"Plik `fires_thefts.csv` zawiera rzeczywiste dane zebrane przez *U.S. Commission on Civil Rights*, przedstawiające liczbę pożarów w danej dzielnicy na tysiąc gospodarstw domowych (pierwsza kolumna) oraz liczbęwłamań w tej samej dzielnicy na tysiąc mieszkańców (druga kolumna). \n",
"\n",
"Stwórz model (regresja liniowa) przewidujący liczbę włamań na podstawie liczby pożarów:\n",
" * Oblicz parametry $\\theta$ krzywej regresyjnej za pomocą metody gradientu prostego (*gradient descent*). Możesz wybrać wersję iteracyjną lub macierzową algorytmu.\n",
" * Wykorzystując uzyskaną krzywą regresyjnąprzepowiedz liczbę włamań na tysiąc mieszkańców dla dzielnicy, w której występuje średnio 50, 100, 200 pożarów na tysiąc gospodarstw domowych."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Część zaawansowana (2 punkty)\n",
"\n",
"Dla różnych wartości długości kroku $\\alpha \\in \\{ 0.001, 0.01 , 0.1 \\}$ stwórz wykres, który zilustruje progresję wartości $J(\\theta)$ dla pierwszych 200 króków algorytmu gradientu prostego:\n",
" * Oś $x$ wykresu to kolejne kroki algorytmu – od 0 do 200.\n",
" * Oś $y$ wykresu to wartosci $J(\\theta)$.\n",
" * Wykres powinien skłądać się z trzech krzywych:\n",