zuma/wyk/5_RNN_CNN.ipynb
2021-06-18 09:33:02 +02:00

1417 lines
44 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Uczenie maszynowe\n",
"# 5. Rekurencyjne sieci neuronowe (RNN), splotowe sieci neuronowe (CNN)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 5.1. Rekurencyjne sieci neuronowe (*Recurrent Neural Networks* RNN)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"https://www.youtube.com/watch?v=WCUNPb-5EYI"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Rekurencyjna sieć neuronowa schemat\n",
"\n",
"<img style=\"margin: auto\" width=\"20%\" src=\"http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Rekurencyjna sieć neuronowa schemat\n",
"\n",
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Zależności długodystansowe (*long-distance dependencies*) w sieciach rekurencyjnych\n",
"\n",
"<img style=\"margin: auto\" width=\"60%\" src=\"http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-longtermdependencies.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### RNN typy sekwencji\n",
"\n",
"<img style=\"margin: auto\" width=\"80%\" src=\"http://karpathy.github.io/assets/rnn/diags.jpeg\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Prosta sieć RNN schemat\n",
"\n",
"<img src=\"rnn.png\" style=\"margin: auto;\" width=\"80%\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### LSTM *Long Short Term Memory*\n",
"\n",
"<img src=\"lstm.jpg\" style=\"margin: auto;\" width=\"80%\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Rekurencyjne sieci neuronowe znajduja zastosowanie w przetwarzaniu sekwencji, np. szeregów czasowych i tekstów.\n",
"* LSTM są rozwinięciem RNN, umożliwiają „zapamiętywanie” i „zapominanie”."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Co potrafią generować rekurencyjne sieci neuronowe?\n",
"\n",
"http://karpathy.github.io/2015/05/21/rnn-effectiveness/"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Przewidywanie ciągów czasowych za pomocą LSTM przykład\n",
"\n",
"https://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### GRU *Gated Recurrent Unit*\n",
"\n",
"* Rodzaj rekurencyjnej sieci neuronowej wprwadzony w 2014 roku\n",
"* Ma prostszą budowę niż LSTM (2 bramki zamiast 3).\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### GRU schemat\n",
"\n",
"<img src=\"gru.png\" style=\"margin: auto;\" width=\"50%\" />\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### GRU vs LSTM\n",
"LSTM 3 bramki: wejścia (*input*), wyjścia (*output*) i zapomnienia (*forget*); GRU 2 bramki: resetu (*reset*) i aktualizacji (*update*). Bramka resetu pełni podwójną funkcję: zastępuje bramki wyjścia i zapomnienia."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### GRU vs LSTM\n",
"* GRU i LSTM mają podobną skuteczność, ale GRU dzięki prostszej budowie bywa bardziej wydajna.\n",
"* LSTM sprawdza się lepiej w przetwarzaniu tekstu, ponieważ lepiej zapamiętuje zależności długosystansowe."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 5.2. Splotowe sieci neuronowe (*Convolutional Neural Networks* CNN)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Splotowe (konwolucyjne) sieci neuronowe wykorzystuje się do:\n",
"\n",
"* rozpoznawania obrazu\n",
"* analizy wideo\n",
"* innych zagadnień o podobnej strukturze"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Innymi słowy, CNN przydają się, gdy mamy bardzo dużo danych wejściowych, w których istotne jest ich sąsiedztwo."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Przykład\n",
"\n",
"Dla uproszczenia przyjmijmy, że mamy dane w postaci jendowymiarowej np. chcemy stwierdzić, czy na danym nagraniu obecny jest głos człowieka."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Tak wygląda nasze nagranie:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-xs.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"(ciąg próbek dźwiękowych możemy traktować je jak jednowymiarowe „piksele”)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Najprostsza metoda „zwykła” jednowarstwowa sieć neuronowa (każdy z każdym):"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-F.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Wady:\n",
"\n",
"* dużo danych wejściowych\n",
"* nie wykrywa własności „lokalnych” wejścia"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Chcielibyśmy wykrywać pewne lokalne „wzory” w danych wejściowych."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"W tym celu tworzymy mniejszą sieć neuronową (mniej neuronów wejściowych) i _kopiujemy_ ją tak, żeby każda jej kopia działała na pewnym fragmencie wejścia (fragmenty mogą nachodzić na siebie):"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" width=\"60%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-Conv2.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Każda z sieci A ma 2 neurony wejściowe (mało realistycznie). "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-Conv3.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Każda z sieci A ma 3 neurony wejściowe (wciąż mało realistycznie, ale już trochę bardziej). "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Warstwę sieci A nazywamy **warstwą splotową (konwolucyjną)**.\n",
"\n",
"Warstw splotowych może być więcej niż jedna:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" width=\"50%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-9-Conv2Conv2.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"W dwóch wymiarach wygląda to tak:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" width=\"50%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv2-9x5-Conv2.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"50%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv2-9x5-Conv2Conv2.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Zblizenie na pojedynczą jednostkę A:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" height=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv2-unit.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Tak definiujemy formalnie funckję splotu dla 2 wymiarów:\n",
"\n",
"$$\n",
"\\left[\\begin{array}{ccc}\n",
"a & b & c\\\\\n",
"d & e & f\\\\\n",
"g & h & i\\\\\n",
"\\end{array}\\right]\n",
"*\n",
"\\left[\\begin{array}{ccc}\n",
"1 & 2 & 3\\\\\n",
"4 & 5 & 6\\\\\n",
"7 & 8 & 9\\\\\n",
"\\end{array}\\right] \n",
"=\\\\\n",
"(1 \\cdot a)+(2 \\cdot b)+(3 \\cdot c)+(4 \\cdot d)+(5 \\cdot e)\\\\+(6 \\cdot f)+(7 \\cdot g)+(8 \\cdot h)+(9 \\cdot i)\n",
"$$\n",
"\n",
"Więcej: https://en.wikipedia.org/wiki/Kernel_(image_processing)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"A tak to mniej więcej działa:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" height=\"70%\" src=\"https://devblogs.nvidia.com/wp-content/uploads/2015/11/Convolution_schematic.gif\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Jednostka warstwy konwolucyjnej może się składać z jednej lub kilku warstw neuronów:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" width=\"40%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-A.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"60%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv-A-NIN.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Jeden neuron może odpowiadać np. za wykrywanie pionowych krawędzi, drugi poziomych, a jeszcze inny np. krzyżujących się linii."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Przykładowe filtry, których może nauczyć się pierwsza warstwa konwolucyjna:\n",
"\n",
"<img style=\"margin: auto\" width=\"80%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/KSH-filters.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"70%\" src=\"cnn-features.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### _Pooling_"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Obrazy składają się na ogół z milionów pikseli. Oznacza to, że nawet po zastosowaniu kilku warstw konwolucyjnych mielibyśmy sporo parametrów do wytrenowania.\n",
"\n",
"Żeby zredukować liczbę parametrów, a dzięki temu uprościć obliczenia, stosuje się warstwy ***pooling***."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"*Pooling* to rodzaj próbkowania. Najpopularniejszą jego odmianą jest *max-pooling*, czyli wybieranie najwyższej wartości spośród kilku sąsiadujących pikseli."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"60%\" src=\"https://upload.wikimedia.org/wikipedia/commons/e/e9/Max_pooling.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Warstwy _pooling_ i konwolucyjne można przeplatać ze sobą:"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" width=\"40%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/Conv2-9x5-Conv2Max2Conv2.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"_Pooling_ idea: nie jest istotne, w którym *dokładnie* miejscu na obrazku dana cecha (krawędź, oko, itp.) się znajduje, wystarczy przybliżona lokalizacja."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Do sieci konwolucujnych możemy dokładać też warstwy ReLU."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"https://www.youtube.com/watch?v=FmpDIaiMIeA"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Możliwości konwolucyjnych sieci neuronowych"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img style=\"margin: auto\" width=\"40%\" src=\"http://colah.github.io/posts/2014-07-Conv-Nets-Modular/img/KSH-results.png\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Przykład: MNIST"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import math\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import random\n",
"\n",
"from IPython.display import YouTubeVideo"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"# źródło: https://github.com/keras-team/keras/examples/minst_mlp.py\n",
"\n",
"import keras\n",
"from keras.datasets import mnist\n",
"\n",
"from keras.models import Sequential\n",
"from keras.layers import Dense, Dropout, Flatten\n",
"from keras.layers import Conv2D, MaxPooling2D\n",
"\n",
"# załaduj dane i podziel je na zbiory uczący i testowy\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"def draw_examples(examples, captions=None):\n",
" plt.figure(figsize=(16, 4))\n",
" m = len(examples)\n",
" for i, example in enumerate(examples):\n",
" plt.subplot(100 + m * 10 + i + 1)\n",
" plt.imshow(example, cmap=plt.get_cmap('gray'))\n",
" plt.show()\n",
" if captions is not None:\n",
" print(6 * ' ' + (10 * ' ').join(str(captions[i]) for i in range(m)))"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAACPCAYAAADgImbyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHEtJREFUeJzt3XmQVNXZx/HniIAYREQIISKCggiR\nTUDB1wITwBVZJKKEPUYoUYSUUKASgzEIolLFIlEkMIKUaIVVI0EElKiEAgnmZXXAyJYRUEE2Iy96\n3z/o5T5Hpqd7uvvc2z3fT9UU9ze3u+/pnme659D93GM8zxMAAAAAAFw5J+gBAAAAAADKFiaiAAAA\nAACnmIgCAAAAAJxiIgoAAAAAcIqJKAAAAADAKSaiAAAAAACnmIgCAAAAAJxiIgoAAAAAcCqtiagx\n5hZjzA5jzE5jzOhMDQq5h1pAFLUAEeoAcdQCRKgDxFELiPE8r1RfIlJORHaJyOUiUkFEPhaRxiVc\nx+Mr574OZboWQnCf+MpCHVALZeYr488J1ELOfvH6wFdW6oBayNkvaoGvpGvB87y03hG9VkR2ep73\nqed5p0Rkvoh0TeP2EE67k7gMtZD/kqkDEWqhLOA5AVHUAkSoA8RRC4hK6u/GdCail4jIXl/eF/me\nYowZZIzZYIzZkMaxEG4l1gJ1UGZQCxDh9QFxPCdAhOcExFELiDk32wfwPG+GiMwQETHGeNk+HsKJ\nOkAUtYAoagEi1AHiqAVEUQtlQzrviO4XkUt9uXbkeyh7qAVEUQsQoQ4QRy1AhDpAHLWAmHQmoutF\npIExpp4xpoKI3CMiSzMzLOQYagFR1AJEqAPEUQsQoQ4QRy0gptQfzfU877Qx5kERWS5nzoA1y/O8\nLRkbGXIGtYAoagEi1AHiqAWIUAeIoxbgZyKnRXZzMD7jnYs+8jyvVSZvkDrISRmvAxFqIUdRC4ji\n9QEiPCcgjlpAVFK1kM5HcwEAAAAASBkTUQAAAACAU0xEAQAAAABOMREFAAAAADjFRBQAAAAA4BQT\nUQAAAACAU0xEAQAAAABOMREFAAAAADh1btADAPJVy5YtVX7wwQdV7tevn8pz5sxReerUqSpv3Lgx\ng6MDAABANk2ePFnlhx56KLa9efNmta9z584q7969O3sDCwneEQUAAAAAOMVEFAAAAADgFB/NTVK5\ncuVUvvDCC5O+rv2RzPPPP1/lhg0bqvzAAw+o/Oyzz6rcq1cvlf/73/+qPGHChNj2E088kfQ4kZ7m\nzZurvGLFCpWrVKmisud5Kvft21flLl26qHzxxRenO0TkiQ4dOqg8b948ldu3b6/yjh07sj4mZMeY\nMWNUtp/TzzlH/3/yjTfeqPJ7772XlXEByIwLLrhA5cqVK6t8++23q1yjRg2VJ02apPK3336bwdEh\nVXXr1lW5T58+Kn///fex7UaNGql9V111lcp8NBcAAAAAgAxjIgoAAAAAcIqJKAAAAADAqTLTI1qn\nTh2VK1SooPL111+v8g033KBy1apVVe7Ro0fGxrZv3z6Vp0yZonL37t1VPnbsmMoff/yxyvQEuXPt\ntdfGthcsWKD22X3Edk+o/XM8deqUynZPaJs2bVS2l3Oxr18WtGvXLrZtP16LFi1yPRxnWrdurfL6\n9esDGgkybcCAASqPGjVKZX9/0dnYzzMAgufvG7R/p9u2bavy1VdfndJt16pVS2X/8iBw79ChQyqv\nWbNGZfv8H2Ud74gCAAAAAJxiIgoAAAAAcIqJKAAAAADAqbztEbXXdFy1apXKqawDmml2j4+9Ttzx\n48dVttcILCoqUvnw4cMqs2Zg5thrvl5zzTUqv/LKK7Ftu0+jJIWFhSpPnDhR5fnz56v8wQcfqGzX\nzfjx41M6fj7wr5nYoEEDtS+fekTttSLr1aun8mWXXaayMSbrY0J22D/L8847L6CRIFXXXXedyv71\nA+21fX/2s58lvK0RI0ao/J///Edl+zwW/tciEZF169YlHiwyyl7/cfjw4Sr37t07tl2pUiW1z36+\n3rt3r8r2+STstSd79uyp8vTp01Xevn17ccNGFpw4cULlsrAWaDp4RxQAAAAA4BQTUQAAAACAU0xE\nAQAAAABO5W2P6J49e1T+8ssvVc5kj6jdi3HkyBGVf/7zn6tsr/c4d+7cjI0FmfXiiy+q3KtXr4zd\ntt1vWrlyZZXt9WD9/ZAiIk2bNs3YWHJVv379Yttr164NcCTZZfcf33fffSrb/WH0BOWOjh07qjx0\n6NCEl7d/tp07d1b5wIEDmRkYSnT33XerPHnyZJWrV68e27b7AN99912Va9SoofIzzzyT8Nj27dnX\nv+eeexJeH6mx/2Z8+umnVbZr4YILLkj6tu3zRdx8880qly9fXmX7OcBfZ2fLcKtq1aoqN2vWLKCR\n5AbeEQUAAAAAOMVEFAAAAADgFBNRAAAAAIBTedsj+tVXX6k8cuRIle2+mn/+858qT5kyJeHtb9q0\nKbbdqVMntc9eQ8heL2zYsGEJbxvBadmypcq33367yonWZ7R7Ot944w2Vn332WZXtdeHsGrTXh/3F\nL36R9FjKCnt9zXw1c+bMhPvtHiOEl73+4+zZs1Uu6fwFdu8ga9Rlz7nn6j+RWrVqpfJLL72ksr3u\n9Jo1a2LbTz75pNr3/vvvq1yxYkWVX3/9dZVvuummhGPdsGFDwv1IT/fu3VX+zW9+U+rb2rVrl8r2\n35D2OqL169cv9bHgnv08UKdOnaSv27p1a5XtfuB8fL4vG3/FAQAAAABCg4koAAAAAMCpEieixphZ\nxpiDxpjNvu9VM8asMMYURv69KLvDRBhQC4iiFiBCHSCOWkAUtQAR6gDJSaZHtEBEponIHN/3RovI\nSs/zJhhjRkfyqMwPL3MWL16s8qpVq1Q+duyYyva6P/fee6/K/n4/uyfUtmXLFpUHDRqUeLDhVSB5\nUAt+zZs3V3nFihUqV6lSRWXP81RetmxZbNteY7R9+/YqjxkzRmW77+/QoUMqf/zxxyp///33Ktv9\nq/a6pBs3bpQsKpAAasFeO7VmzZqZvPnQKqlv0K5bhwokz54Tsq1///4q//SnP014eXu9yTlz5pz9\ngsErkDyrhT59+qhcUq+2/XvoX1vy6NGjCa9rr0NZUk/ovn37VH755ZcTXt6xAsmzWrjrrrtSuvxn\nn32m8vr162Pbo0bpu233hNoaNWqU0rFDpEDyrA6SYZ//o6CgQOWxY8cWe11735EjR1SeNm1aOkML\npRLfEfU8b42IfGV9u6uIRJ/1XhaRbhkeF0KIWkAUtQAR6gBx1AKiqAWIUAdITmnPmlvT87yiyPbn\nIlLs2xLGmEEikrNvAaJESdUCdVAmUAsQ4fUBcTwnIIpagAivD7CkvXyL53meMcZLsH+GiMwQEUl0\nOeS+RLVAHZQt1AJEeH1AHM8JiKIWIMLrA84o7UT0gDGmlud5RcaYWiJyMJODcqGkfo2vv/464f77\n7rsvtv3aa6+pfXYvX57LqVq48sorVbbXl7V78b744guVi4qKVPb35Rw/flzt++tf/5owp6tSpUoq\nP/zwwyr37t07o8dLQtZr4bbbblPZfgzyhd37Wq9evYSX379/fzaHk6qcek7IturVq6v861//WmX7\n9cLuCfrjH/+YnYG5kVO1YK/1+eijj6psnyNg+vTpKtvnASjp7wy/xx57LOnLiog89NBDKtvnGAih\nnKoFm/9vPpEfnuvj7bffVnnnzp0qHzxY+rubZ+dCyOk6KA37eSVRj2hZVNrlW5aKSPSMC/1FZElm\nhoMcRC0gilqACHWAOGoBUdQCRKgDWJJZvuVVEVkrIg2NMfuMMfeKyAQR6WSMKRSRjpGMPEctIIpa\ngAh1gDhqAVHUAkSoAySnxI/mep7Xq5hdHTI8FoQctYAoagEi1AHiqAVEUQsQoQ6QnLRPVpSv7M9w\nt2zZUmX/GpEdO3ZU++xeAQSnYsWKKvvXfxX5Yc+hvZ5sv379VN6wYYPKYepRrFOnTtBDyLqGDRsW\nu89erzeX2XVq9wh98sknKtt1i2DVrVs3tr1gwYKUrjt16lSVV69enYkh4Swef/xxle2e0FOnTqm8\nfPlyle31IL/55ptij3XeeeepbK8Taj9/G2NUtnuFlyzhE40u2WtDuuzza9u2rbNjIfvOOSf+YdQy\ndk6ZsyptjygAAAAAAKXCRBQAAAAA4BQTUQAAAACAU/SIFuPEiRMq22tIbdy4Mbb90ksvqX12T4/d\nV/j888+rbK9Nhsxp0aKFynZPqK1r164qv/feexkfE7Jj/fr1QQ+hWFWqVFH5lltuUblPnz4q2/1j\nNntdMnvtSQTL//Nt2rRpwsuuXLlS5cmTJ2dlTBCpWrWqykOGDFHZfi22e0K7deuW0vHq168f2543\nb57aZ593wvaXv/xF5YkTJ6Z0bISLf93XH/3oRyldt0mTJgn3f/jhhyqvXbs2pduHW/6+UP7+5x1R\nAAAAAIBjTEQBAAAAAE7x0dwk7dq1S+UBAwbEtmfPnq329e3bN2G2P5YxZ84clYuKiko7TFgmTZqk\nsn1KfPujt2H+KK7/lN8inPbbVq1atbSu36xZM5XtWrGXaapdu7bKFSpUiG337t1b7bN/dvYyD+vW\nrVP522+/Vfncc/VT9UcffSQID/sjmxMmFL9G+/vvv69y//79Vf76668zNzAo/t9REZHq1asnvLz/\n45QiIj/+8Y9VHjhwoMpdunRR+eqrr45tV65cWe2zP5Jn51deeUVlu10IwTr//PNVbty4scq///3v\nVU7UFpTqa7u9lIxdh999913C6wNhwjuiAAAAAACnmIgCAAAAAJxiIgoAAAAAcIoe0VJatGhRbLuw\nsFDts/sSO3TooPJTTz2l8mWXXabyuHHjVN6/f3+px1nWdO7cWeXmzZurbPfhLF26NOtjyhS7b8S+\nL5s2bXI5nEDYvZX+x+CFF15Q+x599NGUbtteZsPuET19+rTKJ0+eVHnr1q2x7VmzZql99hJOdi/y\ngQMHVN63b5/KlSpVUnn79u2C4NStW1flBQsWJH3dTz/9VGX7Z4/sOXXqlMqHDh1SuUaNGir/+9//\nVjnVpRb8vXxHjx5V+2rVqqXyF198ofIbb7yR0rGQWeXLl1fZXgrO/p23f572a5W/FuzlVezlvOz+\nU5t9zoA777xTZXsJKLvugTDhHVEAAAAAgFNMRAEAAAAATjERBQAAAAA4RY9oBmzevFnlnj17qnzH\nHXeobK87OnjwYJUbNGigcqdOndIdYplh99LZ68YdPHhQ5ddeey3rY0pWxYoVVR47dmzCy69atUrl\nRx55JNNDCp0hQ4aovHv37tj29ddfn9Zt79mzR+XFixervG3bNpX/8Y9/pHU8v0GDBqls96rZfYUI\n1qhRo1ROZU3fRGuMIruOHDmisr3+65tvvqmyvTaxvZ74kiVLVC4oKFD5q6++im3Pnz9f7bN7Cu39\ncMv+W8Hu21y4cGHC6z/xxBMq26/PH3zwQWzbriv7sv71Z8/Gfn0YP368yiW9ltnrVMMt/7qxJb12\ntGvXTuVp06ZlZUxB4h1RAAAAAIBTTEQBAAAAAE4xEQUAAAAAOEWPaBbYfShz585VeebMmSrba0LZ\nnwm/8cYbVX733XfTG2AZZvdGFBUVBTSSH/aEjhkzRuWRI0eqbK8t+dxzz6l8/PjxDI4uNzz99NNB\nDyEj7LWGbamsU4nMs9cjvummm5K+rt1HuGPHjoyMCelbt26dynbvXbr8r+Xt27dX++zeMPrA3bLX\nCbV7PO3XX9uyZctUnjp1qsr234H+2nrrrbfUviZNmqhsr/s5ceJEle0e0q5du6o8b948ld955x2V\n7dfNw4cPS3HKwvrkrvl/90tam9heI7Zx48Yq+9cvz1W8IwoAAAAAcIqJKAAAAADAKSaiAAAAAACn\n6BHNgKZNm6r8y1/+UuXWrVurbPeE2uzPfK9ZsyaN0cFv6dKlgR3b7jOze1Duvvtule3esh49emRn\nYAi9RYsWBT2EMu3tt99W+aKLLkp4ef8aswMGDMjGkJAD/Ota2z2hdm8Y64hmV7ly5VR+8sknVR4x\nYoTKJ06cUHn06NEq2z8vuye0VatWKvvXf2zRooXaV1hYqPL999+v8urVq1WuUqWKyvYa2r1791a5\nS5cuKq9YsUKKs3fvXpXr1atX7GVROi+88EJse/DgwSld115zfPjw4RkZU5B4RxQAAAAA4BQTUQAA\nAACAU0xEAQAAAABO0SOapIYNG6r84IMPxrbtdX5+8pOfpHTb3333ncr22pZ2bwmKZ4xJmLt166by\nsGHDsjaW3/72tyr/7ne/U/nCCy9U2V77q1+/ftkZGICUXHzxxSqX9Jw8ffr02HZZXN8XZyxfvjzo\nISDC7q2ze0JPnjypst27Z/eJt2nTRuWBAweqfOutt6rs7xf+wx/+oPbNnj1bZbtP03b06FGV//a3\nvyXMvXr1UvlXv/pVsbdt/92CzNu+fXvQQwgV3hEFAAAAADhV4kTUGHOpMWa1MWarMWaLMWZY5PvV\njDErjDGFkX8Tn0YQOY9agAh1gDhqAVHUAkSoA8RRC0hGMu+InhaRhz3PaywibUTkAWNMYxEZLSIr\nPc9rICIrIxn5jVqACHWAOGoBUdQCRKgDxFELKFGJPaKe5xWJSFFk+5gxZpuIXCIiXUXkxsjFXhaR\nd0VkVFZG6YDd12l/pt7fEyoiUrdu3VIfa8OGDSqPGzdO5SDXukwkF2rBXpvNzvbPecqUKSrPmjVL\n5S+//FJluy+kb9++se1mzZqpfbVr11Z5z549Ktv9Q/6+sjDLhTrIdXZv85VXXqmyf53KIOVrLdg9\nW+eck1oXy4cffpjJ4eSEfK2FdNx8881BD8G5sNbB448/nnC/vc6ovc732LFjVa5fv35Kx/dff/z4\n8WqffZ6QTHv11VcT5mwJay0EberUqbHtoUOHqn1XXHFFwuva5zXx35aIyK5du9IcnXspvboaY+qK\nSAsRWSciNSNFJiLyuYjUzOjIEGrUAkSoA8RRC4iiFiBCHSCOWkBxkj5rrjGmsogsEJHhnucd9f+P\nved5njHGK+Z6g0Rk0Nn2ITeVphaog/zDcwKiqAVE8foAEZ4TEEctIJGk3hE1xpSXM0U0z/O8hZFv\nHzDG1IrsryUiB892Xc/zZnie18rzvFaZGDCCVdpaoA7yC88JiKIWEMXrA0R4TkActYCSlPiOqDnz\nXxd/FpFtnudN8u1aKiL9RWRC5N8lWRlhhtSsqd/5b9y4scrTpk1T+aqrrir1sdatW6fyM888o/KS\nJfqhypV1QvOhFuw+kCFDhqjco0cPle31uho0aJD0sew+sdWrV6tcUs9KWOVDHYSd3ducao+iK/lS\nC82bN1e5Y8eOKtvP0adOnVL5+eefV/nAgQMZHF1uyJdayKTLL7886CE4F9Y6+Pzzz1WuUaOGyhUr\nVlTZPueD7a233lJ5zZo1Ki9evFjlzz77LLad7Z7QsAhrLYTJli1bVC7pOSNX5gupSOajuf8jIn1F\n5H+NMZsi33tUzhTQ68aYe0Vkt4j0zM4QESLUAkSoA8RRC4iiFiBCHSCOWkCJkjlr7vsiYorZ3SGz\nw0GYUQsQoQ4QRy0gilqACHWAOGoByQjn570AAAAAAHkr6bPmhl21atVUfvHFF1W2e4DS7d3w9/89\n99xzap+9PuQ333yT1rGQvLVr16q8fv16lVu3bp3w+vY6o3Zvsc2/zuj8+fPVPnu9J6C02rZtq3JB\nQUEwA8lTVatWVdl+HrDt379f5REjRmR8TMh9f//732Pbdp93PvZ6hVm7du1U7tatm8rXXHONygcP\n6vPn2GuMHz58WGW7bxxIxowZM1S+4447AhpJcHhHFAAAAADgFBNRAAAAAIBTTEQBAAAAAE7lVI/o\nddddF9seOXKk2nfttdeqfMkll6R1rJMnT6o8ZcoUlZ966qnY9okTJ9I6FjJn3759Kt95550qDx48\nWOUxY8akdPuTJ09W+U9/+lNse+fOnSndFlCcM8uvAchlmzdvjm0XFhaqffZ5Kq644gqVDx06lL2B\nlUHHjh1Tee7cuQkz4MLWrVtV3rZtm8qNGjVyOZxA8I4oAAAAAMApJqIAAAAAAKdy6qO53bt3P+t2\nMuy3v998802VT58+rbK9JMuRI0dSOh7CoaioSOWxY8cmzEAQli1bpvJdd90V0EjKpu3bt6vsX55L\nROSGG25wORzkIX87j4jIzJkzVR43bpzKQ4cOVdn+GwZA7tu9e7fKTZo0CWgkweEdUQAAAACAU0xE\nAQAAAABOMREFAAAAADhlPM9zdzBj3B0MmfKR53mtMnmD1EFOyngdiFALOYpaQBSvD0mqUqWKyq+/\n/rrKHTt2VHnhwoUqDxw4UOWQLRvHcwKiqAVEJVULvCMKAAAAAHCKiSgAAAAAwCkmogAAAAAAp3Jq\nHVEAAIBcc/ToUZV79uypsr2O6P3336+yveY164oCyAe8IwoAAAAAcIqJKAAAAADAKSaiAAAAAACn\n6BEFAABwyO4ZHTp0aMIMAPmId0QBAAAAAE4xEQUAAAAAOMVEFAAAAADglOse0S9EZLeIVI9shxFj\n0y7Lwm1SB+nJlzoQoRbSRS24xdg0Xh/CJ1/qQIRaSBe14FZYxxbUuJKqBeN5XrYH8sODGrPB87xW\nzg+cBMbmTpjvD2NzK8z3ibG5Feb7xNjcCfP9YWxuhfk+MTa3wnyfwjq2sI4rio/mAgAAAACcYiIK\nAAAAAHAqqInojICOmwzG5k6Y7w9jcyvM94mxuRXm+8TY3Anz/WFsboX5PjE2t8J8n8I6trCOS0QC\n6hEFAAAAAJRdfDQXAAAAAOAUE1EAAAAAgFNOJ6LGmFuMMTuMMTuNMaNdHvssY5lljDlojNns+141\nY8wKY0xh5N+LAhrbpcaY1caYrcaYLcaYYWEaXyZQC0mPjVpwO5ZQ1gJ14HwsoayDyDioBbdjoRYC\nRC0kNS7qwO1YQlkHkXHkXC04m4gaY8qJyPMicquINBaRXsaYxq6OfxYFInKL9b3RIrLS87wGIrIy\nkoNwWkQe9jyvsYi0EZEHIo9VWMaXFmohJdSCWwUSzlqgDtwqkHDWgQi14FqBUAuBoBaSRh24VSDh\nrAORXKwFz/OcfIlIWxFZ7suPiMgjro5fzJjqishmX94hIrUi27VEZEeQ4/ONa4mIdArr+KgFaoFa\noA6oA2qBWgj8saMWqAXqgDrIqVpw+dHcS0Rkry/vi3wvTGp6nlcU2f5cRGoGORgREWNMXRFpISLr\nJITjKyVqoRSohcCE6rGmDgITuseaWghM6B5raiEwoXqsqYPAhO6xzpVa4GRFxfDO/LdBoGvbGGMq\ni8gCERnued5R/74wjK+sCMNjTS2EQ9CPNXUQDmF4rKmFcAjDY00thEPQjzV1EA5heKxzqRZcTkT3\ni8ilvlw78r0wOWCMqSUiEvn3YFADMcaUlzNFNM/zvIVhG1+aqIUUUAuBC8VjTR0ELjSPNbUQuNA8\n1tRC4ELxWFMHgQvNY51rteByIrpeRBoYY+oZYyqIyD0istTh8ZOxVET6R7b7y5nPVjtnjDEi8mcR\n2eZ53iTfrlCMLwOohSRRC6EQ+GNNHYRCKB5raiEUQvFYUwuhEPhjTR2EQige65ysBcdNs7eJyCci\nsktEHguyOVZEXhWRIhH5PznzefN7ReRiOXM2qUIReUdEqgU0thvkzNvm/xKRTZGv28IyPmqBWqAW\nqAPqgOcEaoFaoBaCf6ypA+ogl2vBRAYOAAAAAIATnKwIAAAAAOAUE1EAAAAAgFNMRAEAAAAATjER\nBQAAAAA4xUQUAAAAAOAUE1EAAAAAgFNMRAEAAAAATv0/VRGGEPckXi4AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f70ba2e9090>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" 5 0 4 1 9 2 1\n"
]
}
],
"source": [
"draw_examples(x_train[:7], captions=y_train)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"batch_size = 128\n",
"num_classes = 10\n",
"epochs = 12\n",
"\n",
"# input image dimensions\n",
"img_rows, img_cols = 28, 28"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"slideshow": {
"slide_type": "notes"
}
},
"outputs": [],
"source": [
"if keras.backend.image_data_format() == 'channels_first':\n",
" x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)\n",
" x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)\n",
" input_shape = (1, img_rows, img_cols)\n",
"else:\n",
" x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)\n",
" x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)\n",
" input_shape = (img_rows, img_cols, 1)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x_train shape: (60000, 28, 28, 1)\n",
"60000 train samples\n",
"10000 test samples\n"
]
}
],
"source": [
"x_train = x_train.astype('float32')\n",
"x_test = x_test.astype('float32')\n",
"x_train /= 255\n",
"x_test /= 255\n",
"print('x_train shape: {}'.format(x_train.shape))\n",
"print('{} train samples'.format(x_train.shape[0]))\n",
"print('{} test samples'.format(x_test.shape[0]))\n",
"\n",
"# convert class vectors to binary class matrices\n",
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
"y_test = keras.utils.to_categorical(y_test, num_classes)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"model = Sequential()\n",
"model.add(Conv2D(32, kernel_size=(3, 3),\n",
" activation='relu',\n",
" input_shape=input_shape))\n",
"model.add(Conv2D(64, (3, 3), activation='relu'))\n",
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
"model.add(Dropout(0.25))\n",
"model.add(Flatten())\n",
"model.add(Dense(128, activation='relu'))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(num_classes, activation='softmax'))"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"model.compile(loss=keras.losses.categorical_crossentropy,\n",
" optimizer=keras.optimizers.Adadelta(),\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 60000 samples, validate on 10000 samples\n",
"Epoch 1/12\n",
"60000/60000 [==============================] - 333s - loss: 0.3256 - acc: 0.9037 - val_loss: 0.0721 - val_acc: 0.9780\n",
"Epoch 2/12\n",
"60000/60000 [==============================] - 342s - loss: 0.1088 - acc: 0.9683 - val_loss: 0.0501 - val_acc: 0.9835\n",
"Epoch 3/12\n",
"60000/60000 [==============================] - 366s - loss: 0.0837 - acc: 0.9748 - val_loss: 0.0429 - val_acc: 0.9860\n",
"Epoch 4/12\n",
"60000/60000 [==============================] - 311s - loss: 0.0694 - acc: 0.9788 - val_loss: 0.0380 - val_acc: 0.9878\n",
"Epoch 5/12\n",
"60000/60000 [==============================] - 325s - loss: 0.0626 - acc: 0.9815 - val_loss: 0.0334 - val_acc: 0.9886\n",
"Epoch 6/12\n",
"60000/60000 [==============================] - 262s - loss: 0.0552 - acc: 0.9835 - val_loss: 0.0331 - val_acc: 0.9890\n",
"Epoch 7/12\n",
"60000/60000 [==============================] - 218s - loss: 0.0494 - acc: 0.9852 - val_loss: 0.0291 - val_acc: 0.9903\n",
"Epoch 8/12\n",
"60000/60000 [==============================] - 218s - loss: 0.0461 - acc: 0.9859 - val_loss: 0.0294 - val_acc: 0.9902\n",
"Epoch 9/12\n",
"60000/60000 [==============================] - 219s - loss: 0.0423 - acc: 0.9869 - val_loss: 0.0287 - val_acc: 0.9907\n",
"Epoch 10/12\n",
"60000/60000 [==============================] - 218s - loss: 0.0418 - acc: 0.9875 - val_loss: 0.0299 - val_acc: 0.9906\n",
"Epoch 11/12\n",
"60000/60000 [==============================] - 218s - loss: 0.0388 - acc: 0.9879 - val_loss: 0.0304 - val_acc: 0.9905\n",
"Epoch 12/12\n",
"60000/60000 [==============================] - 218s - loss: 0.0366 - acc: 0.9889 - val_loss: 0.0275 - val_acc: 0.9910\n"
]
},
{
"data": {
"text/plain": [
"<keras.callbacks.History at 0x7f70b80b1a10>"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.fit(x_train, y_train,\n",
" batch_size=batch_size,\n",
" epochs=epochs,\n",
" verbose=1,\n",
" validation_data=(x_test, y_test))"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"('Test loss:', 0.027530849870144449)\n",
"('Test accuracy:', 0.99099999999999999)\n"
]
}
],
"source": [
"score = model.evaluate(x_test, y_test, verbose=0)\n",
"print('Test loss:', score[0])\n",
"print('Test accuracy:', score[1])"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 5.3. Autoencoder"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Uczenie nienadzorowane\n",
"* Dane: zbiór nieanotowanych przykładów uczących $\\{ x^{(1)}, x^{(2)}, x^{(3)}, \\ldots \\}$, $x^{(i)} \\in \\mathbb{R}^{n}$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Autoencoder (encoder-decoder)\n",
"\n",
"Sieć neuronowa taka, że:\n",
"* warstwa wejściowa ma $n$ neuronów\n",
"* warstwa wyjściowa ma $n$ neuronów\n",
"* warstwa środkowa ma $k < n$ neuronów\n",
"* $y^{(i)} = x^{(i)}$ dla każdego $i$"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"40%\" src=\"http://ufldl.stanford.edu/tutorial/images/Autoencoder636.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Co otrzymujemy dzięki takiej sieci?\n",
"\n",
"* $y^{(i)} = x^{(i)} \\; \\Longrightarrow \\;$ Autoencoder próbuje nauczyć się funkcji $h(x) \\approx x$, czyli funkcji identycznościowej.\n",
"* Warstwy środkowe mają mniej neuronów niż warstwy zewnętrzne, więc żeby to osiągnąć, sieć musi znaleźć bardziej kompaktową (tu: $k$-wymiarową) reprezentację informacji zawartej w wektorach $x_{(i)}$.\n",
"* Otrzymujemy metodę kompresji danych."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Innymi słowy:\n",
"* Ograniczenia nałożone na reprezentację danych w warstwie ukrytej pozwala na „odkrycie” pewnej **struktury** w danych.\n",
"* _Decoder_ musi odtworzyć do pierwotnej postaci reprezentację danych skompresowaną przez _encoder_."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"60%\" src=\"https://upload.wikimedia.org/wikipedia/commons/2/28/Autoencoder_structure.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"70%\" src=\"autoencoder_schema.jpg\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Całkowita liczba warstw w sieci autoencodera może być większa niż 3.\n",
"* Jako funkcji kosztu na ogół używa się błędu średniokwadratowego (*mean squared error*, MSE) lub entropii krzyżowej (*binary crossentropy*).\n",
"* Autoencoder może wykryć ciekawe struktury w danych nawet jeżeli $k \\geq n$, jeżeli na sieć nałoży się inne ograniczenia.\n",
"* W wyniku działania autoencodera uzyskujemy na ogół kompresję **stratną**."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Autoencoder a PCA\n",
"\n",
"Widzimy, że autoencoder można wykorzystać do redukcji liczby wymiarów. Podobną rolę pełni poznany na jednym z poprzednich wykładów algorytm PCA (analiza głównych składowych, *principal component analysis*).\n",
"\n",
"Faktycznie, jeżeli zastosujemy autoencoder z liniowymi funkcjami aktywacji i pojedynczą sigmoidalną warstwą ukrytą, to na podstawie uzyskanych wag można odtworzyć główne składowe używając rozkładu według wartości osobliwych (*singular value decomposition*, SVD)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Autoencoder odszumiający\n",
"\n",
"Jeżeli na wejściu zamiast „czystych” danych użyjemy danych zaszumionych, to otrzymamy sieć, która może usuwać szum z danych:\n",
"\n",
"<img style=\"margin: auto\" width=\"70%\" src=\"denoising_autoencoder.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"60%\" src=\"denoising.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Autoencoder zastosowania\n",
"\n",
"Autoencoder sprawdza się gorzej niż inne algorytmy kompresji, więc nie stosuje się go raczej jako metody kompresji danych, ale ma inne zastosowania:\n",
"* odszumianie danych\n",
"* redukcja wymiarowości\n",
"* VAE (*variational autoencoders*) http://kvfrans.com/variational-autoencoders-explained/"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 5.4. Word embeddings"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"_Word embeddings_ sposoby reprezentacji słów jako wektorów liczbowych"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Znaczenie wyrazu jest reprezentowane przez sąsiednie wyrazy:\n",
"\n",
"“A word is characterized by the company it keeps.” (John R. Firth, 1957)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Pomysł pojawił sie jeszcze w latach 60. XX w.\n",
"* _Word embeddings_ można uzyskiwać na różne sposoby, ale dopiero w ostatnim dziesięcioleciu stało się opłacalne użycie w tym celu sieci neuronowych."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Przykład 2 zdania: \n",
"* \"have a good day\"\n",
"* \"have a great day\"\n",
"\n",
"Słownik:\n",
"* {\"a\", \"day\", \"good\", \"great\", \"have\"}"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Aby wykorzystać metody uczenia maszynowego do analizy danych tekstowych, musimy je jakoś reprezentować jako liczby."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"* Najprostsza metoda to wektory jednostkowe:\n",
" * \"a\" = $(1, 0, 0, 0, 0)$\n",
" * \"day\" = $(0, 1, 0, 0, 0)$\n",
" * \"good\" = $(0, 0, 1, 0, 0)$\n",
" * \"great\" = $(0, 0, 0, 1, 0)$\n",
" * \"have\" = $(0, 0, 0, 0, 1)$\n",
"* Taka metoda nie uwzględnia jednak podobieństw i różnic między znaczeniami wyrazów."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Metody uzyskiwania *word embeddings*:\n",
"* Common Bag of Words (CBOW)\n",
"* Skip Gram\n",
"\n",
"Obie opierają się na odpowiednim użyciu autoencodera."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"80%\" src=\"we_autoencoder.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"*Common Bag of Words*\n",
"\n",
"<img style=\"margin: auto\" width=\"40%\" src=\"cbow.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"*Skip Gram*\n",
"\n",
"<img style=\"margin: auto\" width=\"30%\" src=\"skipgram.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Skip Gram a CBOW\n",
"\n",
"* Skip Gram lepiej reprezentuje rzadkie wyrazy i lepiej działa, jeżeli mamy mało danych.\n",
"* CBOW jest szybszy i lepiej reprezentuje częste wyrazy."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### Popularne modele _word embeddings_\n",
"* Word2Vec (Google)\n",
"* GloVe (Stanford)\n",
"* FastText (Facebook)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 5.5. Tłumaczenie neuronowe\n",
"\n",
"*Neural Machine Translation* (NMT)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Neuronowe tłumaczenie maszynowe również opiera się na modelu *encoder-decoder*:\n",
"* *Encoder* koduje z języka źródłowego na abstrakcyjną reprezentację.\n",
"* *Decoder* odkodowuje z abstrakcyjnej reprezentacji na język docelowy."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img style=\"margin: auto\" width=\"40%\" src=\"http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/06/Figure2_NMT_system.png\"/>"
]
}
],
"metadata": {
"celltoolbar": "Slideshow",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"livereveal": {
"start_slideshow_at": "selected",
"theme": "white"
}
},
"nbformat": 4,
"nbformat_minor": 4
}