Przykład scikit-learn
This commit is contained in:
parent
bca919aefc
commit
983ce942b1
152
lab/scikit-learn.ipynb
Normal file
152
lab/scikit-learn.ipynb
Normal file
@ -0,0 +1,152 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "-"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### Uczenie maszynowe — laboratoria\n",
|
||||
"# Korzystanie z gotowych implementacji algorytmów na przykładzie pakietu *scikit-learn*"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"[Scikit-learn](https://scikit-learn.org) jest otwartoźródłową biblioteką programistyczną dla języka Python wspomagającą uczenie maszynowe. Zawiera implementacje wielu algorytmów uczenia maszynowego."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Poniżej przykład, jak stworzyć klasyfikator regresji liniowej wielu zmiennych z użyciem `scikit-learn`.\n",
|
||||
"\n",
|
||||
"Na podobnej zasadzie można korzystać z innych modeli dostępnych w bibliotece."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[[302322.47270869]\n",
|
||||
" [283694.74995925]\n",
|
||||
" [276290.72977935]\n",
|
||||
" [477362.89530745]\n",
|
||||
" [420862.62245119]\n",
|
||||
" [312510.3868097 ]\n",
|
||||
" [362445.20969959]\n",
|
||||
" [335753.83506582]\n",
|
||||
" [759239.88142398]\n",
|
||||
" [684376.72797254]]\n",
|
||||
"Błąd średniokwadratowy wynosi 29811493540.217434\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"from sklearn.linear_model import LinearRegression # Model regresji liniowej z biblioteki scikit-learn\n",
|
||||
"\n",
|
||||
"from sklearn.metrics import mean_squared_error\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"FEATURES = [\n",
|
||||
" 'Powierzchnia w m2',\n",
|
||||
" 'Liczba pokoi',\n",
|
||||
" 'Liczba pięter w budynku',\n",
|
||||
" 'Piętro',\n",
|
||||
" 'Rok budowy',\n",
|
||||
" 'ładne w opisie'\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def preprocess(data):\n",
|
||||
" \"\"\"Wstępne przetworzenie danych, np. zamiana wartości tekstowych na liczby\"\"\"\n",
|
||||
" data = data.replace({'parter': 0, 'poddasze': 0}, regex=True)\n",
|
||||
" data = data.applymap(np.nan_to_num) # Zamienia \"NaN\" na liczby\n",
|
||||
" return data\n",
|
||||
"\n",
|
||||
"# Nazwy plików\n",
|
||||
"dataset_filename = 'flats.tsv'\n",
|
||||
"\n",
|
||||
"# Wczytanie danych\n",
|
||||
"data = pd.read_csv(dataset_filename, header=0, sep='\\t')\n",
|
||||
"\n",
|
||||
"# Jeżeli chcemy, możemy stworzyć nową cechę (kolumnę) na podstawie istniejącej\n",
|
||||
"# Poniższa cecha mówi, czy kolumna \"opis\" zawiera słowo \"ładne\"\n",
|
||||
"data['ładne w opisie'] = data['opis'].apply(\n",
|
||||
" lambda x: True if 'ładne' in str(x) else False)\n",
|
||||
"\n",
|
||||
"data = data[FEATURES + ['cena']] # wybór cech\n",
|
||||
"data = data[(data[\"Powierzchnia w m2\"] < 10000) & (data[\"cena\"] > 1000)] # Odrzucenie obserwacji odstających\n",
|
||||
"data = preprocess(data) # wstępne przetworzenie danych\n",
|
||||
"\n",
|
||||
"# Podział danych na zbiory uczący i testowy\n",
|
||||
"split_point = int(0.8 * len(data))\n",
|
||||
"data_train = data[:split_point]\n",
|
||||
"data_test = data[split_point:]\n",
|
||||
"\n",
|
||||
"# Uczenie modelu\n",
|
||||
"y_train = pd.DataFrame(data_train['cena'])\n",
|
||||
"x_train = pd.DataFrame(data_train[FEATURES])\n",
|
||||
"model = LinearRegression() # definicja modelu\n",
|
||||
"model.fit(x_train, y_train) # dopasowanie modelu\n",
|
||||
"\n",
|
||||
"# Predykcja wyników dla danych testowych\n",
|
||||
"y_expected = pd.DataFrame(data_test['cena'])\n",
|
||||
"x_test = pd.DataFrame(data_test[FEATURES])\n",
|
||||
"y_predicted = model.predict(x_test) # predykcja wyników na podstawie modelu\n",
|
||||
"\n",
|
||||
"print(y_predicted[:10]) # Pierwsze 10 wyników\n",
|
||||
"\n",
|
||||
"# Ewaluacja\n",
|
||||
"mse = mean_squared_error(y_predicted, y_expected) # Błąd średniokwadratowy na zbiorze testowym\n",
|
||||
"\n",
|
||||
"print(\"Błąd średniokwadratowy wynosi \", mse)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Biblioteka *scikit-learn* dostarcza również narzędzi do wstępnego przetwarzania danych, np. skalowania i normalizacji: https://scikit-learn.org/stable/modules/preprocessing.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.6"
|
||||
},
|
||||
"livereveal": {
|
||||
"start_slideshow_at": "selected",
|
||||
"theme": "amu"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
Loading…
Reference in New Issue
Block a user