From a367ed7abf6e320ea4a14122f6016c10a8339143 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Pawe=C5=82=20Sk=C3=B3rzewski?= Date: Thu, 11 Apr 2024 10:45:55 +0200 Subject: [PATCH] Uaktualnienie lab. 5 --- lab/05_Ewaluacja.ipynb | 39 ++++++++++++--------------------------- 1 file changed, 12 insertions(+), 27 deletions(-) diff --git a/lab/05_Ewaluacja.ipynb b/lab/05_Ewaluacja.ipynb index f2fc458..aa73f83 100644 --- a/lab/05_Ewaluacja.ipynb +++ b/lab/05_Ewaluacja.ipynb @@ -44,23 +44,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[[332187.32537534]\n", - " [369587.77676738]\n", - " [488428.70420785]\n", - " [300013.00301966]\n", - " [412118.79730411]\n", - " [283333.7605634 ]\n", - " [275209.84706017]\n", - " [361970.50784352]\n", - " [272402.36116539]\n", - " [328635.55642844]]\n" + "[279661.8663101 279261.14658016 522543.09697553 243798.45172733\n", + " 408919.21577439 272940.5507781 367515.38801642 592972.56867895\n", + " 418509.89826131 943578.7139463 ]\n" ] } ], @@ -84,7 +77,7 @@ "def preprocess(data):\n", " \"\"\"Wstępne przetworzenie danych\"\"\"\n", " data = data.replace({\"parter\": 0, \"poddasze\": 0}, regex=True)\n", - " data = data.applymap(np.nan_to_num) # Zamienia \"NaN\" na liczby\n", + " data = data.map(np.nan_to_num) # Zamienia \"NaN\" na liczby\n", " return data\n", "\n", "\n", @@ -101,7 +94,7 @@ "data_train, data_test = train_test_split(data, test_size=0.2)\n", "\n", "# Uczenie modelu\n", - "y_train = pd.DataFrame(data_train[\"cena\"])\n", + "y_train = pd.Series(data_train[\"cena\"])\n", "x_train = pd.DataFrame(data_train[FEATURES])\n", "model = LinearRegression() # definicja modelu\n", "model.fit(x_train, y_train) # dopasowanie modelu\n", @@ -154,14 +147,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Błąd średniokwadratowy wynosi 1179760250402.185\n" + "Błąd średniokwadratowy wynosi 137394744518.31197\n" ] } ], @@ -182,14 +175,14 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "-10.712011261173265\n" + "0.2160821272059249\n" ] } ], @@ -213,7 +206,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -225,14 +218,6 @@ "F-score: 1.0\n", "Model score: 1.0\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/pawel/.local/lib/python3.10/site-packages/sklearn/utils/validation.py:1111: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", - " y = column_or_1d(y, warn=True)\n" - ] } ], "source": [ @@ -254,7 +239,7 @@ "data_train, data_test = train_test_split(data_iris, test_size=0.2)\n", "\n", "# Uczenie modelu\n", - "y_train = pd.DataFrame(data_train[\"Iris setosa?\"])\n", + "y_train = pd.Series(data_train[\"Iris setosa?\"])\n", "x_train = pd.DataFrame(data_train[FEATURES])\n", "model = LogisticRegression() # definicja modelu\n", "model.fit(x_train, y_train) # dopasowanie modelu\n",