||
mlflow.log_metric("rmse", rmse)
|
||||
mlflow.log_metric("r2", r2)
|
||||
mlflow.log_metric("mae", mae)
|
||||
|
||||
# Infer model signature to log it
|
||||
signature = mlflow.models.signature.infer_signature(train_x, lr.predict(train_x))
|
||||
|
||||
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
|
||||
|
||||
# Model registry does not work with file store
|
||||
if tracking_url_type_store != "file":
|
||||
|
||||
# Register the model
|
||||
# There are other ways to use the Model Registry, which depends on the use case,
|
||||
# please refer to the doc for more information:
|
||||
# https://mlflow.org/docs/latest/model-registry.html#api-workflow
|
||||
mlflow.sklearn.log_model(lr, "wines-model", registered_model_name="ElasticnetWineModel", signature=signature)
|
||||
else:
|
||||
mlflow.sklearn.log_model(lr, "model", signature=signature)
|
Loading…
Reference in New Issue
Block a user