zuma/w1/zumz181a.ipynb

775 lines
234 KiB
Plaintext
Raw Normal View History

2021-03-17 20:09:43 +01:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Uczenie maszynowe 2017/2018\n",
"# 1. Wprowadzenie. Regresja liniowa"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 1.1. Uczenie maszynowe przykłady zastosowań"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Rozpoznawanie i rozumienie mowy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"import IPython"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkz\nODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2Nj\nY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQED\nEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAAAgEDBAYFB//EAEQQAAIBAgQCBgcFBwMDBAMAAAABAgMR\nBBIhMQVBBhMiUWFxFjJSgZGS0RRCcqGxFSMzQ1NiwSSC4TQ1RCXS8PFUY6L/xAAZAQEBAQEBAQAA\nAAAAAAAAAAAAAQIDBAX/xAApEQEBAQABBAEDBAEFAAAAAAAAARECAxIhMUEEE1EiYeHwoTJCcZHB\n/9oADAMBAAIRAxEAPwD5+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6ceBYu\nUU1KlZq/rP6DfsDGe1S+Z/QauV5QHq+j+M9ql8z+hK6PYz2qXzP6AyvJA9b0dxvtUvmf0JXRzGv7\n1H5n9AZXkAeyujWOf3qPzP6B6M472qPzP6AyvGA9n0Yx3t0Pmf0J9GMd7dD5n9AZXige16L4/wBu\nh8z+gejGOvbPQ+Z/QGPFA9v0Xx97Z6HzP6B6LcQtfNQ+Z/QGPEA9v0Wx/t0Pmf0J9FeIe3Q+Z/QG\nPDA9z0U4ha+eh8z+hL6KcQX3qHzP6BHhAe+uh/EnBzz4ey/vf0I9EuI+3h/nf0LlNeCB7/ohxH28\nP87+geiHEvbw/wA7+g7amx4AHv8AofxL28P87+hPofxL28P87+he2/hO6OfA6D0O4l/Uw3zv6E+h\nvEvbw3zv6Ds5fg7+P5c8B0PodxP28P8AO/oT6GcT9vDfO/oOzl+Dv4/lzoHQLofxJtrPh9P739A9\nD+Je3h/nf0HbTujnwOh9DeJf1MN87+gehvE/6mG+d/QdtXujngOjXQrij2nhvnf0G9B+K/1ML87+\nhMpsc0B0voPxX+phfnf0D0H4ra/WYX539BiuaA6X0H4rb+Jhfnf0I9CeKXSz4bX+9/Qi45sDpJ9C\nOJwV5VcKv97+hK6D8VauqmFt+N/QmmVzQHUVOgfFqcM0qmFt+N/QF0D4s0n1uE1/vl/7So5cDp5d\nBeLRdnPC/O/oC6CcWf8AMwvzv6BccwB0/oJxb+phfnf0B9BOLLeeF+d/QamOYA6j0D4t/Uwnzy+g\negXFv6mE+eX0C45cDqPQLi1/4mF+eX0F9BeLf1ML88voDHMgdR6B8W0/e4TX++X0D0C4v/Uwvzv6\nBMcuB00egvFZbVML87+g3oHxb+phPnf0BjlwOofQPiy/mYX539BX0G4qv5mF+d/QDmQOjfQviiaW\nfDXf97+gz6D8VUb58N87+gwc0B0noTxT28N87+gsuhnE405Tc8NaKu+2/oXB7FGF6MLeyi1QfMai\nrUYfhRdEw6qer8B4w7x3qQBGRMnKkTqTqAqG5kbDJXAEMkQkMBGXkRks7jE5W2VCWvqi2DWRpitc\n/iTFDTE6ADQJ6jTEpXHvoJdLUa6aNSpWiP8AAloURso3b0LI/wACXkZopzUNVpyOm+HLPbQndaDI\nRMnOr25ssrNh1ZjaX21exWnaVu8a9rN7ruOkrnYdbAms1uZCel1sRmaTsr+B0jlZT27O+pKlprq0\ntbEOSjHV2b2JTV9DTn5FuZDinuguiTFx046FHXcnK7ppXCF+ZdFHO12kRKLUOy9R02km0GnmTE52\nusiVZ7A2ku1sK2r2QqcKjWZa+Jz10kPZNXTJ5kPTQE1fxMVpO7GUUptxejWqZXKKkmm2vIem3onu\nRVuLcfs6tpcrU7RSV7LmRj3lpwV09UyFqklobvpmHk22hltYhNJpBvfl4mVSoJT0kku6w0r3dnoR\nFJX308QbS3driobQXMswa8rEpJqzSCod07pWuTfdsnZEa8kgiUF3ll5EOTz5crs1uPa9KXLQ1x9p\nWOjJw9ZbmlLmVwoJK0ncttZ5dkUDTsK495Y/VSuIy+hXKKSuo3YNXJbfu5ksrKip2U7IqrQ/0dT8\nD/Q1S7StYoxEcuGqr+x/oBztP+BTsn6q/QeI+HlehT/Cv0LG4rRb8zm3qvcFF32GzyQ6qWerHhfK\ntpkX0LusTWpXJu9kh4Fei3JUkPGWtral0Mr5JsSSmqE0xky1QjntY0QjFJXii4axpjqaXM1ynSj9\nxCfu73UUTIKFKOVq+5W3rpc2pw5xREsq2Sdx4PLG596ZGY1ucfYQKpFfy18B4PLHnafquw2dvaLN\naqR5wRPWQvotLGpjPlQnUjGzTSZnlGdNtx1T5HourC3qpiuVNrWKN6wwQrOEWqiebky2FdPRuN/M\n1RjCSaVO7MuLxOAwmteVOMu6938Dpx6drz9T6np8Llvn9jPER6zK079/IapVajeJ4mJ6SYWLaoYe\nU/GTsjBU6S4uWlOFKmvCNzfbxnuuX3ury/08P+/Dq1VjKN72afxHjUT2ZxEuOcRl/wCTJfhSRW+L\nY574qr8xe7pws69+J/l3ifZW+j5orlWyNvK7eBw64njf/wAur87HjxfiEXpiqnxL3dNjt+o/b/Lu\nozUo3QsqzjvE4+nx/iC3rZl/dFGql0krr+LSpzXgrDOF+V7utx98Jf8AiuqoVo1FvaxpjJNaNHO4\nTpBgZSXX0JQfendHvYOpgMTHNh8tXvSlqvcY5dO/Dpw+o4+uUw+dKbi9NL37xlNO8Y2cuSvuW/6X\nROkT/o2v4dkcb+718bvmM/XKLUanZk0XKWhZJYSayyhy7hOrwt0lKat4nPw6eSNxW7sJUv2ZRa31\ndrmhrCWs05eeoSWDdlk0JkPKpKKV27JvcZ0sQp6ZbPZplkHhYqyTt4l0KtBerp7hnEusWPjN009X\nbmVUq97Rknc9PrqFRa/BiunhXyiavbWZsZes7Kbi7NkqrCL15mn/AE0Vol8CJfZpRtZfAn6V8l52\nJlCnOHaepHV4d838SepwyfP4l8QuiNtr2BaW1J6rD97+IdTQ5P8AMkk/JtCtfe9xrRa1VxVh6Td4\nzd/MHheanJPzHb+E03hchX6trXVirDO+lWXxJUXC0bt+ZqccNRba617w1beuiLHawjkndIKWUrLW\n9kC8SJXb0VxuRPYh2tYVrUa1gtZAV2d9BMT/ANPV/A/0LivEr/S1fwP9Co5mmn1VNr2UXQbsFBJY\nenfW8V+hM+y7RObYcuTBWeltWLOSy35ip2AHsx1bTwEWpYrAQ4qW5ZS0s0L7iYrWyHoWv113l1pO\nO9mJJXjGXMmbkmv8F+TDTatZq5XlWW3JDy1Sa5oSUlays2QPcVkOTa5XC9twAjYMy7wvcoi5It0Q\n9YOz3EQ+ZSVy7D0o1Z9ptQiryt3GW8YLXQtwXEKFLEqnVkslRZW2ejpea8n1V5Tp/peFx7j9RVJ4\nXBvqqUXZtbs5qc5Tbcm233nWdIejFdVp4rBpVactbROVq0KlOTjOLi+5o785b54+nm+nnDjM+U0c\nNOtGTi4pRV+07FFrDNPkyLHnseyVBJNiVEYuoQ6QKI1hiISLIU3O9nFWV9XYWwyQwQrl+Gr1aFRT\npTcJLmmJGnKbtFNs9vhXRnG42SlODo0ucpqx24yzz6cepy42Z7dNwnFviXCvtE1atTdpP2i7YpnV\nwnDaFLhuFkpOT7TXMscrWvz2OfVxfpN8/j/1NluiU1bUVeGgI8r3YJO6sSiCUFSkN7yCVsBCtFtK\n5YvASSuNHYgkaIWGig
"text/html": [
"\n",
" <iframe\n",
" width=\"800\"\n",
" height=\"600\"\n",
" src=\"https://www.youtube.com/embed/qGU-SqUTees\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7ffb08679e10>"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.YouTubeVideo('qGU-SqUTees', width=800, height=600)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkz\nODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2Nj\nY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQED\nEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAAAQIDBAUGB//EAEYQAAIBAwICBQcICAUDBQAAAAABAgME\nERIhBTETQVFhcQYiMoGRsdEUFUJSU3KSoRYjM0NigsHSJDRjsuEl8PFEVHODov/EABoBAQADAQEB\nAAAAAAAAAAAAAAABAgMEBQb/xAAvEQEAAgIBAwQCAgECBwEAAAAAAQIDETEEEiETMkFRFDMiYXFC\nQxUjUoGRoeEF/9oADAMBAAIRAxEAPwD5+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACcDATpAJ0saQalAJ0snSwalUFlBvsJ6N9xG\nztlQF+jfcOjfcNnbKgL9FLuHRS7UNwntlQF+il2onoZdqG4O2WMGToZdqHQS7UNwdlvpjBv2XCLu\n/qaLeMXjm28JHS/Q/iH21r+KX9pSctK+JlaMV54h54Hof0O4h9ta/il/aP0O4h9ta/il/aV9fH9p\n9HJ9PPA9D+h3EPtrX8Uv7R+h/EPtrX8Uv7R6+P7PRyfTzwPQ/odxD7a1/FL+0rT8kr2rHVTubSSz\njKnL+0n18f2ejk+nAB6H9DuIfbWv4pf2j9DuI/bWv4pf2kevj+z0cn088D0P6HcQ+2tfxS/tH6Hc\nR+2tfxS/tHr4/s9HJ9PPA9D+hvEftrX8Uv7SV5GcRbx01r+KX9pPr4/s9HJ9POg6135PXlnJRqzo\nvPWm/ga/zXX+tT9r+BMZaTxKJxXjmGiDfXCa7+nT9r+BK4PcP6dL2v4E+pX7PSv9OeDpLgty/wB5\nS9r+BWrwe4pU5TlOk0lnZv4EepT7PSv9OeDY+SVOg6bMdOrTz3MXRS7UX3CmpUBkVCT60W+TT7Yj\ncGpYQZvk0+2I+TT7YjcGpYQZ/ks8ZzEfJZ9sRuDUsAM/yWfbEt8iqac6oY8R3QalrA3rXhVxdS00\n3D1t/A6K8kOINL9bbfil8ClstK8yvGK8xuIcAHdr+St9b0JVala20xWXiUvgcf5PUy0lkmuSt/bK\nLUtXmGIGX5PPUltlm3DhFxOnGanSw1nm/gTNoryVpa3EOeDo/M1x9el7X8B8zXD/AHlL2v4FfVp9\nrejk+nOB0vmS5+vS9r+BV8HuE950va/gPVp9p9DJ9OeDo/M1x9pS9r+BV8JrrnOn7X8B6tPtHo5P\npoA3vmuv9en7X8CPmutnGun7X8CfUr9no3+moCCSyqQgSQkAASsiSpOSFoSASiEgCJAEohEkLJRl\noxdSpGEecnhGI3uDLVxe1X+oitvETK1eXtrC1hY2sKEEspec+1mwHzB5Mzudu8ABAiUowWZyUVyy\n3gthGvd2lK8pKnWzhPK0vBsLbkSKucI85xXizHGta0lpVWjFZzhSSIdpbatXQU2316UXjRpR9GlB\nfygTSqU6q1U5xmk8Zi8mQrGKjtFJLuJyEJBGRkgSTFtNNc0VySBzfKCOu06TG6edjziZ63iE1Cyq\nuUdS0tYPIJ7nTinwpdkTMifUYUzIpdRpKsM0ZdhjvHm1qfdCKXk/8JPwIrH8k24loVaFSjwz9ZHT\nrlGce9NPf8i/CODV+LdI6NSlBU8Z6Sajz/8ABm4hWhV4XbKMoycaNNSw+TTmsHPtW9Ox2Rw8+3h2\nv0ZlSnFVb22w5KL0VNTWX2es3qfkhCSUlxK2xnrkuWf/AAaFlR1I31b4Rla+mM5IiWOp5O2dvXoR\nr8SpOnUeJSp76dvd3nKurOhC5qQt5upTTxGTWMo6NenzKUaGp7lqyvFttCNquWDt0+H+T8KeZ3Nw\n5aE8aevrXIj5KscjVrU1HJZbbYuaHAlZS+TxrfKUko6uTe2X7zlKljkjYhHfczaU0VmdLM/Bq1Gl\nU0VEot8n1HoGtk+o8hU8x5TweitatlcWcIwua1JOTjmo47YjlnNkxTedw6MeeKxqWO+4xQpOdN2s\na0eWG9jWo+U9K0qVJ0uF0Frik0njlnu7zM+F8OqXdWnV4jCMIwTUsx3eWmufd+ZX5o4LOpGjG+nK\npLbzZRajs3vt1YN6UikMMlu+dvM8V4hK/u6dTo4wxsutvfO76+Zt2bbtKeH1GpxKtbVb6HyW3jTp\nQagsPOvf0n3maxl/hok5Y/i06f3NnOObySs8+ox6u0stzl072SLMieOe5r6muZkVTESO1O15KOM8\nmYaknLOWmVnVyYHJ45k1rJMplJKXLBDefR3KSnlJNFdup4NYhnLiEkA7nkpJIJQWCSCUQlJKRUsi\nEwlEkZBCyQAEpJCJIWDZ4ZN0+K20k/3iNdGxw+kql5F6tPRpz8cblZ4lMcw+hkbnK43PTC1cq1Sl\nSlWUakoPdR6zUqvgKX+e4lVfZt/U8+mGbxuHTkzRSdad9vHMh1ILnOC8WcO1q+TySVxRuJNOXnZ3\naztnfsMk6/kyoYjZ3MnjnlfEv+P/AGy/Kj6dV3dtH0rmivGaMb4lZrndUvVI867yyjRtVCyTqUpZ\nquUtqncaNWaqVZSUdKk8pLqLx0sT8n5P9PXPitiv/Uw9WWVfF7JPatnwhL4HE4PxSPDFWza067qp\nLz16ODovysrxqyqUrW3p5wsaXyy3/UfiwpPVW+IZ5ccslylN+EGYn5QWi5QrP+VfE41/d1L+6qXN\nWMYznjKisLlg1lHmWjpqJ/Iu9B+kFvnajV/L4majxSrXhKdGzqShHCcs4SztzPNJb7mxRr1qUHGn\nUlGLabSe2VyJnp6Hr3eolHisY6nw3C76qMNxc31CpVpSo23S0o6pU1UbeMZ9xxK3FeIVMud3WeVj\n0mjBW4hfXClGpcVqkWvOTm2iPQqr62R6S7n0/B5VMYc6Slj1ZPJZ3R6ig9fAo/8Aw4/I8tnczxfM\nOq3ESyZLp5MKe5fOdkaTCsSyqWSl1mdvOK7AiKj/AFb8BEeSeHLpf5OsvD3lrN7eszK1VPhbuNWe\nl1LHY4uPxMFp1nXDz7Rp3rGaijoSqrScS3m4my6zwYWx7lx2rO2atVTzktbzjk0JybYp1HFl61b0\n8Q7XSLTzNC5qLOxjdd6WalWq2y0Q0Z1U3yZOk25mlCTbM+JY7iZiCbKVpmzwyFjWU1e3EqLTWlrf\nKw89XgaNRYyYlnI7T+3flT4PSr1ac7mrOCxpnHr556vD/vcwwrcCp0YyrRuKlTT5yxtnuORhmKrH\nI7TbDfTpu5nOgnGnrbgnzSzsb1hGfyGNRrzNTin3nNniLUpRUknyfWdbh0v+htdlf3x/4K5fa3we\n9k1LG4zhZyYsotqOXTv+F3PKKuSxzMc3yKuW/InSu/taUyjba5iW5R7FohEkpdRVvch46iCysy5R\nJBJ1vNAAEpGQCBJZFSUgvCwI5EohKUAgQlKLJlUSQtCxktK6t7pTfJwlH2poxlJc0xrZM68vZ+UX\nn8KpSX14v8meZisyPTcU/WeTtOfYqbPNw9I5+m9mlup97PSoykZnbPHI3LGmmjfnRjo5Ita+pcPq\nxEuB0JlhaOXUbdSmozOjaUItF4s37omHHdo49RToNz0VejFQ5HLqRSnyLROyGrG2bN7h1O1o3CV3\nbqrCTUcuWNO/MtSSwRWSw9jKbTtaXSvbXgToVHQmo1UpaUpdeXj/AL7DI6fk9SelR1vP1pNHnXLc\n7NW+4VO1qdFZyhWawn
"text/html": [
"\n",
" <iframe\n",
" width=\"800\"\n",
" height=\"600\"\n",
" src=\"https://www.youtube.com/embed/UlZtr9fjQcU\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7ffb08679bd0>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.YouTubeVideo('UlZtr9fjQcU', width=800, height=600)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAgHCAgIBwgJCAgGCAcHBwcHCAcHBwgHBwgIBwcH\nBwcHChALBwgOCQcHDBUMDhERExMTBwsWGBYSGBASExIBBQUFCAcIDwkJDxQPDw8UFBQUFBQUFBQU\nFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFP/AABEIAWgB4AMBIgACEQED\nEQH/xAAdAAABBQEBAQEAAAAAAAAAAAAAAwQFBgcCCAEJ/8QAXxAAAgECAgQFCw0LCAkDBQAAAgMA\nBBIFEwEGFCIHIzIzUhEVJDE0QkNTcpKzCBYhRGJjc3SDkZTD0zU2UVRkgoSTo9HwJUF1pLTE0tQX\nJmFlgaLB5PRVobFxlcLh4//EABsBAAEFAQEAAAAAAAAAAAAAAAACAwQFBgEH/8QAQREAAgECAwYD\nBAcGAwkAAAAAAAIDBBIBBRMUFSIyM1IRNEIGIzFzISQ1QVFighZDU3FyoURUYyVhgZGywcLh8P/a\nAAwDAQACEQMRAD8A8ZQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQh\nCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEI\nAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgA\nQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgAQhCABCEIAEIQgB1CX+n4\nLa5ugdIvpd/tb7vsZwHBjXacrqOpuPG9e8/tfqZc7krv4WJD3hT9+BQ4S+/6Ma627Opup1L+cd2v\n1M+P4Mq4NGnSTafd7fUY37GG5K3+FiG8KfvwKHCXX/R1WeOpvOd9jE/9H1X41HnO+xhuOt/hYndu\np+/Ap0JaqnUupUJETE6dADfpt0v7X6qJhqnUF3yfOb/hjW56vsHdqh7isz5LN60X+MV87vsp99ad\nR0k+c3/DDc9X2BtUPcVnqQ6ksfrVf01ecz90PWw/pq85v7onc9X2BtMX4lbhLD62X9JXnM/dD1sv\n6SvOZ+6G6arsDXT8Sv8AUhJr1uu/Cvz58DV5xaLrl+fObqqe0XrIQsJOet13TX58d6NU6jT36fOb\n/hndz1XYI1kKxCWT1rv6SvOb+6c+tl/SV5x/uhuer7A1kK91IdSWP1qv6avOZ+6HrVf01ecz90Nz\n1XYd2mL8SuQlhPVpw9+rzj/dFaXVN7dA6RJO+N+jqk3tebDdVV2HNpT8Ss9TRDqaJa/WNU+MT87/\nALGHrGqfGJ+d/wBjF7mq+wRtUXcVSEsp6ovHtsV87vsp99adR0k+c3/DObnq+wXtUPcVmEs3rOqf\nGK/b/ZT560ajxivnd9lE7pquwNqh7iswlhZqw8eUSvOP9079ar+knzmfunN1VPYGshXISzetOo6S\nfOb/AIZ89aNR4xXzu+ynd1VXYG1Q9xWupoh1NEs3rNqPGK+d/wBlOvWVU+NT87fsobqquwRtUXdg\nVeEsx6nVGjtsT87/ALKceth/SV5zf3RG66ntF7VD3FbhJ8NWnERDerqh29+K+tV/ST5zP8MN3VHY\nGun4lbhLP60qjpp85v8Ahh60qjpp85v+Gc3dUdgbVD3FahLL60qjpp85v7oqjUepPktT5z/sZ3dd\nT2iNqh7iqQl2/wBHNb46m89/2MTPg+rNHbajznfZRW66ntDbafvwKbD2JcqXg/qm6AIXI6jO1cT/\nALGLhwZ1um7qOptzt77/ALGd3VVdgnboO/AosJfQ4MK4u06n5F/Lf2v1M+L4Mq4u06m89/2MN1VX\nYc3hT9+BRIS+M4Mq4dOjRnU+m42r0dQn9tHK8DOQ4NqwtGjTodT2nobpDTc/fyOV1OJnN11Pad26\nn7sCi+xD2Ja36j1IW3ORvjfo3n9r9VG/rVf1R0Xp3ys0bzP3RGOXVC+kVtUPcVzqw6stYajVOntN\nT87vsZ36warxqPOd9lDd1R2BtsPcVHqw6st3rBqvGo8532UPWDVeNR5zvsobuqOwNth7io9WHVls\n9YlV41Hzu+ynz1jVPjU/O77GG7qjsDbYe423DOYER3WXuWEdYLaK6cGcoM5gSCoMSbcI3xavqWjp\nWQluhxgT20wNgGBmgh5JADsg/GJ9sTvFruqWWJcikY+R/XJojZcNvHd5+Mzs8VaeghK20/cQHNMX\nZGrI672IPiwIPHOaZ8E6MqTtSTxYLlF5EiaTm1+RKefqlvT8g5iLJ3OIAcMiEXZEGRGI+gThkk8G\nwR9UYiNq7+/dxUlNYdQ8QoVZ5Cti+nSuQ2Vr5lTK9l5L2R+a0qTIhS8mLzik7X5/10c+LHPQdxZD\nrY660P8Ac+fBeFPLSQiO8jnN+SkRxF6BulyYhZO10bRXmiPF+XF8kxWJsHdPm4+MjK+cMOSb6Yh0\niJDaR83ONgK4h74I3YJ1CMZJPAt5S/ITEDpt0it3QjrCTEKZZe4TEeo7JyEhEHn0YzfUkUQvKPXj\nFg6ZDdjU6m3RcRWjGx4krxo+fGXqETnFpG5JrOEZIr0eNX58U65I8avz43tEHed0nOMS7Q+Wr00W\nXGtfXoLQNrV8tPfzsK9HjV+fIu0R384/pvYPVzuyNuuNP49fnxekqQbzZiyzoHHNSNyPpOKgEdTg\nAi1kWRZBswLpHvC3TJOMqsIiQcQYJ51nkK+vjmNk86zyFfXySAJFgJUhxZCyOp8WF0e0yLecIpiK\nTVBTWaItQU1uiOrI4iER5ziIv7UcskfVnaBQkEIGDW5abitGxMkNsACZpIxIjB3eSCQ61Sx9wmcX\n3aYiN+EW8fGWpbgLSRiVucnke/RNDhEyu5Lsm+zwcjKupBCrmFaMbdfqZWi1lLVEw+b8EpkiV2aw\n03MSKXKZqnkJarxUAbb4Mwq13/GYyCvENFKAluoPMYchausM3WnTEsenehsUMLdNsYgzWGp5R6fK\npqbnDEjEmsIeSZ8XIw+dV5f1L48fGGjnleW30T52cKcnEduOo1pIvFkKQ7nDJ3Bk6NiLIgyLsibI\nCx0g7SGSaN7cKRMeIdd5QTaoIdBtXpsK2cLkyYC8fdSMMLdNsQEcg6pD3Ym+FL304fHBAzrwuAvI\nkDQ82vyJYWSv0G6tfkSqn6paU/ILTidwiBwRZE1mIabyG4Q7yKMndDhp1mnIXyj5uQ6zouSqfnNK\n1e1YRia11LSZmGHFmB83HmLamValEKKwiHoOCHBzR1KKNYJtJgc5ecshnVHaAmN3hNyeMz446h6T\nFGmmYRrDQWOYPVEiA8tkiUAXU/PdL5rvgghprqm7eA6TclJR2t3pz0jJ6rWhQxuZQaMxKUFx0dZd\nyr4rq2ZHpqswi308uNkV9iiVYJCfOTjDa/ZbtwWX9Oam/lKF0HLLBoHZJkQ53QjbEu4KX5acLr7U\nEiwbTidXXiaBRlDud/fO6iBYTVXa/RkeEQCXrjSkP+UajyG/Uxg+vI3LakLSSGX8JBFfY9jyAbj7\ny+L1kDQFMSSXY4h3PznwkTv4pI+4THTKkUJtILb+MWByPoani1+RGJOcPQOgSZckSna6Yu+IYgyp\nIoZ2mdEDbWFIjTM3pSWS4Y1zDpS5jPaPH3qlxl3IE7lhq9UsRpaSlxN1GwaGt4ylqbMxTOOly4Sk\nq1lq01+r1C42Oo0txVKaXKpKXEfD+9TJ4z438JJxcznWHB6vDnlT16GU9QvnEu52R82HhBreuesd\nPiOP0NRh2HVRUmfu7RxNOnRo9h/88h9ZKKq1xxyqZglARC4+JQkMpVPR0/Y9Ppf+Lf8A7iEnf1KJ\njmM2lw4NgEtou95+vlWr6Y0MYpg2kk8tktvBn7Y+R+vl9k+OO0INV3RYuCw91A03cmfIWFN+ZQRM\nCHlDGrwukjYyIH1e+G
"text/html": [
"\n",
" <iframe\n",
" width=\"800\"\n",
" height=\"600\"\n",
" src=\"https://www.youtube.com/embed/P18EdAKuC1U\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7ffb08679b90>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.YouTubeVideo('P18EdAKuC1U', width=800, height=600)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Rozpoznawanie obrazów"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"60%\" src=\"https://chaosmail.github.io/images/deep-learning/recognition.png\"/>\n",
"\n",
"<sub>Źródło: Christoph Körner, https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/</sub>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"60%\" src=\"https://chaosmail.github.io/images/deep-learning/classification.png\"/>\n",
"\n",
"<sub>Źródło: Christoph Körner, https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/</sub>"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkz\nODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2Nj\nY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQED\nEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAAAgQDBQYBB//EAEwQAAEDAgMDBggLBgUEAgMAAAEAAgME\nERIhMQVBUQYTImFxgRQykZKhscHRFRYjQkRSVILC0uEHFzNDU2IkcoOT8DRzsvFFoiY1Y//EABgB\nAQEBAQEAAAAAAAAAAAAAAAABAgME/8QAKhEBAQACAgIBAwMDBQAAAAAAAAECESExAxJBIjJRYXGh\nE0LwBBSBkcH/2gAMAwEAAhEDEQA/APn6IiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAi\nIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC\nIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg\nIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiK/snZFRtZ8jKd0bTGATjJHqCCgi6I8jNogX52l\n893uWpfs2ZhcC+MhptcE29SdG1NFm8GfxavfBH28ZvlQYEV6DZU85sx0feT7laPJqtAvjh84+5Tc\nXVadFt28nK1xsHQ+U+5Z2cktov0dAO1x9ybhqtCi6E8jtoggGalz/vd7ljPJOv3SU57HO9ybNVok\nW/j5IbRkdhbJT3/zO9yzjkNtQ/zqQffd+VXZquZRdN8R9p3tz1J57vyoeQ20x/OpPPd+VDVcyi6X\n4j7T/rUnnu/KoO5GbSbrLTHse73IarnUXQ/E7aNr85Tec73LGeSe0B8+Dzj7lNmq0SLd/Fevv48H\nnH3LFJyerIxcuiPYT7lTTUorztlVDXWuy/afcsE9LJA/A+10RgRe4TdWaaglqXNaxzAXG2ZQVUXQ\nfE/aP9Wm853uXvxO2j/VpvOd7ldVNueRdB8T9o/1abzne5PiftH+rTec73J603HPoug+J+0f6tN5\nzvcnxP2j/VpvPd7k9abjn0Ww2rseo2TzXhDonc7e2Ak6W4jrWvUUREQEREBERAREQEREBERAU4on\nzSNjjbie7QKClE8xyNe3VpuEG92fybM9S2KpqObJOjGFxUazk1LDO+KmmE7m3yLS0rs4n0FJHFWx\nRtkeQ11muG/gvNpybP8Ageq2gxkcdRgc5uI54tPKqr5xBRT1FQYI2dNps6/zVutm8mWVYeJazC9r\nScLYyVrNjzBm16YyHoPkDX3OoJsV9BEtDsyUcxAHteC12EjLtRHCVGwp2Mkkp3CeNmpAIPkKqUez\n6itvzLRhGRcTYLtOVzKGk2LjoxGyWV4abHPDqbLmOTk7mVxjxWa9pyPEKDNHyake0gzAPH9uS11X\nsyopAXOAdGDbE05LtC8sZlrvvqtBypqXHmYAQGZuLR6EHPWRF7YYb3zvog9LHANJGTtFsqbYksmA\n1Egga7iC4rWue9waHOJDRYAnRdxycbR1GxI5qgMfMwubmeGiDUbQ5MNpywQVeNz2ghr4yPVdXuSF\nJNRbQrIZ2YXhje8XOa6OB+z9ptDqmEMcxob0zmtByam57be03tILb2bY5YQTay1Oyullyjd2Lg66\nUPkeAcg4rtdoyuho5H5aWC+fyuxFM2IxOdY5K1HC6RpdbVVomF8ob1rp9m0V6c3HYuVrtIxbHp7O\nuVvBT4zc6LyipWwN0zV26y6IRQMacgFZAAGigzJZFUYntu4KcUIwWtv1TCXOBO5Zg1DQyNjQMICy\najVRsEAF9FpBCvbZrwjeivLqBUioHVB4W3CxGMcFmXm9EVXRdSwTU2OOw1Wyw33L0RjeFU00lNsx\nrnYnDQrV8pNlERc6xuYXXc2A7JVa+JslM9pG7JXWma+WEFrswr1EbEOabe9Np0/NTOsMrqrTSFko\nG4qsvo+zqkVVGx58a1ndqsrScnX/ACcjb3zBW6XSdMXt6vERaZEReEoOU5c/Qvv/AIVyi6rlx9D+\n/wDhXKrll26ToREWVEREBERAREQEREBERAWy2RseTa3O83K2Pm7XxA53v7lrV1XIf6b9z8Ss7Stp\nsvZU9LSmCeRkgHiubcEdSjtfZFVXwRwRTRxxNzOK5Lj7lukWtJtxw5H1II/xcQ67FdBSbNlbTsZP\nI0yN+czLF2rYpomjbQbZ2DV7TqA4VMTImCzW2J7z1qjDyQq4ZWyR1kQc03BsV14KJqG2s+DZyzpS\nR47ddlp6nknWVUxlkrIrnQWOQ4LrEV1DbjhyLqgbisiB7CvW8i6kG4rIgewrsUT1ibcaeRVT9ri8\n0rYbI5O1Wz5SXVEUkTtW2Nx1hdGvNE1F211Vs2d1HJFTTNa6TLE+5wjq61V5PbCl2RLM+SZkgkaB\n0QRay3iXTSbaLlTVc3BHA0+Obu7FyMh6a3XKGfntoODSMMeXetG62OyxlWsV7ZFMaisaOGZXaQxC\nOMNG5aTkzTBtMZzq/RdAFxd0gMl60cUGi9Gqqsg0UgclEZ6L3xdSG9qm5BnjAKnZVhKxo1LvQsjZ\n8QyFgFPZGUjLQqBdY2QzkgXJzWJ0zm71Mcsr3BmJy1US4W1VY1PGx7l54Qze3yFa3fwM5dZYS95k\nzGS9EsbvrBMUf1/KE2Mrc17bNQBA0e096kCToL9hWvbFGVoupYclBptqCFkuLLUsRjcLDNVanNll\nafpfNVpRdq0ji9s0/wAo4W1XOYS2W3BdjthgxkO7iuaqWYJNNTqjDe8nJw2docbY22711N1wVO4s\nw4TYjMLsNm1PhVIyQ+NaxC3izkuXS68Xi2w9uvCUXlkHLct/of3/AGLlV1XLf6H9/wDCuVXLLt0n\nQiIsqIiICIiAiIgIiICIiAuq5EfTPufiXKrquRJ/6z7ntVnaXp1aKNwvcQXRlJFG6XUEl6DdRugV\nE16oXuvboiS9UF6gkiiiD29lgrZxBTSSE5NF1mWq5QyiPZ+De9wClHKzvJN3E4nG5VJoL5bcTZWp\n5/m4G5b1DZ0ZlrGC181xt4dce3abOjEVJEwDRoV9rXHQLFA5kEZxWxNbfPcqdTtOJ7rCUstvOYXK\nW3p022RcxvjPHdmoGoYzMN73FaKorZY2lwbiZ9cG4VF+1C/U+lbmEvdT2dJJtGwu12W8DJQNViGR\n10XOCrxWsVcp57ttqdy1qRZW5bNjNmrLz4tZug9K1vOiMGMHpHxj7FON+eax3y02nOXiaes+xec6\nC2zu48FgD/kGW4n2LE6TJTHmCcsmEkbwqz6ywsvXvDxhcc/mn2LWzEhxBuCtSovmtt0QVhdtPmzY\nG61ksxvhbqougkuOcDgToxou8927vW/aTti1uGbWLrNAz4DVZPhVsX8V/S+qDn+i0b+caMJeylYc\niL4pD2209CxMwA2jhfKfrSmw8g96zcto6am2zJIJMANmtvZue8K3TbYifYSGx4rR0rKmOjlvJZ8j\nCWtYMNgCOHf5FgFRWMb0nud/mF/WuePNuorshKXsu1wc3qzWJzslzlHth8TgDG3LgMPqXQxzx1FO\nJA3C/LK61crLNwaTbcYLCbLmHsMnROoK67bLCadxC5MPDpsO9doxWIuw2HDJdJyemFnsXNy5G3Bb\nbYMtq4MG9hutRHUoog5ISujm9uijdLoOX5bfQ/v+xcsup5a/Q/v+xcsuWXbpj0IiLKiIiAiIgIiI\nCIiAiIgLqORX0z7ntXLrqeRX0z7ntVnaXp1IK9XmqaLbKSLwG69RBerxFVer268TLiiJL1QxDivc\nQQSReApfqKD1aDlOSR
"text/html": [
"\n",
" <iframe\n",
" width=\"800\"\n",
" height=\"600\"\n",
" src=\"https://www.youtube.com/embed/acKTCF0sAfc\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7ffb08679e50>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.YouTubeVideo('acKTCF0sAfc', width=800, height=600)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"60%\" src=\"https://static.techspot.com/images2/news/bigimage/2014/11/2014-11-18-image-10.jpg\"/>\n",
"\n",
"<sub>Źródło: https://www.techspot.com/news/58872-google-new-image-recognition-software-can-describe-entire.html</sub>"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkz\nODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2Nj\nY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQED\nEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAABAIDBQEGB//EAEYQAAIBAwMBBQUGBAQFAgYDAQECAwAE\nEQUSITETIkFRYQYUMnGBI0KRocHRFVJisTNyouEkQ1OS8ILxFjREY5PSJaPCVP/EABgBAQEBAQEA\nAAAAAAAAAAAAAAABAgME/8QAJBEBAQEAAgMBAAEFAQEAAAAAAAERAiEDEjFBUQQTImFxMoH/2gAM\nAwEAAhEDEQA/APn9FFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFA\nUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBRRRQFFFFAUUUUBR\nRRQFFaTaBqa9bb/+xf3qv+D3+3PYcf51/emBGinP4Xe/9H/Wv71B7C5jOHjwf8wq4FqKbi0y7lVm\njiyF694fvVn8G1Du/YfF0768/nTKmkKKbOmXg6w/6h+9c/h91/0v9Q/emU2FaKZ9wuf+l/qFAsLk\n/wDL/wBQplNhaimf4fdf9L/UP3rv8Puv+l/qH70ymwrRTPuFz/0v9Qo/h91/0/8AUP3plNhaimxp\nl2f+Wv8A+Rf3qQ0m9PSEH/1r+9PW/wAHtCVFacPs/qk7hIrUsT076/vSslhcxuVeLawOCCw4plNh\nairktJnkWNUBZjgd4VdJpd5HK0TwgOhwRvU/rUxSdFPJo9/IVCwZLdO+v71YPZ/VCwUWhJPTDr+9\nBm0UxJY3MbFXiII4xkVD3eUdU/OrlFVFXC2mPRPzFWx6bdysFSLJJwO8B+tTApRWrJ7OatFKI3tc\nO2MDtE8enjVF9o9/p03ZXcHZvjON6nj6GhhGirfd5f5fzFdFpMeij/uFXBTRTY027bpEP+9f3qyf\nRb+3x2sKjIzxIp/sagQopz+F3nH2Q5/rX967/CL7IHYdf61/egSop7+DX/8A0P8AWv713+DX+P8A\nA/1r+9MCFFPfwe//AOh/rX967/BtQ/8A+f8A1r+9AhRTx0e/Az2HH+df3qP8KvcZ7H/Wv70CdFOn\nSb0DJh4/zr+9A0i+IBEHB6d9f3oEqKcOlXoPMP8AqX96P4Xef9H/AFD96BOim/4ZeEf4P+ofvRJp\nl5HjfDjIyO8D+tApRTHuNz/0/wAxXPcrg/8AL/MUwUUUx7lcf9P8xR7jc7tvZ8/5hTAvRTPuFzjP\nZ/6h+9cFjcN0Qf8AcP3phpeiml066Y4EYP8A6x+9cawulODF+DA0wLUUyun3THAi5/zD96G0+6Ug\nGLBP9Q/ergWops6ZeBd3Y8Yz8Q/eqRbynomfqKYKqKaXTrpvhjH/AHj967/DLzardlwwyO+vT8aY\nPXXl69pIm1VYsM97NYc9/OJ3xgAnJHhXoLu1M+pWsQVXyCSGJAwOT05pHXrS3jS1ntkUCeN92wMF\nO0jkBufGt36zGWuoSKxyF5qMk8txIu1U3Hity10+zuLOxje2DPLE0rtuO5ipbCjyzjFFlbWV0trc\nS2a2oebsCoLYYlT5+IOKkVhie8sn/wAMDPh1BpyO7uLqCMAqjJzkCtufSbWG2Esqc2iE3K5PeYrl\nR+Jx9Ky9DiiK3Uzp2rQoCIsnnJwSceAq6iuG2vLmTs45hnBYkgAADqSTVa2NzKZQsxbslLMQR0B6\n16O37GEGYWqqZrSRjGxOBjI456GktFwZbz7LtB7s32Y8eRxV1nGNHZSSvtR5HbBOB+NTewMBQS7s\nuocd7qD0rchtoLj3eYwdhv7VSik4bahIIzz1qV/bxe4Qzhe0k93iQ88QjaO8fP8AtT2MYSwxjqpP\n/qNXL2a8dip/9TfvWzd2VnD28IQfY42mMOXbkdcjbz+1LapbxLGsttEixbymQWDfJg3j8qvsYSDw\nj/6aM/Mt+9TE0A/+itz8wT+tPpDDHb2P/A9sbgHc5LfzEcY8aZs9Mt+27CZUZZJXSN+8WIU4zxwP\nrT2qYRtbgSSrFDYWpdzgDZ1/Oro9WdeFtoB8lq7TUiin03bADLKdzSEnIwxHA6eFEOnwe9JFs3Rr\nEZBKScTH6dAPLrxV96eqcWuzoRiKLj0P71je0UPvEg1AxhFmO1tvTcK3PcYGbtVjDFY2YxpuCsQR\njrz4nPyqvUolfQlDQiHczEAE4zgcjNZvLVkx49IviMJDFRuyRjFNXl5Kbsu8Kxs6jIx6YrW0uK0l\n9wt2tN7XiOJZNxBUBiBjn0q57OyZbQ3EcZNyhLse0Ljk8LtGOMeNYt1tjQ6pMhXCR8eYNO/xRtwm\naCEyA9cH965BY2x0YXhgLXAjOIt3xrnHa4znHpVXtDOjzRIkEcJ7GNtwY97KDjk+FSBKa+/ibhZY\nws65HaoPiH9Q/Wkp0uIM7xlc43DpXpuziupNOT3NQFtDIOyYguRu7mc+P40tfMh01bz3IQyiYxFM\ntyoGc8nnB4rWjzyNIzbVHJptLie2uFxIrbSDxyK3xZ2YjtTNDC5uSQzfaluuMLgEZxzzVelaVayR\nLFMkTGZJJIpAHMhUZw38q9OlS1YSu9UvZLhHLqpwMbRjGKW9oGvFv/8AjW3ygYJNad4sNvFFGlgJ\nzJb9p25LZyR1GOMCn9eit746ihtws0AVlkBOScgH+9Zi14oSnyFTWb+la1LCxSKxubuS096eNlVY\n2J2gHOWOMeWK1oLaC0hvStgn2tmkzROzdwlwCvXOPH61rUYEnaW7oksKqWVXHyIyKtu7n4QsaDj1\nrblht5/sHtkMiaesgl3HduVARjwxRdadZJbvEVjJFv2qygSGQttzngbdueKzqvOibJUbFHPhWhs2\nsoV3GfWu6xBBbywW1tahT2ccjSZJZiyg/LHNS7CZiCIpP+2tQdAkU5ErfWub5Fbdu9KmYJgvMbfh\nVTpJtIZSKqLO2mBPSoyXMoHlUFZscj0NSJ88fjQQF02MFvyqQuM4zioHBXwqs4GOKIZ94DLjH51f\nHcphQc8VnuFC5xU1RSBkVFNySRk53VA7R0cZpZ1AHBNQZiB8RqovfKgbWH41NUZviOePE0kztxzn\n6VIMSOooLmjYyEVNrYoM9aWR23kjr55qwyzAdT+NVEtu77pzUzEo6rmqVuJV6A/hU1u353KD9KK6\n0ICYwQKqWIE8iutelgQduK4tyoGCKIDFhtwxUNjjPeq0Tx9SDiovNGT3QcUFQ3jksakWc45+pFde\nRSQQMVAOuck0Ew7HO4jy8qgpjVziNcjoQa47Kw681UoPNUXqF6lSfrU+2AQI2Qg8R1xSwzTFpZi7\ncxmTa3X0ojb1TthcQSRbwyjgr1HNZ95cXJwZzJIDkd/JxmvUofKq7qDt48GmGvMwSyTBVCuvZ8Lt\nzx8vKlHmvpNQjiuZJpGRxt3kkivX2dsYnB6Cs7VpH/jNvcRAAxFQ3jkVr1TS17FcNbysxlAbl857\n3z86x4Xnt7gSQmRHHiuQa9xrc7HSu1jJZdwyB4ivPRMHmTnGazyi8LqtBe3BMmy5dnGGY55HlXYI\nrtJPsYbhG6ZQEV7HSrqE2ziScKdu3lvzqaXKWlwJDMroVwAGzk+dZmtcpJXjJJpvec3UsqSAYzIS\nCBXRcwKc+9j4dnxn4fL5Vve1JguoFnhZe0j+LnkivDXKFJN4ztbpWsZ1uNqMBiWJ7x2Rei5YgVCb\nVbebaJZ5pccDIJxWBzj4h+NSjbYyuCMqcimD1R1GcRwxQQXKKqbWwduTk/uKSOvC1zCFuI8HlN23\nB+Ven0vX9LurUNcSKs
"text/html": [
"\n",
" <iframe\n",
" width=\"800\"\n",
" height=\"600\"\n",
" src=\"https://www.youtube.com/embed/8BFzu9m52sc\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7ffb08679290>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.YouTubeVideo('8BFzu9m52sc', width=800, height=600)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Tłumaczenie maszynowe"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAoKCgoKCgoJCgoKCgoKCgoKCQkKCgoKCQoKCgoK\nCgoJChwLCgoaCQkJDSENGh0gHx8fCQsgICAeIBweHyABBQUFCAcIDwkJDxoUEhQaFxUXGBcVFRUV\nFRYVFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFP/AABEIAWgB4AMBIgACEQED\nEQH/xAAcAAABBAMBAAAAAAAAAAAAAAAAAwUGBwECBAj/xABWEAACAQMCAgUGCAoFCgQGAwABAgMA\nBBESIQUxBhMiQVEHMmFxgZEIFCNUYqGx1BhCUnKSk5TB0fAzgrLS4RUkQ0RTY3OiwtMWF4OjNGSE\ns8PxJTV0/8QAGwEBAAMBAQEBAAAAAAAAAAAAAAECAwQFBgf/xAA3EQACAQIFAwIEBAMJAQAAAAAA\nAQIDEQQSITFRBRNBFGEicYGRFTKh4QZS8BYjM0JDscHR8aL/2gAMAwEAAhEDEQA/APGVFFFAFFFF\nAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFA\nFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAF\nFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFF\nFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFFFAFFegvwS+OfOuD\n/tF79xo/BK45874P+0Xv3GrZGVzrk8+0V6CHwSuOfOuD/tF79xrI+CTxz51wf9ovfuNMjGdcnnyi\nvQf4JPHPnfB/2i9+40fgkcc+d8H/AGi9+40yMZ0efaxXoI/BK45874P+0Xv3Gj8Evjnzrg/7Re/c\naZGM8eTz7RXoMfBJ45874P8AtF79xo/BI45874P+0Xv3GmRjPHk8+UV6EPwSeOfO+D/tF79xrR/g\nm8cAJ+N8H2Gf/iL3u3+Y0yMZ48nn6ivQX4JfHPnfB/2i9+41j8Evjnzrg/6+9+40yMjPHk8/UV6C\nHwS+OfO+D/tF79xrH4JfHPnfB/1979xpkYzx5PP1FegfwTOOfO+Efr737jR+CXxz51wf9ovfuNMj\nGePJ5+or0Efgl8c+d8H/AGi9+41j8Evjnzrg/wC0Xv3Gp7chnjyefqK9Aj4JfHPnXB/2i9+41k/B\nK45864P+0Xv3GnbkM8eTz7RXoH8Evjnzrg/7Re/caPwTOOfOuD/tF79xp25E51yefqK9A/gmcc+d\n8H/aL37jR+CZxz53wf8AaL37jTtyGePJ5+or0Afgm8c+dcI/aL37jQPgm8b+d8H/AGi9+407chnj\nyef6K9AD4J3G/nXCP1979xrH4J3G/nXCP1979xp25EdyPJQFFX/+Cdxv51wj9fe/cawvwUeNkkfG\nuEbf7+87/wD6GnbkO5HkoGivQH4J3G/nXCP1979xo/BN43864R+0Xv3GnblwO5Hk8/0V6A/BO438\n64R+0Xn3Gsfgocb+dcI/X3n3GnblwO5HkoCir+PwUON/OuEfr7z7jR+Chxv51wj9fefcaduXA7ke\nSgaKv0/BS43864R+vvPuNYPwU+N/OuEfr7z7lTty4HcjyUHRV+fgqca+dcI/X3n3Ksfgqca+dcJ/\nX3n3KnblwO5HkoSir9T4KPGz/rXCP1959xpT8Ezjnzrg/wC0Xv3GnblwM8eTz9RXoA/BN43864R+\nvvfuNH4JvG/nXCP2i9+407cuB3I8nn+ivQH4JvG/nXCP2i9+40H4J3G/nXCP1979xp25cDuR5PP9\nFX/+Cdxv51wj9fe/ca1b4KXGxj/OuE7nH9Peen/5L0U7cuB3I8lBUVfx+Cjxv51wj9fefcawPgpc\nb+dcI/X3n3GnblwO5HkoOsVf34KPG/nXCP1959xo/BQ43864R+vvPuNO3Lgd2PJQNFX9+Chxv51w\nj9fefcaD8FHjfzrhP6+8+5U7cuCO7HkoGir9/BS43864T+vvPuNY/BU41864T+vvPuVO3Lgd2PJQ\ndFX4Pgqca+dcJ/X3n3Kj8FPjXzrhP6+8+5VPblwO7Hk9vAVitjWgrY5jdRWwrA2FbZqbEAvprBoW\nsGpsSaGsUE0ZqSpuKzmks1laEG70hceafTt79v30uxrnn5D85P7QoSKihq1zRQWAk1nNYoNAArIo\nIooLGWNYzWDzoqQbJQawNqwaAzWpratHoDOqsBq1asZoVN3Nag/bWWrFSAzRmtQaDQi4ZpOHzm9n\n2VuK0jPab1L++gFxQTWuaxmpINga0Q1kUItQDDithWtbAipAnitStb1g0QNCtakfvrZjScjUArbH\neurNcdua6zQlMKKwTRUgyKDWKxQgyaSuOX9Zf7QpXNI3R7J9RPuoDdhtWhWlDyrT+FTYqwFZxWBW\n1Aak+oZ238e721lxQwzj159tZNSQJGjFB50E0BgChhWc0ZoQd7Vg1vWpFYWOhg1BNZxWlSDcHatX\nNYJrFAFFYrNCDYCsVig0ANzpGc7qPpfYCf3UqKTkG6+sn/lYfvoWNs1sKxQKEGaDQKKAM0CiipQM\nZ3oNarWSaA3rWtJZQoLMcKASSeQA764eG8YiuHkEROIz38ypJAJ22800uVc0na+o5Gk2NYLVgtUi\n5tRWhatVztnnvy2Hu/nvpYi4rQawawTUkXELjXto08xnVnGnvxjvpYmigiosLmFNJp57fmp9rVuK\nTi89vzU+16mwuLmta2zWmaAzGaFNa1qDU2IubithSatRqpYBTfxbjENvp619Os4Xl2jzIAJ3rovr\nkRo7ncKM4HMnuUeknA9tRSbo4l5C7z7yPqZJNso7Y0shO6r2Ewo7gM5qVbyY13NQbp7+5LOuU5KM\nGUcmGdLbAnGRuMkjPoNayNUZ8nfWfFflGUgSugAbJRk061IxsMkEe2n9zUWKYPEd+jGo1a/jg6Ld\n+XrrrnuFRSzMFUcyxwPrpg4vxqCzhe4uZFihjBZnb6lUc2bOwUbnIqs/Jl0ml45xea8cMtlw9VNr\nb7f0shIhaTGzPhJJD4FYxyFZ1J5UdLnGKvLYv2ysNYDMSuRnTpw2PSG3B9FLTcNXHZY59OCPqG1c\nL35xscfbSkFx6c1hnlucnr6eyOeVCpwf8D6jSZNOM4Vxvse4/wA91Nz7EiuinPMbwqKWxkmk2Gdv\nZWSa1zWhZsxDJ2VP0R9grbNIxeaPRkfokj91ZzUgVBrYUgprcGhFzcGhjWBQeVCbmhFalq3pN6EG\nM70Ma0zvWTQkdM1lGPfWtC1ibG6msZoFFCTUisGlK0ZeY8RQGKzRRU2FjK0VjNYY0AUm3nD81vtT\n+Nb6qSzlh+afrI/u1DAqTWKM0A1AMg0VisUBk0Z2rANYJ2qUQANBNaaqNe9SBg8oF+kdvpfJWUlW\nAyCUVWkYZHLITT/WrTodY9QBHgA9RAT46iuW3541Fqj3lQk626srb8t11D0SyopP6KP9dThMByfG\nNP8AqoeRhX3cZVk/8tor7XZ0lq17601b0Cr2PUFc1sBvWhNZJqLAwxrfNI4rcVJBtmsE0CtCaIg3\nFJqe035qfbJWQaTU9tvzE+2ShIuDWJBWucVlmoAjO1J5o1bUip3NAK5rOqkgaGbnQmw3cfOvq4x+\nO+T+amB/bdD/AFa7GUKBjkAPcByptllzMWwSI4wTgE489m2HqSnK8gZVBAOlsaXwcHKkkZ83UOeP\nRWLxNNVFSb+K17e3JbttxzW0If0Vn6u8uYM7GRpMellDE/ZTj06478StJLgKrFNIAbzcuwQFsblQ\nTnHqps4XZSLxGWYgCLBUEsOeiNeXPGzV3dOuEm9s7i1WURmePR1gAfSCwLbZ71BH9apq1o5W0zj6\nLgsRCD7kHbNK114vp9
"text/html": [
"\n",
" <iframe\n",
" width=\"800\"\n",
" height=\"600\"\n",
" src=\"https://www.youtube.com/embed/06olHmcJjS0\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7ffb085d9850>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.YouTubeVideo('06olHmcJjS0', width=800, height=600)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkz\nODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2Nj\nY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQED\nEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAAAgMBBAUGB//EAEUQAAIBAwEDBQsKBgICAwEAAAABAgME\nESEFEjETQVGSoQYUIlJUYWJxkbHRFRYyNEJTcoGTwSMkM0NE4RfwByU1svGC/8QAGAEBAQEBAQAA\nAAAAAAAAAAAAAAECAwT/xAAhEQEAAwACAwEAAwEAAAAAAAAAAQIREhMDIVExMkFhIv/aAAwDAQAC\nEQMRAD8A+fgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAYGC5IAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzg\nYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAz\ngYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSMAzgYGSJA\nA9bIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAwjJy7YXAADtgwAA7YMAAO2DAADtgwAA7YMAAO2DAGAO2DGQYMjtgwBg3NmQjO4kpRT\nW7zjtgxqA9B3vS3f6UPYSjQo4/pQ6qHbBjzoPSKhQzjkodUsjb0M4dGHVQ7YMeXB6rva3+5p9VGV\nb0Hwo0+qh2/4Y8oD2EbSg1/Qp9VE1aW33FPqovYY8YD23elssfy9Lqon3na+T0uoh2GPDA95Cytn\nj+XpdRFsbG18mpdRDsMfPgfRO8LTyaj1ETVhZ+S0eoh2GPnAPpasLPH1Wj1EZjs+zf8Ai0eoh2GP\nmYPqEdnWfklH9NFi2dZeSUP00OY+Vg+rrZtl5HQ/TRNbNsfI6H6aHMx8lB9djsuxf+Hb/pomtl2P\nkdv+mi80fHwfY1sqw8it/wBNE1sqw8it/wBNDmr4yD7P8lbP8it/00PkvZ/kVv8ApoczHxgH2f5K\nsPIrf9ND5K2f5Fb/AKaHMfGAfZ/kvZ/kVv8Apoi9lbPx9St/00OY+NA+wy2ZYeRW/wCmiuWzbHH1\nO3/TQ5o+RA+sS2dZeR0P00Uz2fZ+SUP00OavloPpktn2efqtD9NEHY2fktHqInYY+bA+iysLPyaj\n1EUysbXyel1ETs/wx4AHu3Z23k9LqIh3nbeT0uoh2wY8MjJgHFWQYAGQAAABABbbW1S5rKnTWr5+\ng7lr3PzrL+BRnXlwlKXgwT/ckzixEz+PPA9VcbDnbJb1jlLnWv7nJ2jaRUVOhT1j9JRXARaJWazD\nlgNYeGCsgAAAGCjJu7J+tS/A/ejSN3ZP1mX4f3QHcpUuUmoJ4zzlsI0IxW821J43msYKIScJxkuK\neS9SoSqRlOE5dOWv+sCXJ20fClOpjOMbuqZlUqe+1vyyvs7uqMunSbl/EWHFRjl5f5+4mpUeUcly\njk+M8rL7CCM6e61rnKyhFYMzk6k8/kNEUWQJ4RBcCyK/MokySj0BInFaFEoaItiVpFkVoBYuBNFa\nyW4ygMpFkdCKLIpFRJaak4LJFYJwaXOBYlhE4rKKHc0U8OaT9ZfRnGesZJr1glZFFiRhY0wTSKjK\nWDPEYC4hQzzswZAAYDAwYZlmCiuRVLgXTRTMgplkpmi6XApmRVEuJU+JdNa6FMtMkFb4lcyxsqkQ\nVSRFonLGCHMRXz5AcwCBkwZAAAAECUIuUlGKbbeElzgfRO57YdL5DpSgv4lxCMpSfMmz01WjTt7e\nFOjBRjFYSRzNgQas6GW92nSisPTm4GttLaV1K4ToTqQgubcWPicbe3enr233J51Zz9tbOoVKMNoU\n4KNWDSqpLSpF6PJmve1qFnTqzpRlOZO32h39YVIzhFSXFReU0Yr6dbzEw+cbWtlabTuaEcuMJtLP\nHHMaZ0u6CtGvtm5qQ4Nr/wCqyc09DxgAKAAAG9sj63L8D/Y0Te2Rl3b/AA/ugO0kmSUcGFoTWWyA\niceJFecnHGQJolgjknEolGOhZHREVwLIoonHXBbErjxRalkoyTigkkTAlFE0YjhomuAEkjTv9sWW\nzVi4reH4kdZHO7oNtys92ysvCu6mmVruf7PKVbfcqt1purcN5lrlJ+vnJM4r0lTurnNOVvbKMfGq\nPL9iNOXdPeuM0nDXhiPA0aFrOrB4zlm9b7Fbpy3vtHKfI3FJlz3tOtN5q1HJ+42rPa9zSkp06s1F\necnV2MqXHLz0FE9l13qoNroJyheEvWWfdJN0VKVDlccd14Z1Nnd0Gz9o1OSp1uTrfdVVuy/2fPrW\nc7OvuyTjrwOhWtbK6anUk4Z/uR4x/I3W7M1fRjJ5LY217vZt1T2dtee/Sq/V7rOVLzNnreY7awwZ\nD4mCoyOPADGhAb1ImXxMPQqoSKZLQulwKZvQgpk0VTZbLgUz4EFUmVTLJFcyCqSRXLgTkVyyZlVU\nkQeiJTepF8CD58jJhAqAMmAMgwAMm9sZr5Ys8vCdaKz+ZokqcpQmpxeJReU1zMSsfr7DbT5OnKUo\n7ueYorchKW8qe/LmRy+5zbVbamz6tS7UN+FTd0WE9Ebl1VqU6LlTVJPjrnDPPMe3qi0SVrqjcbtN\n05xw9V0ewso29Ci5OLTbi0mznULipUuN3+XqRfFwbXvNmvcW1rB1bmpu0ItKT9bGfCZ+vnm16XI7\nUuKe85bs+LWDSNraFfvy/r3EVpUqOS9Rrbr6Dvjyz+sAYM7r6CowYMgAb2x/rcvwfujRN7Y/1uX4\nH70UdxLJNIgk8E1kyMp6k1x4EEtSxcCiTWScVoRXSWJlE0tCxIiloTRRKJZHiRSLEgJonhEUZ5wJ\nxI3NxG1taleo/BpxbZYjhd19w6ezYW8fpVp4/Jf7wBxKFfFKrtCq83NzJqDf2I87/Yu2bY8s+Xra\np/Rj+5znLlKkaUfowSpr9z1tlRUYRWMYR5/JbHfx11ZQt1piKRuQo4J0ocOY24QWOY88e3oxpyoJ\n6tIhKn5tDfnT05iqUMIGOLeWcKsXlLPqOC3K2uJ0Zt4esT19SCaZ5/bdtmnysfpQ1N0t7c7x6X7N\nq0dp2k9k3T0l4VCfPCR6fuW2jLaGx4OrLNei3SqdOVznze3uZUa0akXhxeUep7jL1Pbd7RT8C5jy\nqXQ85f8A9uw9dJeWz23OBgydGQDeMZ0Ac5GXAkQk9QqDKpcGWspkwK2UzLJMpkyCqTK5PJZPUpZm\nRGfrKpPQsnwKnqiKqerIsnwIMg+fAAqMgwZAAAAhzg3tn2NWvXpSlTapbyzKXBr9wPVdx9rU+Sru\nM04S5VNebwTpTv8AvSnu3NPOHxxkq2NfULapWtqvgd8S34zfDOMY7DZvFGeVKKcfOjlaPbtX3Hpq\n0tq285YpU3npwec7qb2cqkLThFYnJed8Oz3npLKhThPeVNRPN90turm8q3Vut7E3CWOfCwn2Cse0\nvuPPrUzjzGMNPDWGjOH0HZxYaCWQ0+gxnzBR6MDzggG/sb65L8D/AGNA39jfXJfgfvQHdiiaRGJM\nDKSZZBLBD1FkGUSiia
"text/html": [
"\n",
" <iframe\n",
" width=\"800\"\n",
" height=\"600\"\n",
" src=\"https://www.youtube.com/embed/rek3jjbYRLo\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7ffb085d9b90>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.YouTubeVideo('rek3jjbYRLo', width=800, height=600)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkz\nODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2Nj\nY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQED\nEQH/xAAbAAABBQEBAAAAAAAAAAAAAAAAAQIEBQYDB//EAEoQAAEDAgMBCQwHBwQCAwEAAAEAAgME\nEQUSITEGEyJBUWFxktIUFRYyUlNUgZGhsdEXNEJyc8HhIyQzNUOCk2JjovEl8ESywmT/xAAbAQEA\nAwEBAQEAAAAAAAAAAAAAAgMEAQUGB//EADcRAAICAQMDAQYDBwMFAAAAAAABAgMRBBIhEzFRQQUU\nIjJhcTOBkSNSobHB4fAVQtEkNFOC8f/aAAwDAQACEQMRAD8A8/QhCAEIQgBCEIAQhCAEIQgBCEIA\nQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCE\nIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgB\nCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQ\ngBCEIAQtP4CYp5+j67uyjwExTz9H13dlAZhC0/gJinn6Pru7KPATFPP0fXd2UBmELT+AmKefo+u7\nso8BMU8/R9d3ZQGYQtP4CYp5+j67uyjwExTz9H13dlAZhC0/gJinn6Pru7KXwExTz9H13dlAZdC1\nHgJinn6Pru7KPAPFPP0fXd2UBl0LUeAeKefo+u7sqC/cxWse5hlp7tJB4TvkuqLfY42l3KVC0NXu\nOxCjo3VMs9LkaAbBzr6/2rlTbla6pgbMySnDXagOc6/wVU7IV/M8Firk47kuCjQtB4H4h56l6zuy\nucm5arieGPqaUOIvbM4m3VUFqam8KQVcn2RRoVz4OVBcWippi4bRw+ynM3MVb3hgqKfMdl84/wDy\npdaHk70bPBSIWh8DsQ89S9Z3ZXCs3MVtHBvsklOW3twXH5KC1NLeFIKubeEilQtPT7hsTqaeOdlR\nR5ZGhwu917H+1dPo/wAV9Iouu7srQQaw8MyiFq/o/wAV9Iouu7so+j/FfSKLru7KHDKIWr+j/FfS\nKLrv7KPo/wAV9Iouu/soDKIWr+j/ABX0ii67+yuMm4jFGVMcAlpXve0u4L3WAHLdvOupZGcGaQtL\nTbiMTqWyFs1K0xvLHBz3XBH9q7fR/ivpFF13dlGsBPJlELV/R/i3pFF13dlH0f4r6RRdd3ZXAZRC\n1f0f4r6RRdd3ZR9H+K+kUXXd2UBlELUSbhMUjteej15Hu7KqJ8HqIHFrpIjY20J+Sg7Ip4b5OpOU\nlFd2VyFL73TeUz2n5LqzB53MzmSFo4sziL+5OpHyWzosrWZRK9CszgVVa4dEeSzjr7lykwmpjtny\nC/Om+PkqrXUeIcsgoUvvdN5TPafknMwyZ7g0PjBPKT8k6kfJdLTXRTk48IhIWhp9xuJ1MDZon05Y\n7Zd5+SdLuJxSKN0j302VoueGfkrEs9jNuWMmcQtNFuHxOWJsjZ6SzhcXe7sp3gHinn6Pru7KYwST\nyZdC1HgJinn6Pru7KPATFPP0fXd2VwGXQtP4CYp5+j67uyjwExTz9H13dlAZhC0/gJinn6Pru7KP\nATFPP0fXd2UBmELT+AmKefo+u7so8BMU8/R9d3ZQGYQtP4CYp5+j67uyjwExTz9H13dlAZhC0/gJ\ninn6Pru7KPATFPP0fXd2UB6EhCEAIQhACEIQAhCVACEtktkAlkqVLZdAgCzNT9Zl++fitRZZipH7\nzL98/FXU92U3dkTN0xy4Bbyiwfn+S50DctBAOSMfBdN1DC7AQfJcw/l+ajxxOqsNgayV0WZguW7S\nLbF4ntHus9j16V/06+/9Bz8RomeNVRepwKq6LHaeHEZ5p3nJJwQA0kgDZ+aqRTF81U1s74W07yzK\nLAC32n8oKnYbgMdfQRVUkj4nyC5a0C221/zXK669L+0b7kYzrlmHJLw/HaaKuq56mV+WQgMOW+gJ\n+a5TY9FJXzvBe+FzMrAdMp0IPtC6HctDlsKmTqhV1ZhjaCthpu6HtbI0vzts1zrfZB/92rTXrIWP\nbH1OzjTDElng0VJilJUtblmYHna0mxvyJmOj/wAVL0t+IVNg1F3ViM2Z5eymc0hz25s1xq0nlBVz\nj7suGOHlOA99/wAl5VlUar1GJZS4ynFx8l3geuDUn4YU6yi4OzJhFI07d6afcptl9BHsjz7fxJfd\njbIsnWQpFY2yWyWyLIBLKkxremYhTSVUkkdPkc0OiJDi7TQ21tZXtlT4iajvxTijZG+YQuJEnitF\nxr0qyr5iFnyjtz4HcDyy+9GVxiJ8Yt5+farSyrsCv3NOH6Sid++gbA7m5tis7LlnzMV/Khtklk6y\nLKBMbZFk5FkBDrdGD1rz2s1e1ei1o0b6155XtyyAW2Ehebb+MzTpP+6q/wDb+REXWMh8jd88Ro2L\nmnxxPlNmC/PxLp9JbtUG5PH18Fph4bWQztDcj423aOIqtlnzsGXgnY5o2HnVvhEXcsdS972ZiyzR\nfpVTJSyxi9sw5lCLlukmePp/cFc9kl9Oe/nucE6L+K3pCanR/wARvSFI9iyOYNGxwRlVJh43qoax\njXEZS2/P+alVcNW2lkL6prmhurcgF1X4JFRyUjzUyBrs+gL7aWCl1UGHtp3mKUF4Gg3y69XTcwj/\nAMHwkPw/7k+i+pQfcHwXay50Y/coPw2/BdiFGXzM2Q+VDLIsnWSWXCQ1InWSWXDgiEqRDoIQhACE\nIQAhCEAIQhACEIQAlQlshwAEqAEq6dBFktktkAIslslsgEssxUj96m++74rUrL1X1qb75+Kup7sp\nu7IusSpjV4NNC0Xc6O7RzjUKiwCoE1CIyeHEbEc3EtVF/CZ90KjxLc0Jah1VQTdzzE3Lfsk+rYvO\n1en60cI9LTWw2OubwR6rB6CsmE1RTNfIOO5F+m21TWsaxoa0BrQLADiVW445RaT0m/tH2mi9/Z8k\n3v1UN8fDpR7fkvHnpr/lfKRpWnb5jh/ZouLLjU0lPVx5KiJsjefiVb3+I20cg9f6IGOSP0ioZXnk\nv+irWnuTykd92s8FnTU0NJEIqeJsbBxNCp90M4lfFSRm7s2Z3NyKQ3v7iHBgpTTsP2nDLb1n8gpd\nLuTdFw5KoOlO05b2962afR2b98yUOnRLdOSz4QRY5URRtYI4i1oAGh+anUONionbFLGGF2gcDpdQ\n67BjR0rpt/D8ttMtuPpVdAbTxkbQ4fFerlo50qbYtxRpsarX4fhz542gvuGi+wX41Ubnsaq6uu7m\nqnCQOaSHZQC23QtJPBHUQuimYHxuFiCqmlGFYViYo4Y3NqJR4xubc11sg47HHGWeFNS3p54LiyLK\njgx6aXHTQmnaIs5YDrmFuNXyrlBw7lkZqXYSypMdEDq2lbUzOpogxzt9Zo6+nBv61eKlxUvbi8D6\nemFXK2I3idoGi/jXPHxKVXzEbPlOu54AYaQwXjEjhG+1i9t9p51V1+6eaCvfFBDGY43FpzXu623o\nVtgDf3B0ugMsrnljRYRnYW+5Q63AsOqsUN6gxzScN0TSLnnVkXDqPeVy37FtLiknbVUsU7AQJGh1\njxLrZc4hBTiOlY5rSG8Bl9bBdlnffgvXbkbZJZPSLh0iVg0Z61iMcp97qZRbTNnHQVuazY1UuK4c\n6tYHQtzSMB4PlBeVe8Xk8ygo2x7xef8AkxKtKeSJzA2Owt9njUeagfG8tILHD7LxZcTTScgPrU1J\nHpauzR+0KlF27f4fqm
"text/html": [
"\n",
" <iframe\n",
" width=\"800\"\n",
" height=\"600\"\n",
" src=\"https://www.youtube.com/embed/_GdSC1Z1Kzs\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7ffb085d9d90>"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.YouTubeVideo('_GdSC1Z1Kzs', width=800, height=600)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Inne zastosowania"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* systemy rekomendacyjne\n",
"* detekcja spamu\n",
"* klasyfikacja dokumentów/obrazów\n",
"* analiza nastrojów\n",
"* rozpoznawanie pisma odręcznego\n",
"* samochody autonomiczne\n",
"* przewidywanie kursów giełdowych\n",
"* automatyczna diagnostyka medyczna\n",
"* analiza genów\n",
"* sztuczna inteligencja w grach\n",
"* ..."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkz\nODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2Nj\nY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQED\nEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAAAgEDBAUGB//EAEIQAAICAQIFAQUGBQIDBgcAAAECAAMR\nBCEFEjFBURMUImFxkQYyQlKB0RUjobHBM2IksuFDU2Nyc/AHFjREgpLx/8QAGgEAAwEBAQEAAAAA\nAAAAAAAAAAECAwQFBv/EACYRAQEAAgMBAAIBBQEBAQAAAAABAhEDEiExQVETBBQiMnFhsUL/2gAM\nAwEAAhEDEQA/APn8IQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIA\nQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCE\nIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgB\nCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEJoGksPdfrFs0z1gkldvEAphDEMQA\nhJAzGWtmYAYzAEhNf8Pt/Mn1P7Su7SvSvMzIfkZPaVd485N2KIRuQ8uYKpY4EpBYR2rKnBIPykpS\nXIAZcmBybVwmh9HYq5JX9JX6R8iKXYuNn1XCWei3wl1eg1Fg91frtC2Q5jb8jLCXPprEJBAyDg4l\nfIRGVmiwj+k3IWyMCRymBFhG5D5E1Lw25kDc1YBGdyf2itk+qxwyy+RjhNx4XcPx1fU/tFPDrR+K\nv6n9ou+P7X/Dn+mOE1ewW/mT6mR7DZ+ZPqYdon+PP9M0Jc+mevqViilj4x0lJss8VwmgaOwnqv1h\n7HZn7y/WLZ9azwmn2G38yfUxPZnwTldob2LjZ9Uwlw07nuIz6OxMZZNxnYxpZ4S72Z/KyfZX8rAK\nITQujsY4DL9Zr/gep9lOo9WnlHUZOf7QPW3MhNi8NuY4D1/U/tD+G3H8df1P7QGqxwm4cKvP4q/q\nf2jfwi/Geer6n9oE58JuPCrx+Ov6n9pb/A9T/wB5T9T+0A5kJ0v4Jqf+8p+p/aI3Cb1OC9X1P7QG\nmCE3Lwq9uj1/U/tD+FX/AJ6/qf2j1Qwwm08MuH46/qf2jfwi/Geev6n9oaoYITd/Cr/z1/U/tEPD\n7R+JPqf2hqhkhNPsNn5k+pkexWfmT6xBnhNI0Vh7r9ZJ0FoH3k+pj0GWE0+w2/mT6mQ2jsUgZUk+\nDDVDPCam0Fq7Fkz8zF9js8r9Yg2IZm1JYnB6CWPYEHxmZnZye8DVQjNuciCoTAImvTJgcxlaVjPk\nx7Lgg5U3PmTffI0wkntaec9zKdUpdM+JkZ2Y5JzL6bCykHtJ669aXl7+KGbIxHoIXJPWNZUC2V+k\np6GaRhZoZyTHrco4YSubdPpsYd+viK2T6eGNyvjRWedAWXGe0uoppXfkBbPziYAk+uF3Hic93fjv\nmp/s1qqg55FB8mS9oxud+0xHUsR12lBu67yf47frW82OPxRq3J1LspIyYhwMHHMSO8LBlsxiAzAd\nJ1T48vO7ytLXhsqfnKyMEiPgK0lyCdhGgadPUsAPQbmdH1DjAmPT+7L+YzPknrr4LqLRYR3imyV5\nhmRpt2PkmRk5gDIJ7wicvYruZShB6/KNo0R7FRnWvm25mziV2DmuIB2xmRUWblRFBJOAANyZtJ45\nLbvbbZS1Fj1sVLL3U5B+RlX4oenZWT6gKsNiDtILqpwNzDQ7WrOhiXYGM7ZhW5LjO3bEh2DWttnG\nwka98a3LeGqimsO+RnAhdyhsDrmX6fmrXmXYwt05NRtKMCDvttKx9tRnJjhP/WUR8Zh6bAZAJgAx\n2Ckn5S2LfpNMLcDzOxfo003CLcseYiYeDqWZMjoZo4/qCCunQ9ZnlvbWeTbk0I1zKikBnOBk4mk6\nZtNanqPXsegOZkIP+oPug4E6OhNGqq5LFxYvcHr8Y8rr1M3W3jOsGp01KnTqtg39QDt4nJZwF36A\n4nWNYfTMlxy3Yjz2M47J/wAT6Wc8h3Iixy7CxoqTCktvntLC0gKxG28VsjtLGkO/KpMyM+fmY977\n8vYShdzmOFV6nCxS/fzFY52iE5O0tK6v3myegljNFX3FxIztkx6JFjcqzMW3zJsfmMrJkWmnMjrI\nMlRmEB1EN2+QhjOwl4ClcnZRLkKqCQq8x/SLWMfzW6n7okHFj5/Av9ZLHmMm3RyIJycmEICQpz+U\n9W3kH3RjzL+UAfGFddZJZ8nwIQVmGxmlEyATtLDVWfwyeUHpC408bJ9UXWBRyr17zPHuUq5zEhJo\nrdiXU7KTKYQKXTUHUdSIlqqU5xKgMnAl5X+Vygxa0ve2fHeaaLjy8pO4iBORTnfMr+64xCzZY24+\nxsNm28gNkZlOfMYRa00uVyMGO4kASRJiBWAxtFjmVmVEZz1GRmTiCffEciPadbiFOCJdmUjYyyTk\nvC6NmTEjAyG0ppPaA3jYk1rpnUj1LD8MCPw6m2/XVU0kCwuOUnsZXXlskDOSTDS2XVapXoJW0N7p\n8GbRxZPQ/a9TXZpGY87lCrkdyP8A+ziqvug46zu8U0r18H0x1JD2q55t89Zx8goMdpGddHFjubU2\no2OYbY6xUXOOmT1ll7Z90HY9ZFC7wl82WWMuem3S0etatY6d8Ts3aTNJpI90rygzFwvCEvjJJnX1\nV4GmfnHLyrzZm/FjrHdY8+W89T8PLaVzTY6McOp6+J0VvZq/fctOctyrr1utRuR/vAEZM2erR6/L\nTzgHqHA2ixzm9IuF06HCE57WxsAczHxlVGuxY2NuwnY4ZSqjI6mYuNVqmuS5iCoU9D3EeeP5PHLz\nTj32AL6IBwvf4yit2qcOjYI7xmb1LSQvKDvjxJWv+ZuBt5mW19fNxf7bqHHvWHzsI2l+4zncsesy\nnLEKPxGaUcLUAI4laWI6HEV7CFJJzKjZv1lVr5wMxjZWbJ+McbCUruY5PaVEVJMt06ZJY9BKQOY4\nE1gBVCDoOsvGFUMMn4Si+38Cy2+wVp8TMJOTvDKiJzDMjEjMzUkbmXhdgq/WUAy2pivQysSq4VHp\nK9Q2WFSf/kfEd7+VMAe+ekzgcoxnJPUysropNpJGOVegkQhMttNASYTq6DS+govsA9UjNan8A/Mf\n8R4zZW9Y5N+nUIjAMeYb5laoEHTabtSWzjYAdBiZWzjoJetEXrsOsUDlHykBMHOd43TPiEDMzc1n\nK64B6fCV2VMh6beY913Mw5RsO8ZNR2cfrM8vvipq+VmkgEnAmvNT+JKoq/dEnsr+P/1Wicgyesgt\niWNKm6wO+GB5gZURjpHAk4Ee06QpJxtHgIRHInMmLJiUmI0aKxjicviE6mWStOsshRj8EZNxK36S\najvH+CnmS3EMRodpm6eo6dIFsKTntFY8o3mZ7WbbtCTacuTq0aU4G+0nUcq8rpswPUSqtWNeV7bm\nS7Fq9x8ZevdspnOvWtiXM2jPO7MS5LZOcnbf+sVSvMBvM9be64+UtB/mfKRlPW3Hl5CWsGtYL06S\n+sjl2MzWDl97HXr8MxQZWtxEzuOVtej4Yy+iCcQ4tqjci0A8xz7xHicPTvcWAQsFzuR0l1Vh9TLH\ndunxEvPk/wAdRHFxzLLdRqKRyghcYk0MOZTg5/6TRaG5cdVPxmaoYBOd17TLjvaetuedMtx6Th2r\nFemDHGcbTDqVs1iX6jcV1gYHnfr/AHmPS2OzYOSB0XyTOvQy08Neuw/zLMlvn0nRbuObHHVl/LgN\n7lmfhLaFe1iqjJO5lO
"text/html": [
"\n",
" <iframe\n",
" width=\"800\"\n",
" height=\"600\"\n",
" src=\"https://www.youtube.com/embed/SUbqykXVx0A\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7ffb08679590>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.YouTubeVideo('SUbqykXVx0A', width=800, height=600)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 1.2. Czym jest uczenie maszynowe?"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"float: right;\" src=\"https://upload.wikimedia.org/wikipedia/commons/f/f8/This_is_the_photo_of_Arthur_Samuel.jpg\"/>\n",
"\n",
"> Uczenie maszynowe to dziedzina nauki,\n",
"> która daje komputerom umiejętność uczenia się\n",
"> bez programowania ich _explicite_.\n",
"\n",
"> &mdash; <cite>Arthur Samuel, 1959</cite>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"float: right;\" width=\"20%\" src=\"http://mediad.publicbroadcasting.net/p/wamc/files/styles/x_large/public/201401/tom_mitchell.jpg\"/>\n",
"\n",
"> Mówimy, że program komputerowy **uczy się**\n",
"> z doświadczenia E w odniesieniu do zadania T i miary skuteczności P,\n",
"> jeżeli jego skuteczność wykonywania zadania T mierzona według P\n",
"> wzrasta z doświadczeniem E.\n",
"\n",
"> &mdash; <cite>Tom Mitchell, 1998</cite>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"40%\" src=\"https://static1.squarespace.com/static/5150aec6e4b0e340ec52710a/t/51525c33e4b0b3e0d10f77ab/1364352052403/Data_Science_VD.png\"/>\n",
"\n",
"<sub>Źródło: Drew Conway, http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram</sub>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Uczenie maszynowe to:\n",
"\n",
"* doskonalenie działania dla pewnych zadań na podstawie doświadczenia"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* tworzenie systemów, które doskonalą swoje działania na podstawie przeszłych doświadczeń"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* zestaw metod, które potrafią w sposób automatyczny wykrywać wzorce w danych, a następnie używać wcześniej niezaobserwowanych wzorców do przewidywania przyszłych zjawisk"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Charakterystyczne cechy uczenia maszynowego:\n",
"\n",
"* „automatyzacja automatyzacji”\n",
"* komputer „sam się programuje”\n",
"* modelowanie danych zastępuje pisanie programu"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"80%\" src=\"https://recast.ai/blog/wp-content/uploads/2017/02/image20.png\"/>\n",
"\n",
"<sub>Źródło: https://recast.ai/blog/machine-learning-algorithms/</sub>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 1.3. Metody uczenia maszynowego"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Z jakimi rodzajami zadań mamy do czynienia?\n",
"\n",
"* Uczenie nadzorowane\n",
" * Regresja\n",
" * Klasyfikacja\n",
"* Uczenie nienadzorowane\n",
" * Klastrowanie\n",
"* Uczenie przez wzmacnianie\n",
"* Systemy rekomendacyjne"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Klasyfikator\n",
"\n",
"* Klasyfikator to funkcja $h$, która przykładowi $x$ przyporządkowuje prognozowaną wartość $h(x)$.\n",
"* Jeżeli funkcja $h$ jest ciągła, to mówimy o zagadnieniu **regresji**.\n",
"* Jeżeli funkcja $h$ jest dyskretna, to mówimy o zagadnieniu **klasyfikacji**."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Algorytm uczący\n",
"\n",
"* Dane są przykładowe obserwacje $(X, y)$.\n",
"* Staramy się dobrać funkcję (klasyfikator) $h$ tak, żeby $h(x) \\sim y$."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"W jaki sposób można określić, czy klasyfikator jest „dobry”?"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Podział metod uczenia maszynowego\n",
"\n",
"> \\[Każdy algorytm uczenia maszynowego\\] stanowi kombinację dokładnie trzech składników.\n",
"> Te składniki to:\n",
"> * reprezentacja\n",
"> * ewaluacja\n",
"> * optymalizacja\n",
"\n",
"> &mdash; Pedro Domingos, “A Few Useful Things to Know about Machine Learning”"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Reprezentacja\n",
"\n",
"* drzewa decyzyjne\n",
"* regresja liniowa\n",
"* regresja logistyczna\n",
"* naiwny klasyfikator bayesowski\n",
"* algorytm $k$ najbliższych sąsiadów\n",
"* sieci neuronowe\n",
"* maszyny wektorów nośnych\n",
"* algorytmy genetyczne\n",
"* ..."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Ewaluacja\n",
"\n",
"* skuteczność (dokładność)\n",
"* precyzja i pokrycie\n",
"* błąd średniokwadratowy\n",
"* _information gain_\n",
"* _logistic loss_\n",
"* BLEU\n",
"* ..."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Optymalizacja\n",
"\n",
"* optymalizacja kombinatoryczna:\n",
" * wyszukiwanie zachłanne,\n",
" * _beam search_...\n",
"* optymalizacja ciągła:\n",
" * nieograniczona:\n",
" * metoda gradientu prostego,\n",
" * metoda Newtona...\n",
" * ograniczona:\n",
" * programowanie liniowe..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Slideshow",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.15rc1"
},
"livereveal": {
"start_slideshow_at": "selected",
"theme": "amu"
}
},
"nbformat": 4,
"nbformat_minor": 2
}