diff --git a/3_RNN.ipynb b/3_RNN.ipynb new file mode 100644 index 0000000..69187f1 --- /dev/null +++ b/3_RNN.ipynb @@ -0,0 +1,928 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Uczenie głębokie – przetwarzanie tekstu – laboratoria\n", + "# 3. RNN" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Podejście softmax z embeddingami na przykładzie NER" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Requirement already satisfied: torch in /home/pawel/.local/lib/python3.10/site-packages (2.3.0)\n", + "Collecting torchtext\n", + " Downloading torchtext-0.18.0-cp310-cp310-manylinux1_x86_64.whl (2.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m9.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: filelock in /home/pawel/.local/lib/python3.10/site-packages (from torch) (3.13.1)\n", + "Requirement already satisfied: fsspec in /home/pawel/.local/lib/python3.10/site-packages (from torch) (2024.2.0)\n", + "Requirement already satisfied: sympy in /home/pawel/.local/lib/python3.10/site-packages (from torch) (1.12)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (4.10.0)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (8.9.2.26)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: triton==2.3.0 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (2.3.0)\n", + "Requirement already satisfied: jinja2 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (3.1.3)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (2.20.5)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /home/pawel/.local/lib/python3.10/site-packages (from torch) (11.4.5.107)\n", + "Requirement already satisfied: networkx in /home/pawel/.local/lib/python3.10/site-packages (from torch) (3.3)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /home/pawel/.local/lib/python3.10/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch) (12.4.127)\n", + "Requirement already satisfied: requests in /home/pawel/.local/lib/python3.10/site-packages (from torchtext) (2.31.0)\n", + "Requirement already satisfied: numpy in /home/pawel/.local/lib/python3.10/site-packages (from torchtext) (1.26.4)\n", + "Requirement already satisfied: tqdm in /home/pawel/.local/lib/python3.10/site-packages (from torchtext) (4.66.2)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /home/pawel/.local/lib/python3.10/site-packages (from jinja2->torch) (2.1.5)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /home/pawel/.local/lib/python3.10/site-packages (from requests->torchtext) (2024.2.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /home/pawel/.local/lib/python3.10/site-packages (from requests->torchtext) (3.6)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /home/pawel/.local/lib/python3.10/site-packages (from requests->torchtext) (3.3.2)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/pawel/.local/lib/python3.10/site-packages (from requests->torchtext) (2.2.1)\n", + "Requirement already satisfied: mpmath>=0.19 in /home/pawel/.local/lib/python3.10/site-packages (from sympy->torch) (1.3.0)\n", + "Installing collected packages: torchtext\n", + "Successfully installed torchtext-0.18.0\n" + ] + } + ], + "source": [ + "!pip install torch torchtext" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import Counter\n", + "\n", + "import torch\n", + "from datasets import load_dataset\n", + "from torchtext.vocab import vocab\n", + "from tqdm.notebook import tqdm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Wczytujemy zbiór danych `conll2003` (https://huggingface.co/datasets/conll2003), który zawiera teksty oznaczone znacznikami części mowy (*POS tags*): " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "dataset = load_dataset(\"conll2003\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Poiżej funkcja, która tworzy słownik (https://pytorch.org/text/stable/vocab.html).\n", + "\n", + "Parametr `special` określa symbole specjalne:\n", + "* `` – nieznany token\n", + "* `` – wypełnienie\n", + "* `` – początek zdania\n", + "* `` – koniec zdania" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "def build_vocab(dataset):\n", + " counter = Counter()\n", + " for document in dataset:\n", + " counter.update(document)\n", + " return vocab(counter, specials=['', '', '', ''])" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "v = build_vocab(dataset['train']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "itos = v.get_itos() # mapowanie indeksów na tokeny" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "23627" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(itos) # liczba różnych tokenów w słowniku" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "21" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v['on'] # indeks tokenu `on`" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "v[\"\"] # indeks nieznanego tokenu" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "W przypadku, gdy w analizowanym tekście znajdzie się token, którego nie ma w słowniku, będzie reprezentowany przez indeks domyślny (*default index*). Ustawiamy, żeby był taki sam, jak indeks „nieznanego tokenu”:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "v.set_default_index(v[\"\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "def data_process(dt):\n", + " # Wektoryzacja dokumentów tekstowych.\n", + " return [ torch.tensor([v['']] +[v[token] for token in document ] + [v['']], dtype = torch.long) for document in dt]" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "def labels_process(dt):\n", + " # Wektoryzacja etykiet (POS)\n", + " return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Teraz wektoryzujemy wszystkie dane:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "train_tokens_ids = data_process(dataset['train']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "test_tokens_ids = data_process(dataset['test']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "validation_tokens_ids = data_process(dataset['validation']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "train_labels = labels_process(dataset['train']['ner_tags'])" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "validation_labels = labels_process(dataset['validation']['ner_tags'])" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "test_labels = labels_process(dataset['test']['ner_tags'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Przykład, jak wyglądają dane po zwektoryzowaniu:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3])" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_tokens_ids[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'id': '0',\n", + " 'tokens': ['EU',\n", + " 'rejects',\n", + " 'German',\n", + " 'call',\n", + " 'to',\n", + " 'boycott',\n", + " 'British',\n", + " 'lamb',\n", + " '.'],\n", + " 'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7],\n", + " 'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0],\n", + " 'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0]}" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset['train'][0]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([0, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0])" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_labels[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Funkcja, której użyjemy do ewaluacji:" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "def get_scores(y_true, y_pred):\n", + " # Funkcja zwraca precyzję, pokrycie i F1\n", + " acc_score = 0\n", + " tp = 0\n", + " fp = 0\n", + " selected_items = 0\n", + " relevant_items = 0 \n", + "\n", + " for p,t in zip(y_pred, y_true):\n", + " if p == t:\n", + " acc_score +=1\n", + "\n", + " if p > 0 and p == t:\n", + " tp +=1\n", + "\n", + " if p > 0:\n", + " selected_items += 1\n", + "\n", + " if t > 0 :\n", + " relevant_items +=1\n", + "\n", + " \n", + " \n", + " if selected_items == 0:\n", + " precision = 1.0\n", + " else:\n", + " precision = tp / selected_items\n", + " \n", + " \n", + " if relevant_items == 0:\n", + " recall = 1.0\n", + " else:\n", + " recall = tp / relevant_items\n", + " \n", + " \n", + " if precision + recall == 0.0 :\n", + " f1 = 0.0\n", + " else:\n", + " f1 = 2* precision * recall / (precision + recall)\n", + "\n", + " return precision, recall, f1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ile mamy różnych POS tagów?" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9\n" + ] + } + ], + "source": [ + "num_tags = max([max(x) for x in dataset['train']['ner_tags'] ]) + 1 \n", + "print(num_tags)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Implementacja rekurencyjnej sieci neuronowej LSTM:" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "class LSTM(torch.nn.Module):\n", + "\n", + " def __init__(self):\n", + " super(LSTM, self).__init__()\n", + " self.emb = torch.nn.Embedding(len(v.get_itos()),100)\n", + " self.rec = torch.nn.LSTM(100, 256, 1, batch_first = True)\n", + " self.fc1 = torch.nn.Linear( 256 , 9)\n", + "\n", + " def forward(self, x):\n", + " emb = torch.relu(self.emb(x))\n", + " \n", + " lstm_output, (h_n, c_n) = self.rec(emb)\n", + " \n", + " out_weights = self.fc1(lstm_output)\n", + "\n", + " return out_weights" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stworzenie modelu:" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "lstm = LSTM()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Definicja funkcji kosztu:" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "criterion = torch.nn.CrossEntropyLoss()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Definicja optymalizatora:" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "optimizer = torch.optim.Adam(lstm.parameters())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Funkcja do ewaluacji modelu:" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "def eval_model(dataset_tokens, dataset_labels, model):\n", + " Y_true = []\n", + " Y_pred = []\n", + " for i in tqdm(range(len(dataset_labels))):\n", + " batch_tokens = dataset_tokens[i].unsqueeze(0)\n", + " tags = list(dataset_labels[i].numpy())\n", + " Y_true += tags\n", + " \n", + " Y_batch_pred_weights = model(batch_tokens).squeeze(0)\n", + " Y_batch_pred = torch.argmax(Y_batch_pred_weights,1)\n", + " Y_pred += list(Y_batch_pred.numpy())\n", + " \n", + "\n", + " return get_scores(Y_true, Y_pred)\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Uczenie modelu:" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [], + "source": [ + "NUM_EPOCHS = 5" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7b88376fa1a6481b92da7e8308b581cb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/14041 [00:00