{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "### AITech — Uczenie maszynowe — laboratoria\n", "# 4. Sieci neuronowe (PyTorch)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Przykład implementacji sieci neuronowej do rozpoznawania cyfr ze zbioru MNIST, według https://github.com/pytorch/examples/tree/master/mnist" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "import torch.optim as optim\n", "from torchvision import datasets, transforms\n", "from torch.optim.lr_scheduler import StepLR\n", "\n", "\n", "class Net(nn.Module):\n", " \"\"\"W PyTorchu tworzenie sieci neuronowej\n", " polega na zdefiniowaniu klasy, która dziedziczy z nn.Module.\n", " \"\"\"\n", " \n", " def __init__(self):\n", " super().__init__()\n", " \n", " # Warstwy splotowe\n", " self.conv1 = nn.Conv2d(1, 32, 3, 1)\n", " self.conv2 = nn.Conv2d(32, 64, 3, 1)\n", " \n", " # Warstwy dropout\n", " self.dropout1 = nn.Dropout(0.25)\n", " self.dropout2 = nn.Dropout(0.5)\n", " \n", " # Warstwy liniowe\n", " self.fc1 = nn.Linear(9216, 128)\n", " self.fc2 = nn.Linear(128, 10)\n", "\n", " def forward(self, x):\n", " \"\"\"Definiujemy przechodzenie \"do przodu\" jako kolejne przekształcenia wejścia x\"\"\"\n", " x = self.conv1(x)\n", " x = F.relu(x)\n", " x = self.conv2(x)\n", " x = F.relu(x)\n", " x = F.max_pool2d(x, 2)\n", " x = self.dropout1(x)\n", " x = torch.flatten(x, 1)\n", " x = self.fc1(x)\n", " x = F.relu(x)\n", " x = self.dropout2(x)\n", " x = self.fc2(x)\n", " output = F.log_softmax(x, dim=1)\n", " return output\n", "\n", "\n", "def train(model, device, train_loader, optimizer, epoch, log_interval, dry_run):\n", " \"\"\"Uczenie modelu\"\"\"\n", " model.train()\n", " for batch_idx, (data, target) in enumerate(train_loader):\n", " data, target = data.to(device), target.to(device) # wrzucenie danych na kartę graficzną (jeśli dotyczy)\n", " optimizer.zero_grad() # wyzerowanie gradientu\n", " output = model(data) # przejście \"do przodu\"\n", " loss = F.nll_loss(output, target) # obliczenie funkcji kosztu\n", " loss.backward() # propagacja wsteczna\n", " optimizer.step() # krok optymalizatora\n", " if batch_idx % log_interval == 0:\n", " print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n", " epoch, batch_idx * len(data), len(train_loader.dataset),\n", " 100. * batch_idx / len(train_loader), loss.item()))\n", " if dry_run:\n", " break\n", "\n", "\n", "def test(model, device, test_loader):\n", " \"\"\"Testowanie modelu\"\"\"\n", " model.eval()\n", " test_loss = 0\n", " correct = 0\n", " with torch.no_grad():\n", " for data, target in test_loader:\n", " data, target = data.to(device), target.to(device) # wrzucenie danych na kartę graficzną (jeśli dotyczy)\n", " output = model(data) # przejście \"do przodu\"\n", " test_loss += F.nll_loss(output, target, reduction='sum').item() # suma kosztów z każdego batcha\n", " pred = output.argmax(dim=1, keepdim=True) # predykcja na podstawie maks. logarytmu prawdopodobieństwa\n", " correct += pred.eq(target.view_as(pred)).sum().item()\n", "\n", " test_loss /= len(test_loader.dataset) # obliczenie kosztu na zbiorze testowym\n", "\n", " print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(\n", " test_loss, correct, len(test_loader.dataset),\n", " 100. * correct / len(test_loader.dataset)))\n", "\n", "\n", "def run(\n", " batch_size=64,\n", " test_batch_size=1000,\n", " epochs=14,\n", " lr=1.0,\n", " gamma=0.7,\n", " no_cuda=False,\n", " dry_run=False,\n", " seed=1,\n", " log_interval=10,\n", " save_model=False,\n", " ):\n", " \"\"\"Main training function.\n", " \n", " Arguments:\n", " batch_size - wielkość batcha podczas uczenia (default: 64),\n", " test_batch_size - wielkość batcha podczas testowania (default: 1000)\n", " epochs - liczba epok uczenia (default: 14)\n", " lr - współczynnik uczenia (learning rate) (default: 1.0)\n", " gamma - współczynnik gamma (dla optymalizatora) (default: 0.7)\n", " no_cuda - wyłącza uczenie na karcie graficznej (default: False)\n", " dry_run - szybko (\"na sucho\") sprawdza pojedyncze przejście (default: False)\n", " seed - ziarno generatora liczb pseudolosowych (default: 1)\n", " log_interval - interwał logowania stanu uczenia (default: 10)\n", " save_model - zapisuje bieżący model (default: False)\n", " \"\"\"\n", " use_cuda = no_cuda and torch.cuda.is_available()\n", "\n", " torch.manual_seed(seed)\n", "\n", " device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n", "\n", " train_kwargs = {'batch_size': batch_size}\n", " test_kwargs = {'batch_size': test_batch_size}\n", " if use_cuda:\n", " cuda_kwargs = {'num_workers': 1,\n", " 'pin_memory': True,\n", " 'shuffle': True}\n", " train_kwargs.update(cuda_kwargs)\n", " test_kwargs.update(cuda_kwargs)\n", "\n", " transform=transforms.Compose([\n", " transforms.ToTensor(),\n", " transforms.Normalize((0.1307,), (0.3081,))\n", " ])\n", " dataset1 = datasets.MNIST('../data', train=True, download=True,\n", " transform=transform)\n", " dataset2 = datasets.MNIST('../data', train=False,\n", " transform=transform)\n", " train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)\n", " test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)\n", "\n", " model = Net().to(device)\n", " optimizer = optim.Adadelta(model.parameters(), lr=lr)\n", "\n", " scheduler = StepLR(optimizer, step_size=1, gamma=gamma)\n", " for epoch in range(1, epochs + 1):\n", " train(model, device, train_loader, optimizer, epoch, log_interval, dry_run)\n", " test(model, device, test_loader)\n", " scheduler.step()\n", "\n", " if save_model:\n", " torch.save(model.state_dict(), \"mnist_cnn.pt\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Uwaga**: uruchomienie tego przykładu długo trwa. Żeby trwało krócej, można zmniejszyć liczbę epok." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data\\MNIST\\raw\\train-images-idx3-ubyte.gz\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1eacb6b7e3844f4493b9a7aa8b84e098", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "ename": "HTTPError", "evalue": "HTTP Error 503: Service Unavailable", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mHTTPError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mrun\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mepochs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m\u001b[0m in \u001b[0;36mrun\u001b[1;34m(batch_size, test_batch_size, epochs, lr, gamma, no_cuda, dry_run, seed, log_interval, save_model)\u001b[0m\n\u001b[0;32m 127\u001b[0m \u001b[0mtransforms\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mNormalize\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0.1307\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;36m0.3081\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 128\u001b[0m ])\n\u001b[1;32m--> 129\u001b[1;33m dataset1 = datasets.MNIST('../data', train=True, download=True,\n\u001b[0m\u001b[0;32m 130\u001b[0m transform=transform)\n\u001b[0;32m 131\u001b[0m dataset2 = datasets.MNIST('../data', train=False,\n", "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\torchvision\\datasets\\mnist.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, root, train, transform, target_transform, download)\u001b[0m\n\u001b[0;32m 77\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 78\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdownload\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 79\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdownload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 80\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 81\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_check_exists\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\torchvision\\datasets\\mnist.py\u001b[0m in \u001b[0;36mdownload\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 144\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmd5\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mresources\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 145\u001b[0m \u001b[0mfilename\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0murl\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrpartition\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'/'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 146\u001b[1;33m \u001b[0mdownload_and_extract_archive\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdownload_root\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mraw_folder\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmd5\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmd5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 147\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 148\u001b[0m \u001b[1;31m# process and save as torch files\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\torchvision\\datasets\\utils.py\u001b[0m in \u001b[0;36mdownload_and_extract_archive\u001b[1;34m(url, download_root, extract_root, filename, md5, remove_finished)\u001b[0m\n\u001b[0;32m 254\u001b[0m \u001b[0mfilename\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mos\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbasename\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 255\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 256\u001b[1;33m \u001b[0mdownload_url\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdownload_root\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmd5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 257\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 258\u001b[0m \u001b[0marchive\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mos\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdownload_root\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\torchvision\\datasets\\utils.py\u001b[0m in \u001b[0;36mdownload_url\u001b[1;34m(url, root, filename, md5)\u001b[0m\n\u001b[0;32m 82\u001b[0m )\n\u001b[0;32m 83\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 84\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 85\u001b[0m \u001b[1;31m# check integrity of downloaded file\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 86\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mcheck_integrity\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfpath\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmd5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\torchvision\\datasets\\utils.py\u001b[0m in \u001b[0;36mdownload_url\u001b[1;34m(url, root, filename, md5)\u001b[0m\n\u001b[0;32m 68\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 69\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Downloading '\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0murl\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;34m' to '\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mfpath\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 70\u001b[1;33m urllib.request.urlretrieve(\n\u001b[0m\u001b[0;32m 71\u001b[0m \u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfpath\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 72\u001b[0m \u001b[0mreporthook\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mgen_bar_updater\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36murlretrieve\u001b[1;34m(url, filename, reporthook, data)\u001b[0m\n\u001b[0;32m 245\u001b[0m \u001b[0murl_type\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpath\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_splittype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 246\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 247\u001b[1;33m \u001b[1;32mwith\u001b[0m \u001b[0mcontextlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclosing\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0murlopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mfp\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 248\u001b[0m \u001b[0mheaders\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 249\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36murlopen\u001b[1;34m(url, data, timeout, cafile, capath, cadefault, context)\u001b[0m\n\u001b[0;32m 220\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 221\u001b[0m \u001b[0mopener\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_opener\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 222\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mopener\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 223\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 224\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0minstall_opener\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopener\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mopen\u001b[1;34m(self, fullurl, data, timeout)\u001b[0m\n\u001b[0;32m 529\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mprocessor\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mprocess_response\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mprotocol\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 530\u001b[0m \u001b[0mmeth\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mprocessor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmeth_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 531\u001b[1;33m \u001b[0mresponse\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmeth\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mreq\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mresponse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 532\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 533\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresponse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mhttp_response\u001b[1;34m(self, request, response)\u001b[0m\n\u001b[0;32m 638\u001b[0m \u001b[1;31m# request was successfully received, understood, and accepted.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 639\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;36m200\u001b[0m \u001b[1;33m<=\u001b[0m \u001b[0mcode\u001b[0m \u001b[1;33m<\u001b[0m \u001b[1;36m300\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 640\u001b[1;33m response = self.parent.error(\n\u001b[0m\u001b[0;32m 641\u001b[0m 'http', request, response, code, msg, hdrs)\n\u001b[0;32m 642\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36merror\u001b[1;34m(self, proto, *args)\u001b[0m\n\u001b[0;32m 567\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mhttp_err\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 568\u001b[0m \u001b[0margs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mdict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'default'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'http_error_default'\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0morig_args\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 569\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call_chain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 570\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 571\u001b[0m \u001b[1;31m# XXX probably also want an abstract factory that knows when it makes\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36m_call_chain\u001b[1;34m(self, chain, kind, meth_name, *args)\u001b[0m\n\u001b[0;32m 500\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mhandler\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mhandlers\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 501\u001b[0m \u001b[0mfunc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhandler\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmeth_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 502\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 503\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mresult\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 504\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\urllib\\request.py\u001b[0m in \u001b[0;36mhttp_error_default\u001b[1;34m(self, req, fp, code, msg, hdrs)\u001b[0m\n\u001b[0;32m 647\u001b[0m \u001b[1;32mclass\u001b[0m \u001b[0mHTTPDefaultErrorHandler\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mBaseHandler\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 648\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mhttp_error_default\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mreq\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmsg\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhdrs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 649\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mHTTPError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mreq\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfull_url\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmsg\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhdrs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfp\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 650\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 651\u001b[0m \u001b[1;32mclass\u001b[0m \u001b[0mHTTPRedirectHandler\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mBaseHandler\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mHTTPError\u001b[0m: HTTP Error 503: Service Unavailable" ] } ], "source": [ "run(epochs=5)" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "livereveal": { "start_slideshow_at": "selected", "theme": "amu" } }, "nbformat": 4, "nbformat_minor": 4 }