Fixeds to module reader (not carry unnecessary refcounts?). main
checks for homotopy type differences. Added planar_diagram::{show, display}_knottheory.
This commit is contained in:
parent
a0f94aad47
commit
3797868325
@ -21,7 +21,7 @@ class module : public refcounted
|
||||
|
||||
static unsigned id_counter;
|
||||
|
||||
static basedvector<ptr<const module<R> >, 1> id_module;
|
||||
static map<unsigned, ptr<const module<R> > > reader_id_module;
|
||||
|
||||
static map<basedvector<unsigned, 1>,
|
||||
ptr<const direct_sum<R> > > direct_sum_idx;
|
||||
@ -35,9 +35,6 @@ class module : public refcounted
|
||||
{
|
||||
id_counter ++;
|
||||
id = id_counter;
|
||||
|
||||
id_module.append (this);
|
||||
assert (id_module.size () == id_counter);
|
||||
}
|
||||
module (const module &) = delete;
|
||||
virtual ~module () { }
|
||||
@ -162,7 +159,7 @@ class module : public refcounted
|
||||
|
||||
template<class R> unsigned module<R>::id_counter = 0;
|
||||
|
||||
template<class R> basedvector<ptr<const module<R> >, 1> module<R>::id_module;
|
||||
template<class R> map<unsigned, ptr<const module<R> > > module<R>::reader_id_module;
|
||||
|
||||
template<class R> map<basedvector<unsigned, 1>,
|
||||
ptr<const direct_sum<R> > > module<R>::direct_sum_idx;
|
||||
@ -507,7 +504,9 @@ class explicit_module : public module<R>
|
||||
basedvector<R, 1> ann_,
|
||||
basedvector<grading, 1> hq_)
|
||||
: r(r_), ann(ann_), hq(hq_)
|
||||
{ }
|
||||
{
|
||||
assert (hq.size () == r + ann.size ());
|
||||
}
|
||||
|
||||
explicit explicit_module (unsigned r_, basedvector<grading, 1> hq_) : r(r_), hq(hq_) { }
|
||||
~explicit_module () { }
|
||||
@ -952,6 +951,7 @@ class mod_map
|
||||
|
||||
// inj : im -> to
|
||||
ptr<const free_submodule<R> > image () const;
|
||||
ptr<const free_submodule<R> > image (basedvector<linear_combination<R>, 1> vs) const;
|
||||
|
||||
ptr<const quotient_module<R> > cokernel () const;
|
||||
|
||||
@ -1874,6 +1874,15 @@ mod_map<R>::image () const
|
||||
return impl->to->submodule (span);
|
||||
}
|
||||
|
||||
template<class R> ptr<const free_submodule<R> >
|
||||
mod_map<R>::image (basedvector<linear_combination<R>, 1> vs) const
|
||||
{
|
||||
mod_span<R> span (impl->from, vs);
|
||||
ptr<const free_submodule<R> > s = impl->from->submodule (span);
|
||||
mod_map<R> r = restrict_from (s);
|
||||
return r.image ();
|
||||
}
|
||||
|
||||
template<class R> ptr<const quotient_module<R> >
|
||||
mod_map<R>::cokernel () const
|
||||
{
|
||||
@ -2034,11 +2043,13 @@ reader::read_mod ()
|
||||
|
||||
ptr<const module<R> > m = new explicit_module<R> (r, ann, gr);
|
||||
ar->io_id_id.push ((unsigned)(-io_id), m->id);
|
||||
module<R>::reader_id_module.push (m->id, m);
|
||||
|
||||
return m;
|
||||
}
|
||||
else
|
||||
{
|
||||
unsigned id = ar->io_id_id(io_id);
|
||||
return module<R>::id_module[id];
|
||||
return module<R>::reader_id_module(id);
|
||||
}
|
||||
}
|
||||
|
50
cube_impl.h
50
cube_impl.h
@ -410,11 +410,59 @@ cube<R>::cube (knot_diagram &kd_, bool markedp_only_)
|
||||
|
||||
// printf ("smoothings:\n");
|
||||
|
||||
unsigned max = 0;
|
||||
|
||||
smoothing s (kd);
|
||||
for (unsigned i = 0; i < n_resolutions; i ++)
|
||||
{
|
||||
smallbitset state (n_crossings, i);
|
||||
s.init (kd, state);
|
||||
|
||||
#if 1
|
||||
unsigned fromstate = i;
|
||||
smoothing &from_s = s;
|
||||
|
||||
unsigned n_zerocrossings = n_crossings - unsigned_bitcount (fromstate);
|
||||
unsigned n_cobordisms = ((unsigned)1) << n_zerocrossings;
|
||||
for (unsigned j = 0; j < n_cobordisms; j ++)
|
||||
{
|
||||
unsigned tostate = unsigned_pack (n_crossings, fromstate, j);
|
||||
unsigned crossings = tostate & ~fromstate;
|
||||
|
||||
smoothing to_s (kd, smallbitset (n_crossings, tostate));
|
||||
|
||||
set<unsigned> starting_circles,
|
||||
ending_circles;
|
||||
for (unsigned_const_iter k = crossings; k; k ++)
|
||||
{
|
||||
unsigned c = k.val ();
|
||||
|
||||
unsigned starting_from = s.ept_circle (kd, kd.crossings[c][2]),
|
||||
starting_to = s.ept_circle (kd, kd.crossings[c][4]);
|
||||
starting_circles += starting_from;
|
||||
starting_circles += starting_to;
|
||||
|
||||
unsigned ending_from = to_s.ept_circle (kd, kd.crossings[c][2]),
|
||||
ending_to = to_s.ept_circle (kd, kd.crossings[c][4]);
|
||||
ending_circles += ending_from;
|
||||
ending_circles += ending_to;
|
||||
}
|
||||
if (starting_circles.card () == 1
|
||||
&& ending_circles.card () == 1)
|
||||
{
|
||||
unsigned k = unsigned_bitcount (crossings);
|
||||
if (k > max)
|
||||
max = k;
|
||||
|
||||
#if 0
|
||||
s.show_self (kd, state);
|
||||
printf (" crossings "); show (smallbitset (n_crossings, crossings));
|
||||
newline ();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
resolution_circles[i] = s.n_circles;
|
||||
resolution_generator1[i] = n_generators + 1;
|
||||
n_generators += s.num_generators (markedp_only);
|
||||
@ -425,6 +473,8 @@ cube<R>::cube (knot_diagram &kd_, bool markedp_only_)
|
||||
#endif
|
||||
}
|
||||
|
||||
printf ("max = %d\n", max);
|
||||
|
||||
// printf ("(cube) n_generators = %d\n", n_generators);
|
||||
khC = new base_module<R, khC_generators<R> > (khC_generators<R> (*this));
|
||||
}
|
||||
|
@ -782,6 +782,12 @@ std::string
|
||||
knot_desc::name () const
|
||||
{
|
||||
char buf[1000];
|
||||
|
||||
#if 0
|
||||
sprintf (buf, "knot_desc(%d, %d, %d)", (int)t, i, j);
|
||||
return buf;
|
||||
#endif
|
||||
|
||||
switch (t)
|
||||
{
|
||||
case ROLFSEN:
|
||||
|
475
main.cpp
475
main.cpp
@ -202,6 +202,29 @@ compute_show_kh_sq (knot_desc desc
|
||||
#endif
|
||||
}
|
||||
|
||||
unsigned
|
||||
homological_width (ptr<const module<Z2> > H)
|
||||
{
|
||||
int maxd = -1000,
|
||||
mind = 1000;
|
||||
set<grading> gs = H->gradings ();
|
||||
for (set_const_iter<grading> gg = gs; gg; gg ++)
|
||||
{
|
||||
grading hq = gg.val ();
|
||||
int d = 2 * hq.h - hq.q;
|
||||
if (d < mind)
|
||||
mind = d;
|
||||
if (d > maxd)
|
||||
maxd = d;
|
||||
}
|
||||
int dwidth = maxd - mind;
|
||||
|
||||
unsigned hwidth = (dwidth / 2) + 1;
|
||||
return hwidth;
|
||||
}
|
||||
|
||||
basedvector<unsigned, 1> hwidth_knots;
|
||||
|
||||
void
|
||||
load (map<knot_desc,
|
||||
pair<mod_map<Z2>, mod_map<Z2> > > &knot_kh_sq,
|
||||
@ -252,6 +275,17 @@ load (map<knot_desc,
|
||||
for (map<knot_desc,
|
||||
pair<mod_map<Z2>, mod_map<Z2> > >::const_iter i = m; i; i ++)
|
||||
{
|
||||
mod_map<Z2> sq1 = i.val ().first;
|
||||
ptr<const module<Z2> > H = sq1.domain ();
|
||||
unsigned hwidth = homological_width (H);
|
||||
hwidth_knots[hwidth] ++;
|
||||
|
||||
if (hwidth == 2)
|
||||
continue;
|
||||
if (i.key ().t == knot_desc::MT
|
||||
&& i.key ().diagram ().num_components () == 1)
|
||||
continue;
|
||||
|
||||
knot_kh_sq.push (i.key (), i.val ());
|
||||
}
|
||||
|
||||
@ -260,15 +294,182 @@ load (map<knot_desc,
|
||||
|
||||
static const int block_size = 100;
|
||||
|
||||
void
|
||||
show_st (map<knot_desc,
|
||||
pair<mod_map<Z2>, mod_map<Z2> > > knot_kh_sq,
|
||||
knot_desc desc)
|
||||
{
|
||||
pair<mod_map<Z2>, mod_map<Z2> > p = knot_kh_sq(desc);
|
||||
|
||||
mod_map<Z2> sq1 = p.first;
|
||||
mod_map<Z2> sq2 = p.second;
|
||||
|
||||
printf ("%s ", desc.name ().c_str ());
|
||||
|
||||
assert (sq1.compose (sq1) == 0);
|
||||
assert (sq2.compose (sq2) + sq1.compose (sq2).compose (sq1) == 0);
|
||||
|
||||
ptr<const module<Z2> > H = sq1.domain ();
|
||||
|
||||
map<grading, basedvector<int, 1> > st;
|
||||
|
||||
bool first = 1;
|
||||
set<grading> gs = H->gradings ();
|
||||
for (set_const_iter<grading> gg = gs; gg; gg ++)
|
||||
{
|
||||
grading hq = gg.val (),
|
||||
h1q (hq.h + 1, hq.q),
|
||||
h2q (hq.h + 2, hq.q);
|
||||
|
||||
ptr<const free_submodule<Z2> > H_hq = H->graded_piece (hq),
|
||||
H_h1q = H->graded_piece (h1q),
|
||||
H_h2q = H->graded_piece (h2q);
|
||||
|
||||
mod_map<Z2> S = sq2.restrict (H_hq, H_h2q),
|
||||
A = sq1.restrict (H_hq, H_h1q),
|
||||
B = sq1.restrict (H_h1q, H_h2q);
|
||||
|
||||
ptr<const free_submodule<Z2> > S_im = S.image (),
|
||||
A_ker = A.kernel (),
|
||||
B_im = B.image ();
|
||||
ptr<const free_submodule<Z2> > inter = S_im->intersection (B_im);
|
||||
|
||||
mod_map<Z2> S_res = S.restrict_from (A_ker);
|
||||
ptr<const free_submodule<Z2> > S_res_im = S_res.image ();
|
||||
|
||||
ptr<const free_submodule<Z2> > res_inter = S_res_im->intersection (B_im);
|
||||
|
||||
int r1 = S_im->dim ();
|
||||
int r2 = S_res_im->dim ();
|
||||
int r3 = inter->dim ();
|
||||
int r4 = res_inter->dim ();
|
||||
|
||||
if (r1 == 0
|
||||
&& r2 == 0
|
||||
&& r3 == 0
|
||||
&& r4 == 0)
|
||||
continue;
|
||||
|
||||
// printf (" r = (%d, %d, %d, %d)\n", r1, r2, r3, r4);
|
||||
|
||||
int s1 = r2 - r4,
|
||||
s2 = r1 - r2 - r3 + r4,
|
||||
s3 = r4,
|
||||
s4 = r3 - r4;
|
||||
|
||||
if (s1 != 0)
|
||||
{
|
||||
if (first)
|
||||
first = 0;
|
||||
else
|
||||
printf (", ");
|
||||
printf ("(%d, %d) -> (%d, %d, %d, %d)",
|
||||
hq.h, hq.q,
|
||||
s1, s2, s3, s4);
|
||||
}
|
||||
}
|
||||
|
||||
newline ();
|
||||
}
|
||||
|
||||
int
|
||||
main ()
|
||||
{
|
||||
#if 0
|
||||
knot_diagram kd (mt_link (10, 0, 9));
|
||||
cube<Z2> c (kd);
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
for (unsigned i = 1; i <= 10; i ++)
|
||||
for (unsigned j = 1; j <= mt_links (i, 0); j ++)
|
||||
{
|
||||
knot_diagram kd (mt_link (i, 0, j));
|
||||
kd.marked_edge = 1;
|
||||
|
||||
cube<Z2> c (kd, 1);
|
||||
sseq ss = compute_szabo_sseq (c);
|
||||
ss.texshow (stdout, kd.name);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
#if 1
|
||||
for (unsigned i = 10; i <= 10; i ++)
|
||||
for (unsigned j = 124; j <= rolfsen_crossing_knots (i); j ++)
|
||||
{
|
||||
knot_diagram kd (rolfsen_knot (i, j));
|
||||
#endif
|
||||
#if 0
|
||||
for (unsigned i = 1; i <= 10; i ++)
|
||||
for (unsigned j = 1; j <= mt_links (i, 0); j ++)
|
||||
{
|
||||
#endif
|
||||
#if 0
|
||||
for (unsigned i = 11; i <= 11; i ++)
|
||||
for (unsigned j = 1; j <= htw_knots (i, 0); j ++)
|
||||
{
|
||||
#endif
|
||||
// knot_diagram kd (htw_knot (i, 0, j));
|
||||
// knot_diagram kd (mt_link (i, 0, j));
|
||||
kd.marked_edge = 1;
|
||||
|
||||
show (kd); newline ();
|
||||
|
||||
cube<Z2> c (kd, 1);
|
||||
|
||||
#if 0
|
||||
mod_map<Z2> d1 = c.compute_d (1, 0, 0, 0, 0);
|
||||
|
||||
chain_complex_simplifier<Z2> s (c.khC, d1, 1);
|
||||
assert (s.new_d == 0);
|
||||
#endif
|
||||
|
||||
sseq ss = compute_szabo_sseq (c);
|
||||
|
||||
multivariate_laurentpoly<Z> Phat =
|
||||
ss.pages[ss.pages.size ()].delta_poincare_polynomial (ss.bounds);
|
||||
|
||||
typedef spanning_tree_complex<Z2>::R R;
|
||||
|
||||
spanning_tree_complex<Z2> spanc (kd);
|
||||
mod_map<R> d2 = spanc.twisted_d2 ();
|
||||
mod_map<R> d2U = spanc.twisted_d2Un (1);
|
||||
|
||||
chain_complex_simplifier<R> s2 (spanc.C, d2, 2);
|
||||
assert (s2.new_d == 0);
|
||||
|
||||
mod_map<R> H_d2U = s2.pi.compose (d2U).compose (s2.iota);
|
||||
assert (H_d2U.compose (H_d2U) == 0);
|
||||
|
||||
ptr<const module<R> > ker = H_d2U.kernel ();
|
||||
ptr<const module<R> > quot = s2.new_C->quotient (H_d2U.image ());
|
||||
|
||||
multivariate_laurentpoly<Z> Pminus1
|
||||
= ker->free_delta_poincare_polynomial (),
|
||||
PminusU = quot->free_delta_poincare_polynomial ();
|
||||
|
||||
if (PminusU != Pminus1)
|
||||
{
|
||||
display (" HFhat: ", Phat);
|
||||
// display (" HF-: ", Pminus);
|
||||
display (" HF- (1): ", Pminus1);
|
||||
display (" HF- (U): ", PminusU);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
hwidth_knots = basedvector<unsigned, 1> (10);
|
||||
for (unsigned i = 1; i <= hwidth_knots.size (); i ++)
|
||||
hwidth_knots[i] = 0;
|
||||
|
||||
map<knot_desc,
|
||||
pair<mod_map<Z2>, mod_map<Z2> > > knot_kh_sq;
|
||||
|
||||
for (unsigned i = 12; i >= 1; i --)
|
||||
for (unsigned i = 14; i >= 1; i --)
|
||||
{
|
||||
#if 0
|
||||
if (i <= 10)
|
||||
{
|
||||
for (unsigned j = 1; j <= rolfsen_crossing_knots (i); j += block_size)
|
||||
@ -276,6 +477,7 @@ main ()
|
||||
load (knot_kh_sq, knot_desc (knot_desc::ROLFSEN, i, j));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
for (unsigned j = 1; j <= htw_knots (i); j += block_size)
|
||||
{
|
||||
@ -289,21 +491,50 @@ main ()
|
||||
load (knot_kh_sq, knot_desc (knot_desc::MT, i, j));
|
||||
}
|
||||
}
|
||||
|
||||
if (i == 14)
|
||||
{
|
||||
for (unsigned j = 1; j <= mt_links (14, 0); j += block_size)
|
||||
{
|
||||
load (knot_kh_sq, knot_desc (knot_desc::MT, 14, mt_links (14, 1) + j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsigned total_knots = 0;
|
||||
printf ("hwidth_knots:\n");
|
||||
for (unsigned i = 1; i <= hwidth_knots.size (); i ++)
|
||||
{
|
||||
printf (" % 2d: %d\n", i, hwidth_knots[i]);
|
||||
total_knots += hwidth_knots[i];
|
||||
}
|
||||
printf ("total_knots = %d\n", total_knots);
|
||||
|
||||
printf ("|knot_kh_sq| = %d\n", knot_kh_sq.card ());
|
||||
|
||||
#if 1
|
||||
map<pair<multivariate_laurentpoly<Z>,
|
||||
map<grading, unsigned> >,
|
||||
pair<knot_desc,
|
||||
map<grading, basedvector<int, 1> > > > P_sq1_knot_st;
|
||||
|
||||
set<multivariate_laurentpoly<Z> > Ps;
|
||||
basedvector<unsigned, 1> collisons (10);
|
||||
for (unsigned i = 1; i <= 10; i ++)
|
||||
collisons[i] = 0;
|
||||
|
||||
for (map<knot_desc,
|
||||
pair<mod_map<Z2>, mod_map<Z2> > >::const_iter i = knot_kh_sq; i; i ++)
|
||||
{
|
||||
if (i.key ().t != knot_desc::ROLFSEN)
|
||||
continue;
|
||||
show_st (knot_kh_sq, i.key ());
|
||||
|
||||
mod_map<Z2> sq1 = i.val ().first;
|
||||
mod_map<Z2> sq2 = i.val ().second;
|
||||
|
||||
#if 0
|
||||
display ("sq1:\n", sq1);
|
||||
display ("sq2:\n", sq2);
|
||||
#endif
|
||||
|
||||
printf ("%s ", i.key ().name ().c_str ());
|
||||
|
||||
@ -311,70 +542,230 @@ main ()
|
||||
assert (sq2.compose (sq2) + sq1.compose (sq2).compose (sq1) == 0);
|
||||
|
||||
ptr<const module<Z2> > H = sq1.domain ();
|
||||
unsigned hwidth = homological_width (H);
|
||||
|
||||
map<grading, basedvector<unsigned, 1> > st;
|
||||
map<grading, basedvector<int, 1> > st;
|
||||
map<grading, unsigned> sq1_ranks;
|
||||
|
||||
bool first = 1;
|
||||
|
||||
set<grading> gs = H->gradings ();
|
||||
for (set_const_iter<grading> i = gs; i; i ++)
|
||||
|
||||
for (set_const_iter<grading> gg = gs; gg; gg ++)
|
||||
{
|
||||
grading hq = i.val (),
|
||||
grading hq = gg.val (),
|
||||
h1q (hq.h + 1, hq.q),
|
||||
h2q (hq.h + 2, hq.q);
|
||||
h2q (hq.h + 2, hq.q),
|
||||
h3q (hq.h + 3, hq.q);
|
||||
|
||||
// printf ("(%d, %d):\n", hq.h, hq.q);
|
||||
|
||||
ptr<const free_submodule<Z2> > H_hq = H->graded_piece (hq),
|
||||
H_h1q = H->graded_piece (h1q),
|
||||
H_h2q = H->graded_piece (h2q);
|
||||
H_h2q = H->graded_piece (h2q),
|
||||
H_h3q = H->graded_piece (h3q);
|
||||
|
||||
mod_map<Z2> whole = sq2.restrict (H_hq, H_h2q),
|
||||
tail = sq1.restrict (H_hq, H_h1q),
|
||||
head = sq1.restrict (H_h1q, H_h2q);
|
||||
mod_map<Z2> S = sq2.restrict (H_hq, H_h2q),
|
||||
T = sq2.restrict (H_h1q, H_h3q),
|
||||
A = sq1.restrict (H_hq, H_h1q),
|
||||
B = sq1.restrict (H_h1q, H_h2q),
|
||||
C = sq1.restrict (H_h2q, H_h3q);
|
||||
|
||||
ptr<const free_submodule<Z2> > whole_im = whole.image (),
|
||||
tail_ker = tail.kernel (),
|
||||
head_im = head.image ();
|
||||
ptr<const free_submodule<Z2> > inter = whole_im->intersection (head_im);
|
||||
ptr<const free_submodule<Z2> > Sker = S.kernel (),
|
||||
Sim = S.image (),
|
||||
Tker = T.kernel (),
|
||||
Tim = T.image (),
|
||||
Aker = A.kernel (),
|
||||
Aim = A.image (),
|
||||
Bker = B.kernel (),
|
||||
Bim = B.image (),
|
||||
Cker = C.kernel (),
|
||||
Cim = C.image ();
|
||||
|
||||
mod_map<Z2> whole_res = whole.restrict_from (tail_ker);
|
||||
ptr<const free_submodule<Z2> > whole_res_im = whole_res.image ();
|
||||
sq1_ranks.push (hq, Aim->dim ());
|
||||
|
||||
ptr<const free_submodule<Z2> > res_inter = whole_res_im->intersection (head_im);
|
||||
mod_map<Z2> ArSker = A.restrict_from (Sker);
|
||||
mod_map<Z2> SrAker = S.restrict_from (Aker);
|
||||
|
||||
int r1 = whole_im->dim ();
|
||||
int r2 = whole_res_im->dim ();
|
||||
int r3 = inter->dim ();
|
||||
int r4 = res_inter->dim ();
|
||||
mod_map<Z2> TrAim = T.restrict_from (Aim);
|
||||
mod_map<Z2> TrBker = T.restrict_from (Bker);
|
||||
mod_map<Z2> BrTker = B.restrict_from (Tker);
|
||||
|
||||
if (r1 == 0
|
||||
&& r2 == 0
|
||||
&& r3 == 0
|
||||
&& r4 == 0)
|
||||
continue;
|
||||
mod_map<Z2> CrSim = C.restrict_from (Sim);
|
||||
|
||||
// printf (" r = (%d, %d, %d, %d)\n", r1, r2, r3, r4);
|
||||
ptr<const free_submodule<Z2> > ArSker_im = ArSker.image ();
|
||||
ptr<const free_submodule<Z2> > SrAker_im = SrAker.image ();
|
||||
|
||||
#if 1
|
||||
int s1 = r2 - r4,
|
||||
s2 = r1 - r2 - r3 + r4,
|
||||
s3 = r4,
|
||||
s4 = r3 - r4;
|
||||
ptr<const free_submodule<Z2> > TrAim_im = TrAim.image ();
|
||||
ptr<const free_submodule<Z2> > TrBker_im = TrBker.image ();
|
||||
ptr<const free_submodule<Z2> > BrTker_im = BrTker.image ();
|
||||
|
||||
if (first)
|
||||
first = 0;
|
||||
ptr<const free_submodule<Z2> > CrSim_im = CrSim.image ();
|
||||
|
||||
mod_map<Z2> CrSrAker_im = C.restrict_from (SrAker_im);
|
||||
mod_map<Z2> TrArSker_im = T.restrict_from (ArSker_im);
|
||||
|
||||
ptr<const free_submodule<Z2> > CrSrAker_im_im = CrSrAker_im.image ();
|
||||
ptr<const free_submodule<Z2> > TrArSker_im_im = TrArSker_im.image ();
|
||||
|
||||
ptr<const free_submodule<Z2> > Aker_cap_Sker = Aker->intersection (Sker);
|
||||
|
||||
ptr<const free_submodule<Z2> > Aim_cap_Tker = Aim->intersection (Tker);
|
||||
ptr<const free_submodule<Z2> > Bker_cap_Tker = Bker->intersection (Tker);
|
||||
ptr<const free_submodule<Z2> > ArSker_im_cap_Tker = ArSker_im->intersection (Tker);
|
||||
|
||||
ptr<const free_submodule<Z2> > Sim_cap_Bim = Sim->intersection (Bim);
|
||||
ptr<const free_submodule<Z2> > Sim_cap_BrTker_im = Sim->intersection (BrTker_im);
|
||||
ptr<const free_submodule<Z2> > Sim_cap_Cker = Sim->intersection (Cker);
|
||||
ptr<const free_submodule<Z2> > SrAker_im_cap_Bim = SrAker_im->intersection (Bim);
|
||||
ptr<const free_submodule<Z2> > SrAker_im_cap_BrTker_im = SrAker_im->intersection (BrTker_im);
|
||||
ptr<const free_submodule<Z2> > SrAker_im_cap_Cker = SrAker_im->intersection (Cker);
|
||||
|
||||
ptr<const free_submodule<Z2> > Tim_cap_Cim = Tim->intersection (Cim);
|
||||
ptr<const free_submodule<Z2> > TrAim_im_cap_Cim = TrAim_im->intersection (Cim);
|
||||
ptr<const free_submodule<Z2> > TrBker_im_cap_Cim = TrBker_im->intersection (Cim);
|
||||
ptr<const free_submodule<Z2> > TrArSker_im_im_cap_Cim = TrBker_im->intersection (Cim);
|
||||
|
||||
ptr<const free_submodule<Z2> > Tim_cap_CrSim_im = Tim->intersection (CrSim_im);
|
||||
ptr<const free_submodule<Z2> > TrAim_im_cap_CrSim_im = TrAim_im->intersection (CrSim_im);
|
||||
ptr<const free_submodule<Z2> > TrBker_im_cap_CrSim_im = TrBker_im->intersection (CrSim_im);
|
||||
ptr<const free_submodule<Z2> > TrArSker_im_im_cap_CrSim_im = TrBker_im->intersection (CrSim_im);
|
||||
|
||||
ptr<const free_submodule<Z2> > Tim_cap_CrSrAker_im_im = Tim->intersection (CrSrAker_im_im);
|
||||
ptr<const free_submodule<Z2> > TrAim_im_cap_CrSrAker_im_im = TrAim_im->intersection (CrSrAker_im_im);
|
||||
ptr<const free_submodule<Z2> > TrBker_im_cap_CrSrAker_im_im = TrBker_im->intersection (CrSrAker_im_im);
|
||||
ptr<const free_submodule<Z2> > TrArSker_im_im_cap_CrSrAker_im_im = TrBker_im->intersection (CrSrAker_im_im);
|
||||
|
||||
basedvector<int, 1> v;
|
||||
|
||||
v.append (Sker->dim ());
|
||||
v.append (Sim->dim ());
|
||||
v.append (Tker->dim ());
|
||||
v.append (Tim->dim ());
|
||||
|
||||
v.append (Aker->dim ());
|
||||
v.append (Aim->dim ());
|
||||
v.append (Bker->dim ());
|
||||
v.append (Bim->dim ());
|
||||
v.append (Cker->dim ());
|
||||
v.append (Cim->dim ());
|
||||
|
||||
v.append (ArSker_im->dim ());
|
||||
v.append (SrAker_im->dim ());
|
||||
|
||||
v.append (TrAim_im->dim ());
|
||||
v.append (TrBker_im->dim ());
|
||||
v.append (BrTker_im->dim ());
|
||||
|
||||
v.append (CrSim_im->dim ());
|
||||
|
||||
v.append (CrSrAker_im_im->dim ());
|
||||
v.append (TrArSker_im_im->dim ());
|
||||
|
||||
v.append (Aker_cap_Sker->dim ());
|
||||
|
||||
v.append (Aim_cap_Tker->dim ());
|
||||
v.append (Bker_cap_Tker->dim ());
|
||||
v.append (ArSker_im_cap_Tker->dim ());
|
||||
|
||||
v.append (Sim_cap_Bim->dim ());
|
||||
v.append (Sim_cap_BrTker_im->dim ());
|
||||
v.append (Sim_cap_Cker->dim ());
|
||||
v.append (SrAker_im_cap_Bim->dim ());
|
||||
v.append (SrAker_im_cap_BrTker_im->dim ());
|
||||
v.append (SrAker_im_cap_Cker->dim ());
|
||||
|
||||
v.append (Tim_cap_Cim->dim ());
|
||||
v.append (TrAim_im_cap_Cim->dim ());
|
||||
v.append (TrBker_im_cap_Cim->dim ());
|
||||
v.append (TrArSker_im_im_cap_Cim->dim ());
|
||||
|
||||
v.append (Tim_cap_CrSim_im->dim ());
|
||||
v.append (TrAim_im_cap_CrSim_im->dim ());
|
||||
v.append (TrBker_im_cap_CrSim_im->dim ());
|
||||
v.append (TrArSker_im_im_cap_CrSim_im->dim ());
|
||||
|
||||
v.append (Tim_cap_CrSim_im->dim ());
|
||||
v.append (TrAim_im_cap_CrSim_im->dim ());
|
||||
v.append (TrBker_im_cap_CrSim_im->dim ());
|
||||
v.append (TrArSker_im_im_cap_CrSim_im->dim ());
|
||||
|
||||
st.push (hq, v);
|
||||
}
|
||||
newline ();
|
||||
|
||||
multivariate_laurentpoly<Z> P = H->free_poincare_polynomial ();
|
||||
pair<pair<knot_desc,
|
||||
map<grading, basedvector<int, 1> > > &,
|
||||
bool> p = P_sq1_knot_st.find (pair<multivariate_laurentpoly<Z>,
|
||||
map<grading, unsigned> > (P, sq1_ranks));
|
||||
if (p.second)
|
||||
{
|
||||
collisons[hwidth] ++;
|
||||
Ps += P;
|
||||
|
||||
if (p.first.second != st)
|
||||
{
|
||||
printf ("DIFFER:\n");
|
||||
printf ("hwidth = %d\n", hwidth);
|
||||
|
||||
show_st (knot_kh_sq, p.first.first);
|
||||
show_st (knot_kh_sq, i.key ());
|
||||
|
||||
printf ("Kh[");
|
||||
planar_diagram (p.first.first.diagram ()).show_knottheory ();
|
||||
printf (", Modulus -> Null][q,t] === Kh[");
|
||||
planar_diagram (i.key ().diagram ()).show_knottheory ();
|
||||
printf (", Modulus -> Null][q,t]\n");
|
||||
|
||||
#if 0
|
||||
printf ("%s:\n",
|
||||
p.first.first.name ().c_str ());
|
||||
for (map<grading, basedvector<int, 1> >::const_iter j = p.first.second; j; j ++)
|
||||
{
|
||||
printf (" (%d, %d) -> [",
|
||||
j.key ().h, j.key ().q);
|
||||
for (unsigned k = 1; k <= j.val ().size (); k ++)
|
||||
{
|
||||
if (k > 1)
|
||||
printf (",");
|
||||
printf ("%d", j.val ()[k]);
|
||||
}
|
||||
newline ();
|
||||
}
|
||||
printf ("%s:\n",
|
||||
i.key ().name ().c_str ());
|
||||
for (map<grading, basedvector<int, 1> >::const_iter j = st; j; j ++)
|
||||
{
|
||||
printf (" (%d, %d) -> [",
|
||||
j.key ().h, j.key ().q);
|
||||
for (unsigned k = 1; k <= j.val ().size (); k ++)
|
||||
{
|
||||
if (k > 1)
|
||||
printf (",");
|
||||
printf ("%d", j.val ()[k]);
|
||||
}
|
||||
newline ();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else
|
||||
printf (", ");
|
||||
printf ("(%d, %d) -> (%d, %d, %d, %d)",
|
||||
hq.h, hq.q,
|
||||
s1, s2, s3, s4);
|
||||
#endif
|
||||
{
|
||||
p.first.first = i.key ();
|
||||
p.first.second = st;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
printf ("groups = %d\n", Ps.card ());
|
||||
printf ("collisons:\n");
|
||||
for (unsigned i = 1; i <= 10; i ++)
|
||||
printf (" % 2d: %d\n", i, collisons[i]);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
#if 0
|
||||
knot_diagram kd (rolfsen_knot (5, 2));
|
||||
show (kd); newline ();
|
||||
|
||||
|
@ -19,21 +19,20 @@ planar_diagram::planar_diagram (const knot_diagram &kd)
|
||||
}
|
||||
|
||||
void
|
||||
planar_diagram::display_bohua () const
|
||||
planar_diagram::show_knottheory () const
|
||||
{
|
||||
printf ("%s\t[", name.c_str ());
|
||||
printf ("PD[");
|
||||
for (unsigned i = 1; i <= crossings.size (); i ++)
|
||||
{
|
||||
if (i > 1)
|
||||
printf (",");
|
||||
printf ("[%d,%d,%d,%d]",
|
||||
printf ("X[%d,%d,%d,%d]",
|
||||
crossings[i][1],
|
||||
crossings[i][2],
|
||||
crossings[i][3],
|
||||
crossings[i][4]);
|
||||
}
|
||||
printf ("]\n");
|
||||
|
||||
printf ("]");
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -21,7 +21,8 @@ public:
|
||||
{ }
|
||||
~planar_diagram () { }
|
||||
|
||||
void display_bohua () const;
|
||||
void show_knottheory () const;
|
||||
void display_knottheory () const { show_knottheory (); newline (); }
|
||||
|
||||
void show_self () const { printf ("planar_diagram %s", name.c_str ()); }
|
||||
void display_self () const;
|
||||
|
Loading…
Reference in New Issue
Block a user