2021-03-02 08:32:40 +01:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
2021-04-14 08:03:54 +02:00
"## Uczenie maszynowe – zastosowania\n",
2021-03-02 08:32:40 +01:00
"# 10. Sieci neuronowe – propagacja wsteczna"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import numpy as np\n",
"import math"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 10.1. Metoda propagacji wstecznej – wprowadzenie"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
2021-05-19 18:52:18 +02:00
"<img src=\"nn1.png\" width=\"70%\"/>"
2021-03-02 08:32:40 +01:00
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Architektura sieci neuronowych\n",
"\n",
"* Budowa warstwowa, najczęściej sieci jednokierunkowe i gęste.\n",
"* Liczbę i rozmiar warstw dobiera się do każdego problemu.\n",
"* Rozmiary sieci określane poprzez liczbę neuronów lub parametrów."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### _Feedforward_\n",
"\n",
"Mając daną $n$-warstwową sieć neuronową oraz jej parametry $\\Theta^{(1)}, \\ldots, \\Theta^{(L)} $ oraz $\\beta^{(1)}, \\ldots, \\beta^{(L)} $, obliczamy:\n",
"\n",
"$$a^{(l)} = g^{(l)}\\left( a^{(l-1)} \\Theta^{(l)} + \\beta^{(l)} \\right). $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
2021-05-19 18:52:18 +02:00
"<img src=\"nn2.png\" width=\"70%\"/>"
2021-03-02 08:32:40 +01:00
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Funkcje $g^{(l)}$ to **funkcje aktywacji**.<br/>\n",
"Dla $i = 0$ przyjmujemy $a^{(0)} = x$ (wektor wierszowy cech) oraz $g^{(0)}(x) = x$ (identyczność)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Parametry $\\Theta$ to wagi na połączeniach miedzy neuronami dwóch warstw.<br/>\n",
"Rozmiar macierzy $\\Theta^{(l)}$, czyli macierzy wag na połączeniach warstw $a^{(l-1)}$ i $a^{(l)}$, to $\\dim(a^{(l-1)}) \\times \\dim(a^{(l)})$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Parametry $\\beta$ zastępują tutaj dodawanie kolumny z jedynkami do macierzy cech.<br/>Macierz $\\beta^{(l)}$ ma rozmiar równy liczbie neuronów w odpowiedniej warstwie, czyli $1 \\times \\dim(a^{(l)})$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* **Klasyfikacja**: dla ostatniej warstwy $L$ (o rozmiarze równym liczbie klas) przyjmuje się $g^{(L)}(x) = \\mathop{\\mathrm{softmax}}(x)$.\n",
"* **Regresja**: pojedynczy neuron wyjściowy; funkcją aktywacji może wtedy być np. funkcja identycznościowa."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Pozostałe funkcje aktywacji najcześciej mają postać sigmoidy, np. sigmoidalna, tangens hiperboliczny.<br/> Ale niekoniecznie, np. ReLU, leaky ReLU, maxout."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Jak uczyć sieci neuronowe?"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* W poznanych do tej pory algorytmach (regresja liniowa, regresja logistyczna) do uczenia używaliśmy funkcji kosztu, jej gradientu oraz algorytmu gradientu prostego (GD/SGD)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Dla sieci neuronowych potrzebowalibyśmy również znaleźć gradient funkcji kosztu."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Co sprowadza się do bardziej ogólnego problemu:<br/>jak obliczyć gradient $\\nabla f(x)$ dla danej funkcji $f$ i wektora wejściowego $x$?"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Pochodna funkcji\n",
"\n",
"* **Pochodna** mierzy, jak szybko zmienia się wartość funkcji względem zmiany jej argumentów:\n",
"\n",
"$$ \\frac{d f(x)}{d x} = \\lim_{h \\to 0} \\frac{ f(x + h) - f(x) }{ h } $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Pochodna cząstkowa i gradient\n",
"\n",
"* **Pochodna cząstkowa** mierzy, jak szybko zmienia się wartość funkcji względem zmiany jej *pojedynczego argumentu*."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* **Gradient** to wektor pochodnych cząstkowych:\n",
"\n",
"$$ \\nabla f = \\left( \\frac{\\partial f}{\\partial x_1}, \\ldots, \\frac{\\partial f}{\\partial x_n} \\right) $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Gradient – przykłady\n",
"\n",
"$$ f(x_1, x_2) = x_1 + x_2 \\qquad \\to \\qquad \\frac{\\partial f}{\\partial x_1} = 1, \\quad \\frac{\\partial f}{\\partial x_2} = 1, \\quad \\nabla f = (1, 1) $$ "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"$$ f(x_1, x_2) = x_1 \\cdot x_2 \\qquad \\to \\qquad \\frac{\\partial f}{\\partial x_1} = x_2, \\quad \\frac{\\partial f}{\\partial x_2} = x_1, \\quad \\nabla f = (x_2, x_1) $$ "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"$$ f(x_1, x_2) = \\max(x_1 + x_2) \\hskip{12em} \\\\\n",
"\\to \\qquad \\frac{\\partial f}{\\partial x_1} = \\mathbb{1}_{x \\geq y}, \\quad \\frac{\\partial f}{\\partial x_2} = \\mathbb{1}_{y \\geq x}, \\quad \\nabla f = (\\mathbb{1}_{x \\geq y}, \\mathbb{1}_{y \\geq x}) $$ "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Własności pochodnych cząstkowych\n",
"\n",
"Jezeli $f(x, y, z) = (x + y) \\, z$ oraz $x + y = q$, to:\n",
"$$f = q z,\n",
"\\quad \\frac{\\partial f}{\\partial q} = z,\n",
"\\quad \\frac{\\partial f}{\\partial z} = q,\n",
"\\quad \\frac{\\partial q}{\\partial x} = 1,\n",
"\\quad \\frac{\\partial q}{\\partial y} = 1 $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Reguła łańcuchowa\n",
"\n",
"$$ \\frac{\\partial f}{\\partial x} = \\frac{\\partial f}{\\partial q} \\, \\frac{\\partial q}{\\partial x},\n",
"\\quad \\frac{\\partial f}{\\partial y} = \\frac{\\partial f}{\\partial q} \\, \\frac{\\partial q}{\\partial y} $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Propagacja wsteczna – prosty przykład"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"# Dla ustalonego wejścia\n",
"x = -2; y = 5; z = -4"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(3, -12)\n"
]
}
],
"source": [
"# Krok w przód\n",
"q = x + y\n",
"f = q * z\n",
"print(q, f)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-4, -4, 3]\n"
]
}
],
"source": [
2021-05-19 18:52:18 +02:00
"# UWAGA: teraz za pomocą zmiennych `dfx`, `dfy`, `dfz` i `dfq`\n",
"# oznaczę pochodne cząstkowe ∂f/∂x, ∂f/∂y, ∂f/∂z i ∂f/∂q odpowiednio\n",
"\n",
2021-03-02 08:32:40 +01:00
"# Propagacja wsteczna dla f = q * z\n",
2021-05-19 18:52:18 +02:00
"dfz = q\n",
"dfq = z\n",
2021-03-02 08:32:40 +01:00
"# Propagacja wsteczna dla q = x + y\n",
2021-05-19 18:52:18 +02:00
"dfx = 1 * dfq # z reguły łańcuchowej\n",
"dfy = 1 * dfq # z reguły łańcuchowej\n",
"print([dfx, dfy, dfz])"
2021-03-02 08:32:40 +01:00
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"exp1.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Właśnie tak wygląda obliczanie pochodnych metodą propagacji wstecznej!"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Spróbujmy czegoś bardziej skomplikowanego:<br/>metodą propagacji wstecznej obliczmy pochodną funkcji sigmoidalnej."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Propagacja wsteczna – funkcja sigmoidalna"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Funkcja sigmoidalna:\n",
"\n",
"$$f(\\theta,x) = \\frac{1}{1+e^{-(\\theta_0 x_0 + \\theta_1 x_1 + \\theta_2)}}$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"$$\n",
"\\begin{array}{lcl}\n",
"f(x) = \\frac{1}{x} \\quad & \\rightarrow & \\quad \\frac{df}{dx} = -\\frac{1}{x^2} \\\\\n",
"f_c(x) = c + x \\quad & \\rightarrow & \\quad \\frac{df}{dx} = 1 \\\\\n",
"f(x) = e^x \\quad & \\rightarrow & \\quad \\frac{df}{dx} = e^x \\\\\n",
"f_a(x) = ax \\quad & \\rightarrow & \\quad \\frac{df}{dx} = a \\\\\n",
"\\end{array}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"exp2.png\" />"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.3932238664829637, -0.5898357997244456]\n",
"[-0.19661193324148185, -0.3932238664829637, 0.19661193324148185]\n"
]
}
],
"source": [
"# Losowe wagi i dane\n",
"w = [2,-3,-3]\n",
"x = [-1, -2]\n",
"\n",
"# Krok w przód\n",
"dot = w[0]*x[0] + w[1]*x[1] + w[2]\n",
"f = 1.0 / (1 + math.exp(-dot)) # funkcja sigmoidalna\n",
"\n",
"# Krok w tył\n",
"ddot = (1 - f) * f # pochodna funkcji sigmoidalnej\n",
"dx = [w[0] * ddot, w[1] * ddot]\n",
"dw = [x[0] * ddot, x[1] * ddot, 1.0 * ddot]\n",
"\n",
"print(dx)\n",
"print(dw)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Obliczanie gradientów – podsumowanie\n",
"\n",
"* Gradient $f$ dla $x$ mówi jak zmieni się całe wyrażenie przy zmianie wartości $x$.\n",
"* Gradienty łączymy korzystając z **reguły łańcuchowej**.\n",
"* W kroku wstecz gradienty informują, które części grafu powinny być zwiększone lub zmniejszone (i z jaką siłą), aby zwiększyć wartość na wyjściu.\n",
"* W kontekście implementacji chcemy dzielić funkcję $f$ na części, dla których można łatwo obliczyć gradienty."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 10.2. Uczenie wielowarstwowych sieci neuronowych metodą propagacji wstecznej"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Mając algorytm SGD oraz gradienty wszystkich wag, moglibyśmy trenować każdą sieć."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Niech:\n",
"$$\\Theta = (\\Theta^{(1)},\\Theta^{(2)},\\Theta^{(3)},\\beta^{(1)},\\beta^{(2)},\\beta^{(3)})$$\n",
"\n",
"* Funkcja sieci neuronowej z grafiki:\n",
"\n",
"$$\\small h_\\Theta(x) = \\tanh(\\tanh(\\tanh(x\\Theta^{(1)}+\\beta^{(1)})\\Theta^{(2)} + \\beta^{(2)})\\Theta^{(3)} + \\beta^{(3)})$$\n",
"* Funkcja kosztu dla regresji:\n",
"$$J(\\Theta) = \\dfrac{1}{2m} \\sum_{i=1}^{m} (h_\\Theta(x^{(i)})- y^{(i)})^2 $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Jak obliczymy gradienty?\n",
"\n",
"$$\\nabla_{\\Theta^{(l)}} J(\\Theta) = ? \\quad \\nabla_{\\beta^{(l)}} J(\\Theta) = ?$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### W kierunku propagacji wstecznej\n",
"\n",
"* Pewna (niewielka) zmiana wagi $\\Delta z^l_j$ dla $j$-ego neuronu w warstwie $l$ pociąga za sobą (niewielką) zmianę kosztu: \n",
"\n",
"$$\\frac{\\partial J(\\Theta)}{\\partial z^{l}_j} \\Delta z^{l}_j$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Jeżeli $\\frac{\\partial J(\\Theta)}{\\partial z^{l}_j}$ jest duża, $\\Delta z^l_j$ ze znakiem przeciwnym zredukuje koszt.\n",
"* Jeżeli $\\frac{\\partial J(\\Theta)}{\\partial z^l_j}$ jest bliska zeru, koszt nie będzie mocno poprawiony."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Definiujemy błąd $\\delta^l_j$ neuronu $j$ w warstwie $l$: \n",
"\n",
"$$\\delta^l_j := \\dfrac{\\partial J(\\Theta)}{\\partial z^l_j}$$ \n",
"$$\\delta^l := \\nabla_{z^l} J(\\Theta) \\quad \\textrm{ (zapis wektorowy)} $$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Podstawowe równania propagacji wstecznej\n",
"\n",
"$$\n",
"\\begin{array}{rcll}\n",
"\\delta^L & = & \\nabla_{a^L}J(\\Theta) \\odot { \\left( g^{L} \\right) }^{\\prime} \\left( z^L \\right) & (BP1) \\\\[2mm]\n",
"\\delta^{l} & = & \\left( \\left( \\Theta^{l+1} \\right) \\! ^\\top \\, \\delta^{l+1} \\right) \\odot {{ \\left( g^{l} \\right) }^{\\prime}} \\left( z^{l} \\right) & (BP2)\\\\[2mm]\n",
"\\nabla_{\\beta^l} J(\\Theta) & = & \\delta^l & (BP3)\\\\[2mm]\n",
"\\nabla_{\\Theta^l} J(\\Theta) & = & a^{l-1} \\odot \\delta^l & (BP4)\\\\\n",
"\\end{array}\n",
"$$\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"#### (BP1)\n",
"$$ \\delta^L_j \\; = \\; \\frac{ \\partial J }{ \\partial a^L_j } \\, g' \\!\\! \\left( z^L_j \\right) $$\n",
"$$ \\delta^L \\; = \\; \\nabla_{a^L}J(\\Theta) \\odot { \\left( g^{L} \\right) }^{\\prime} \\left( z^L \\right) $$\n",
"Błąd w ostatniej warstwie jest iloczynem szybkości zmiany kosztu względem $j$-tego wyjścia i szybkości zmiany funkcji aktywacji w punkcie $z^L_j$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"#### (BP2)\n",
"$$ \\delta^{l} \\; = \\; \\left( \\left( \\Theta^{l+1} \\right) \\! ^\\top \\, \\delta^{l+1} \\right) \\odot {{ \\left( g^{l} \\right) }^{\\prime}} \\left( z^{l} \\right) $$\n",
"Aby obliczyć błąd w $l$-tej warstwie, należy przemnożyć błąd z następnej ($(l+1)$-szej) warstwy przez transponowany wektor wag, a uzyskaną macierz pomnożyć po współrzędnych przez szybkość zmiany funkcji aktywacji w punkcie $z^l$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"#### (BP3)\n",
"$$ \\nabla_{\\beta^l} J(\\Theta) \\; = \\; \\delta^l $$\n",
"Błąd w $l$-tej warstwie jest równy wartości gradientu funkcji kosztu."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"#### (BP4)\n",
"$$ \\nabla_{\\Theta^l} J(\\Theta) \\; = \\; a^{l-1} \\odot \\delta^l $$\n",
"Gradient funkcji kosztu względem wag $l$-tej warstwy można obliczyć jako iloczyn po współrzędnych $a^{l-1}$ przez $\\delta^l$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Algorytm propagacji wstecznej"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Dla jednego przykładu $(x,y)$:\n",
"\n",
"1. **Wejście**: Ustaw aktywacje w warstwie cech $a^{(0)}=x$ \n",
"2. **Feedforward:** dla $l=1,\\dots,L$ oblicz \n",
"$$z^{(l)} = a^{(l-1)} \\Theta^{(l)} + \\beta^{(l)} \\textrm{ oraz } a^{(l)}=g^{(l)} \\!\\! \\left( z^{(l)} \\right) $$\n",
"3. **Błąd wyjścia $\\delta^{(L)}$:** oblicz wektor $$\\delta^{(L)}= \\nabla_{a^{(L)}}J(\\Theta) \\odot {g^{\\prime}}^{(L)} \\!\\! \\left( z^{(L)} \\right) $$\n",
"4. **Propagacja wsteczna błędu:** dla $l = L-1,L-2,\\dots,1$ oblicz $$\\delta^{(l)} = \\delta^{(l+1)}(\\Theta^{(l+1)})^T \\odot {g^{\\prime}}^{(l)} \\!\\! \\left( z^{(l)} \\right) $$\n",
"5. **Gradienty:** \n",
" * $\\dfrac{\\partial}{\\partial \\Theta_{ij}^{(l)}} J(\\Theta) = a_i^{(l-1)}\\delta_j^{(l)} \\textrm{ oraz } \\dfrac{\\partial}{\\partial \\beta_{j}^{(l)}} J(\\Theta) = \\delta_j^{(l)}$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"W naszym przykładzie:\n",
"\n",
"$$\\small J(\\Theta) = \\frac{1}{2} \\left( a^{(L)} - y \\right) ^2 $$\n",
"$$\\small \\dfrac{\\partial}{\\partial a^{(L)}} J(\\Theta) = a^{(L)} - y$$\n",
"\n",
"$$\\small \\tanh^{\\prime}(x) = 1 - \\tanh^2(x)$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"nn3.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Algorytm SGD z propagacją wsteczną\n",
"\n",
"Pojedyncza iteracja:\n",
"* Dla parametrów $\\Theta = (\\Theta^{(1)},\\ldots,\\Theta^{(L)})$ utwórz pomocnicze macierze zerowe $\\Delta = (\\Delta^{(1)},\\ldots,\\Delta^{(L)})$ o takich samych wymiarach (dla uproszczenia opuszczono wagi $\\beta$).\n",
"* Dla $m$ przykładów we wsadzie (_batch_), $i = 1,\\ldots,m$:\n",
" * Wykonaj algortym propagacji wstecznej dla przykładu $(x^{(i)}, y^{(i)})$ i przechowaj gradienty $\\nabla_{\\Theta}J^{(i)}(\\Theta)$ dla tego przykładu;\n",
" * $\\Delta := \\Delta + \\dfrac{1}{m}\\nabla_{\\Theta}J^{(i)}(\\Theta)$\n",
"* Wykonaj aktualizację wag: $\\Theta := \\Theta - \\alpha \\Delta$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Propagacja wsteczna – podsumowanie\n",
"\n",
"* Algorytm pierwszy raz wprowadzony w latach 70. XX w.\n",
"* W 1986 David Rumelhart, Geoffrey Hinton i Ronald Williams pokazali, że jest znacznie szybszy od wcześniejszych metod.\n",
"* Obecnie najpopularniejszy algorytm uczenia sieci neuronowych."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
2021-05-19 18:52:18 +02:00
"## 10.3. Przykłady implementacji wielowarstwowych sieci neuronowych"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"source": [
"### Uwaga!\n",
"\n",
"Poniższe przykłady wykorzystują interfejs [Keras](https://keras.io), który jest częścią biblioteki [TensorFlow](https://www.tensorflow.org).\n",
"\n",
"Aby uruchomić TensorFlow w środowisku Jupyter, należy wykonać następujące czynności:\n",
"\n",
"#### Przed pierwszym uruchomieniem (wystarczy wykonać tylko raz)\n",
"\n",
"Instalacja biblioteki TensorFlow w środowisku Anaconda:\n",
"\n",
"1. Uruchom *Anaconda Navigator*\n",
"1. Wybierz kafelek *CMD.exe Prompt*\n",
"1. Kliknij przycisk *Launch*\n",
"1. Pojawi się konsola. Wpisz następujące polecenia, każde zatwierdzając wciśnięciem klawisza Enter:\n",
"```\n",
"conda create -n tf tensorflow\n",
"conda activate tf\n",
"conda install pandas matplotlib\n",
"jupyter notebook\n",
"```\n",
"\n",
"#### Przed każdym uruchomieniem\n",
"\n",
"Jeżeli chcemy korzystać z biblioteki TensorFlow, to środowisko Jupyter Notebook należy uruchomić w następujący sposób:\n",
"\n",
"1. Uruchom *Anaconda Navigator*\n",
"1. Wybierz kafelek *CMD.exe Prompt*\n",
"1. Kliknij przycisk *Launch*\n",
"1. Pojawi się konsola. Wpisz następujące polecenia, każde zatwierdzając wciśnięciem klawisza Enter:\n",
"```\n",
"conda activate tf\n",
"jupyter notebook\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Przykład: MNIST\n",
"\n",
"_Modified National Institute of Standards and Technology database_"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Zbiór cyfr zapisanych pismem odręcznym\n",
"* 60 000 przykładów uczących, 10 000 przykładów testowych\n",
"* Rozdzielczość każdego przykładu: 28 × 28 = 784 piksele"
]
},
{
"cell_type": "code",
2021-05-26 11:25:35 +02:00
"execution_count": 1,
2021-05-19 18:52:18 +02:00
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"# źródło: https://github.com/keras-team/keras/examples/minst_mlp.py\n",
"\n",
"from tensorflow import keras\n",
"from tensorflow.keras.datasets import mnist\n",
"from tensorflow.keras.layers import Dense, Dropout\n",
"\n",
"# załaduj dane i podziel je na zbiory uczący i testowy\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()"
]
},
{
"cell_type": "code",
2021-05-26 11:25:35 +02:00
"execution_count": 2,
2021-05-19 18:52:18 +02:00
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"from matplotlib import pyplot as plt\n",
"\n",
"def draw_examples(examples, captions=None):\n",
" plt.figure(figsize=(16, 4))\n",
" m = len(examples)\n",
" for i, example in enumerate(examples):\n",
" plt.subplot(100 + m * 10 + i + 1)\n",
" plt.imshow(example, cmap=plt.get_cmap('gray'))\n",
" plt.show()\n",
" if captions is not None:\n",
" print(6 * ' ' + (10 * ' ').join(str(captions[i]) for i in range(m)))"
2021-03-02 08:32:40 +01:00
]
},
{
"cell_type": "code",
2021-05-26 11:25:35 +02:00
"execution_count": 3,
2021-03-02 08:32:40 +01:00
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
2021-05-19 18:52:18 +02:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAACOCAYAAABZsdfhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAcc0lEQVR4nO3deZBU5bnH8ecVAVFERJAQEYYIQYhsAgpeC0gAV2SRgBL2GKHEBVJCgUoMxiCIStUAEkUujCAlWGHVSJCwSFRCgQTvBVkGjMDgBAYF2Qxc9Nw/6O15menpnjnn9Onu76eKmvOb093nnebh9Lycfvo1juMIAAAAAABeuSTVAwAAAAAAZDYmngAAAAAATzHxBAAAAAB4ioknAAAAAMBTTDwBAAAAAJ5i4gkAAAAA8FS5Jp7GmLuMMbuNMXuNMePcGhTSD7WAMGoBItQBoqgFiFAHiKIWspcp6zqexpgKIrJHRLqKSIGIbBaRfo7jfO7e8JAOqAWEUQsQoQ4QRS1AhDpAFLWQ3S4tx31vEZG9juN8ISJijFkoIj1EpMTCMcaUbZaLVDrqOE6tUm5DLWQBx3FMAjdLqhaog7TEOQFh1AJEJKHXB+ogO3BOQFixtVCet9peJyIHY3JB6HvILPsTuA21gDBqIfNxTkAYtYBEUQfZgXMCwoqthfJc8Szuf7cu+h8JY8wwERlWjuMg+KgFhJVaC9RBVuCcgDBqASLUAaKohSxWnolngYhcH5PrishX9o0cx5klIrNEuFSewagFhJVaC9RBVuCcgDBqASLUAaKohSxWnrfabhaRRsaYBsaYSiLyoIiscGdYSDPUAsKoBYhQB4iiFiBCHSCKWshiZb7i6TjOeWPMYyKySkQqiMgcx3F2uDYypA1qAWHUAkSoA0RRCxChDhBFLWS3Mi+nUqaDcak8HX3qOE4btx+UWkg/CX6qbVKog7TEOQFh1AJEhNcHRHBOQFixtVCet9oCAAAAAFAqJp4AAAAAAE8x8QQAAAAAeIqJJwAAAADAU0w8AQAAAACeYuIJAAAAAPAUE08AAAAAgKeYeAIAAAAAPMXEEwAAAADgqUtTPQAgk7Vu3Vrlxx57TOVBgwapPG/ePJWnT5+u8tatW10cHQAAALySm5ur8hNPPBHZ3r59u9rXrVs3lffv3+/dwFKEK54AAAAAAE8x8QQAAAAAeIq32iaoQoUKKl911VUJ39d+e+Xll1+ucuPGjVV+9NFHVX755ZdV7tevn8r/+c9/VJ48eXJk+7nnnkt4nCi/li1bqrx69WqVq1WrprLjOCoPHDhQ5e7du6t8zTXXlHOEyASdO3dWecGCBSp37NhR5d27d3s+Jnhj/PjxKtvn9Esu0f9/3KlTJ5U//PBDT8YFwB1XXnmlylWrVlX53nvvVblWrVoqT506VeWzZ8+6ODokKycnR+UBAwao/MMPP0S2mzRpovbdeOONKvNWWwAAAAAAksTEEwAAAADgKSaeAAAAAABPZU2PZ7169VSuVKmSyrfddpvKt99+u8rVq1dXuXfv3q6NraCgQOVp06ap3KtXL5VPnjyp8meffaYyPT3+uuWWWyLbixcvVvvsXmC7p9P+uzx37pzKdk9nu3btVLaXV7Hvn+k6dOgQ2bafq6VLl/o9HN+0bdtW5c2bN6doJHDbkCFDVB47dqzKsf1BxbHPMQBSL7bvz/433b59e5VvuummpB67Tp06Kscu1wH/FRUVqbxhwwaV7c/uyDZc8QQAAAAAeIqJJwAAAADAU0w8AQAAAACeytgeT3s9xbVr16qczDqcbrN7dOx12k6dOqWyvUZfYWGhyseOHVOZNfvcZa+7evPNN6v81ltvRbbtXovS5OfnqzxlyhSVFy5cqPLHH3+ssl07kyZNSur46S52zcJGjRqpfZnU42mv1digQQOV69evr7IxxvMxwRv23+Vll12WopGgLG699VaVY9fws9fX/dnPfhb3sUaPHq3yV199pbL9WRSxr0UiIps2bYo/WLjGXn9x1KhRKvfv3z+yXaVKFbXPPl8fPHhQZfuzIOy1H/v27avyzJkzVd61a1cJo4YXTp8+rXImrsVZHlzxBAAAAAB4ioknAAAAAMBTTDwBAAAAAJ7K2B7PAwcOqPz111+r7GaPp91Hcfz4cZV//vOfq2yvtTh//nzXxgL3vf766yr369fPtce2+0WrVq2qsr0ma2xPo4hI8+bNXRtLOho0aFBke+PGjSkcibfs3uGHH35YZbu3i56e9NGlSxeVH3/88bi3t/9uu3XrpvLhw4fdGRgS8sADD6icm5urcs2aNSPbdi/f+vXrVa5Vq5bKL730Utxj249n3//BBx+Me38kzv6d8cUXX1TZroMrr7wy4ce2P+vhzjvvVLlixYoq2+eA2BorLsNf1atXV7lFixapGUhAccUTAAAAAOApJp4AAAAAAE8x8QQAAAAAeCpjezy/+eYblceMGaOy3Rfzz3/+U+Vp06bFffxt27ZFtrt27ar22Wv42Gt1jRw5Mu5jI7Vat26t8r333qtyvDUS7Z7Md999V+WXX35ZZXtdNrsO7TVaf/GLXyQ8lmxgr2+ZqWbPnh13v90jhOCy116cO3euyqV9/oDd98cacd669FL9a1KbNm1UfuONN1S2133esGFDZPv5559X+z766COVK1eurPI777yj8h133BF3rFu2bIm7H2XXq1cvlX/zm9+U+bH27dunsv07pL2OZ8OGDct8LPjPPgfUq1cv4fu2bdtWZbufNxPO99nxWxsAAAAAIGVKnXgaY+YYY44YY7bHfK+GMWa1MSY/9PVqb4eJIKAWEEYtQIQ6QBS1gDBqASLUAYqXyBXPPBG5y/reOBFZ4zhOIxFZE8rIfHlCLeCCPKEWQB0gKk+oBVyQJ9QCqAMUo9QeT8dxNhhjcqxv9xCRTqHtN0VkvYiMdXNgblu2bJnKa9euVfnkyZMq2+vuPPTQQyrH9urZPZ22HTt2qDxs2LC4tw+qTKkFW8uWLVVevXq1ytWqVVPZcRyVV65cGdm21/js2LGjyuPHj1fZ7t0rKipS+bPPPlP5hx9+UNnuP7XXBd26dat4IVW1YK9bWrt2bTcfPrBK6/uza9YvmXpO8NLgwYNV/vGPfxz39vZaj/PmzXN7SK7I1FoYMGCAyqX1W9v/FmPXdzxx4kTc+9prQZbW01lQUKDym2++Gff2fsnEWujTp09St//yyy9V3rx5c2R77Fj9Y9s9nbYmTZokdeygyMQ6SIT92R15eXkqT5gwocT72vuOHz+u8owZM8oxsmAoa49nbcdxCkVEQl+vdW9ISDPUAsKoBYhQB4iiFhBGLUCEOsh6nn+qrTFmmIik5yU+uIpagAh1gChqAWHUAkSoA0RRC5mprFc8Dxtj6oiIhL4eKemGjuPMchynjeM4bUq6DdIatYCwhGqBOsh4nBMQRi0gjNcHiHBOyHplveK5QkQGi8jk0Nflro3IJ6X1Wnz77bdx9z/88MOR7UWLFql9dh9ehku7WvjpT3+qsr3Gq91Pd/ToUZULCwtVju2rOXXqlNr3l7/8JW4urypVqqj85JNPqty/f39Xj1cKz2vhnnvuUdn++TOF3bvaoEGDuLc/dOiQl8NJVtqdE7xUs2ZNlX/961+rbL9e2D09f/zjHz0Zl0/SrhbstTaffvpple0e/5kzZ6ps9/GX9rtGrGeeeSbh24qIPPHEEyrbnxEQMGlXC7Fif+cTufizOj744AOV9+7dq/KRIyXOr0qVYZ9lkNZ1UBb2OSVej2c2SGQ5lbdFZKOINDbGFBhjHpILBdPVGJMvIl1DGRmOWkAYtQAR6gBR1ALCqAWIUAcoXiKfatuvhF2dXR4LAo5aQBi1ABHqAFHUAsKoBYhQByheWXs8AQAAAABIiOefapuu7Pdgt27dWuXY9Rm7dOmi9tnv9UdqVa5cWeXYNVhFLu4btNd0HTRokMpbtmxROUh9hvXq1Uv1EDzVuHHjEvfZ6+WmM7tG7R6fPXv2qGzXLFIrJycnsr148eKk7jt9+nSV161b58aQUIJnn31WZbun89y5cyqvWrVKZXtNxu+++67EY11
2021-03-02 08:32:40 +01:00
"text/plain": [
2021-05-19 18:52:18 +02:00
"<Figure size 1152x288 with 7 Axes>"
2021-03-02 08:32:40 +01:00
]
},
2021-05-19 18:52:18 +02:00
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" 5 0 4 1 9 2 1\n"
]
2021-03-02 08:32:40 +01:00
}
],
"source": [
2021-05-19 18:52:18 +02:00
"draw_examples(x_train[:7], captions=y_train)"
2021-03-02 08:32:40 +01:00
]
},
{
"cell_type": "code",
2021-05-26 11:25:35 +02:00
"execution_count": 4,
2021-03-02 08:32:40 +01:00
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-19 18:52:18 +02:00
"60000 przykładów uczących\n",
"10000 przykładów testowych\n"
2021-03-02 08:32:40 +01:00
]
}
],
"source": [
2021-05-19 18:52:18 +02:00
"num_classes = 10\n",
"\n",
"x_train = x_train.reshape(60000, 784) # 784 = 28 * 28\n",
"x_test = x_test.reshape(10000, 784)\n",
"x_train = x_train.astype('float32')\n",
"x_test = x_test.astype('float32')\n",
"x_train /= 255\n",
"x_test /= 255\n",
"print('{} przykładów uczących'.format(x_train.shape[0]))\n",
"print('{} przykładów testowych'.format(x_test.shape[0]))\n",
2021-03-02 08:32:40 +01:00
"\n",
2021-05-19 18:52:18 +02:00
"# przekonwertuj wektory klas na binarne macierze klas\n",
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
"y_test = keras.utils.to_categorical(y_test, num_classes)"
2021-03-02 08:32:40 +01:00
]
},
{
"cell_type": "code",
2021-05-26 11:25:35 +02:00
"execution_count": 9,
2021-03-02 08:32:40 +01:00
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
2021-05-19 18:52:18 +02:00
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-26 11:25:35 +02:00
"Model: \"sequential_1\"\n",
2021-05-19 18:52:18 +02:00
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
2021-05-26 11:25:35 +02:00
"dense_3 (Dense) (None, 512) 401920 \n",
2021-05-19 18:52:18 +02:00
"_________________________________________________________________\n",
2021-05-26 11:25:35 +02:00
"dropout (Dropout) (None, 512) 0 \n",
2021-05-19 18:52:18 +02:00
"_________________________________________________________________\n",
2021-05-26 11:25:35 +02:00
"dense_4 (Dense) (None, 512) 262656 \n",
2021-05-19 18:52:18 +02:00
"_________________________________________________________________\n",
2021-05-26 11:25:35 +02:00
"dropout_1 (Dropout) (None, 512) 0 \n",
2021-05-19 18:52:18 +02:00
"_________________________________________________________________\n",
2021-05-26 11:25:35 +02:00
"dense_5 (Dense) (None, 10) 5130 \n",
2021-05-19 18:52:18 +02:00
"=================================================================\n",
"Total params: 669,706\n",
"Trainable params: 669,706\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model = keras.Sequential()\n",
"model.add(Dense(512, activation='relu', input_shape=(784,)))\n",
"model.add(Dropout(0.2))\n",
"model.add(Dense(512, activation='relu'))\n",
"model.add(Dropout(0.2))\n",
"model.add(Dense(num_classes, activation='softmax'))\n",
2021-05-26 11:25:35 +02:00
"\n",
"model.summary() # wyświetl podsumowanie architektury sieci"
2021-05-19 18:52:18 +02:00
]
},
{
"cell_type": "code",
2021-05-26 11:25:35 +02:00
"execution_count": 10,
2021-05-19 18:52:18 +02:00
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(60000, 784) (60000, 10)\n"
]
}
],
"source": [
"print(x_train.shape, y_train.shape)"
]
},
{
"cell_type": "code",
2021-05-26 11:25:35 +02:00
"execution_count": 12,
2021-05-19 18:52:18 +02:00
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-26 11:25:35 +02:00
"Epoch 1/10\n",
"469/469 [==============================] - 20s 42ms/step - loss: 0.0957 - accuracy: 0.9708 - val_loss: 0.0824 - val_accuracy: 0.9758\n",
"Epoch 2/10\n",
"469/469 [==============================] - 20s 43ms/step - loss: 0.0693 - accuracy: 0.9793 - val_loss: 0.0807 - val_accuracy: 0.9772\n",
"Epoch 3/10\n",
"469/469 [==============================] - 18s 38ms/step - loss: 0.0563 - accuracy: 0.9827 - val_loss: 0.0861 - val_accuracy: 0.9758\n",
"Epoch 4/10\n",
"469/469 [==============================] - 18s 37ms/step - loss: 0.0485 - accuracy: 0.9857 - val_loss: 0.0829 - val_accuracy: 0.9794\n",
"Epoch 5/10\n",
"469/469 [==============================] - 19s 41ms/step - loss: 0.0428 - accuracy: 0.9876 - val_loss: 0.0955 - val_accuracy: 0.9766\n",
"Epoch 6/10\n",
"469/469 [==============================] - 22s 47ms/step - loss: 0.0377 - accuracy: 0.9887 - val_loss: 0.0809 - val_accuracy: 0.9794\n",
"Epoch 7/10\n",
"469/469 [==============================] - 17s 35ms/step - loss: 0.0338 - accuracy: 0.9904 - val_loss: 0.1028 - val_accuracy: 0.9788\n",
"Epoch 8/10\n",
"469/469 [==============================] - 17s 36ms/step - loss: 0.0322 - accuracy: 0.9911 - val_loss: 0.0937 - val_accuracy: 0.9815\n",
"Epoch 9/10\n",
"469/469 [==============================] - 18s 37ms/step - loss: 0.0303 - accuracy: 0.9912 - val_loss: 0.0916 - val_accuracy: 0.9829.0304 - accu\n",
"Epoch 10/10\n",
"469/469 [==============================] - 16s 34ms/step - loss: 0.0263 - accuracy: 0.9926 - val_loss: 0.0958 - val_accuracy: 0.9812\n"
2021-05-19 18:52:18 +02:00
]
},
{
"data": {
"text/plain": [
2021-05-26 11:25:35 +02:00
"<tensorflow.python.keras.callbacks.History at 0x228eac95ac0>"
2021-05-19 18:52:18 +02:00
]
},
2021-05-26 11:25:35 +02:00
"execution_count": 12,
2021-05-19 18:52:18 +02:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.RMSprop(), metrics=['accuracy'])\n",
"\n",
2021-05-26 11:25:35 +02:00
"model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=1,\n",
2021-05-19 18:52:18 +02:00
" validation_data=(x_test, y_test))"
]
},
{
"cell_type": "code",
2021-05-26 11:25:35 +02:00
"execution_count": 8,
2021-05-19 18:52:18 +02:00
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
2021-03-02 08:32:40 +01:00
"output_type": "stream",
"text": [
2021-05-26 11:25:35 +02:00
"Test loss: 0.0757974311709404\n",
"Test accuracy: 0.9810000061988831\n"
2021-05-19 18:52:18 +02:00
]
}
],
"source": [
"score = model.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('Test loss: {}'.format(score[0]))\n",
"print('Test accuracy: {}'.format(score[1]))"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
2021-05-26 11:25:35 +02:00
"Warstwa *dropout* to metoda regularyzacji, służy zapobieganiu nadmiernemu dopasowaniu sieci. Polega na tym, że część węzłów sieci jest usuwana w sposób losowy."
2021-05-19 18:52:18 +02:00
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential_22\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"dense_62 (Dense) (None, 512) 401920 \n",
"_________________________________________________________________\n",
"dense_63 (Dense) (None, 512) 262656 \n",
"_________________________________________________________________\n",
"dense_64 (Dense) (None, 10) 5130 \n",
"=================================================================\n",
"Total params: 669,706\n",
"Trainable params: 669,706\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n",
"Epoch 1/5\n",
"469/469 [==============================] - 10s 20ms/step - loss: 0.2203 - accuracy: 0.9317 - val_loss: 0.0936 - val_accuracy: 0.9697\n",
"Epoch 2/5\n",
"469/469 [==============================] - 10s 21ms/step - loss: 0.0816 - accuracy: 0.9746 - val_loss: 0.0747 - val_accuracy: 0.9779\n",
"Epoch 3/5\n",
"469/469 [==============================] - 10s 20ms/step - loss: 0.0544 - accuracy: 0.9827 - val_loss: 0.0674 - val_accuracy: 0.9798\n",
"Epoch 4/5\n",
"469/469 [==============================] - 10s 22ms/step - loss: 0.0384 - accuracy: 0.9879 - val_loss: 0.0746 - val_accuracy: 0.9806\n",
"Epoch 5/5\n",
"469/469 [==============================] - 10s 22ms/step - loss: 0.0298 - accuracy: 0.9901 - val_loss: 0.0736 - val_accuracy: 0.9801\n"
2021-03-02 08:32:40 +01:00
]
},
2021-05-19 18:52:18 +02:00
{
"data": {
"text/plain": [
"<tensorflow.python.keras.callbacks.History at 0x1ed7eba8070>"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Bez warstw Dropout\n",
"\n",
"num_classes = 10\n",
"\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
"\n",
"x_train = x_train.reshape(60000, 784) # 784 = 28 * 28\n",
"x_test = x_test.reshape(10000, 784)\n",
"x_train = x_train.astype('float32')\n",
"x_test = x_test.astype('float32')\n",
"x_train /= 255\n",
"x_test /= 255\n",
"\n",
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
"\n",
"model_no_dropout = keras.Sequential()\n",
"model_no_dropout.add(Dense(512, activation='relu', input_shape=(784,)))\n",
"model_no_dropout.add(Dense(512, activation='relu'))\n",
"model_no_dropout.add(Dense(num_classes, activation='softmax'))\n",
"model_no_dropout.summary()\n",
"\n",
"model_no_dropout.compile(loss='categorical_crossentropy',\n",
" optimizer=keras.optimizers.RMSprop(),\n",
" metrics=['accuracy'])\n",
"\n",
"model_no_dropout.fit(x_train, y_train,\n",
" batch_size=128,\n",
" epochs=5,\n",
" verbose=1,\n",
" validation_data=(x_test, y_test))"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
2021-03-02 08:32:40 +01:00
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-19 18:52:18 +02:00
"Test loss (no dropout): 0.07358124107122421\n",
"Test accuracy (no dropout): 0.9800999760627747\n"
]
}
],
"source": [
"# Bez warstw Dropout\n",
"\n",
"score = model_no_dropout.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('Test loss (no dropout): {}'.format(score[0]))\n",
"print('Test accuracy (no dropout): {}'.format(score[1]))"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential_23\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"dense_65 (Dense) (None, 2500) 1962500 \n",
"_________________________________________________________________\n",
"dense_66 (Dense) (None, 2000) 5002000 \n",
"_________________________________________________________________\n",
"dense_67 (Dense) (None, 1500) 3001500 \n",
"_________________________________________________________________\n",
"dense_68 (Dense) (None, 1000) 1501000 \n",
"_________________________________________________________________\n",
"dense_69 (Dense) (None, 500) 500500 \n",
"_________________________________________________________________\n",
"dense_70 (Dense) (None, 10) 5010 \n",
"=================================================================\n",
"Total params: 11,972,510\n",
"Trainable params: 11,972,510\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n",
"Epoch 1/10\n",
"469/469 [==============================] - 129s 275ms/step - loss: 0.9587 - accuracy: 0.7005 - val_loss: 0.5066 - val_accuracy: 0.8566\n",
"Epoch 2/10\n",
"469/469 [==============================] - 130s 276ms/step - loss: 0.2666 - accuracy: 0.9234 - val_loss: 0.3376 - val_accuracy: 0.9024\n",
"Epoch 3/10\n",
"469/469 [==============================] - 130s 277ms/step - loss: 0.1811 - accuracy: 0.9477 - val_loss: 0.1678 - val_accuracy: 0.9520\n",
"Epoch 4/10\n",
"469/469 [==============================] - 134s 287ms/step - loss: 0.1402 - accuracy: 0.9588 - val_loss: 0.1553 - val_accuracy: 0.9576\n",
"Epoch 5/10\n",
"469/469 [==============================] - 130s 278ms/step - loss: 0.1153 - accuracy: 0.9662 - val_loss: 0.1399 - val_accuracy: 0.9599\n",
"Epoch 6/10\n",
"469/469 [==============================] - 130s 277ms/step - loss: 0.0956 - accuracy: 0.9711 - val_loss: 0.1389 - val_accuracy: 0.9612\n",
"Epoch 7/10\n",
"469/469 [==============================] - 131s 280ms/step - loss: 0.0803 - accuracy: 0.9761 - val_loss: 0.1008 - val_accuracy: 0.9724\n",
"Epoch 8/10\n",
"469/469 [==============================] - 134s 286ms/step - loss: 0.0685 - accuracy: 0.9797 - val_loss: 0.1137 - val_accuracy: 0.9679\n",
"Epoch 9/10\n",
"469/469 [==============================] - 130s 278ms/step - loss: 0.0602 - accuracy: 0.9819 - val_loss: 0.1064 - val_accuracy: 0.9700\n",
"Epoch 10/10\n",
"469/469 [==============================] - 129s 274ms/step - loss: 0.0520 - accuracy: 0.9843 - val_loss: 0.1095 - val_accuracy: 0.9698\n"
2021-03-02 08:32:40 +01:00
]
},
{
"data": {
"text/plain": [
2021-05-19 18:52:18 +02:00
"<tensorflow.python.keras.callbacks.History at 0x1ed0e628250>"
2021-03-02 08:32:40 +01:00
]
},
2021-05-19 18:52:18 +02:00
"execution_count": 63,
2021-03-02 08:32:40 +01:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
2021-05-19 18:52:18 +02:00
"# Więcej warstw, inna funkcja aktywacji\n",
"\n",
"num_classes = 10\n",
"\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
"\n",
"x_train = x_train.reshape(60000, 784) # 784 = 28 * 28\n",
"x_test = x_test.reshape(10000, 784)\n",
"x_train = x_train.astype('float32')\n",
"x_test = x_test.astype('float32')\n",
"x_train /= 255\n",
"x_test /= 255\n",
"\n",
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
"\n",
"model3 = Sequential()\n",
"model3.add(Dense(2500, activation='tanh', input_shape=(784,)))\n",
"model3.add(Dense(2000, activation='tanh'))\n",
"model3.add(Dense(1500, activation='tanh'))\n",
"model3.add(Dense(1000, activation='tanh'))\n",
"model3.add(Dense(500, activation='tanh'))\n",
"model3.add(Dense(num_classes, activation='softmax'))\n",
"model3.summary()\n",
"\n",
"model3.compile(loss='categorical_crossentropy',\n",
" optimizer=keras.optimizers.RMSprop(),\n",
" metrics=['accuracy'])\n",
"\n",
"model3.fit(x_train, y_train,\n",
" batch_size=128,\n",
" epochs=10,\n",
" verbose=1,\n",
" validation_data=(x_test, y_test))"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test loss: 0.10945799201726913\n",
"Test accuracy: 0.9697999954223633\n"
]
}
],
"source": [
"# Więcej warstw, inna funkcja aktywacji\n",
"\n",
"score = model3.evaluate(x_test, y_test, verbose=0)\n",
"\n",
"print('Test loss: {}'.format(score[0]))\n",
"print('Test accuracy: {}'.format(score[1]))"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Przykład: 4-pikselowy aparat fotograficzny\n",
"\n",
"https://www.youtube.com/watch?v=ILsA4nyG7I0"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"def generate_example(description):\n",
" variant = random.choice([1, -1])\n",
" if description == 's': # solid\n",
" return (np.array([[ 1.0, 1.0], [ 1.0, 1.0]]) if variant == 1 else\n",
" np.array([[-1.0, -1.0], [-1.0, -1.0]]))\n",
" elif description == 'v': # vertical\n",
" return (np.array([[ 1.0, -1.0], [ 1.0, -1.0]]) if variant == 1 else\n",
" np.array([[-1.0, 1.0], [-1.0, 1.0]]))\n",
" elif description == 'd': # diagonal\n",
" return (np.array([[ 1.0, -1.0], [-1.0, 1.0]]) if variant == 1 else\n",
" np.array([[-1.0, 1.0], [ 1.0, -1.0]]))\n",
" elif description == 'h': # horizontal\n",
" return (np.array([[ 1.0, 1.0], [-1.0, -1.0]]) if variant == 1 else\n",
" np.array([[-1.0, -1.0], [ 1.0, 1.0]]))\n",
" else:\n",
" return np.array([[random.uniform(-1, 1), random.uniform(-1, 1)],\n",
" [random.uniform(-1, 1), random.uniform(-1, 1)]])"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"import random\n",
"\n",
"num_classes = 4\n",
"\n",
"trainset_size = 4000\n",
"testset_size = 1000\n",
"\n",
"y4_train = np.array([random.choice(['s', 'v', 'd', 'h']) for i in range(trainset_size)])\n",
"x4_train = np.array([generate_example(desc) for desc in y4_train])\n",
"\n",
"y4_test = np.array([random.choice(['s', 'v', 'd', 'h']) for i in range(testset_size)])\n",
"x4_test = np.array([generate_example(desc) for desc in y4_test])"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAACQCAYAAAABdZZIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAPGUlEQVR4nO3dX4ild33H8c+3uwYhVKTN+ie7WZOLZSUVWswkVXqTXliSYJNeaIm9UKSwKOSyFwsF7WUveiUVQy5C4o22eGGXNq1NhRALymZXVJK2SRdRs0nARkvaVTFm+fVizrMzpLOzc/Y858xvnvN6wZA5c56c5zkn7/09893zzKRaawEAAIBe/Np+HwAAAABsZ1AFAACgKwZVAAAAumJQBQAAoCsGVQAAALpiUAUAAKArhxf5l6vqN5L8TZJbk/wgyR+31v57h+1+kOR/k1xO8kZrbWOR/dIfLTDQAokO2KIFBlog0QF7t+g7qqeTfL21diLJ12e3r+b3W2u/I7LJ0gIDLZDogC1aYKAFEh2wR4sOqg8keXz2+eNJ/mjBx+Pg0gIDLZDogC1aYKAFEh2wR4sOqu9srb2SJLN/vuMq27Uk/1xV56vq1IL7pE9aYKAFEh2wRQsMtECiA/bomj+jWlX/kuRdO9z153Ps5/daay9X1TuSPFlV/9Fae/oq+zuVZIjxjjn2wT6rqtZaq2tstqcW1qGDO+44uE/rhRdeyK9+9av/9/WjR4/m0KFDqar/aq0ducbDzN3CjTfeeMd73/veMZ4CI7hWBxsbG+38+fOvXqMF54c1sKzzw1TXhPPnz+/3ISzNss4PmeiacFC/V1jl+UEHB9tuHVRr7bofuKqeT3J3a+2Vqnp3kqdaayev8e/8RZJLrbW/2sPjX//BsS9aazV2C1PtYJE/ez07efJkXnjhhe+11n577BY2NjbauXPnRjxaluXkyZN56qmncvPNN59P8odxflh7yzg/THVNqLrWTH+gLeX8MNU1YYrfKyzz/KCDg6eqzl/tZ5AXvfT3TJJPzD7/RJK/22HnN1bVrw+fJ/mDJM8uuF/6poU1dv/99yfJb85uamFN3X///Xn88eFHkHTAFVrA+WHNOT+wV4sOqn+Z5ENV9Z9JPjS7naq6uaqemG3zziT/WlXfTXI2yT+01v5pwf3SKS1w+vTpJHmbFtbb6dOn8+STTybJ+6ID4vzAFc4Pa875gb1a6NLfZZvq2/dTtoefQZrbVDvo+c/eona7jGMRU73Mb8qW1cJU14UpW8b5YaprwsQv/bUmzMH3CnM/5iRfsHXtYNF3VAEAAGBUBlUAAAC6YlAFAACgKwZVAAAAumJQBQAAoCsGVQAAALpiUAUAAKArBlUAAAC6YlAFAACgKwZVAAAAumJQBQAAoCsGVQAAALpiUAUAAKArBlUAAAC6YlAFAACgKwZVAAAAumJQBQAAoCsGVQAAALoyyqBaVfdU1fNVdaGqTu9wf1XV52b3f6+q3j/GfumPFhhogZm36YDEmsAV1gQGWmBXCw+qVXUoyeeT3Jvk9iQfq6rb37TZvUlOzD5OJfnCovulW1pgoIU1d/ny5SQ5Hh2wyZpAYk0gzg/szRjvqN6V5EJr7futtdeTfDnJA2/a5oEkX2ybvpXk7VX17hH2TX+0QJLcGC2svbNnzybJL3XAjDWBxJpAnB/YmzEG1aNJXtx2++Lsa/NuwzRogSS5IVpYey+99FKSvL7tSzpYb9YEEmsCcX5gbw6P8Bi1w9fadWyzuWHVqWy+vc80XFcLOpikhVs4fvz4Eg6LZWltx2Xe+YGBNYHEmrCWxjw/6GC6xnhH9WKSW7bdPpbk5evYJknSWnuktbbRWtsY4dhYvVFa0MGB93qW0MKRI0dGP1CW59ixY8nmu+tXvhTnh3VmTSCxJpBxzw86mK4xBtVnkpyoqtuq6oYkDyY586ZtziT5+Oy3d30gyWuttVdG2Df90QJJ8rNoYe3deeedSfJWHTBjTSCxJhDnB/Zm4Ut/W2tvVNVDSb6W5FCSR1trz1XVp2b3P5zkiST3JbmQ5OdJPrnofumWFhhoYc0dPnw4SX4UHbDJmkBiTSDOD+xNXeUa8S5UVb8Hx45aazv9PMFCptpBz3/2FlVV55dxCc7GxkY7d+7c2A/LEi2rhamuC1O2jPPDVNeEqtFfqp5YE+bge4W5H3OSL9i6djDGpb8AAAAwGoMqAAAAXTGoAgAA0BWDKgAAAF0xqAIAANAVgyoAAABdMagCAADQFYMqAAAAXTGoAgAA0BWDKgAAAF0xqAIAANAVgyoAAABdMagCAADQFYMqAAAAXTGoAgAA0BWDKgAAAF0xqAIAANAVgyoAAABdMagCAADQlVEG1aq6p6qer6oLVXV6h/vvrqrXquo7s4/PjLFf+qMFBlpg5m06ILEmcIU1gYEW2NXhRR+gqg4l+XySDyW5mOSZqjrTWvu3N236jdbahxfdH93TAgMtrLnLly8nyfEkt0cHWBPYZE3A+YE9GeMd1buSXGitfb+19nqSLyd5YITH5WDSAklyY7Sw9s6ePZskv9QBM9YEEmsCcX5gbxZ+RzXJ0SQvbrt9Mcnv7rDdB6vqu0leTvJnrbXndnqwqjqV5NQIx8X+GKWF7R0cP348P/zhD5dxrPuqqvb7EJbphiyhhdntkQ+VJXt92+fOD+vNmrBHrbX9PoSl+MpXvpKPfvSj1gTy0ksvJSOdH3QwXWMMqjudId68wn47yXtaa5eq6r4kX01yYqcHa609kuSRJKmqaa7U6+W6WtjewcbGhg6mYeEWrAmT4PzAwJqwZq4ygFsT1tCYLehgusa49Pdiklu23T6Wzb/1uKK19j+ttUuzz59I8paqummEfdMfLZBs/i2pFkg2310f6GC9WRPW3LFjxxJrAtECezPGoPpMkhNVdVtV3ZDkwSRntm9QVe+q2bU5VXXXbL8/GWHf9EcLJMnPogU2vVUHzFgT1tydd96ZWBOIFtibhS/9ba29UVUPJflakkNJHm2tPVdVn5rd/3CSjyT5dFW9keQXSR5sU/0BDLTAQAskyY+iAzZZE9bc4cOHE2sC0QJ7Uz3/93ad+cHTWhv9t1psbGy0c+fOjf2w+26KvwBkm/OttY2xH9SacCBpgSTLOT9MtYOevzdbVFVZE+aghbkfc5Iv2Lp2MMalvwAAADAagyoAAABdMagCAADQFYMqAAAAXTGoAgAA0BWDKgAAAF0xqAIAANAVgyoAAABdMagCAADQFYMqAAAAXTGoAgAA0BWDKgAAAF0xqAIAANAVgyoAAABdMagCAADQFYMqAAAAXTGoAgAA0BWDKgAAAF0ZZVCtqker6sdV9exV7q+q+lxVXaiq71XV+8fYL/3RATO3aoEZLZDE+YErrAkMtMCuxnpH9bEk9+xy/71JTsw+TiX5wkj7pT86IElejRbYpAUGOiCxJrBFC+xqlEG1tfZ0kp/usskDSb7YNn0rydur6t1j7Jvu6IAkuRQtsEkLDHRAYk1gixbY1ap+RvVokhe33b44+xrrRQcMtMBACyQ6YIsWGGhhzR1e0X5qh6+1HTesOpXNt/eZnuvq4Pjx48s8JvaHNYGBFkh0wBYtMNhTCzqYrlW9o3oxyS3bbh9L8vJOG7bWHmmtbbTWNlZyZKzSdXVw5MiRlRwcK2VNYKAFEh2wRQsM9tSCDqZrVYPqmSQfn/32rg8kea219sqK9k0/dMBACwy0QKIDtmiBgRbW3CiX/lbVl5LcneSmqrqY5LNJ3pIkrbWHkzyR5L4kF5L8PMknx9gvXfpmdEByW7TAJi0w0AGJNYEtWmBX1dqOl/13oar6PTh21Frb6ecJFrKxsdHOnTs39sPuu6rRX6qenF/GJTjWhANJCyRZzvlhqh30/L3ZoqrKmjAHLcz9mJN8wda1g1Vd+gsAAAB7YlAFAACgKwZVAAAAumJQBQAAoCsGVQAAALpiUAUAAKArBlUAAAC6YlAFAACgKwZVAAAAumJQBQAAoCsGVQAAALpiUAUAAKArBlUAAAC6YlAFAACgKwZVAAAAumJQBQAAoCsGVQAAALpiUAUAAKArowyqVfV
"text/plain": [
"<Figure size 1152x288 with 7 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" s d h s d v v\n"
]
}
],
"source": [
"draw_examples(x4_train[:7], captions=y4_train)"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"x4_train = x4_train.reshape(trainset_size, 4)\n",
"x4_test = x4_test.reshape(testset_size, 4)\n",
"x4_train = x4_train.astype('float32')\n",
"x4_test = x4_test.astype('float32')\n",
2021-03-02 08:32:40 +01:00
"\n",
2021-05-19 18:52:18 +02:00
"y4_train = np.array([{'s': 0, 'v': 1, 'd': 2, 'h': 3}[desc] for desc in y4_train])\n",
"y4_test = np.array([{'s': 0, 'v': 1, 'd': 2, 'h': 3}[desc] for desc in y4_test])\n",
2021-03-02 08:32:40 +01:00
"\n",
2021-05-19 18:52:18 +02:00
"y4_train = keras.utils.to_categorical(y4_train, num_classes)\n",
"y4_test = keras.utils.to_categorical(y4_test, num_classes)"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential_24\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"dense_71 (Dense) (None, 4) 20 \n",
"_________________________________________________________________\n",
"dense_72 (Dense) (None, 4) 20 \n",
"_________________________________________________________________\n",
"dense_73 (Dense) (None, 8) 40 \n",
"_________________________________________________________________\n",
"dense_74 (Dense) (None, 4) 36 \n",
"=================================================================\n",
"Total params: 116\n",
"Trainable params: 116\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model4 = keras.Sequential()\n",
"model4.add(Dense(4, activation='tanh', input_shape=(4,)))\n",
"model4.add(Dense(4, activation='tanh'))\n",
"model4.add(Dense(8, activation='relu'))\n",
"model4.add(Dense(num_classes, activation='softmax'))\n",
"model4.summary()"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"model4.layers[0].set_weights(\n",
" [np.array([[ 1.0, 0.0, 1.0, 0.0],\n",
" [ 0.0, 1.0, 0.0, 1.0],\n",
" [ 1.0, 0.0, -1.0, 0.0],\n",
" [ 0.0, 1.0, 0.0, -1.0]],\n",
" dtype=np.float32), np.array([0., 0., 0., 0.], dtype=np.float32)])\n",
"model4.layers[1].set_weights(\n",
" [np.array([[ 1.0, -1.0, 0.0, 0.0],\n",
" [ 1.0, 1.0, 0.0, 0.0],\n",
" [ 0.0, 0.0, 1.0, -1.0],\n",
" [ 0.0, 0.0, -1.0, -1.0]],\n",
" dtype=np.float32), np.array([0., 0., 0., 0.], dtype=np.float32)])\n",
"model4.layers[2].set_weights(\n",
" [np.array([[ 1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],\n",
" [ 0.0, 0.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0],\n",
" [ 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0],\n",
" [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0]],\n",
" dtype=np.float32), np.array([0., 0., 0., 0., 0., 0., 0., 0.], dtype=np.float32)])"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"model4.layers[3].set_weights(\n",
" [np.array([[ 1.0, 0.0, 0.0, 0.0],\n",
" [ 1.0, 0.0, 0.0, 0.0],\n",
" [ 0.0, 1.0, 0.0, 0.0],\n",
" [ 0.0, 1.0, 0.0, 0.0],\n",
" [ 0.0, 0.0, 1.0, 0.0],\n",
" [ 0.0, 0.0, 1.0, 0.0],\n",
" [ 0.0, 0.0, 0.0, 1.0],\n",
" [ 0.0, 0.0, 0.0, 1.0]],\n",
" dtype=np.float32), np.array([0., 0., 0., 0.], dtype=np.float32)])\n",
"\n",
"model4.compile(loss='categorical_crossentropy',\n",
" optimizer=keras.optimizers.Adagrad(),\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[array([[ 1., 0., 1., 0.],\n",
" [ 0., 1., 0., 1.],\n",
" [ 1., 0., -1., 0.],\n",
" [ 0., 1., 0., -1.]], dtype=float32), array([0., 0., 0., 0.], dtype=float32)]\n",
"[array([[ 1., -1., 0., 0.],\n",
" [ 1., 1., 0., 0.],\n",
" [ 0., 0., 1., -1.],\n",
" [ 0., 0., -1., -1.]], dtype=float32), array([0., 0., 0., 0.], dtype=float32)]\n",
"[array([[ 1., -1., 0., 0., 0., 0., 0., 0.],\n",
" [ 0., 0., 1., -1., 0., 0., 0., 0.],\n",
" [ 0., 0., 0., 0., 1., -1., 0., 0.],\n",
" [ 0., 0., 0., 0., 0., 0., 1., -1.]], dtype=float32), array([0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]\n",
"[array([[1., 0., 0., 0.],\n",
" [1., 0., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 1., 0., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 1., 0.],\n",
" [0., 0., 0., 1.],\n",
" [0., 0., 0., 1.]], dtype=float32), array([0., 0., 0., 0.], dtype=float32)]\n"
]
}
],
"source": [
"for layer in model4.layers:\n",
" print(layer.get_weights())"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"array([[0.17831734, 0.17831734, 0.17831734, 0.465048 ]], dtype=float32)"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model4.predict([np.array([[1.0, 1.0], [-1.0, -1.0]]).reshape(1, 4)])"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test loss: 0.7656148672103882\n",
"Test accuracy: 1.0\n"
]
}
],
"source": [
"score = model4.evaluate(x4_test, y4_test, verbose=0)\n",
2021-03-02 08:32:40 +01:00
"\n",
2021-05-19 18:52:18 +02:00
"print('Test loss: {}'.format(score[0]))\n",
"print('Test accuracy: {}'.format(score[1]))"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential_25\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"dense_75 (Dense) (None, 4) 20 \n",
"_________________________________________________________________\n",
"dense_76 (Dense) (None, 4) 20 \n",
"_________________________________________________________________\n",
"dense_77 (Dense) (None, 8) 40 \n",
"_________________________________________________________________\n",
"dense_78 (Dense) (None, 4) 36 \n",
"=================================================================\n",
"Total params: 116\n",
"Trainable params: 116\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model5 = Sequential()\n",
"model5.add(Dense(4, activation='tanh', input_shape=(4,)))\n",
"model5.add(Dense(4, activation='tanh'))\n",
"model5.add(Dense(8, activation='relu'))\n",
"model5.add(Dense(num_classes, activation='softmax'))\n",
"model5.compile(loss='categorical_crossentropy',\n",
" optimizer=keras.optimizers.RMSprop(),\n",
" metrics=['accuracy'])\n",
"model5.summary()"
2021-03-02 08:32:40 +01:00
]
},
{
"cell_type": "code",
2021-05-19 18:52:18 +02:00
"execution_count": 78,
2021-03-02 08:32:40 +01:00
"metadata": {
2021-05-19 18:52:18 +02:00
"scrolled": true,
2021-03-02 08:32:40 +01:00
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
2021-05-19 18:52:18 +02:00
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/8\n",
"125/125 [==============================] - 0s 3ms/step - loss: 1.3126 - accuracy: 0.3840 - val_loss: 1.1926 - val_accuracy: 0.6110\n",
"Epoch 2/8\n",
"125/125 [==============================] - 0s 2ms/step - loss: 1.0978 - accuracy: 0.5980 - val_loss: 1.0085 - val_accuracy: 0.6150\n",
"Epoch 3/8\n",
"125/125 [==============================] - 0s 2ms/step - loss: 0.9243 - accuracy: 0.7035 - val_loss: 0.8416 - val_accuracy: 0.7380\n",
"Epoch 4/8\n",
"125/125 [==============================] - 0s 2ms/step - loss: 0.7522 - accuracy: 0.8740 - val_loss: 0.6738 - val_accuracy: 1.0000\n",
"Epoch 5/8\n",
"125/125 [==============================] - 0s 2ms/step - loss: 0.5811 - accuracy: 1.0000 - val_loss: 0.5030 - val_accuracy: 1.0000\n",
"Epoch 6/8\n",
"125/125 [==============================] - 0s 2ms/step - loss: 0.4134 - accuracy: 1.0000 - val_loss: 0.3428 - val_accuracy: 1.0000\n",
"Epoch 7/8\n",
"125/125 [==============================] - 0s 2ms/step - loss: 0.2713 - accuracy: 1.0000 - val_loss: 0.2161 - val_accuracy: 1.0000\n",
"Epoch 8/8\n",
"125/125 [==============================] - 0s 1ms/step - loss: 0.1621 - accuracy: 1.0000 - val_loss: 0.1225 - val_accuracy: 1.0000\n"
]
},
2021-03-02 08:32:40 +01:00
{
"data": {
"text/plain": [
2021-05-19 18:52:18 +02:00
"<tensorflow.python.keras.callbacks.History at 0x1ed00809700>"
2021-03-02 08:32:40 +01:00
]
},
2021-05-19 18:52:18 +02:00
"execution_count": 78,
2021-03-02 08:32:40 +01:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
2021-05-19 18:52:18 +02:00
"model5.fit(x4_train, y4_train, epochs=8, validation_data=(x4_test, y4_test))"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"array([[3.2040708e-02, 1.0065207e-03, 4.9596769e-04, 9.6645677e-01]],\n",
" dtype=float32)"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model5.predict([np.array([[1.0, 1.0], [-1.0, -1.0]]).reshape(1, 4)])"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test loss: 0.1224619448184967\n",
"Test accuracy: 1.0\n"
]
}
],
"source": [
"score = model5.evaluate(x4_test, y4_test, verbose=0)\n",
"\n",
"print('Test loss: {}'.format(score[0]))\n",
"print('Test accuracy: {}'.format(score[1]))"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"import contextlib\n",
"\n",
"@contextlib.contextmanager\n",
"def printoptions(*args, **kwargs):\n",
" original = np.get_printoptions()\n",
" np.set_printoptions(*args, **kwargs)\n",
" try:\n",
" yield\n",
" finally: \n",
" np.set_printoptions(**original)"
2021-03-02 08:32:40 +01:00
]
},
{
"cell_type": "code",
2021-05-19 18:52:18 +02:00
"execution_count": 82,
2021-03-02 08:32:40 +01:00
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-19 18:52:18 +02:00
"[array([[ 0.7, 0.2, -0.7, 0.7],\n",
" [-0.5, 0.9, 0.6, 0.6],\n",
" [ 1.1, 0.2, 0.1, 0.2],\n",
" [ 0.7, 0.1, 0.3, -0.7]], dtype=float32), array([ 0. , 0.1, -0.1, -0.2], dtype=float32)]\n",
"[array([[ 0.7, 0.5, -1.1, -1.2],\n",
" [ 0.7, 0.9, -0.6, 0.3],\n",
" [ 0.1, 1.4, -0.6, 0.8],\n",
" [ 1.5, 0.1, -0.1, 0.9]], dtype=float32), array([-0.4, 0.2, -0. , 0.2], dtype=float32)]\n",
"[array([[-1. , 1. , -0.7, -0.3, 0.2, 1.3, -0.7, 0.9],\n",
" [-0.9, 0.5, 0.8, -1.3, -1.2, 1.3, 0.4, -1. ],\n",
" [ 0.9, 0.2, 0.3, 0.4, 1.3, -0.9, -0.1, -0.2],\n",
" [-0.4, 0.5, 1.1, -0.6, 1.1, 0.1, -1.5, -1. ]], dtype=float32), array([-0.1, 0.1, 0.1, 0.1, 0.2, -0. , 0.1, 0.2], dtype=float32)]\n",
"[array([[ 0.7, -0.5, 0.8, -0.5],\n",
" [-0.3, -1.6, -0.2, 0.1],\n",
" [-1.5, 0.9, 0.1, -0.5],\n",
" [ 0.6, 0.7, 1. , -1.4],\n",
" [ 0.7, -1.2, -1.6, 1.2],\n",
" [ 1. , -1.2, 0.3, -1.5],\n",
" [-0.2, 0. , 0.6, 1.3],\n",
" [-0.8, 0.2, -0.6, -1. ]], dtype=float32), array([-0.6, 0.5, -0.3, 0.4], dtype=float32)]\n"
2021-03-02 08:32:40 +01:00
]
}
],
"source": [
2021-05-19 18:52:18 +02:00
"with printoptions(precision=1, suppress=True):\n",
" for layer in model5.layers:\n",
" print(layer.get_weights())"
2021-03-02 08:32:40 +01:00
]
}
],
"metadata": {
"celltoolbar": "Slideshow",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2021-05-26 11:25:35 +02:00
"version": "3.8.3"
2021-03-02 08:32:40 +01:00
},
"livereveal": {
"start_slideshow_at": "selected",
2021-04-14 08:03:54 +02:00
"theme": "white"
2021-03-02 08:32:40 +01:00
}
},
"nbformat": 4,
"nbformat_minor": 4
}