First commit in git. This is a cleaned up version of r114 from the
now deprecated SVN repository.
This commit is contained in:
parent
2eae290b42
commit
dcbe4127bd
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
*.o
|
||||
/gss
|
||||
/main
|
106
Makefile
Normal file
106
Makefile
Normal file
@ -0,0 +1,106 @@
|
||||
|
||||
BISON = /opt/local/bin/bison
|
||||
FLEX = /opt/local/bin/flex
|
||||
|
||||
CXX = g++
|
||||
|
||||
INCLUDES = -I/opt/local/include -I.
|
||||
|
||||
OPTFLAGS = -g
|
||||
# OPTFLAGS = -O2 -g
|
||||
# OPTFLAGS = -O2 -DNDEBUG
|
||||
|
||||
LDFLAGS = -L/opt/local/lib
|
||||
# LDFLAGS = -pg -L/opt/local/lib
|
||||
|
||||
CXXFLAGS = $(OPTFLAGS) -Wall -Wno-unused $(INCLUDES)
|
||||
|
||||
LIB_OBJS = lib/refcount.o \
|
||||
lib/lib.o lib/smallbitset.o lib/bitset.o lib/setcommon.o lib/io.o lib/directed_multigraph.o
|
||||
ALGEBRA_OBJS = algebra/algebra.o algebra/Q.o algebra/grading.o algebra/polynomial.o
|
||||
KNOTKIT_OBJS = planar_diagram.o dt_code.o knot_diagram.o cube.o spanning_tree_complex.o \
|
||||
smoothing.o cobordism.o knot_tables.o sseq.o \
|
||||
knot_parser/knot_parser.o knot_parser/knot_scanner.o \
|
||||
rd_parser/rd_parser.o rd_parser/rd_scanner.o
|
||||
|
||||
COMMON_OBJS = $(KNOTKIT_OBJS) $(ALGEBRA_OBJS) $(LIB_OBJS)
|
||||
|
||||
LIB_HEADERS = lib/lib.h lib/show.h lib/refcount.h lib/pair.h lib/maybe.h lib/vector.h \
|
||||
lib/set.h lib/ullmanset.h lib/bitset.h lib/smallbitset.h lib/setcommon.h \
|
||||
lib/map_wrapper.h lib/map.h lib/hashmap.h lib/ullmanmap.h lib/mapcommon.h \
|
||||
lib/unionfind.h lib/priority_queue.h lib/io.h \
|
||||
lib/directed_multigraph.h
|
||||
ALGEBRA_HEADERS = algebra/algebra.h algebra/grading.h algebra/module.h \
|
||||
algebra/Z2.h algebra/linear_combination.h algebra/Z.h algebra/Q.h \
|
||||
algebra/polynomial.h algebra/multivariate_polynomial.h \
|
||||
algebra/laurentpoly.h algebra/fraction_field.h
|
||||
KNOTKIT_HEADERS = knotkit.h planar_diagram.h dt_code.h knot_diagram.h \
|
||||
smoothing.h cobordism.h cube.h spanning_tree_complex.h cube_impl.h sseq.h
|
||||
|
||||
LIBS = -lgmp
|
||||
|
||||
all: gss
|
||||
|
||||
%.o : %.cc
|
||||
$(CXX) -c $(CXXFLAGS) $< -o $@
|
||||
|
||||
%.o : %.cpp
|
||||
$(CXX) -c $(CXXFLAGS) $< -o $@
|
||||
|
||||
gss: gss.o $(COMMON_OBJS)
|
||||
$(CXX) $(LDFLAGS) -o gss $^ $(LIBS)
|
||||
|
||||
main: main.o $(COMMON_OBJS)
|
||||
$(CXX) $(LDFLAGS) -o main $^ $(LIBS)
|
||||
|
||||
testlib: testlib.o $(COMMON_OBJS)
|
||||
$(CXX) $(LDFLAGS) -o testlib $^
|
||||
|
||||
knot_parser/knot_parser.cc knot_parser/knot_parser.hh: knot_parser/knot_parser.yy
|
||||
$(BISON) knot_parser/knot_parser.yy -o knot_parser/knot_parser.cc
|
||||
|
||||
knot_parser/knot_scanner.cc: knot_parser/knot_scanner.ll
|
||||
$(FLEX) -o knot_parser/knot_scanner.cc knot_parser/knot_scanner.ll
|
||||
|
||||
javakh_parser/javakh_parser.cc javakh_parser/javakh_parser.hh: javakh_parser/javakh_parser.yy
|
||||
$(BISON) javakh_parser/javakh_parser.yy -o javakh_parser/javakh_parser.cc
|
||||
|
||||
javakh_parser/javakh_scanner.cc: javakh_parser/javakh_scanner.ll
|
||||
$(FLEX) -o javakh_parser/javakh_scanner.cc javakh_parser/javakh_scanner.ll
|
||||
|
||||
rd_parser/rd_parser.cc rd_parser/rd_parser.hh: rd_parser/rd_parser.yy
|
||||
$(BISON) rd_parser/rd_parser.yy -o rd_parser/rd_parser.cc
|
||||
|
||||
rd_parser/rd_scanner.cc: rd_parser/rd_scanner.ll
|
||||
$(FLEX) -o rd_parser/rd_scanner.cc rd_parser/rd_scanner.ll
|
||||
|
||||
.PHONY: parser_files
|
||||
parser_files: \
|
||||
knot_parser/knot_parser.cc knot_parser/knot_parser.hh \
|
||||
knot_parser/knot_scanner.cc \
|
||||
javakh_parser/javakh_parser.cc javakh_parser/javakh_parser.hh \
|
||||
javakh_parser/javakh_scanner.cc \
|
||||
rd_parser/rd_parser.cc rd_parser/rd_parser.hh \
|
||||
rd_parser/rd_scanner.cc
|
||||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
rm -f *.o lib/*.o algebra/*.o knot_parser/*.o rd_parser/*.o
|
||||
rm -f main gss
|
||||
rm -f gmon.out
|
||||
|
||||
.PHONY: realclean
|
||||
realclean: clean
|
||||
rm -f knot_parser/knot_parser.cc knot_parser/knot_parser.hh
|
||||
rm -f knot_parser/knot_scanner.cc
|
||||
rm -f knot_parser/location.hh knot_parser/position.hh knot_parser/stack.hh
|
||||
rm -f javakh_parser/javakh_parser.cc javakh_parser/javakh_parser.hh
|
||||
rm -f javakh_parser/javakh_scanner.cc
|
||||
rm -f javakh_parser/location.hh javakh_parser/position.hh javakh_parser/stack.hh
|
||||
rm -f rd_parser/rd_parser.cc rd_parser/rd_parser.hh
|
||||
rm -f rd_parser/rd_scanner.cc
|
||||
rm -f rd_parser/location.hh rd_parser/position.hh rd_parser/stack.hh
|
||||
|
||||
$(LIB_OBJS): $(LIB_HEADERS)
|
||||
$(ALGEBRA_OBJS): $(ALGEBRA_HEADERS) $(LIB_HEADERS)
|
||||
$(KNOTKIT_OBJS) main.o gss.o: $(KNOTKIT_HEADERS) $(ALGEBRA_HEADERS) $(LIB_HEADERS)
|
19
algebra/Q.cpp
Normal file
19
algebra/Q.cpp
Normal file
@ -0,0 +1,19 @@
|
||||
|
||||
#include <algebra/algebra.h>
|
||||
|
||||
void
|
||||
Q::reduce ()
|
||||
{
|
||||
unsigned c = unsigned_gcd ((unsigned)std::abs (n), d);
|
||||
n /= (int)c;
|
||||
d /= c;
|
||||
}
|
||||
|
||||
void
|
||||
Q::show_self () const
|
||||
{
|
||||
if (d == 1)
|
||||
printf ("%d", n);
|
||||
else
|
||||
printf ("%d/%u", n, d);
|
||||
}
|
63
algebra/Q.h
Normal file
63
algebra/Q.h
Normal file
@ -0,0 +1,63 @@
|
||||
|
||||
class Q
|
||||
{
|
||||
public:
|
||||
typedef linear_combination<Q> linear_combination;
|
||||
// typedef linear_combination_iter<Q> linear_combination_iter;
|
||||
typedef linear_combination_const_iter<Q> linear_combination_const_iter;
|
||||
|
||||
private:
|
||||
int n;
|
||||
unsigned d;
|
||||
|
||||
void reduce ();
|
||||
|
||||
public:
|
||||
Q () : n(0), d(1) { }
|
||||
Q (int x) : n(x), d(1) { }
|
||||
Q (int n_, unsigned d_) : n(n_), d(d_) { assert (d != 0); reduce (); }
|
||||
Q (const Q &q) : n(q.n), d(q.d) { }
|
||||
~Q () { }
|
||||
|
||||
Q &operator = (const Q &q) { n = q.n; d = q.d; return *this; }
|
||||
Q &operator = (int x) { n = x; d = 1; return *this; }
|
||||
|
||||
bool operator == (const Q &q) const { return n == q.n && d == q.d; }
|
||||
|
||||
bool operator == (int x) const { return n == x && d == 1; }
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
bool is_unit () const { return n != 0; }
|
||||
|
||||
Q operator + (const Q &x) const { return Q (n*x.d + x.n*d, d*x.d); }
|
||||
Q operator - (const Q &x) const { return Q (n*x.d - x.n*d, d*x.d); }
|
||||
Q operator * (const Q &x) const { return Q (n*x.n, d*x.d); }
|
||||
Q operator / (const Q &x) const { return operator * (x.recip ()); }
|
||||
|
||||
Q recip () const
|
||||
{
|
||||
assert (is_unit ());
|
||||
if (n < 0)
|
||||
return Q (-d, -n);
|
||||
else
|
||||
return Q (d, n);
|
||||
}
|
||||
|
||||
Q &operator += (const Q &x) { n = n*x.d + x.n*d; d *= x.d; reduce (); return *this; }
|
||||
Q &operator -= (const Q &x) { n = n*x.d - x.n*d; d *= x.d; reduce (); return *this; }
|
||||
Q &operator *= (const Q &x) { n *= x.n; d *= x.d; reduce (); return *this; }
|
||||
Q &operator /= (const Q &x) { return operator *= (x.recip ()); }
|
||||
|
||||
bool divides (const Q &q) const { return (n != 0) || (q.n == 0); }
|
||||
bool operator | (const Q &q) const { return divides (q); }
|
||||
|
||||
Q gcd (const Q &q) const
|
||||
{
|
||||
assert (n != 0 && q.n != 0);
|
||||
return Q (1);
|
||||
}
|
||||
|
||||
static void show_ring () { printf ("Q"); }
|
||||
void show_self () const;
|
||||
void display_self () const { show_self (); newline (); }
|
||||
};
|
169
algebra/Z.h
Normal file
169
algebra/Z.h
Normal file
@ -0,0 +1,169 @@
|
||||
|
||||
class Z
|
||||
{
|
||||
public:
|
||||
typedef linear_combination<Z> linear_combination;
|
||||
typedef linear_combination_const_iter<Z> linear_combination_const_iter;
|
||||
|
||||
enum steal { STEAL };
|
||||
|
||||
private:
|
||||
class Z_impl : public refcounted
|
||||
{
|
||||
public:
|
||||
mpz_t x;
|
||||
|
||||
public:
|
||||
Z_impl () { mpz_init (x); }
|
||||
Z_impl (int init) { mpz_init_set_si (x, init); }
|
||||
Z_impl (copy, mpz_srcptr init) { mpz_init_set (x, init); }
|
||||
Z_impl (steal, mpz_srcptr init) { x[0] = *init; }
|
||||
~Z_impl () { mpz_clear (x); }
|
||||
};
|
||||
|
||||
ptr<Z_impl> impl;
|
||||
|
||||
Z (steal, mpz_srcptr init) : impl(new Z_impl (STEAL, init)) { }
|
||||
|
||||
public:
|
||||
Z () : impl(new Z_impl) { }
|
||||
Z (int init) : impl(new Z_impl (init)) { }
|
||||
Z (const Z &z) : impl(z.impl) { }
|
||||
Z (copy, const Z &z) : impl(new Z_impl (COPY, z.impl->x)) { }
|
||||
~Z () { }
|
||||
|
||||
Z &operator = (const Z &z) { impl = z.impl; return *this; }
|
||||
Z &operator = (int x) { impl = new Z_impl (x); return *this; }
|
||||
|
||||
bool operator == (const Z &z) const { return mpz_cmp (impl->x, z.impl->x) == 0; }
|
||||
|
||||
bool operator == (int y) const { return mpz_cmp_si (impl->x, y) == 0; }
|
||||
bool operator != (int y) const { return !operator == (y); }
|
||||
|
||||
bool operator < (const Z &z) const { return mpz_cmp (impl->x, z.impl->x) < 0; }
|
||||
|
||||
bool is_unit () const
|
||||
{
|
||||
return *this == 1 || *this == -1;
|
||||
}
|
||||
|
||||
Z operator + (const Z &z) const
|
||||
{
|
||||
mpz_t x;
|
||||
mpz_init (x);
|
||||
mpz_add (x, impl->x, z.impl->x);
|
||||
return Z (STEAL, x);
|
||||
}
|
||||
|
||||
Z operator - (const Z &z) const
|
||||
{
|
||||
mpz_t x;
|
||||
mpz_init (x);
|
||||
mpz_sub (x, impl->x, z.impl->x);
|
||||
return Z (STEAL, x);
|
||||
}
|
||||
|
||||
Z operator * (const Z &z) const
|
||||
{
|
||||
mpz_t x;
|
||||
mpz_init (x);
|
||||
mpz_mul (x, impl->x, z.impl->x);
|
||||
return Z (STEAL, x);
|
||||
}
|
||||
|
||||
Z operator / (const Z &z) const
|
||||
{
|
||||
if (mpz_cmp_si (z.impl->x, 1) == 0)
|
||||
return *this;
|
||||
else
|
||||
{
|
||||
assert (mpz_cmp_si (z.impl->x, -1) == 0);
|
||||
|
||||
mpz_t x;
|
||||
mpz_init (x);
|
||||
mpz_neg (x, impl->x);
|
||||
return Z (STEAL, x);
|
||||
}
|
||||
}
|
||||
|
||||
Z recip () const
|
||||
{
|
||||
assert (is_unit ());
|
||||
return Z (COPY, *this);
|
||||
}
|
||||
|
||||
Z &operator += (const Z &z)
|
||||
{
|
||||
mpz_add (impl->x, impl->x, z.impl->x);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Z &operator -= (const Z &z)
|
||||
{
|
||||
mpz_sub (impl->x, impl->x, z.impl->x);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Z &operator *= (const Z &z)
|
||||
{
|
||||
mpz_mul (impl->x, impl->x, z.impl->x);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Z &operator /= (const Z &z)
|
||||
{
|
||||
if (mpz_cmp_si (z.impl->x, 1) == 0)
|
||||
;
|
||||
else
|
||||
{
|
||||
assert (mpz_cmp_si (z.impl->x, -1) == 0);
|
||||
mpz_neg (impl->x, impl->x);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool divides (const Z &n) const
|
||||
{
|
||||
// d = *this
|
||||
return mpz_divisible_p (n.impl->x, impl->x);
|
||||
}
|
||||
|
||||
bool operator | (const Z &z) const { return divides (z); }
|
||||
|
||||
Z div (const Z &d) const
|
||||
{
|
||||
// n = *this
|
||||
mpz_t q;
|
||||
mpz_init (q);
|
||||
mpz_divexact (q, impl->x, d.impl->x);
|
||||
return Z (STEAL, q);
|
||||
}
|
||||
|
||||
triple<Z, Z, Z> extended_gcd (const Z &z) const
|
||||
{
|
||||
mpz_t d, s, t;
|
||||
mpz_inits (d, s, t, 0);
|
||||
mpz_gcdext (d, s, t, impl->x, z.impl->x);
|
||||
return triple<Z, Z, Z> (Z (STEAL, d),
|
||||
Z (STEAL, s),
|
||||
Z (STEAL, t));
|
||||
}
|
||||
|
||||
Z gcd (const Z &z) const
|
||||
{
|
||||
mpz_t d;
|
||||
mpz_gcd (d, impl->x, z.impl->x);
|
||||
return Z (STEAL, d);
|
||||
}
|
||||
|
||||
Z lcm (const Z &z) const
|
||||
{
|
||||
mpz_t m;
|
||||
mpz_lcm (m, impl->x, z.impl->x);
|
||||
return Z (STEAL, m);
|
||||
}
|
||||
|
||||
static void show_ring () { printf ("Z"); }
|
||||
void show_self () const { mpz_out_str (stdout, 10, impl->x); }
|
||||
void display_self () const { show_self (); newline (); }
|
||||
};
|
66
algebra/Z2.h
Normal file
66
algebra/Z2.h
Normal file
@ -0,0 +1,66 @@
|
||||
class Z2
|
||||
{
|
||||
public:
|
||||
typedef linear_combination<Z2> linear_combination;
|
||||
// typedef linear_combination_iter<Z2> linear_combination_iter;
|
||||
typedef linear_combination_const_iter<Z2> linear_combination_const_iter;
|
||||
|
||||
private:
|
||||
bool v;
|
||||
|
||||
public:
|
||||
Z2 () : v(0) { }
|
||||
Z2 (int x) : v((bool)(x & 1)) { }
|
||||
Z2 (bool v_) : v(v_) { }
|
||||
Z2 (const Z2 &x) : v(x.v) { }
|
||||
~Z2 () { }
|
||||
|
||||
Z2 &operator = (const Z2 &x) { v = x.v; return *this; }
|
||||
Z2 &operator = (int x) { v = (bool)(x & 1); return *this; }
|
||||
|
||||
bool operator == (const Z2 &x) const { return v == x.v; }
|
||||
|
||||
bool operator == (int x) const { return v == (bool)(x & 1); }
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
bool is_unit () const { return v; }
|
||||
|
||||
Z2 operator + (const Z2 &x) const { return Z2 (v ^ x.v); }
|
||||
Z2 operator - (const Z2 &x) const { return Z2 (v ^ x.v); }
|
||||
Z2 operator * (const Z2 &x) const { return Z2 (v & x.v); }
|
||||
Z2 operator / (const Z2 &x) const { assert (x.v); return *this; }
|
||||
|
||||
Z2 recip () const { assert (v); return *this; }
|
||||
|
||||
Z2 &operator += (const Z2 &x) { v ^= x.v; return *this; }
|
||||
Z2 &operator -= (const Z2 &x) { v ^= x.v; return *this; }
|
||||
Z2 &operator *= (const Z2 &x) { v &= x.v; return *this; }
|
||||
Z2 &operator /= (const Z2 &x) { assert (x.v); return *this; }
|
||||
|
||||
bool divides (Z2 x) const { return v || !x.v; }
|
||||
bool operator | (const Z2 x) const { return divides (x); }
|
||||
|
||||
Z2 div (Z2 x) const
|
||||
{
|
||||
assert (x.divides (*this));
|
||||
return *this;
|
||||
}
|
||||
|
||||
Z2 gcd (Z2 x) const
|
||||
{
|
||||
assert (v && x.v);
|
||||
return Z2 (1);
|
||||
}
|
||||
|
||||
triple<Z2, Z2, Z2> extended_gcd (Z2 x) const
|
||||
{
|
||||
if (v)
|
||||
return triple<Z2, Z2, Z2> (Z2 (1), Z2 (1), Z2 (0));
|
||||
else
|
||||
return triple<Z2, Z2, Z2> (Z2 (1), Z2 (0), Z2 (1));
|
||||
}
|
||||
|
||||
static void show_ring () { printf ("Z2"); }
|
||||
void show_self () const { printf ("%d", (int)v); }
|
||||
void display_self () const { printf ("%d\n", (int)v); }
|
||||
};
|
105
algebra/algebra.cpp
Normal file
105
algebra/algebra.cpp
Normal file
@ -0,0 +1,105 @@
|
||||
|
||||
#include <algebra/algebra.h>
|
||||
|
||||
unsigned
|
||||
unsigned_gcd (unsigned a, unsigned b)
|
||||
{
|
||||
while (b != 0)
|
||||
{
|
||||
unsigned t = a % b;
|
||||
a = b;
|
||||
b = t;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
unsigned
|
||||
int_gcd (int a, int b)
|
||||
{
|
||||
return unsigned_gcd ((unsigned)std::abs (a),
|
||||
(unsigned)std::abs (b));
|
||||
}
|
||||
|
||||
uint64
|
||||
uint64_gcd (uint64 a, uint64 b)
|
||||
{
|
||||
while (b != 0)
|
||||
{
|
||||
uint64 t = a % b;
|
||||
a = b;
|
||||
b = t;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
uint64
|
||||
int64_gcd (int64 a, int64 b)
|
||||
{
|
||||
return uint64_gcd ((uint64)std::abs (a),
|
||||
(uint64)std::abs (b));
|
||||
}
|
||||
|
||||
static triple<unsigned, int, int>
|
||||
extended_gcd_1 (unsigned a, unsigned b)
|
||||
{
|
||||
if (b == 0)
|
||||
return triple<unsigned, int, int> (a, 1, 0);
|
||||
|
||||
unsigned t = a % b;
|
||||
if (!t)
|
||||
return triple<unsigned, int, int> (b, 0, 1);
|
||||
else
|
||||
{
|
||||
triple<unsigned, int, int> s = extended_gcd (b, t);
|
||||
|
||||
unsigned d = s.first;
|
||||
int x = s.third,
|
||||
y = s.second - s.third * (a / b);
|
||||
|
||||
assert ((int)d == (int)a*x + (int)b*y);
|
||||
|
||||
return triple<unsigned, int, int> (d, x, y);
|
||||
}
|
||||
}
|
||||
|
||||
triple<unsigned, int, int>
|
||||
extended_gcd (int a, int b)
|
||||
{
|
||||
triple<unsigned, int, int> t = extended_gcd_1 (std::abs (a),
|
||||
std::abs (b));
|
||||
unsigned d = t.first;
|
||||
int x = t.second,
|
||||
y = t.third;
|
||||
if (a < 0)
|
||||
x *= -1;
|
||||
if (b < 0)
|
||||
y *= -1;
|
||||
|
||||
assert ((int)d == a*x + b*y);
|
||||
|
||||
return triple<unsigned, int, int> (d, x, y);
|
||||
}
|
||||
|
||||
unsigned
|
||||
unsigned_lcm (unsigned a, unsigned b)
|
||||
{
|
||||
return (a / unsigned_gcd (a, b)) * b;
|
||||
}
|
||||
|
||||
uint64
|
||||
uint64_lcm (uint64 a, uint64 b)
|
||||
{
|
||||
return (a / uint64_gcd (a, b)) * b;
|
||||
}
|
||||
|
||||
unsigned int_lcm (int a, int b)
|
||||
{
|
||||
return unsigned_lcm ((unsigned)std::abs (a),
|
||||
(unsigned)std::abs (b));
|
||||
}
|
||||
|
||||
uint64 int64_lcm (int64 a, int64 b)
|
||||
{
|
||||
return uint64_lcm ((uint64)std::abs (a),
|
||||
(uint64)std::abs (b));
|
||||
}
|
66
algebra/algebra.h
Normal file
66
algebra/algebra.h
Normal file
@ -0,0 +1,66 @@
|
||||
|
||||
#include <gmp.h>
|
||||
|
||||
#include <lib/lib.h>
|
||||
|
||||
inline int recip (int x)
|
||||
{
|
||||
assert (x == 1 || x == -1);
|
||||
return x;
|
||||
}
|
||||
|
||||
template<class T> inline T recip (const T &x) { return x.recip (); }
|
||||
|
||||
template<class T> inline T
|
||||
pow (const T &x, int d)
|
||||
{
|
||||
if (d == 0)
|
||||
return 1;
|
||||
else if (d == 1)
|
||||
return x;
|
||||
else if (d < 0)
|
||||
return pow (recip (x), -d);
|
||||
else
|
||||
{
|
||||
T x2 = x * x;
|
||||
if (d & 1)
|
||||
return x * pow (x2, (d - 1) / 2);
|
||||
else
|
||||
return pow (x2, d / 2);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned unsigned_gcd (unsigned a, unsigned b);
|
||||
uint64 uint64_gcd (uint64 a, uint64 b);
|
||||
|
||||
unsigned int_gcd (int a, int b);
|
||||
uint64 int64_gcd (int64 a, int64 b);
|
||||
|
||||
unsigned unsigned_lcm (unsigned a, unsigned b);
|
||||
uint64 uint64_lcm (uint64 a, uint64 b);
|
||||
unsigned int_lcm (int a, int b);
|
||||
uint64 int64_lcm (int64 a, int64 b);
|
||||
|
||||
// (d, x, y) = gcd (a, b) where x*a + y*b = d
|
||||
triple<unsigned, int, int> extended_gcd (int a, int b);
|
||||
|
||||
template<class R> class linear_combination;
|
||||
template<class R> class linear_combination_const_iter;
|
||||
|
||||
template<class R> class module;
|
||||
|
||||
#include <algebra/multivariate_polynomial.h>
|
||||
|
||||
#include <algebra/laurentpoly.h>
|
||||
|
||||
#include <algebra/grading.h>
|
||||
#include <algebra/module.h>
|
||||
|
||||
#include <algebra/Z2.h>
|
||||
#include <algebra/linear_combination.h>
|
||||
|
||||
#include <algebra/Z.h>
|
||||
#include <algebra/Q.h>
|
||||
#include <algebra/polynomial.h>
|
||||
|
||||
#include <algebra/fraction_field.h>
|
3
algebra/fields.cpp
Normal file
3
algebra/fields.cpp
Normal file
@ -0,0 +1,3 @@
|
||||
|
||||
#include <algebra/algebra.h>
|
||||
|
241
algebra/fraction_field.h
Normal file
241
algebra/fraction_field.h
Normal file
@ -0,0 +1,241 @@
|
||||
|
||||
template<class T> class fraction_field
|
||||
{
|
||||
public:
|
||||
typedef linear_combination<fraction_field> linear_combination;
|
||||
typedef linear_combination_const_iter<fraction_field> linear_combination_const_iter;
|
||||
|
||||
private:
|
||||
T num;
|
||||
T denom;
|
||||
|
||||
enum reduced { REDUCED };
|
||||
|
||||
void reduce ();
|
||||
void check ();
|
||||
|
||||
public:
|
||||
fraction_field () : num(0), denom(1) { }
|
||||
fraction_field (int x) : num(x), denom(1) { }
|
||||
fraction_field (T num_) : num(num_), denom(1) { }
|
||||
fraction_field (T num_, T denom_) : num(num_), denom(denom_) { assert (denom != 0); reduce (); }
|
||||
fraction_field (reduced, T num_, T denom_)
|
||||
: num(num_), denom(denom_)
|
||||
{
|
||||
assert (denom != 0);
|
||||
#ifndef NDEBUG
|
||||
check ();
|
||||
#endif
|
||||
}
|
||||
|
||||
fraction_field (const fraction_field &q) : num(q.num), denom(q.denom) { }
|
||||
fraction_field (copy, const fraction_field &q) : num(COPY, q.num), denom(COPY, q.denom) { }
|
||||
~fraction_field () { }
|
||||
|
||||
fraction_field &operator = (const fraction_field &q) { num = q.num; denom = q.denom; return *this; }
|
||||
fraction_field &operator = (int x) { num = x; denom = 1; return *this; }
|
||||
|
||||
bool operator == (const fraction_field &q) const { return num * q.denom == q.num * denom; }
|
||||
|
||||
bool operator == (int x) const { return num == denom * T (x); }
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
bool is_unit () const { return num != 0; }
|
||||
|
||||
fraction_field operator + (const fraction_field &x) const
|
||||
{
|
||||
T d = denom.gcd (x.denom);
|
||||
T e = denom.divide_exact (d),
|
||||
xe = x.denom.divide_exact (d);
|
||||
|
||||
T new_num = num * xe;
|
||||
new_num += x.num * e;
|
||||
|
||||
return fraction_field (new_num, denom*xe);
|
||||
}
|
||||
|
||||
fraction_field operator - (const fraction_field &x) const
|
||||
{
|
||||
T d = denom.gcd (x.denom);
|
||||
T e = denom.divide_exact (d),
|
||||
xe = x.denom.divide_exact (d);
|
||||
|
||||
T new_num = num * xe;
|
||||
new_num -= x.num * e;
|
||||
|
||||
return fraction_field (new_num, denom*xe);
|
||||
}
|
||||
|
||||
fraction_field operator * (const fraction_field &x) const
|
||||
{
|
||||
T d1 = num.gcd (x.denom);
|
||||
T d2 = denom.gcd (x.num);
|
||||
return fraction_field (REDUCED,
|
||||
num.divide_exact (d1) * x.num.divide_exact (d2),
|
||||
denom.divide_exact (d2) * x.denom.divide_exact (d1));
|
||||
}
|
||||
|
||||
fraction_field operator / (const fraction_field &x) const
|
||||
{
|
||||
assert (x.num != 0);
|
||||
|
||||
T d1 = num.gcd (x.num);
|
||||
T d2 = denom.gcd (x.denom);
|
||||
return fraction_field (REDUCED,
|
||||
num.divide_exact (d1) * x.denom.divide_exact (d2),
|
||||
denom.divide_exact (d2) * x.num.divide_exact (d1));
|
||||
}
|
||||
|
||||
fraction_field &invert ()
|
||||
{
|
||||
assert (num != 0);
|
||||
T t = num;
|
||||
num = denom;
|
||||
denom = t;
|
||||
return *this;
|
||||
}
|
||||
|
||||
fraction_field recip () const
|
||||
{
|
||||
assert (num != 0);
|
||||
return fraction_field (T (COPY, denom),
|
||||
T (COPY, num));
|
||||
}
|
||||
|
||||
fraction_field &operator += (const fraction_field &x)
|
||||
{
|
||||
T d = denom.gcd (x.denom);
|
||||
T e = denom.divide_exact (d),
|
||||
xe = x.denom.divide_exact (d);
|
||||
|
||||
num *= xe;
|
||||
num += x.num * e;
|
||||
denom *= xe;
|
||||
|
||||
reduce ();
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
fraction_field &operator -= (const fraction_field &x)
|
||||
{
|
||||
T d = denom.gcd (x.denom);
|
||||
T e = denom.divide_exact (d),
|
||||
xe = x.denom.divide_exact (d);
|
||||
|
||||
num *= xe;
|
||||
num -= x.num * e;
|
||||
denom *= xe;
|
||||
|
||||
reduce ();
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
fraction_field &operator *= (const fraction_field &x)
|
||||
{
|
||||
T d1 = num.gcd (x.denom);
|
||||
num = num.divide_exact (d1);
|
||||
|
||||
T d2 = denom.gcd (x.num);
|
||||
denom = denom.divide_exact (d2);
|
||||
|
||||
num *= x.num.divide_exact (d2);
|
||||
denom *= x.denom.divide_exact (d1);
|
||||
|
||||
#ifndef NDEBUG
|
||||
check ();
|
||||
#endif
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
fraction_field &operator /= (const fraction_field &x)
|
||||
{
|
||||
assert (x.num != 0);
|
||||
|
||||
T d1 = num.gcd (x.num);
|
||||
num = num.divide_exact (d1);
|
||||
|
||||
T d2 = denom.gcd (x.denom);
|
||||
denom = denom.divide_exact (d2);
|
||||
|
||||
num *= x.denom.divide_exact (d2);
|
||||
denom *= x.num.divide_exact (d1);
|
||||
|
||||
#ifndef NDEBUG
|
||||
check ();
|
||||
#endif
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
// d | n, d.divides (n)
|
||||
bool divides (const fraction_field &n) const
|
||||
{
|
||||
// d = *this
|
||||
return (num != 0) || (n.num == 0);
|
||||
}
|
||||
|
||||
bool operator | (const fraction_field &q) const { return divides (q); }
|
||||
|
||||
fraction_field div (const fraction_field &d) const { return operator / (d); }
|
||||
|
||||
fraction_field gcd (const fraction_field &q) const
|
||||
{
|
||||
assert (num != 0 && q.num != 0);
|
||||
return fraction_field (1);
|
||||
}
|
||||
|
||||
triple<fraction_field, fraction_field, fraction_field> extended_gcd (const fraction_field &x) const
|
||||
{
|
||||
if (*this != 0)
|
||||
return triple<fraction_field, fraction_field, fraction_field> (*this, 1, 0);
|
||||
else
|
||||
return triple<fraction_field, fraction_field, fraction_field> (x, 0, 1);
|
||||
}
|
||||
|
||||
static void show_ring () { printf ("fraction_field("); T::show_ring (); printf (")"); }
|
||||
void show_self () const;
|
||||
void display_self () const { show_self (); newline (); }
|
||||
};
|
||||
|
||||
template<class T> void
|
||||
fraction_field<T>::reduce ()
|
||||
{
|
||||
if (num == 0)
|
||||
{
|
||||
denom = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
T d = num.gcd (denom);
|
||||
|
||||
num = num.divide_exact (d);
|
||||
denom = denom.divide_exact (d);
|
||||
}
|
||||
|
||||
template<class T> void
|
||||
fraction_field<T>::check ()
|
||||
{
|
||||
if (num == 0)
|
||||
return;
|
||||
// check denom == 1
|
||||
|
||||
// assert (num.gcd (denom) == 1);
|
||||
}
|
||||
|
||||
template<class T> void
|
||||
fraction_field<T>::show_self () const
|
||||
{
|
||||
if (denom == 1)
|
||||
show (num);
|
||||
else
|
||||
{
|
||||
printf ("(");
|
||||
show (num);
|
||||
printf (")/(");
|
||||
show (denom);
|
||||
printf (")");
|
||||
}
|
||||
}
|
22
algebra/grading.cpp
Normal file
22
algebra/grading.cpp
Normal file
@ -0,0 +1,22 @@
|
||||
|
||||
#include <algebra/algebra.h>
|
||||
|
||||
grading
|
||||
grading::mirror_grading (unsigned nplus, unsigned nminus, bool torsion) const
|
||||
{
|
||||
return grading (torsion ? (1-h) : -h,
|
||||
-q);
|
||||
}
|
||||
|
||||
void
|
||||
grading::show_self () const
|
||||
{
|
||||
printf ("(%d, %d)", h, q);
|
||||
}
|
||||
|
||||
void
|
||||
grading::display_self () const
|
||||
{
|
||||
printf ("(%d, %d)\n", h, q);
|
||||
}
|
||||
|
49
algebra/grading.h
Normal file
49
algebra/grading.h
Normal file
@ -0,0 +1,49 @@
|
||||
|
||||
class grading
|
||||
{
|
||||
public:
|
||||
int h, q;
|
||||
|
||||
public:
|
||||
grading () : h(0), q(0) { }
|
||||
grading (int h_, int q_) : h(h_), q(q_) { }
|
||||
grading (const grading &gr) : h(gr.h), q(gr.q) { }
|
||||
~grading () { }
|
||||
|
||||
grading &operator = (const grading &gr) { h = gr.h; q = gr.q; return *this; }
|
||||
|
||||
grading operator + (const grading &gr) const
|
||||
{
|
||||
return grading (h + gr.h, q + gr.q);
|
||||
}
|
||||
grading operator - (const grading &gr) const
|
||||
{
|
||||
return grading (h - gr.h, q - gr.q);
|
||||
}
|
||||
|
||||
grading &operator += (const grading &gr)
|
||||
{
|
||||
h += gr.h;
|
||||
q += gr.q;
|
||||
return *this;
|
||||
}
|
||||
|
||||
grading &operator -= (const grading &gr)
|
||||
{
|
||||
h -= gr.h;
|
||||
q -= gr.q;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator == (const grading &gr) const { return h == gr.h && q == gr.q; }
|
||||
bool operator < (const grading &gr) const
|
||||
{
|
||||
return h < gr.h
|
||||
|| (h == gr.h && q < gr.q);
|
||||
}
|
||||
|
||||
grading mirror_grading (unsigned nplus, unsigned nminus, bool torsion) const;
|
||||
|
||||
void show_self () const;
|
||||
void display_self () const;
|
||||
};
|
399
algebra/laurentpoly.h
Normal file
399
algebra/laurentpoly.h
Normal file
@ -0,0 +1,399 @@
|
||||
|
||||
template<class C, class E> class laurentpoly;
|
||||
|
||||
class exponent1
|
||||
{
|
||||
public:
|
||||
int first;
|
||||
|
||||
public:
|
||||
exponent1 () : first(0) { }
|
||||
explicit exponent1 (unsigned first_) : first(first_) { }
|
||||
exponent1 (const exponent1 &e) : first(e.first) { }
|
||||
~exponent1 () { }
|
||||
|
||||
exponent1 &operator = (const exponent1 &e) { first = e.first; return *this; }
|
||||
|
||||
inline laurentpoly<int, exponent1> operator + (const exponent1 &e) const;
|
||||
|
||||
exponent1 &operator *= (const exponent1 &e) { first += e.first; return *this; }
|
||||
exponent1 operator * (const exponent1 &e) const { return exponent1 (first + e.first); }
|
||||
|
||||
template<class T> laurentpoly<T, exponent1> operator * (const T &c) const
|
||||
{
|
||||
laurentpoly<T, exponent1> r;
|
||||
r.addeq (c, *this);
|
||||
return r;
|
||||
}
|
||||
|
||||
bool operator == (int x) const { assert (x == 0); return !first; }
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
bool operator == (const exponent1 &e) const { return first == e.first; }
|
||||
bool operator != (const exponent1 &e) const { return !operator == (e); }
|
||||
bool operator < (const exponent1 &e) const { return first < e.first; }
|
||||
|
||||
exponent1 operator ^ (int p) const { return exponent1 (first * p); }
|
||||
|
||||
void show_self () const { printf ("(%d)", first); }
|
||||
void display_self () const { show_self (); newline (); }
|
||||
};
|
||||
|
||||
class exponent2
|
||||
{
|
||||
public:
|
||||
int first,
|
||||
second;
|
||||
|
||||
public:
|
||||
exponent2 () : first(0), second(0) { }
|
||||
explicit exponent2 (int i) : first(0), second(0) { assert (i == 0); }
|
||||
exponent2 (int first_, int second_) : first(first_), second(second_) { }
|
||||
exponent2 (const exponent2 &e) : first(e.first), second(e.second) { }
|
||||
~exponent2 () { }
|
||||
|
||||
exponent2 &operator = (const exponent2 &e) { first = e.first; second = e.second; return *this; }
|
||||
|
||||
inline laurentpoly<int, exponent2> operator + (const exponent2 &e) const;
|
||||
|
||||
exponent2 &operator *= (const exponent2 &e) { first += e.first; second += e.second; return *this; }
|
||||
exponent2 operator * (const exponent2 &e) const { return exponent2 (first + e.first, second + e.second); }
|
||||
|
||||
template<class T> laurentpoly<T, exponent2> operator * (const T &c) const
|
||||
{
|
||||
laurentpoly<T, exponent2> r;
|
||||
r.addeq (c, *this);
|
||||
return r;
|
||||
}
|
||||
|
||||
bool operator == (int x) const { assert (x == 0); return !first && !second; }
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
bool operator == (const exponent2 &e) const { return first == e.first && second == e.second; }
|
||||
bool operator != (const exponent2 &e) const { return !operator == (e); }
|
||||
bool operator < (const exponent2 &e) const { return first < e.first
|
||||
|| (first == e.first && second < e.second); }
|
||||
|
||||
exponent2 operator ^ (int p) const { return exponent2 (first * p, second * p); }
|
||||
|
||||
void show_self () const { printf ("(%d,%d)", first, second); }
|
||||
void display_self () const { show_self (); newline (); }
|
||||
|
||||
unsigned texwidth () const
|
||||
{
|
||||
if (!first && !second)
|
||||
return 1;
|
||||
|
||||
unsigned w = 0;
|
||||
if (first == 1)
|
||||
w ++;
|
||||
else if (first < 0)
|
||||
w += 3;
|
||||
else if (first)
|
||||
w += 2;
|
||||
|
||||
if (second == 1)
|
||||
w ++;
|
||||
else if (second < 0)
|
||||
w += 3;
|
||||
else if (second)
|
||||
w += 2;
|
||||
|
||||
return w;
|
||||
}
|
||||
void texshow (FILE *fp) const
|
||||
{
|
||||
if (!first && !second)
|
||||
printf ("1");
|
||||
else
|
||||
{
|
||||
if (first == 1)
|
||||
printf ("t");
|
||||
else if (first)
|
||||
printf ("t^{%d}", first);
|
||||
|
||||
if (second == 1)
|
||||
printf ("q");
|
||||
else if (second)
|
||||
printf ("q^{%d}", second);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#if 0
|
||||
template<class T, class E> laurentpoly<T, E> operator * (const T &c, const E &e)
|
||||
{
|
||||
return e*c;
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class C, class E>
|
||||
class laurentpoly
|
||||
{
|
||||
public:
|
||||
typedef typename map<E, C>::iter map_iter;
|
||||
typedef typename map<E, C>::const_iter map_const_iter;
|
||||
|
||||
map<E, C> m;
|
||||
|
||||
public:
|
||||
laurentpoly () { }
|
||||
explicit laurentpoly (const C &c) { m.push (E (0), c); }
|
||||
explicit laurentpoly (const E &e) { m.push (e, 1); }
|
||||
laurentpoly (const laurentpoly &p) : m(p.m) { }
|
||||
laurentpoly (copy, const laurentpoly &p) : m(COPY, p.m) { }
|
||||
~laurentpoly () { }
|
||||
|
||||
laurentpoly &operator = (const laurentpoly &p) { m = p.m; return *this; }
|
||||
laurentpoly &operator = (const C &c) { m.clear (); m.push (E (0), c); }
|
||||
|
||||
bool operator == (const laurentpoly &p) { return m == p.m; }
|
||||
bool operator != (const laurentpoly &p) { return m != p.m; }
|
||||
|
||||
laurentpoly &operator += (const laurentpoly &p);
|
||||
laurentpoly &operator -= (const laurentpoly &p);
|
||||
laurentpoly &operator *= (const laurentpoly &p) { operator = (*this * p); }
|
||||
laurentpoly &operator *= (const C &s);
|
||||
|
||||
laurentpoly &subeq (const C &s, const E &e);
|
||||
laurentpoly &addeq (const C &s, const E &e);
|
||||
|
||||
laurentpoly &muleq (const C &s, const E &e);
|
||||
laurentpoly &muladdeq (const C &s, const E &e, const laurentpoly &p);
|
||||
|
||||
laurentpoly operator - () const;
|
||||
|
||||
laurentpoly operator + (const E &e) const { return *this + laurentpoly (e); }
|
||||
laurentpoly operator + (const C &c) const { return *this + laurentpoly (c); }
|
||||
|
||||
laurentpoly operator + (const laurentpoly &p) const;
|
||||
laurentpoly operator - (const laurentpoly &p) const;
|
||||
laurentpoly operator * (const laurentpoly &p) const;
|
||||
laurentpoly operator * (const E &e) const;
|
||||
laurentpoly operator * (const C &s) const;
|
||||
|
||||
C aug () const
|
||||
{
|
||||
C r = 0;
|
||||
for (map_const_iter i = m; i; i ++)
|
||||
r += i.val ();
|
||||
return r;
|
||||
}
|
||||
void show_self () const;
|
||||
void display_self () const { show_self (); newline (); }
|
||||
void texshow (FILE *fp);
|
||||
};
|
||||
|
||||
template<class C, class E> inline laurentpoly<C, E> operator + (const E &e, const laurentpoly<C, E> &p) { return p + e; }
|
||||
template<class C, class E> inline laurentpoly<C, E> operator + (const C &c, const laurentpoly<C, E> &p) { return p + c; }
|
||||
|
||||
template<class C, class E> inline laurentpoly<C, E> operator * (const C &s, const laurentpoly<C, E> &p) { return p * s; }
|
||||
|
||||
template<class C, class E> laurentpoly<C, E> &
|
||||
laurentpoly<C, E>::operator += (const laurentpoly &p)
|
||||
{
|
||||
for (map_const_iter i = p.m; i; i ++)
|
||||
addeq (i.val (), i.key ());
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E> &
|
||||
laurentpoly<C, E>::operator -= (const laurentpoly &p)
|
||||
{
|
||||
for (map_const_iter i = p.m; i; i ++)
|
||||
subeq (i.val (), i.key ());
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E> &
|
||||
laurentpoly<C, E>::operator *= (const C &s)
|
||||
{
|
||||
for (map_iter i = m; i; i ++)
|
||||
i.val () *= s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E> &
|
||||
laurentpoly<C, E>::addeq (const C &s, const E &e)
|
||||
{
|
||||
pair<C &, bool> x = m.find (e);
|
||||
if (!x.second)
|
||||
x.first = s;
|
||||
else
|
||||
x.first += s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E> &
|
||||
laurentpoly<C, E>::subeq (const C &s, const E &e)
|
||||
{
|
||||
pair<C &, bool> x = m.find (e);
|
||||
if (!x.second)
|
||||
x.first = -s;
|
||||
else
|
||||
x.first -= s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E> &
|
||||
laurentpoly<C, E>::muleq (const C &s, const E &e)
|
||||
{
|
||||
map<C, E> new_m;
|
||||
for (map_const_iter i = m; i; i ++)
|
||||
m.push (e * m.key (), s * m.val ());
|
||||
m = new_m;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E> &
|
||||
laurentpoly<C, E>::muladdeq (const C &s, const E &e, const laurentpoly &p)
|
||||
{
|
||||
for (map_const_iter i = p.m; i; i ++)
|
||||
addeq (s * i.val (), e * i.key ());
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E>
|
||||
laurentpoly<C, E>::operator - () const
|
||||
{
|
||||
map<C, E> new_m;
|
||||
for (map_const_iter i = m; i; i ++)
|
||||
new_m.push (m.key (), -m.val ());
|
||||
return laurentpoly (new_m);
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E>
|
||||
laurentpoly<C, E>::operator + (const laurentpoly &p) const
|
||||
{
|
||||
laurentpoly r (COPY, *this);
|
||||
r += p;
|
||||
return r;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E>
|
||||
laurentpoly<C, E>::operator - (const laurentpoly &p) const
|
||||
{
|
||||
laurentpoly r (COPY, *this);
|
||||
r -= p;
|
||||
return r;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E>
|
||||
laurentpoly<C, E>::operator * (const laurentpoly &p) const
|
||||
{
|
||||
laurentpoly r (*this);
|
||||
for (map_const_iter i = m; i; i ++)
|
||||
r.muladdeq (i.val (), i.key (), p.m);
|
||||
return r;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E>
|
||||
laurentpoly<C, E>::operator * (const C &s) const
|
||||
{
|
||||
laurentpoly r (COPY, *this);
|
||||
for (map_iter i = r.m; i; i ++)
|
||||
i.val () *= s;
|
||||
return r;
|
||||
}
|
||||
|
||||
template<class C, class E> laurentpoly<C, E>
|
||||
laurentpoly<C, E>::operator * (const E &e) const
|
||||
{
|
||||
laurentpoly r;
|
||||
for (map_const_iter i = m; i; i ++)
|
||||
r.addeq (i.val (), i.key () * e);
|
||||
return r;
|
||||
}
|
||||
|
||||
template<class C, class E> void
|
||||
laurentpoly<C, E>::show_self () const
|
||||
{
|
||||
if (m.card () == 0)
|
||||
{
|
||||
printf ("0");
|
||||
return;
|
||||
}
|
||||
|
||||
bool first = 1;
|
||||
for (map_const_iter i = m; i; i ++)
|
||||
{
|
||||
if (i.val () != 0)
|
||||
{
|
||||
if (!first)
|
||||
printf (" + ");
|
||||
|
||||
if (i.val () == 1)
|
||||
show (i.key ());
|
||||
else
|
||||
{
|
||||
show (i.val ());
|
||||
printf ("*");
|
||||
show (i.key ());
|
||||
}
|
||||
first = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class C, class E> void
|
||||
laurentpoly<C, E>::texshow (FILE *fp)
|
||||
{
|
||||
bool first = 1;
|
||||
unsigned w = 0;
|
||||
for (map_const_iter i = m; i; i ++)
|
||||
{
|
||||
if (i.val () == 0)
|
||||
continue;
|
||||
|
||||
if (w > 47)
|
||||
{
|
||||
fprintf (fp, " \\\\\n");
|
||||
fprintf (fp, " & & & ");
|
||||
w = 0;
|
||||
}
|
||||
|
||||
if (first)
|
||||
first = 0;
|
||||
else
|
||||
{
|
||||
printf ("+");
|
||||
w += 3;
|
||||
}
|
||||
|
||||
if (i.val () == 1)
|
||||
{
|
||||
i.key ().texshow (fp);
|
||||
w += i.key ().texwidth ();
|
||||
}
|
||||
else
|
||||
{
|
||||
fprintf (fp, "%d", i.val ());
|
||||
w ++;
|
||||
if (i.key () != 0)
|
||||
{
|
||||
i.key ().texshow (fp);
|
||||
w += i.key ().texwidth ();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
typedef laurentpoly<int, exponent1> intpoly1;
|
||||
typedef laurentpoly<int, exponent2> intpoly2;
|
||||
|
||||
inline laurentpoly<int, exponent1>
|
||||
exponent1::operator + (const exponent1 &e) const
|
||||
{
|
||||
intpoly1 r;
|
||||
r.addeq (1, *this);
|
||||
r.addeq (1, e);
|
||||
return r;
|
||||
}
|
||||
|
||||
inline laurentpoly<int, exponent2>
|
||||
exponent2::operator + (const exponent2 &e) const
|
||||
{
|
||||
intpoly2 r;
|
||||
r.addeq (1, *this);
|
||||
r.addeq (1, e);
|
||||
return r;
|
||||
}
|
472
algebra/linear_combination.h
Normal file
472
algebra/linear_combination.h
Normal file
@ -0,0 +1,472 @@
|
||||
|
||||
template<class R> class linear_combination_const_iter;
|
||||
|
||||
template<class R>
|
||||
class linear_combination
|
||||
{
|
||||
private:
|
||||
// friend class linear_combination_iter<R>;
|
||||
friend class linear_combination_const_iter<R>;
|
||||
|
||||
friend class module<R>;
|
||||
friend class free_submodule<R>;
|
||||
friend class quotient_module<R>;
|
||||
friend class mod_map<R>;
|
||||
|
||||
typedef module<R> Rmod;
|
||||
|
||||
public:
|
||||
// typedef linear_combination_iter<R> iter;
|
||||
typedef linear_combination_const_iter<R> const_iter;
|
||||
|
||||
private:
|
||||
ptr<const Rmod> m;
|
||||
map<unsigned, R> v;
|
||||
|
||||
public:
|
||||
linear_combination () { }
|
||||
explicit linear_combination (ptr<const Rmod> m_) : m(m_) { }
|
||||
linear_combination (ptr<const Rmod> m_, int x)
|
||||
: m(m_)
|
||||
{
|
||||
assert (x == 0);
|
||||
}
|
||||
|
||||
linear_combination (const linear_combination &lc) : m(lc.m), v(lc.v) { }
|
||||
linear_combination (copy, const linear_combination &lc)
|
||||
: m(lc.m)
|
||||
{
|
||||
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
||||
v.push (i.key (), R (COPY, i.val ()));
|
||||
}
|
||||
~linear_combination () { }
|
||||
|
||||
linear_combination &operator = (const linear_combination &lc)
|
||||
{
|
||||
m = lc.m;
|
||||
v = lc.v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator == (const linear_combination &lc2) const
|
||||
{
|
||||
assert (m == lc2.m);
|
||||
linear_combination lc3 (COPY, *this);
|
||||
lc3 -= lc2;
|
||||
return lc3 == 0;
|
||||
}
|
||||
|
||||
bool operator == (int x) const
|
||||
{
|
||||
assert (x == 0);
|
||||
#ifndef NDEBUG
|
||||
check ();
|
||||
#endif
|
||||
return v.is_empty ();
|
||||
}
|
||||
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
bool homogeneous () const
|
||||
{
|
||||
if (v.is_empty ())
|
||||
return 1;
|
||||
|
||||
pair<unsigned, R> p = v.head ();
|
||||
grading hq = m->generator_grading (p.first);
|
||||
for (typename map<unsigned, R>::const_iter i = v; i; i ++)
|
||||
{
|
||||
if (hq != m->generator_grading (i.key ()))
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
pair<unsigned, R> head () const { return v.head (); }
|
||||
grading hq () const
|
||||
{
|
||||
// assert (homogeneous ());
|
||||
|
||||
pair<unsigned, R> p = v.head ();
|
||||
return m->generator_grading (p.first);
|
||||
}
|
||||
|
||||
R annihilator () const;
|
||||
|
||||
void set (R c, unsigned i)
|
||||
{
|
||||
if (c == 0)
|
||||
v -= i;
|
||||
else
|
||||
v[i] = c;
|
||||
}
|
||||
|
||||
linear_combination operator * (R c) const
|
||||
{
|
||||
linear_combination r (COPY, *this);
|
||||
r *= c;
|
||||
return r;
|
||||
}
|
||||
|
||||
linear_combination operator + (const linear_combination &lc) const
|
||||
{
|
||||
linear_combination r (COPY, *this);
|
||||
r += lc;
|
||||
return r;
|
||||
}
|
||||
|
||||
linear_combination operator - (const linear_combination &lc) const
|
||||
{
|
||||
linear_combination r (COPY, *this);
|
||||
r -= lc;
|
||||
return r;
|
||||
}
|
||||
|
||||
linear_combination &operator += (unsigned i) { return muladd (1, i); }
|
||||
linear_combination &operator -= (unsigned i) { return mulsub (1, i); }
|
||||
|
||||
linear_combination &operator *= (R c);
|
||||
linear_combination &operator /= (R c);
|
||||
|
||||
linear_combination &operator += (const linear_combination &lc);
|
||||
linear_combination &operator -= (const linear_combination &lc);
|
||||
|
||||
linear_combination &muladd (R c, unsigned i);
|
||||
linear_combination &muladd (R c, const linear_combination &lc);
|
||||
|
||||
linear_combination &mulsub (R c, unsigned i);
|
||||
linear_combination &mulsub (R c, const linear_combination &lc);
|
||||
|
||||
void yank (unsigned i) { v.yank (i); }
|
||||
void clear () { v.clear (); }
|
||||
|
||||
bool operator % (unsigned i) const { return v % i; }
|
||||
R operator () (unsigned i) const { return v(i, R (0)); }
|
||||
|
||||
unsigned card () const { return v.card (); }
|
||||
|
||||
#ifndef NDEBUG
|
||||
void check () const
|
||||
{
|
||||
for (typename map<unsigned, R>::const_iter i = v; i; i ++)
|
||||
assert (!m->is_zero (i.val (), i.key ()));
|
||||
}
|
||||
#endif
|
||||
|
||||
void show_self () const;
|
||||
void display_self () const { show_self (); newline (); }
|
||||
};
|
||||
|
||||
template<class R> linear_combination<R>
|
||||
operator * (R c, const linear_combination<R> &lc)
|
||||
{
|
||||
return lc * c;
|
||||
}
|
||||
|
||||
template<class R>
|
||||
class linear_combination_const_iter
|
||||
{
|
||||
typename map<unsigned, R>::const_iter i;
|
||||
|
||||
public:
|
||||
linear_combination_const_iter (const linear_combination<R> &lc) : i(lc.v) { }
|
||||
~linear_combination_const_iter () { }
|
||||
|
||||
operator bool () const { return i; }
|
||||
linear_combination_const_iter &operator ++ () { i ++; return *this; }
|
||||
void operator ++ (int) { i ++; }
|
||||
unsigned key () const { return i.key (); }
|
||||
R val () { return i.val (); }
|
||||
};
|
||||
|
||||
template<class R> R
|
||||
linear_combination<R>::annihilator () const
|
||||
{
|
||||
R r (1);
|
||||
for (typename map<unsigned, R>::const_iter i = v; i; i ++)
|
||||
r = r.lcm (m->annihilator (i.val (), i.key ()));
|
||||
return r;
|
||||
}
|
||||
|
||||
template<class R> linear_combination<R> &
|
||||
linear_combination<R>::operator *= (R c)
|
||||
{
|
||||
if (c == 0)
|
||||
v.clear ();
|
||||
else if (c != 1)
|
||||
{
|
||||
for (typename map<unsigned, R>::iter i = v; i; i ++)
|
||||
i.val () *= c;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class R> linear_combination<R> &
|
||||
linear_combination<R>::operator += (const linear_combination &lc)
|
||||
{
|
||||
assert (m == lc.m);
|
||||
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
||||
{
|
||||
unsigned k = i.key ();
|
||||
R &c = v[k];
|
||||
c += i.val ();
|
||||
if (m->is_zero (c, k))
|
||||
v -= k;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class R> linear_combination<R> &
|
||||
linear_combination<R>::operator -= (const linear_combination &lc)
|
||||
{
|
||||
assert (m == lc.m);
|
||||
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
||||
{
|
||||
unsigned k = i.key ();
|
||||
R &c = v[k];
|
||||
c -= i.val ();
|
||||
if (m->is_zero (c, k))
|
||||
v -= k;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class R> linear_combination<R> &
|
||||
linear_combination<R>::muladd (R c, unsigned i)
|
||||
{
|
||||
R &ic = v[i];
|
||||
ic += c;
|
||||
if (m->is_zero (ic, i))
|
||||
v -= i;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class R> linear_combination<R> &
|
||||
linear_combination<R>::muladd (R c, const linear_combination &lc)
|
||||
{
|
||||
assert (m == lc.m);
|
||||
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
||||
{
|
||||
unsigned k = i.key ();
|
||||
R &vc = v[k];
|
||||
vc += (c * i.val ());
|
||||
if (vc == 0)
|
||||
v -= k;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class R> linear_combination<R> &
|
||||
linear_combination<R>::mulsub (R c, unsigned i)
|
||||
{
|
||||
R &ic = v[i];
|
||||
ic -= c;
|
||||
if (m->is_zero (ic, i))
|
||||
v -= i;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class R> linear_combination<R> &
|
||||
linear_combination<R>::mulsub (R c, const linear_combination &lc)
|
||||
{
|
||||
assert (m == lc.m);
|
||||
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
||||
{
|
||||
unsigned k = i.key ();
|
||||
R &vc = v[k];
|
||||
vc -= (c * i.val ());
|
||||
if (vc == 0)
|
||||
v -= k;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class R> void
|
||||
linear_combination<R>::show_self () const
|
||||
{
|
||||
bool first = 1;
|
||||
for (typename map<unsigned, R>::const_iter i = v; i; i ++)
|
||||
{
|
||||
if (first)
|
||||
first = 0;
|
||||
else
|
||||
printf (" + ");
|
||||
show (i.val ());
|
||||
printf ("*%d", i.key ());
|
||||
}
|
||||
}
|
||||
|
||||
template<>
|
||||
class linear_combination<Z2>
|
||||
{
|
||||
private:
|
||||
// friend class linear_combination_iter<Z2>;
|
||||
friend class linear_combination_const_iter<Z2>;
|
||||
|
||||
friend class module<Z2>;
|
||||
friend class free_submodule<Z2>;
|
||||
friend class quotient_module<Z2>;
|
||||
friend class mod_map<Z2>;
|
||||
|
||||
typedef module<Z2> Z2mod;
|
||||
|
||||
public:
|
||||
typedef linear_combination_const_iter<Z2> const_iter;
|
||||
|
||||
private:
|
||||
ptr<const Z2mod> m;
|
||||
set<unsigned> v;
|
||||
|
||||
public:
|
||||
linear_combination () { }
|
||||
linear_combination (ptr<const Z2mod> m_) : m(m_) { }
|
||||
linear_combination (const linear_combination &lc) : m(lc.m), v(lc.v) { }
|
||||
linear_combination (copy, const linear_combination &lc) : m(lc.m), v(COPY, lc.v) { }
|
||||
~linear_combination () { }
|
||||
|
||||
linear_combination &operator = (const linear_combination &lc)
|
||||
{
|
||||
m = lc.m;
|
||||
v = lc.v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator == (const linear_combination &lc) const { assert (m == lc.m); return v == lc.v; }
|
||||
|
||||
bool operator == (int x) const { assert (x == 0); return v.is_empty (); }
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
pair<unsigned, Z2> head () const { return pair<unsigned, Z2> (v.head (), Z2 (1)); }
|
||||
grading hq () const
|
||||
{
|
||||
// assert (homogeneous ());
|
||||
return m->generator_grading (v.head ());
|
||||
}
|
||||
|
||||
Z2 annihilator () const
|
||||
{
|
||||
return Z2 (operator == (0) ? 1 : 0);
|
||||
}
|
||||
|
||||
void set (Z2 c, unsigned i)
|
||||
{
|
||||
if (c == 0)
|
||||
v -= i;
|
||||
else
|
||||
v += i;
|
||||
}
|
||||
|
||||
linear_combination operator * (Z2 c) const
|
||||
{
|
||||
if (c == 1)
|
||||
return *this;
|
||||
else
|
||||
return linear_combination (m);
|
||||
}
|
||||
|
||||
linear_combination operator + (const linear_combination &lc) const
|
||||
{
|
||||
linear_combination r (COPY, *this);
|
||||
r += lc;
|
||||
return r;
|
||||
}
|
||||
|
||||
linear_combination operator - (const linear_combination &lc) const
|
||||
{
|
||||
linear_combination r (COPY, *this);
|
||||
r -= lc;
|
||||
return r;
|
||||
}
|
||||
|
||||
linear_combination &operator *= (Z2 c)
|
||||
{
|
||||
if (c == 0)
|
||||
v.clear ();
|
||||
return *this;
|
||||
}
|
||||
linear_combination &operator /= (Z2 c) { assert (c == 1); return *this; }
|
||||
|
||||
linear_combination &operator += (unsigned i) { v.toggle (i); return *this; }
|
||||
linear_combination &operator -= (unsigned i) { v.toggle (i); return *this; }
|
||||
|
||||
linear_combination &muladd (Z2 c, unsigned i)
|
||||
{
|
||||
if (c == 1)
|
||||
operator += (i);
|
||||
return *this;
|
||||
}
|
||||
|
||||
linear_combination &mulsub (Z2 c, unsigned i)
|
||||
{
|
||||
if (c == 1)
|
||||
operator -= (i);
|
||||
return *this;
|
||||
}
|
||||
|
||||
linear_combination &operator += (const linear_combination &lc) { v ^= lc.v; return *this; }
|
||||
linear_combination &operator -= (const linear_combination &lc) { v ^= lc.v; return *this; }
|
||||
|
||||
linear_combination &muladd (Z2 c, const linear_combination &lc)
|
||||
{
|
||||
if (c == 1)
|
||||
operator += (lc);
|
||||
return *this;
|
||||
}
|
||||
linear_combination &mulsub (Z2 c, const linear_combination &lc)
|
||||
{
|
||||
if (c == 1)
|
||||
operator -= (lc);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void yank (unsigned i) { v.yank (i); }
|
||||
void clear () { v.clear (); }
|
||||
|
||||
bool operator % (unsigned i) const { return v % i; }
|
||||
Z2 operator () (unsigned i) const { return Z2 (v % i); }
|
||||
|
||||
unsigned card () const { return v.card (); }
|
||||
|
||||
#ifndef NDEBUG
|
||||
void check () const;
|
||||
#endif
|
||||
|
||||
void show_self () const;
|
||||
void display_self () const { show_self (); newline (); }
|
||||
};
|
||||
|
||||
inline void
|
||||
linear_combination<Z2>::show_self () const
|
||||
{
|
||||
bool first = 1;
|
||||
for (set_const_iter<unsigned> i = v; i; i ++)
|
||||
{
|
||||
if (first)
|
||||
first = 0;
|
||||
else
|
||||
printf ("+");
|
||||
printf ("%d", i.val ());
|
||||
}
|
||||
}
|
||||
|
||||
inline linear_combination<Z2>
|
||||
operator * (Z2 c, const linear_combination<Z2> &lc)
|
||||
{
|
||||
return lc * c;
|
||||
}
|
||||
|
||||
template<>
|
||||
class linear_combination_const_iter<Z2>
|
||||
{
|
||||
set<unsigned>::const_iter i;
|
||||
|
||||
public:
|
||||
linear_combination_const_iter (const linear_combination<Z2> &lc) : i(lc.v) { }
|
||||
~linear_combination_const_iter () { }
|
||||
|
||||
operator bool () const { return i; }
|
||||
linear_combination_const_iter &operator ++ () { i ++; return *this; }
|
||||
void operator ++ (int) { i ++; }
|
||||
unsigned key () const { return i.val (); }
|
||||
Z2 val () { return Z2 (1); }
|
||||
};
|
1255
algebra/module.h
Normal file
1255
algebra/module.h
Normal file
File diff suppressed because it is too large
Load Diff
495
algebra/multivariate_polynomial.h
Normal file
495
algebra/multivariate_polynomial.h
Normal file
@ -0,0 +1,495 @@
|
||||
|
||||
/* multivariate polynomial in a (vector) variable x with coefficients
|
||||
in T. */
|
||||
|
||||
enum variable { VARIABLE };
|
||||
|
||||
template<unsigned n>
|
||||
class multivariate_monomial
|
||||
{
|
||||
private:
|
||||
unsigned v[n];
|
||||
|
||||
public:
|
||||
multivariate_monomial ()
|
||||
{
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
v[i] = 0;
|
||||
}
|
||||
|
||||
multivariate_monomial (variable, unsigned j)
|
||||
{
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
v[i] = 0;
|
||||
|
||||
assert (j >= 1 && j <= n);
|
||||
v[j - 1] = 1;
|
||||
}
|
||||
|
||||
multivariate_monomial (const multivariate_monomial &e)
|
||||
{
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
v[i] = e.v[i];
|
||||
}
|
||||
|
||||
~multivariate_monomial () { }
|
||||
|
||||
multivariate_monomial &operator = (const multivariate_monomial &e)
|
||||
{
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
v[i] = e.v[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
unsigned degree () const
|
||||
{
|
||||
unsigned d = 0;
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
d += v[i];
|
||||
return d;
|
||||
}
|
||||
|
||||
bool operator == (const multivariate_monomial &e) const
|
||||
{
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
if (v[i] != e.v[i])
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
bool operator < (const multivariate_monomial &e) const
|
||||
{
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
if (v[i] < e.v[i])
|
||||
return 1;
|
||||
if (v[i] > e.v[i])
|
||||
return 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
multivariate_monomial operator + (const multivariate_monomial &e) const
|
||||
{
|
||||
multivariate_monomial m;
|
||||
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
m.v[i] = v[i] + e.v[i];
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
bool divides (const multivariate_monomial &num) const
|
||||
{
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
if (v[i] > num.v[i])
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
bool operator | (const multivariate_monomial &num) const { return divides (num); }
|
||||
|
||||
multivariate_monomial &mineq (const multivariate_monomial &e)
|
||||
{
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
if (e.v[i] < v[i])
|
||||
v[i] = e.v[i];
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
multivariate_monomial operator - (const multivariate_monomial &denom) const
|
||||
{
|
||||
multivariate_monomial m;
|
||||
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
assert (v[i] >= denom.v[i]);
|
||||
m.v[i] = v[i] - denom.v[i];
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
void show_self () const
|
||||
{
|
||||
printf ("x^(");
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
if (i > 0)
|
||||
printf (",");
|
||||
printf ("%d", v[i]);
|
||||
}
|
||||
printf (")");
|
||||
}
|
||||
};
|
||||
|
||||
template<class T, unsigned n>
|
||||
class multivariate_polynomial
|
||||
{
|
||||
public:
|
||||
typedef linear_combination<multivariate_polynomial<T, n> > linear_combination;
|
||||
typedef linear_combination_const_iter<multivariate_polynomial<T, n> >
|
||||
linear_combination_const_iter;
|
||||
|
||||
private:
|
||||
typedef multivariate_monomial<n> monomial;
|
||||
|
||||
map<monomial, T> coeffs;
|
||||
|
||||
explicit multivariate_polynomial (const map<monomial, T> &coeffs_) : coeffs(coeffs_) { }
|
||||
|
||||
public:
|
||||
multivariate_polynomial () { }
|
||||
multivariate_polynomial (int x)
|
||||
{
|
||||
T c (x);
|
||||
if (c != 0)
|
||||
coeffs.push (monomial (), c);
|
||||
}
|
||||
|
||||
multivariate_polynomial (T c)
|
||||
{
|
||||
if (c != 0)
|
||||
coeffs.push (monomial (), c);
|
||||
}
|
||||
|
||||
multivariate_polynomial (T c, variable, unsigned i)
|
||||
{
|
||||
if (c != 0)
|
||||
coeffs.push (monomial (VARIABLE, i), c);
|
||||
}
|
||||
|
||||
multivariate_polynomial (T c, const monomial &m)
|
||||
{
|
||||
if (c != 0)
|
||||
coeffs.push (m, c);
|
||||
}
|
||||
|
||||
multivariate_polynomial (const multivariate_polynomial &p) : coeffs(p.coeffs) { }
|
||||
multivariate_polynomial (copy, const multivariate_polynomial &p) : coeffs(COPY, p.coeffs) { }
|
||||
~multivariate_polynomial () { }
|
||||
|
||||
multivariate_polynomial &operator = (const multivariate_polynomial &p)
|
||||
{
|
||||
coeffs = p.coeffs;
|
||||
return *this;
|
||||
}
|
||||
|
||||
multivariate_polynomial &operator = (int x)
|
||||
{
|
||||
coeffs = map<monomial, T> ();
|
||||
T c (x);
|
||||
if (c != 0)
|
||||
coeffs.push (monomial (), c);
|
||||
return *this;
|
||||
}
|
||||
|
||||
multivariate_polynomial &operator = (T c)
|
||||
{
|
||||
coeffs = map<monomial, T> ();
|
||||
if (c != 0)
|
||||
coeffs.push (monomial (), c);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool is_unit () const;
|
||||
|
||||
bool operator == (multivariate_polynomial p) const
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
check ();
|
||||
p.check ();
|
||||
#endif
|
||||
return coeffs == p.coeffs;
|
||||
}
|
||||
|
||||
bool operator == (int x) const
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
check ();
|
||||
#endif
|
||||
T c (x);
|
||||
if (c == 0)
|
||||
return coeffs.is_empty ();
|
||||
else
|
||||
{
|
||||
if (coeffs.card () != 1)
|
||||
return 0;
|
||||
|
||||
pair<monomial, T> p = coeffs.head ();
|
||||
return p.first.degree () == 0
|
||||
&& p.second == c;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
multivariate_polynomial &operator += (multivariate_polynomial p);
|
||||
multivariate_polynomial &operator -= (multivariate_polynomial p);
|
||||
multivariate_polynomial &operator *= (multivariate_polynomial p) { return operator = (*this * p); }
|
||||
multivariate_polynomial &operator *= (T s);
|
||||
|
||||
multivariate_polynomial &add_term (T c, variable, unsigned i)
|
||||
{
|
||||
monomial m (VARIABLE, i);
|
||||
T &c2 = coeffs[m];
|
||||
c2 += c;
|
||||
if (c2 == 0)
|
||||
coeffs -= m;
|
||||
return *this;
|
||||
}
|
||||
|
||||
multivariate_polynomial operator - () const { return multivariate_polynomial () - *this; }
|
||||
multivariate_polynomial operator + (multivariate_polynomial p) const
|
||||
{
|
||||
multivariate_polynomial r (COPY, *this);
|
||||
r += p;
|
||||
return r;
|
||||
}
|
||||
|
||||
multivariate_polynomial operator - (multivariate_polynomial p) const
|
||||
{
|
||||
multivariate_polynomial r (COPY, *this);
|
||||
r -= p;
|
||||
return r;
|
||||
}
|
||||
|
||||
multivariate_polynomial operator * (const multivariate_polynomial &p) const;
|
||||
|
||||
monomial common_monomial () const;
|
||||
|
||||
pair<multivariate_polynomial, multivariate_polynomial>
|
||||
uncommon_factors (multivariate_polynomial b, basedvector<multivariate_polynomial, 1> ds);
|
||||
maybe<multivariate_polynomial>
|
||||
divides_exactly (const multivariate_polynomial &n) const;
|
||||
multivariate_polynomial divide_exact (const multivariate_polynomial &d) const;
|
||||
|
||||
bool operator | (const multivariate_polynomial &num) const { abort (); }
|
||||
|
||||
#ifndef NDEBUG
|
||||
void check () const;
|
||||
#endif
|
||||
|
||||
static void show_ring ()
|
||||
{
|
||||
T::show_ring ();
|
||||
switch (n)
|
||||
{
|
||||
case 0: break;
|
||||
case 1: printf ("[x_1]"); break;
|
||||
case 2: printf ("[x_1, x_2]"); break;
|
||||
default:
|
||||
printf ("[x_1, ..., x_%d]", n);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void display_self () const { show_self (); newline (); }
|
||||
void show_self () const;
|
||||
};
|
||||
|
||||
template<class T, unsigned n> bool
|
||||
multivariate_polynomial<T, n>::is_unit () const
|
||||
{
|
||||
// ??? is_singleton
|
||||
if (coeffs.card () != 1)
|
||||
return 0;
|
||||
|
||||
pair<monomial, T> p = coeffs.head ();
|
||||
return p.first.degree () == 0
|
||||
&& p.second.is_unit ();
|
||||
}
|
||||
|
||||
template<class T, unsigned n> multivariate_polynomial<T, n> &
|
||||
multivariate_polynomial<T, n>::operator += (multivariate_polynomial p)
|
||||
{
|
||||
for (typename map<monomial, T>::const_iter i = p.coeffs; i; i ++)
|
||||
{
|
||||
monomial m = i.key ();
|
||||
T &c = coeffs[m];
|
||||
c += i.val ();
|
||||
if (c == 0)
|
||||
coeffs -= m;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class T, unsigned n> multivariate_polynomial<T, n> &
|
||||
multivariate_polynomial<T, n>::operator -= (multivariate_polynomial p)
|
||||
{
|
||||
for (typename map<monomial, T>::const_iter i = p.coeffs; i; i ++)
|
||||
{
|
||||
monomial m = i.key ();
|
||||
T &c = coeffs[m];
|
||||
c -= i.val ();
|
||||
if (c == 0)
|
||||
coeffs -= m;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class T, unsigned n> multivariate_polynomial<T, n> &
|
||||
multivariate_polynomial<T, n>::operator *= (T s)
|
||||
{
|
||||
if (s == 0)
|
||||
coeffs.clear ();
|
||||
else
|
||||
{
|
||||
for (typename map<monomial, T>::iter i = coeffs; i; i ++)
|
||||
i.val () *= s;
|
||||
}
|
||||
}
|
||||
|
||||
template<class T, unsigned n> multivariate_polynomial<T, n>
|
||||
multivariate_polynomial<T, n>::operator * (const multivariate_polynomial &p) const
|
||||
{
|
||||
multivariate_polynomial r;
|
||||
|
||||
for (typename map<monomial, T>::const_iter i = coeffs; i; i ++)
|
||||
for (typename map<monomial, T>::const_iter j = p.coeffs; j; j ++)
|
||||
{
|
||||
monomial m = i.key () + j.key ();
|
||||
T &c = r.coeffs[m];
|
||||
c += i.val () * j.val ();
|
||||
if (c == 0)
|
||||
r.coeffs -= m;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
template<class T, unsigned n> multivariate_monomial<n>
|
||||
multivariate_polynomial<T, n>::common_monomial () const
|
||||
{
|
||||
monomial m = coeffs.head ().first;
|
||||
for (typename map<monomial, T>::const_iter i = coeffs; i; i ++)
|
||||
m.mineq (i.key ());
|
||||
return m;
|
||||
}
|
||||
|
||||
template<class T, unsigned n> pair<multivariate_polynomial<T, n>,
|
||||
multivariate_polynomial<T, n> >
|
||||
multivariate_polynomial<T, n>::uncommon_factors (multivariate_polynomial b,
|
||||
basedvector<multivariate_polynomial, 1> ds)
|
||||
{
|
||||
multivariate_polynomial a = *this;
|
||||
|
||||
monomial m = a.common_monomial ();
|
||||
m.mineq (b.common_monomial ());
|
||||
|
||||
multivariate_polynomial mp (1, m);
|
||||
a = a.divide_exact (mp);
|
||||
b = b.divide_exact (mp);
|
||||
|
||||
L:
|
||||
for (unsigned i = 1; i <= ds.size (); i ++)
|
||||
{
|
||||
const multivariate_polynomial &d = ds[i];
|
||||
|
||||
maybe<multivariate_polynomial> aq = d.divides_exactly (a);
|
||||
if (aq.is_some ())
|
||||
{
|
||||
maybe<multivariate_polynomial> bq = d.divides_exactly (b);
|
||||
if (bq.is_some ())
|
||||
{
|
||||
a = aq.some ();
|
||||
b = bq.some ();
|
||||
|
||||
goto L;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return pair<multivariate_polynomial, multivariate_polynomial> (a, b);
|
||||
}
|
||||
|
||||
template<class T, unsigned n> maybe<multivariate_polynomial<T, n> >
|
||||
multivariate_polynomial<T, n>::divides_exactly (const multivariate_polynomial &num) const
|
||||
{
|
||||
const multivariate_polynomial &d = *this;
|
||||
|
||||
multivariate_polynomial r (COPY, num);
|
||||
multivariate_polynomial q;
|
||||
|
||||
pair<monomial, T> d_leading_term = d.coeffs.tail ();
|
||||
for (;;)
|
||||
{
|
||||
if (r == 0)
|
||||
{
|
||||
// ??
|
||||
assert (q*d == num);
|
||||
|
||||
return maybe<multivariate_polynomial> (q);
|
||||
}
|
||||
|
||||
pair<monomial, T> r_leading_term = r.coeffs.tail ();
|
||||
if (d_leading_term.first | r_leading_term.first)
|
||||
{
|
||||
multivariate_polynomial m (r_leading_term.second / d_leading_term.second,
|
||||
r_leading_term.first - d_leading_term.first);
|
||||
r -= m * d;
|
||||
q += m;
|
||||
}
|
||||
else
|
||||
return maybe<multivariate_polynomial> ();
|
||||
}
|
||||
}
|
||||
|
||||
template<class T, unsigned n> multivariate_polynomial<T, n>
|
||||
multivariate_polynomial<T, n>::divide_exact (const multivariate_polynomial &d) const
|
||||
{
|
||||
maybe<multivariate_polynomial> r = d.divides_exactly (*this);
|
||||
return r.some ();
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
template<class T, unsigned n> void
|
||||
multivariate_polynomial<T, n>::check () const
|
||||
{
|
||||
for (typename map<monomial, T>::const_iter i = coeffs; i; i ++)
|
||||
assert (i.val () != 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class T, unsigned n> void
|
||||
multivariate_polynomial<T, n>::show_self () const
|
||||
{
|
||||
unsigned first = 1;
|
||||
for (typename map<monomial, T>::const_iter i = coeffs; i; i ++)
|
||||
{
|
||||
monomial m = i.key ();
|
||||
T c = i.val ();
|
||||
|
||||
assert (c != 0);
|
||||
|
||||
if (first)
|
||||
first = 0;
|
||||
else
|
||||
printf (" + ");
|
||||
|
||||
if (m.degree () == 0)
|
||||
{
|
||||
if (c == 1)
|
||||
printf ("1");
|
||||
else
|
||||
show (c);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (c != 1)
|
||||
{
|
||||
show (c);
|
||||
printf ("*");
|
||||
}
|
||||
show (m);
|
||||
}
|
||||
}
|
||||
if (first)
|
||||
printf ("0");
|
||||
}
|
125
algebra/polynomial.cpp
Normal file
125
algebra/polynomial.cpp
Normal file
@ -0,0 +1,125 @@
|
||||
|
||||
#include <knotkit.h>
|
||||
|
||||
polynomial<Z2>
|
||||
polynomial<Z2>::operator * (polynomial<Z2> p) const
|
||||
{
|
||||
set<unsigned> r_coeffs;
|
||||
|
||||
for (set_const_iter<unsigned> i = coeffs; i; i ++)
|
||||
for (set_const_iter<unsigned> j = p.coeffs; j; j ++)
|
||||
r_coeffs.toggle (i.val () + j.val ());
|
||||
|
||||
return polynomial<Z2> (r_coeffs);
|
||||
}
|
||||
|
||||
pair<polynomial<Z2>, polynomial<Z2> >
|
||||
polynomial<Z2>::divide_with_remainder (polynomial d) const
|
||||
{
|
||||
assert (d != 0);
|
||||
|
||||
polynomial<Z2> r (COPY, *this);
|
||||
polynomial<Z2> q;
|
||||
|
||||
unsigned d_leading_exponent = d.coeffs.tail ();
|
||||
for (;;)
|
||||
{
|
||||
if (r == 0)
|
||||
break;
|
||||
|
||||
unsigned r_leading_exponent = r.coeffs.tail ();
|
||||
if (r_leading_exponent < d_leading_exponent)
|
||||
break;
|
||||
|
||||
for (set_const_iter<unsigned> i = d.coeffs; i; i ++)
|
||||
r.coeffs.toggle (r_leading_exponent - d_leading_exponent + i.val ());
|
||||
q.coeffs.toggle (r_leading_exponent - d_leading_exponent);
|
||||
}
|
||||
|
||||
assert (r == 0 || r.degree () < d.degree ());
|
||||
// assert (*this == q*d + r);
|
||||
|
||||
return pair<polynomial<Z2>, polynomial<Z2> > (q, r);
|
||||
}
|
||||
|
||||
polynomial<Z2>
|
||||
polynomial<Z2>::mod (polynomial d) const
|
||||
{
|
||||
assert (d != 0);
|
||||
|
||||
polynomial<Z2> r (COPY, *this);
|
||||
|
||||
unsigned d_leading_exponent = d.coeffs.tail ();
|
||||
for (;;)
|
||||
{
|
||||
if (r == 0)
|
||||
break;
|
||||
|
||||
unsigned r_leading_exponent = r.coeffs.tail ();
|
||||
if (r_leading_exponent < d_leading_exponent)
|
||||
break;
|
||||
|
||||
for (set_const_iter<unsigned> i = d.coeffs; i; i ++)
|
||||
r.coeffs.toggle (r_leading_exponent - d_leading_exponent + i.val ());
|
||||
}
|
||||
|
||||
assert (r == 0 || r.degree () < d.degree ());
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
bool
|
||||
polynomial<Z2>::divides (polynomial d) const
|
||||
{
|
||||
return mod (d) == 0;
|
||||
}
|
||||
|
||||
polynomial<Z2>
|
||||
polynomial<Z2>::divide_exact (polynomial d) const
|
||||
{
|
||||
pair<polynomial<Z2>, polynomial<Z2> > qr = divide_with_remainder (d);
|
||||
assert (qr.second == 0);
|
||||
return qr.first;
|
||||
}
|
||||
|
||||
polynomial<Z2>
|
||||
polynomial<Z2>::gcd (polynomial b) const
|
||||
{
|
||||
// ??? can return *this
|
||||
polynomial a = *this;
|
||||
|
||||
while (b != 0)
|
||||
{
|
||||
pair<polynomial<Z2>, polynomial<Z2> > a_qr = a.divide_with_remainder (b);
|
||||
a = b;
|
||||
b = a_qr.second;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
void
|
||||
polynomial<Z2>::show_self () const
|
||||
{
|
||||
unsigned first = 1;
|
||||
for (set_const_iter<unsigned> i = coeffs; i; i ++)
|
||||
{
|
||||
unsigned e = i.val ();
|
||||
|
||||
if (first)
|
||||
first = 0;
|
||||
else
|
||||
printf (" + ");
|
||||
|
||||
if (e == 0)
|
||||
printf ("1");
|
||||
else
|
||||
{
|
||||
if (e == 1)
|
||||
printf ("x");
|
||||
else
|
||||
printf ("x^%d", e);
|
||||
}
|
||||
}
|
||||
if (first)
|
||||
printf ("0");
|
||||
}
|
446
algebra/polynomial.h
Normal file
446
algebra/polynomial.h
Normal file
@ -0,0 +1,446 @@
|
||||
|
||||
/* univariate polynomial in a single variable `x' with coefficients in
|
||||
T. */
|
||||
|
||||
template<class T>
|
||||
class polynomial
|
||||
{
|
||||
private:
|
||||
map<unsigned, T> coeffs;
|
||||
|
||||
polynomial (const map<unsigned, T> &coeffs_) : coeffs(coeffs_) { }
|
||||
|
||||
public:
|
||||
polynomial () { }
|
||||
|
||||
polynomial (int x)
|
||||
{
|
||||
T c (x);
|
||||
if (c != 0)
|
||||
coeffs.push (0, c);
|
||||
}
|
||||
|
||||
polynomial (T c)
|
||||
{
|
||||
if (c != 0)
|
||||
coeffs.push (0, c);
|
||||
}
|
||||
|
||||
polynomial (int x, unsigned e)
|
||||
{
|
||||
T c (x);
|
||||
if (c != 0)
|
||||
coeffs.push (e, c);
|
||||
}
|
||||
|
||||
polynomial (T c, unsigned e)
|
||||
{
|
||||
if (c != 0)
|
||||
coeffs.push (e, c);
|
||||
}
|
||||
|
||||
polynomial (const polynomial &p) : coeffs(p.coeffs) { }
|
||||
polynomial (copy, const polynomial &p) : coeffs(COPY, p.coeffs) { }
|
||||
~polynomial () { }
|
||||
|
||||
polynomial &operator = (const polynomial &p) { coeffs = p.coeffs; return *this; }
|
||||
polynomial &operator = (int x)
|
||||
{
|
||||
coeffs = map<unsigned, T> ();
|
||||
T c (x);
|
||||
if (c != 0)
|
||||
coeffs.push (0, c);
|
||||
return *this;
|
||||
}
|
||||
|
||||
polynomial &operator = (T c)
|
||||
{
|
||||
coeffs = map<unsigned, T> ();
|
||||
if (c != 0)
|
||||
coeffs.push (0, c);
|
||||
return *this;
|
||||
}
|
||||
|
||||
unsigned degree () const;
|
||||
bool is_unit () const;
|
||||
|
||||
bool operator == (polynomial p) const
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
check ();
|
||||
p.check ();
|
||||
#endif
|
||||
return coeffs == p.coeffs;
|
||||
}
|
||||
|
||||
bool operator == (int x) const
|
||||
{
|
||||
T c (x);
|
||||
if (c == 0)
|
||||
return coeffs.is_empty ();
|
||||
else if (coeffs.card () != 1)
|
||||
return 0;
|
||||
else
|
||||
{
|
||||
pair<unsigned, T> p = coeffs.head ();
|
||||
return p.first == 0
|
||||
&& p.second == c;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
polynomial &operator += (polynomial p);
|
||||
polynomial &operator -= (polynomial p);
|
||||
polynomial &operator *= (polynomial p) { return operator = (*this * p); }
|
||||
polynomial &operator *= (T s);
|
||||
|
||||
polynomial &add_term (T c, unsigned e)
|
||||
{
|
||||
T &c2 = coeffs[e];
|
||||
c2 += c;
|
||||
if (c2 == 0)
|
||||
coeffs -= e;
|
||||
return *this;
|
||||
}
|
||||
|
||||
polynomial operator - () const { return polynomial () - *this; }
|
||||
polynomial operator + (polynomial p) const
|
||||
{
|
||||
polynomial r (COPY, *this);
|
||||
r += p;
|
||||
return r;
|
||||
}
|
||||
|
||||
polynomial operator - (polynomial p) const
|
||||
{
|
||||
polynomial r (COPY, *this);
|
||||
r -= p;
|
||||
return r;
|
||||
}
|
||||
|
||||
polynomial operator * (polynomial p) const;
|
||||
|
||||
pair<polynomial, polynomial> divide_with_remainder (polynomial d) const;
|
||||
|
||||
polynomial mod (polynomial d) const;
|
||||
bool divides (polynomial d) const;
|
||||
polynomial divide_exact (polynomial d) const;
|
||||
|
||||
polynomial gcd (polynomial b) const;
|
||||
|
||||
#ifndef NDEBUG
|
||||
void check () const;
|
||||
#endif
|
||||
|
||||
static void show_ring () { T::show_ring (); printf ("[x]"); }
|
||||
void display_self () const { show_self (); newline (); }
|
||||
void show_self () const;
|
||||
};
|
||||
|
||||
template<class T> unsigned
|
||||
polynomial<T>::degree () const
|
||||
{
|
||||
return coeffs.tail ().first;
|
||||
}
|
||||
|
||||
template<class T> bool
|
||||
polynomial<T>::is_unit () const
|
||||
{
|
||||
// ??? is_singleton
|
||||
if (coeffs.card () != 1)
|
||||
return 0;
|
||||
|
||||
pair<unsigned, T> p = coeffs.head ();
|
||||
return p.first == 0
|
||||
&& p.second.is_unit ();
|
||||
}
|
||||
|
||||
template<class T> polynomial<T> &
|
||||
polynomial<T>::operator += (polynomial p)
|
||||
{
|
||||
for (typename map<unsigned, T>::const_iter i = p.coeffs; i; i ++)
|
||||
{
|
||||
unsigned e = i.key ();
|
||||
T &c = coeffs[e];
|
||||
c += i.val ();
|
||||
if (c == 0)
|
||||
coeffs -= e;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class T> polynomial<T> &
|
||||
polynomial<T>::operator -= (polynomial p)
|
||||
{
|
||||
for (typename map<unsigned, T>::const_iter i = p.coeffs; i; i ++)
|
||||
{
|
||||
unsigned e = i.key ();
|
||||
T &c = coeffs[e];
|
||||
c -= i.val ();
|
||||
if (c == 0)
|
||||
coeffs -= e;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class T> polynomial<T> &
|
||||
polynomial<T>::operator *= (T s)
|
||||
{
|
||||
if (s == 0)
|
||||
coeffs.clear ();
|
||||
else
|
||||
{
|
||||
for (typename map<unsigned, T>::iter i = coeffs; i; i ++)
|
||||
i.val () *= s;
|
||||
}
|
||||
}
|
||||
|
||||
template<class T> polynomial<T>
|
||||
polynomial<T>::operator * (polynomial p) const
|
||||
{
|
||||
polynomial r;
|
||||
|
||||
for (typename map<unsigned, T>::const_iter i = coeffs; i; i ++)
|
||||
for (typename map<unsigned, T>::const_iter j = p.coeffs; j; j ++)
|
||||
{
|
||||
unsigned e = i.key () + j.key ();
|
||||
T &c = r.coeffs[e];
|
||||
c += i.val () * j.val ();
|
||||
if (c == 0)
|
||||
r.coeffs -= e;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
template<class T> pair<polynomial<T>, polynomial<T> >
|
||||
polynomial<T>::divide_with_remainder (polynomial d) const
|
||||
{
|
||||
assert (d != 0);
|
||||
|
||||
polynomial r (COPY, *this);
|
||||
polynomial q;
|
||||
|
||||
pair<unsigned, T> d_leading_term = d.coeffs.tail ();
|
||||
for (;;)
|
||||
{
|
||||
if (r == 0)
|
||||
break;
|
||||
|
||||
pair<unsigned, T> r_leading_term = r.coeffs.tail ();
|
||||
if (r_leading_term.first < d_leading_term.first)
|
||||
break;
|
||||
|
||||
polynomial m (r_leading_term.second / d_leading_term.second,
|
||||
r_leading_term.first - d_leading_term.first);
|
||||
r -= m * d;
|
||||
q += m;
|
||||
}
|
||||
|
||||
assert (r == 0 || r.degree () < d.degree ());
|
||||
// assert (*this == q*d + r);
|
||||
|
||||
return pair<polynomial, polynomial> (q, r);
|
||||
}
|
||||
|
||||
template<class T> polynomial<T>
|
||||
polynomial<T>::mod (polynomial d) const
|
||||
{
|
||||
pair<polynomial<T>, polynomial<T> > qr = divide_with_remainder (d);
|
||||
return qr.second;
|
||||
}
|
||||
|
||||
template<class T> bool
|
||||
polynomial<T>::divides (polynomial d) const
|
||||
{
|
||||
pair<polynomial<T>, polynomial<T> > qr = divide_with_remainder (d);
|
||||
return qr.second == 0;
|
||||
}
|
||||
|
||||
template<class T> polynomial<T>
|
||||
polynomial<T>::divide_exact (polynomial d) const
|
||||
{
|
||||
pair<polynomial<T>, polynomial<T> > qr = divide_with_remainder (d);
|
||||
assert (qr.second == 0);
|
||||
return qr.first;
|
||||
}
|
||||
|
||||
template<class T> polynomial<T>
|
||||
polynomial<T>::gcd (polynomial b) const
|
||||
{
|
||||
polynomial a = *this;
|
||||
|
||||
while (b != 0)
|
||||
{
|
||||
pair<polynomial<T>, polynomial<T> > a_qr = a.divide_with_remainder (b);
|
||||
a = b;
|
||||
b = a_qr.second;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
template<class T> void
|
||||
polynomial<T>::check () const
|
||||
{
|
||||
for (typename map<unsigned, T>::const_iter i = coeffs; i; i ++)
|
||||
assert (i.val () != 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class T> void
|
||||
polynomial<T>::show_self () const
|
||||
{
|
||||
unsigned first = 1;
|
||||
for (typename map<unsigned, T>::const_iter i = coeffs; i; i ++)
|
||||
{
|
||||
unsigned e = i.key ();
|
||||
T c = i.val ();
|
||||
|
||||
assert (c != 0);
|
||||
|
||||
if (first)
|
||||
first = 0;
|
||||
else
|
||||
printf (" + ");
|
||||
|
||||
if (e == 0 && c == 1)
|
||||
printf ("1");
|
||||
else if (e == 0)
|
||||
show (c);
|
||||
else if (c == 1)
|
||||
{
|
||||
if (e == 1)
|
||||
printf ("x");
|
||||
else
|
||||
printf ("x^%d", e);
|
||||
}
|
||||
else
|
||||
{
|
||||
show (c);
|
||||
if (e == 1)
|
||||
printf ("*x");
|
||||
else
|
||||
printf ("*x^%d", e);
|
||||
}
|
||||
}
|
||||
if (first)
|
||||
printf ("0");
|
||||
}
|
||||
|
||||
template<>
|
||||
class polynomial<Z2>
|
||||
{
|
||||
private:
|
||||
set<unsigned> coeffs;
|
||||
|
||||
explicit polynomial (const set<unsigned> &coeffs_) : coeffs(coeffs_) { }
|
||||
|
||||
public:
|
||||
polynomial () { }
|
||||
explicit polynomial (int x)
|
||||
{
|
||||
Z2 c (x);
|
||||
if (c != 0)
|
||||
coeffs.push (0);
|
||||
}
|
||||
|
||||
explicit polynomial (Z2 c)
|
||||
{
|
||||
if (c != 0)
|
||||
coeffs.push (0);
|
||||
}
|
||||
|
||||
polynomial (Z2 c, unsigned e)
|
||||
{
|
||||
if (c != 0)
|
||||
coeffs.push (e);
|
||||
}
|
||||
|
||||
polynomial (const polynomial &p) : coeffs(p.coeffs) { }
|
||||
polynomial (copy, const polynomial &p) : coeffs(COPY, p.coeffs) { }
|
||||
~polynomial () { }
|
||||
|
||||
polynomial &operator = (const polynomial &p) { coeffs = p.coeffs; return *this; }
|
||||
|
||||
polynomial &operator = (int x)
|
||||
{
|
||||
coeffs = set<unsigned> ();
|
||||
Z2 c (x);
|
||||
if (c != 0)
|
||||
coeffs.push (0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
polynomial &operator = (Z2 c)
|
||||
{
|
||||
coeffs = set<unsigned> ();
|
||||
if (c == 1)
|
||||
coeffs.push (0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator == (polynomial p) const { return coeffs == p.coeffs; }
|
||||
|
||||
bool operator == (int x) const
|
||||
{
|
||||
Z2 c (x);
|
||||
if (c == 0)
|
||||
return coeffs.is_empty ();
|
||||
else
|
||||
return coeffs.card () == 1
|
||||
&& coeffs.head () == 0;
|
||||
}
|
||||
|
||||
bool operator != (int x) const { return !operator == (x); }
|
||||
|
||||
unsigned degree () const { return coeffs.tail (); }
|
||||
|
||||
polynomial &operator += (polynomial p) { coeffs ^= p.coeffs; return *this; }
|
||||
polynomial &operator -= (polynomial p) { coeffs ^= p.coeffs; return *this; }
|
||||
polynomial &operator *= (polynomial p) { return operator = (*this * p); }
|
||||
polynomial &operator *= (Z2 s)
|
||||
{
|
||||
if (s == 0)
|
||||
coeffs.clear ();
|
||||
return *this;
|
||||
}
|
||||
|
||||
polynomial &add_term (Z2 c, unsigned e)
|
||||
{
|
||||
if (c == 1)
|
||||
coeffs.toggle (e);
|
||||
return *this;
|
||||
}
|
||||
|
||||
polynomial operator - () const { return polynomial (COPY, *this); };
|
||||
polynomial operator + (polynomial p) const
|
||||
{
|
||||
polynomial r (COPY, *this);
|
||||
r += p;
|
||||
return r;
|
||||
}
|
||||
|
||||
polynomial operator - (polynomial p) const
|
||||
{
|
||||
polynomial r (COPY, *this);
|
||||
r -= p;
|
||||
return r;
|
||||
}
|
||||
|
||||
polynomial operator * (polynomial p) const;
|
||||
|
||||
pair<polynomial, polynomial> divide_with_remainder (polynomial d) const;
|
||||
|
||||
polynomial mod (polynomial d) const;
|
||||
|
||||
bool divides (polynomial d) const;
|
||||
polynomial divide_exact (polynomial d) const;
|
||||
|
||||
polynomial gcd (polynomial b) const;
|
||||
|
||||
static void show_ring () { printf ("Z2[x]"); }
|
||||
void display_self () const { show_self (); newline (); }
|
||||
void show_self () const;
|
||||
};
|
||||
|
BIN
alternating
Normal file
BIN
alternating
Normal file
Binary file not shown.
1415
cobordism.cpp
Normal file
1415
cobordism.cpp
Normal file
File diff suppressed because it is too large
Load Diff
208
cobordism.h
Normal file
208
cobordism.h
Normal file
@ -0,0 +1,208 @@
|
||||
|
||||
static const unsigned max_cpts = max_crossings * 2;
|
||||
|
||||
enum reverse_crossing_t { REVERSE_CROSSING };
|
||||
enum reverse_orientation_t { REVERSE_ORIENTATION };
|
||||
|
||||
class resolution_diagram
|
||||
{
|
||||
public:
|
||||
unsigned n_crossings;
|
||||
smallbitset resolved;
|
||||
smallbitset to_resolve;
|
||||
unsigned n_starting_circles;
|
||||
unsigned n_ending_circles;
|
||||
|
||||
unsigned marked_edge; // edge from cpt
|
||||
unsigned marked_edge2;
|
||||
|
||||
smallbitset cpt_inside;
|
||||
/* prev, next cpt on circle in some orientation */
|
||||
basedvector<unsigned, 1> prev, next;
|
||||
basedvector<unsigned, 1> cpt_starting_circle;
|
||||
basedvector<unsigned, 1> cpt_ending_circle;
|
||||
|
||||
unsigned num_cpts () const { return n_crossings * 2; }
|
||||
unsigned crossing_from_cpt (unsigned c) const
|
||||
{
|
||||
assert (between (1, c, n_crossings));
|
||||
return c * 2 - 1;
|
||||
}
|
||||
unsigned crossing_to_cpt (unsigned c) const
|
||||
{
|
||||
assert (between (1, c, n_crossings));
|
||||
return c * 2;
|
||||
}
|
||||
unsigned is_from_cpt (unsigned pt) const
|
||||
{
|
||||
assert (between (1, pt, num_cpts ()));
|
||||
return is_odd (pt);
|
||||
}
|
||||
unsigned is_to_cpt (unsigned pt) const
|
||||
{
|
||||
assert (between (1, pt, num_cpts ()));
|
||||
return is_even (pt);
|
||||
}
|
||||
unsigned cpt_crossing (unsigned pt) const
|
||||
{
|
||||
assert (between (1, pt, num_cpts ()));
|
||||
return (pt + 1) / 2;
|
||||
}
|
||||
unsigned other_cpt (unsigned pt) const
|
||||
{
|
||||
assert (between (1, pt, num_cpts ()));
|
||||
if (is_odd (pt))
|
||||
return pt + 1;
|
||||
else
|
||||
return pt - 1;
|
||||
}
|
||||
unsigned marked_starting_circle () const
|
||||
{
|
||||
assert (marked_edge);
|
||||
return cpt_starting_circle[marked_edge];
|
||||
}
|
||||
unsigned marked_ending_circle () const
|
||||
{
|
||||
assert (marked_edge);
|
||||
unsigned c = cpt_crossing (marked_edge);
|
||||
|
||||
if (to_resolve(c))
|
||||
{
|
||||
if (is_to_cpt (marked_edge) != cpt_inside(marked_edge))
|
||||
return cpt_ending_circle[crossing_from_cpt (c)];
|
||||
else
|
||||
return cpt_ending_circle[crossing_to_cpt (c)];
|
||||
}
|
||||
else
|
||||
{
|
||||
if (is_from_cpt (marked_edge))
|
||||
return cpt_ending_circle[crossing_from_cpt (c)];
|
||||
else
|
||||
return cpt_ending_circle[crossing_to_cpt (c)];
|
||||
}
|
||||
}
|
||||
|
||||
unsigned crossing_from (unsigned c) const
|
||||
{
|
||||
assert (between (1, c, n_crossings));
|
||||
return cpt_starting_circle[crossing_from_cpt (c)];
|
||||
}
|
||||
unsigned crossing_to (unsigned c) const
|
||||
{
|
||||
assert (between (1, c, n_crossings));
|
||||
return cpt_starting_circle[crossing_to_cpt (c)];
|
||||
}
|
||||
unsigned crossing_ending_from (unsigned c) const
|
||||
{
|
||||
assert (between (1, c, n_crossings));
|
||||
return cpt_ending_circle[crossing_from_cpt (c)];
|
||||
}
|
||||
unsigned crossing_ending_right (unsigned c) const { return crossing_ending_from (c); }
|
||||
unsigned crossing_ending_to (unsigned c) const
|
||||
{
|
||||
assert (between (1, c, n_crossings));
|
||||
return cpt_ending_circle[crossing_to_cpt (c)];
|
||||
}
|
||||
unsigned crossing_ending_left (unsigned c) const { return crossing_ending_to (c); }
|
||||
bool crossing_from_inside (unsigned c) const
|
||||
{
|
||||
assert (between (1, c, n_crossings));
|
||||
return cpt_inside % crossing_from_cpt (c);
|
||||
}
|
||||
bool crossing_from_outside (unsigned c) const { return !crossing_from_inside (c); }
|
||||
bool crossing_to_inside (unsigned c) const
|
||||
{
|
||||
assert (between (1, c, n_crossings));
|
||||
return cpt_inside % crossing_to_cpt (c);
|
||||
}
|
||||
bool crossing_to_outside (unsigned c) const { return !crossing_to_inside (c); }
|
||||
|
||||
unsigned left_cpt (unsigned pt) const
|
||||
{
|
||||
if (cpt_inside % pt)
|
||||
return next[pt];
|
||||
else
|
||||
return prev[pt];
|
||||
}
|
||||
unsigned right_cpt (unsigned pt) const
|
||||
{
|
||||
if (cpt_inside % pt)
|
||||
return prev[pt];
|
||||
else
|
||||
return next[pt];
|
||||
}
|
||||
|
||||
bool crossing_orientation (unsigned common, unsigned i) const;
|
||||
bool crossing_is_split (unsigned c) const { return crossing_from (c) == crossing_to (c); }
|
||||
bool crossing_is_join (unsigned c) const { return crossing_from (c) != crossing_to (c); }
|
||||
bool marked_edge_left (unsigned p) const;
|
||||
|
||||
void compute_prev ();
|
||||
void check ();
|
||||
|
||||
public:
|
||||
resolution_diagram ();
|
||||
|
||||
resolution_diagram (unsigned n_crossings_,
|
||||
unsigned n_starting_circles_,
|
||||
unsigned n_ending_circles_);
|
||||
resolution_diagram (reverse_crossing_t,
|
||||
const resolution_diagram &rd,
|
||||
smallbitset to_reverse);
|
||||
resolution_diagram (reverse_orientation_t,
|
||||
const resolution_diagram &rd);
|
||||
|
||||
resolution_diagram (const resolution_diagram &rd); // copies
|
||||
resolution_diagram (copy, const resolution_diagram &rd);
|
||||
resolution_diagram (reader &r);
|
||||
~resolution_diagram () { }
|
||||
|
||||
resolution_diagram &operator = (const resolution_diagram &rd);
|
||||
|
||||
bool operator == (const resolution_diagram &rd) const;
|
||||
|
||||
/* reverse, reverse_orientation leave starting/ending circle numbers
|
||||
unchanged. */
|
||||
void reverse ();
|
||||
void reverse_orientation ();
|
||||
|
||||
knot_diagram as_knot_diagram () const;
|
||||
|
||||
void d (basedvector<pair<unsigned, unsigned>, 1> &out) const;
|
||||
void twisted_barE (basedvector<triple<unsigned, unsigned, set<unsigned> >, 1> &out) const;
|
||||
void twin_arrows_P (basedvector<pair<unsigned, unsigned>, 1> &out) const;
|
||||
|
||||
void write_self (writer &w) const;
|
||||
hash_t hash_self () const;
|
||||
void show_self () const;
|
||||
void display_self () const { show_self (); newline (); }
|
||||
};
|
||||
|
||||
class resolution_diagram_builder
|
||||
{
|
||||
public:
|
||||
ullmanset<1> gl_crossings;
|
||||
ullmanset<1> gl_starting_circles, gl_ending_circles;
|
||||
|
||||
basedvector<set<unsigned>, 1> lg_edges;
|
||||
|
||||
resolution_diagram rd;
|
||||
|
||||
public:
|
||||
resolution_diagram_builder ();
|
||||
resolution_diagram_builder (const resolution_diagram_builder &); // doesn't exist
|
||||
~resolution_diagram_builder () { }
|
||||
|
||||
resolution_diagram_builder &operator = (const resolution_diagram_builder &); // doesn't exist
|
||||
|
||||
void init (const knot_diagram &d,
|
||||
smallbitset from_state, const smoothing &from_s,
|
||||
smallbitset to_state, const smoothing &to_s,
|
||||
smallbitset crossings);
|
||||
|
||||
void mirror ();
|
||||
void reverse_orientation ();
|
||||
void reverse_crossing (const knot_diagram &d,
|
||||
const smoothing &from_s, const smoothing &to_s,
|
||||
unsigned c);
|
||||
};
|
11
cube.cpp
Normal file
11
cube.cpp
Normal file
@ -0,0 +1,11 @@
|
||||
|
||||
#include <knotkit.h>
|
||||
|
||||
sseq
|
||||
compute_szabo_sseq (const cube<Z2> &c)
|
||||
{
|
||||
mod_map<Z2> d = c.compute_d (0, 0, 0, 0, 0);
|
||||
|
||||
sseq_builder builder (c.khC, d);
|
||||
return builder.build_sseq ();
|
||||
}
|
120
cube.h
Normal file
120
cube.h
Normal file
@ -0,0 +1,120 @@
|
||||
|
||||
class map_rules
|
||||
{
|
||||
public:
|
||||
map_rules () { }
|
||||
map_rules (const map_rules &); // doesn't exist
|
||||
virtual ~map_rules () { }
|
||||
|
||||
map_rules &operator = (const map_rules &); // doesn't exist
|
||||
|
||||
virtual void map (basedvector<pair<unsigned, unsigned>, 1> &out,
|
||||
resolution_diagram_builder &rdb) const = 0;
|
||||
};
|
||||
|
||||
template<class R>
|
||||
class cube /* of resolutions */
|
||||
{
|
||||
public:
|
||||
typedef typename R::linear_combination linear_combination;
|
||||
typedef typename R::linear_combination_const_iter linear_combination_const_iter;
|
||||
|
||||
public:
|
||||
bool markedp_only;
|
||||
|
||||
knot_diagram &kd;
|
||||
unsigned n_crossings;
|
||||
unsigned n_resolutions;
|
||||
|
||||
unsigned n_generators;
|
||||
vector<unsigned> resolution_circles;
|
||||
vector<unsigned> resolution_generator1;
|
||||
|
||||
ptr<const module<R> > khC;
|
||||
|
||||
mod_map<R> compute_map (unsigned dh, unsigned max_n,
|
||||
bool mirror,
|
||||
bool reverse_orientation,
|
||||
unsigned to_reverse,
|
||||
const map_rules &rules) const;
|
||||
|
||||
mod_map<R> compute_d (unsigned dh, unsigned max_n,
|
||||
bool mirror,
|
||||
bool reverse_orientation,
|
||||
unsigned to_reverse) const;
|
||||
|
||||
mod_map<R> compute_twin_arrows_P (bool mirror,
|
||||
bool reverse_orientation,
|
||||
unsigned to_reverse) const;
|
||||
|
||||
mod_map<R> H_i (unsigned c);
|
||||
|
||||
mod_map<R> compute_nu () const;
|
||||
mod_map<R> compute_X (unsigned p) const;
|
||||
|
||||
void check_reverse_crossings ();
|
||||
void check_reverse_orientation ();
|
||||
|
||||
public:
|
||||
cube (knot_diagram &d_, bool markedp_only_ = 0);
|
||||
~cube () { }
|
||||
|
||||
grading compute_generator_grading (unsigned g) const;
|
||||
grading compute_state_monomial_grading (unsigned state, unsigned monomial) const;
|
||||
|
||||
unsigned generator (unsigned i, unsigned j) const;
|
||||
pair<unsigned, unsigned> generator_state_monomial (unsigned g) const;
|
||||
|
||||
ptr<const module<R> > compute_kh () const;
|
||||
|
||||
void show_state (unsigned state) const;
|
||||
void show_state_monomial (unsigned state, unsigned monomial) const;
|
||||
void show_self () const { printf ("cube"); }
|
||||
void display_self () const;
|
||||
};
|
||||
|
||||
class twisted_map_rules
|
||||
{
|
||||
public:
|
||||
twisted_map_rules () { }
|
||||
twisted_map_rules (const twisted_map_rules &); // doesn't exist
|
||||
virtual ~twisted_map_rules () { }
|
||||
|
||||
map_rules &operator = (const twisted_map_rules &); // doesn't exist
|
||||
|
||||
virtual void map (basedvector<triple<unsigned, unsigned, set<unsigned> >, 1> &out,
|
||||
resolution_diagram_builder &rdb) const = 0;
|
||||
};
|
||||
|
||||
template<class F>
|
||||
class twisted_cube
|
||||
{
|
||||
public:
|
||||
typedef fraction_field<polynomial<F> > R;
|
||||
|
||||
public:
|
||||
const cube<R> &c;
|
||||
|
||||
public:
|
||||
twisted_cube (const cube<R> &c_)
|
||||
: c(c_)
|
||||
{ }
|
||||
|
||||
twisted_cube (const twisted_cube &); // doesn't exist
|
||||
~twisted_cube () { }
|
||||
|
||||
twisted_cube &operator = (const twisted_cube &); // doesn't exist
|
||||
|
||||
mod_map<R> compute_twisted_map (basedvector<int, 1> edge_weight,
|
||||
unsigned dh,
|
||||
unsigned to_reverse,
|
||||
const twisted_map_rules &rules) const;
|
||||
|
||||
mod_map<R> compute_twisted_barE (basedvector<int, 1> edge_weight,
|
||||
unsigned dh, unsigned to_reverse) const;
|
||||
mod_map<R> twisted_d0 (basedvector<int, 1> edge_weight) const;
|
||||
};
|
||||
|
||||
extern sseq compute_szabo_sseq (const cube<Z2> &c);
|
||||
|
||||
#include <cube_impl.h>
|
728
cube_impl.h
Normal file
728
cube_impl.h
Normal file
@ -0,0 +1,728 @@
|
||||
|
||||
template<class R>
|
||||
class khC_generators
|
||||
{
|
||||
const cube<R> &c;
|
||||
|
||||
public:
|
||||
khC_generators (const khC_generators &g) : c(g.c) { }
|
||||
khC_generators (const cube<R> &c_) : c(c_) { }
|
||||
~khC_generators () { }
|
||||
|
||||
khC_generators &operator = (const khC_generators &); // doesn't exist
|
||||
|
||||
unsigned dim () const { return c.n_generators; }
|
||||
unsigned free_rank () const { return c.n_generators; }
|
||||
grading generator_grading (unsigned i) const { return c.compute_generator_grading (i); }
|
||||
void show_generator (unsigned i) const
|
||||
{
|
||||
pair<unsigned, unsigned> sm = c.generator_state_monomial (i);
|
||||
c.show_state_monomial (sm.first, sm.second);
|
||||
}
|
||||
|
||||
R generator_ann (unsigned i) const { abort (); }
|
||||
};
|
||||
|
||||
template<class R> mod_map<R>
|
||||
cube<R>::compute_map (unsigned dh, unsigned max_n,
|
||||
bool mirror,
|
||||
bool reverse_orientation,
|
||||
unsigned to_reverse,
|
||||
const map_rules &rules) const
|
||||
{
|
||||
mod_map<R> r (khC);
|
||||
|
||||
smoothing from_s (kd);
|
||||
smoothing to_s (kd);
|
||||
resolution_diagram_builder rdb;
|
||||
|
||||
ullmanset<1> free_circles (max_circles);
|
||||
ullmanset<1> from_circles (max_circles);
|
||||
|
||||
if (verbose)
|
||||
{
|
||||
fprintf (stderr, "computing differential...\n");
|
||||
fprintf (stderr, "%d resolutions.\n", n_resolutions);
|
||||
}
|
||||
|
||||
basedvector<pair<unsigned, unsigned>, 1> out;
|
||||
for (unsigned fromstate = 0; fromstate < n_resolutions; fromstate ++)
|
||||
{
|
||||
if (verbose
|
||||
&& (fromstate & unsigned_fill (n_crossings > 4
|
||||
? n_crossings - 4
|
||||
: 0)) == 0)
|
||||
fprintf (stderr, "%d / %d resolutions done.\n", fromstate, n_resolutions);
|
||||
|
||||
unsigned n_zerocrossings = n_crossings - unsigned_bitcount (fromstate);
|
||||
unsigned n_cobordisms = ((unsigned)1) << n_zerocrossings;
|
||||
|
||||
from_s.init (kd, smallbitset (n_crossings, fromstate));
|
||||
|
||||
unionfind<1> u (from_s.n_circles);
|
||||
|
||||
basedvector<unsigned, 1> from_circle_edge_rep (from_s.n_circles);
|
||||
for (unsigned j = 1; j <= kd.num_edges (); j ++)
|
||||
from_circle_edge_rep[from_s.edge_circle[j]] = j;
|
||||
|
||||
for (unsigned j = 0; j < n_cobordisms; j ++)
|
||||
{
|
||||
if (dh && unsigned_bitcount (j) != dh)
|
||||
continue;
|
||||
if (max_n && unsigned_bitcount (j) > max_n)
|
||||
continue;
|
||||
|
||||
unsigned tostate = unsigned_pack (n_crossings, fromstate, j);
|
||||
unsigned crossings = tostate & ~fromstate;
|
||||
|
||||
int sign = 1;
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
if (unsigned_bittest (crossings, i))
|
||||
break;
|
||||
if (unsigned_bittest (fromstate, i))
|
||||
sign *= -1;
|
||||
}
|
||||
// printf ("fromstate = %d, tostate = %d, sign = %d\n", fromstate, tostate, sign);
|
||||
|
||||
u.clear ();
|
||||
from_circles.clear ();
|
||||
|
||||
for (unsigned_const_iter k = crossings; k; k ++)
|
||||
{
|
||||
unsigned c = k.val ();
|
||||
|
||||
unsigned from = from_s.ept_circle (kd, kd.crossings[c][1]),
|
||||
to = from_s.ept_circle (kd, kd.crossings[c][3]);
|
||||
from_circles += from;
|
||||
from_circles += to;
|
||||
u.join (from, to);
|
||||
}
|
||||
if (from_s.n_circles - from_circles.card () + 1 != u.num_sets ())
|
||||
continue;
|
||||
|
||||
to_s.init (kd, smallbitset (n_crossings, tostate));
|
||||
rdb.init (kd,
|
||||
smallbitset (n_crossings, fromstate), from_s,
|
||||
smallbitset (n_crossings, tostate), to_s,
|
||||
smallbitset (n_crossings, crossings));
|
||||
if (mirror)
|
||||
rdb.mirror ();
|
||||
if (reverse_orientation)
|
||||
rdb.reverse_orientation ();
|
||||
if (to_reverse)
|
||||
rdb.reverse_crossing (kd, from_s, to_s, to_reverse);
|
||||
|
||||
// display (rdb.rd);
|
||||
|
||||
out.resize (0);
|
||||
rules.map (out, rdb);
|
||||
if (out.size () == 0)
|
||||
continue;
|
||||
|
||||
free_circles.clear ();
|
||||
for (unsigned i = 1; i <= from_s.n_circles; i ++)
|
||||
{
|
||||
if (! (rdb.gl_starting_circles % i))
|
||||
free_circles.push (i);
|
||||
}
|
||||
unsigned n_free_circles = free_circles.card ();
|
||||
unsigned n_free_monomials = ((unsigned)1) << n_free_circles;
|
||||
|
||||
for (unsigned i = 0; i < n_free_monomials; i ++)
|
||||
{
|
||||
unsigned m_from = 0,
|
||||
m_to = 0;
|
||||
|
||||
for (unsigned_const_iter jj = i; jj; jj ++)
|
||||
{
|
||||
unsigned s = free_circles.nth (jj.val () - 1);
|
||||
m_from = unsigned_bitset (m_from, s);
|
||||
m_to = unsigned_bitset (m_to, to_s.edge_circle[from_circle_edge_rep[s]]);
|
||||
}
|
||||
|
||||
for (unsigned j = 1; j <= out.size (); j ++)
|
||||
{
|
||||
unsigned v_from = m_from,
|
||||
v_to = m_to;
|
||||
|
||||
unsigned l_from = out[j].first,
|
||||
l_to = out[j].second;
|
||||
for (unsigned_const_iter kk = l_from; kk; kk ++)
|
||||
{
|
||||
unsigned s = rdb.gl_starting_circles.nth (kk.val () - 1);
|
||||
v_from = unsigned_bitset (v_from, s);
|
||||
}
|
||||
for (unsigned_const_iter kk = l_to; kk; kk ++)
|
||||
{
|
||||
unsigned s = rdb.gl_ending_circles.nth (kk.val () - 1);
|
||||
v_to = unsigned_bitset (v_to, s);
|
||||
}
|
||||
|
||||
if (markedp_only)
|
||||
{
|
||||
unsigned p = from_s.edge_circle[kd.marked_edge];
|
||||
if (unsigned_bittest (v_from, p))
|
||||
continue;
|
||||
assert (!unsigned_bittest (v_to, p));
|
||||
}
|
||||
|
||||
r[generator (fromstate, v_from)].muladd
|
||||
(sign, generator (tostate, v_to));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose)
|
||||
{
|
||||
fprintf (stderr, "%d / %d resolutions done.\n", n_resolutions, n_resolutions);
|
||||
fprintf (stderr, "computing differential done.\n");
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
class d_rules : public map_rules
|
||||
{
|
||||
public:
|
||||
d_rules () { }
|
||||
d_rules (const d_rules &); // doesn't exist
|
||||
~d_rules () { }
|
||||
|
||||
d_rules &operator = (const d_rules &); // doesn't exist
|
||||
|
||||
void map (basedvector<pair<unsigned, unsigned>, 1> &out,
|
||||
resolution_diagram_builder &rdb) const
|
||||
{
|
||||
rdb.rd.d (out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class R> mod_map<R>
|
||||
cube<R>::compute_d (unsigned dh, unsigned max_n,
|
||||
bool mirror,
|
||||
bool reverse_orientation,
|
||||
unsigned to_reverse) const
|
||||
{
|
||||
return compute_map (dh, max_n,
|
||||
mirror, reverse_orientation, to_reverse,
|
||||
d_rules ());
|
||||
}
|
||||
|
||||
class twin_arrows_P_rules : public map_rules
|
||||
{
|
||||
public:
|
||||
twin_arrows_P_rules () { }
|
||||
twin_arrows_P_rules (const twin_arrows_P_rules &); // doesn't exist
|
||||
~twin_arrows_P_rules () { }
|
||||
|
||||
twin_arrows_P_rules &operator = (const twin_arrows_P_rules &); // doesn't exist
|
||||
|
||||
void map (basedvector<pair<unsigned, unsigned>, 1> &out,
|
||||
resolution_diagram_builder &rdb) const
|
||||
{
|
||||
rdb.rd.twin_arrows_P (out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class R> mod_map<R>
|
||||
cube<R>::compute_twin_arrows_P (bool mirror,
|
||||
bool reverse_orientation,
|
||||
unsigned to_reverse) const
|
||||
{
|
||||
assert (kd.marked_edge);
|
||||
|
||||
mod_map<R> one (khC, 1);
|
||||
mod_map<R> X = compute_X (kd.marked_edge);
|
||||
mod_map<R> preP = compute_map (0, 0,
|
||||
mirror, reverse_orientation, to_reverse,
|
||||
twin_arrows_P_rules ());
|
||||
|
||||
return X.compose (one + preP);
|
||||
}
|
||||
|
||||
template<class R> mod_map<R>
|
||||
cube<R>::compute_nu () const
|
||||
{
|
||||
assert (!markedp_only);
|
||||
|
||||
mod_map<R> nu (khC);
|
||||
for (unsigned i = 0, j = 1; i < n_resolutions; i ++)
|
||||
{
|
||||
smoothing s (kd, smallbitset (n_crossings, i));
|
||||
for (unsigned j = 0; j < s.num_monomials (); j ++)
|
||||
{
|
||||
for (unsigned k = 1; k <= s.n_circles; k ++)
|
||||
{
|
||||
if (!unsigned_bittest (j, k))
|
||||
{
|
||||
unsigned j2 = unsigned_bitset (j, k);
|
||||
nu[generator (i, j)].muladd (1, generator (i, j2));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
nu.check_grading (0, 2);
|
||||
assert (nu.compose (nu) == 0);
|
||||
|
||||
return nu;
|
||||
}
|
||||
|
||||
template<class R> mod_map<R>
|
||||
cube<R>::compute_X (unsigned p) const
|
||||
{
|
||||
assert (!markedp_only);
|
||||
|
||||
/* define Khovanov's map X */
|
||||
mod_map<R> X (khC);
|
||||
for (unsigned i = 0, j = 1; i < n_resolutions; i ++)
|
||||
{
|
||||
smoothing r (kd, smallbitset (n_crossings, i));
|
||||
for (unsigned j = 0; j < r.num_monomials (); j ++)
|
||||
{
|
||||
unsigned s = r.edge_circle[p];
|
||||
if (unsigned_bittest (j, s))
|
||||
{
|
||||
unsigned j2 = unsigned_bitclear (j, s);
|
||||
X[generator (i, j)].muladd (1, generator (i, j2));
|
||||
}
|
||||
}
|
||||
}
|
||||
assert (X.compose (X) == 0);
|
||||
|
||||
return X;
|
||||
}
|
||||
|
||||
template<class R> mod_map<R>
|
||||
cube<R>::H_i (unsigned c)
|
||||
{
|
||||
mod_map<R> H_c (khC, 0);
|
||||
for (unsigned i = 0; i < n_resolutions; i ++)
|
||||
{
|
||||
if (unsigned_bittest (i, c))
|
||||
continue;
|
||||
|
||||
smoothing from_s (kd, smallbitset (n_crossings, i));
|
||||
|
||||
unsigned i2 = unsigned_bitset (i, c);
|
||||
smoothing to_s (kd, smallbitset (n_crossings, i2));
|
||||
|
||||
basedvector<unsigned, 1> from_circle_edge_rep (from_s.n_circles);
|
||||
for (unsigned j = 1; j <= kd.num_edges (); j ++)
|
||||
from_circle_edge_rep[from_s.edge_circle[j]] = j;
|
||||
|
||||
unsigned from = from_s.crossing_from_circle (kd, c),
|
||||
to = from_s.crossing_to_circle (kd, c);
|
||||
for (unsigned j = 0; j < from_s.num_monomials (); j ++)
|
||||
{
|
||||
unsigned j2 = 0;
|
||||
for (unsigned_const_iter k = j; k; k ++)
|
||||
{
|
||||
unsigned s = k.val ();
|
||||
j2 = unsigned_bitset (j2, to_s.edge_circle[from_circle_edge_rep[s]]);
|
||||
}
|
||||
|
||||
linear_combination &v = H_c[generator (i, j)];
|
||||
if (from == to
|
||||
&& unsigned_bittest (j, from))
|
||||
{
|
||||
j2 = unsigned_bitset (j2,
|
||||
to_s.crossing_from_circle (kd, c));
|
||||
j2 = unsigned_bitset (j2,
|
||||
to_s.crossing_to_circle (kd, c));
|
||||
v.muladd (1, generator (i2, j2));
|
||||
}
|
||||
else if (from != to
|
||||
&& !unsigned_bittest (j, from)
|
||||
&& !unsigned_bittest (j, to))
|
||||
{
|
||||
assert (! unsigned_bittest (j2,
|
||||
to_s.crossing_from_circle (kd, c)));
|
||||
v.muladd (1, generator (i2, j2));
|
||||
}
|
||||
}
|
||||
}
|
||||
H_c.check_grading (grading (1, 2));
|
||||
|
||||
return H_c;
|
||||
}
|
||||
|
||||
template<class R> void
|
||||
cube<R>::check_reverse_crossings ()
|
||||
{
|
||||
for (unsigned c = 1; c <= n_crossings; c ++)
|
||||
{
|
||||
mod_map<R> H_c = H_i (c);
|
||||
|
||||
mod_map<R> d = compute_d (2, 0, 0, 0, 0, 0),
|
||||
r_d = compute_d (2, 0, 0, 0, 0, c);
|
||||
|
||||
mod_map<R> d_1 = d.graded_piece (1, 0);
|
||||
assert (d_1 == r_d.graded_piece (1, 0));
|
||||
assert (d_1.compose (d_1) == 0);
|
||||
|
||||
mod_map<R> d_2 = d.graded_piece (2, 2),
|
||||
r_d_2 = r_d.graded_piece (2, 2);
|
||||
assert (d_1.compose (d_2) == d_2.compose (d_1));
|
||||
assert (d_1.compose (r_d_2) == r_d_2.compose (d_1));
|
||||
|
||||
assert (d_2 + r_d_2 == H_c.compose (d_1) + d_1.compose (H_c));
|
||||
}
|
||||
}
|
||||
|
||||
template<class R> void
|
||||
cube<R>::check_reverse_orientation ()
|
||||
{
|
||||
mod_map<R> d = compute_d (2, 0, 0, 0, 0, 0),
|
||||
n_d = compute_d (2, 0, 0, 0, 1, 0);
|
||||
|
||||
mod_map<R> d_1 = d.graded_piece (1, 0);
|
||||
assert (d_1 == n_d.graded_piece (1, 0));
|
||||
assert (d_1.compose (d_1) == 0);
|
||||
|
||||
mod_map<R> d_2 = d.graded_piece (2, 2),
|
||||
n_d_2 = n_d.graded_piece (2, 2);
|
||||
|
||||
// in fact, Szabo's d_2 matches on the nose
|
||||
assert (d_2 == n_d_2);
|
||||
}
|
||||
|
||||
template<class R>
|
||||
cube<R>::cube (knot_diagram &kd_, bool markedp_only_)
|
||||
: markedp_only(markedp_only_),
|
||||
kd(kd_),
|
||||
n_crossings(kd.n_crossings),
|
||||
n_resolutions(((unsigned)1) << n_crossings),
|
||||
n_generators(0),
|
||||
resolution_circles(n_resolutions),
|
||||
resolution_generator1(n_resolutions)
|
||||
{
|
||||
// printf ("%% %s\n", kd.name.c_str ());
|
||||
|
||||
// printf ("smoothings:\n");
|
||||
|
||||
smoothing s (kd);
|
||||
for (unsigned i = 0; i < n_resolutions; i ++)
|
||||
{
|
||||
smallbitset state (n_crossings, i);
|
||||
s.init (kd, state);
|
||||
resolution_circles[i] = s.n_circles;
|
||||
resolution_generator1[i] = n_generators + 1;
|
||||
n_generators += s.num_generators (markedp_only);
|
||||
|
||||
#if 0
|
||||
s.show_self (kd, state);
|
||||
newline ();
|
||||
#endif
|
||||
}
|
||||
|
||||
// printf ("(cube) n_generators = %d\n", n_generators);
|
||||
khC = new base_module<R, khC_generators<R> > (khC_generators<R> (*this));
|
||||
}
|
||||
|
||||
template<class R> unsigned
|
||||
cube<R>::generator (unsigned i, unsigned j) const
|
||||
{
|
||||
if (markedp_only)
|
||||
{
|
||||
smoothing s (kd, smallbitset (n_crossings, i));
|
||||
unsigned p = s.edge_circle[kd.marked_edge];
|
||||
assert (!unsigned_bittest (j, p));
|
||||
return resolution_generator1[i] + unsigned_discard_bit (j, p);
|
||||
}
|
||||
else
|
||||
return resolution_generator1[i] + j;
|
||||
}
|
||||
|
||||
template<class R> pair<unsigned, unsigned>
|
||||
cube<R>::generator_state_monomial (unsigned g) const
|
||||
{
|
||||
unsigned i = resolution_generator1.upper_bound (g) - 1;
|
||||
assert (g >= resolution_generator1[i]
|
||||
&& (i + 1 >= n_resolutions
|
||||
|| g < resolution_generator1[i + 1]));
|
||||
return pair<unsigned, unsigned> (i, g - resolution_generator1[i]);
|
||||
}
|
||||
|
||||
template<class R> grading
|
||||
cube<R>::compute_generator_grading (unsigned g) const
|
||||
{
|
||||
pair<unsigned, unsigned> sm = generator_state_monomial (g);
|
||||
return compute_state_monomial_grading (sm.first, sm.second);
|
||||
}
|
||||
|
||||
template<class R> grading
|
||||
cube<R>::compute_state_monomial_grading (unsigned state, unsigned monomial) const
|
||||
{
|
||||
grading r;
|
||||
r.h = unsigned_bitcount (state) - kd.nminus;
|
||||
r.q = 2 * unsigned_bitcount (monomial) - resolution_circles[state]
|
||||
+ unsigned_bitcount (state) + kd.nplus - 2 * kd.nminus;
|
||||
|
||||
/* reduced-only is shifted up 1 in q-grading */
|
||||
if (markedp_only)
|
||||
r.q ++;
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
template<class R> ptr<const module<R> >
|
||||
cube<R>::compute_kh () const
|
||||
{
|
||||
// display ("khC:\n", *khC);
|
||||
|
||||
mod_map<R> d = compute_d (1, 0, 0, 0, 0);
|
||||
|
||||
chain_complex_simplifier<Z> s (khC, d, 1);
|
||||
// display ("s.new_C:\n", *s.new_C);
|
||||
|
||||
return s.new_d.homology ();
|
||||
}
|
||||
|
||||
template<class R> void
|
||||
cube<R>::show_state (unsigned state) const
|
||||
{
|
||||
for (unsigned i = n_crossings; i >= 1; i --)
|
||||
printf (unsigned_bittest (state, i) ? "1" : "0");
|
||||
}
|
||||
|
||||
template<class R> void
|
||||
cube<R>::show_state_monomial (unsigned state, unsigned monomial) const
|
||||
{
|
||||
show_state (state);
|
||||
printf (":");
|
||||
smoothing s (kd, smallbitset (n_crossings, state));
|
||||
char c = 'a';
|
||||
for (unsigned i = 1; i <= s.n_circles; i ++, c ++)
|
||||
{
|
||||
if (!unsigned_bittest (monomial, i))
|
||||
printf ("%c", c);
|
||||
}
|
||||
}
|
||||
|
||||
template<class R> void
|
||||
cube<R>::display_self () const
|
||||
{
|
||||
for (unsigned i = 0, j = 1; i < n_resolutions; i ++)
|
||||
{
|
||||
smoothing s (kd, smallbitset (n_crossings, i));
|
||||
|
||||
printf (" %03d: ", i);
|
||||
s.show_self (kd, smallbitset (n_crossings, i));
|
||||
newline ();
|
||||
}
|
||||
|
||||
// khC->display_self ();
|
||||
// d.display_self ();
|
||||
}
|
||||
|
||||
template<class F> mod_map<typename twisted_cube<F>::R>
|
||||
twisted_cube<F>::compute_twisted_map (basedvector<int, 1> edge_weight,
|
||||
unsigned dh, unsigned to_reverse,
|
||||
const twisted_map_rules &rules) const
|
||||
{
|
||||
mod_map<R> r (c.khC);
|
||||
|
||||
knot_diagram &kd = c.kd;
|
||||
unsigned n_crossings = c.n_crossings;
|
||||
unsigned n_resolutions = c.n_resolutions;
|
||||
|
||||
smoothing from_s (kd);
|
||||
smoothing to_s (kd);
|
||||
resolution_diagram_builder rdb;
|
||||
|
||||
ullmanset<1> free_circles (max_circles);
|
||||
ullmanset<1> from_circles (max_circles);
|
||||
|
||||
basedvector<triple<unsigned, unsigned, set<unsigned> >, 1> out;
|
||||
for (unsigned fromstate = 0; fromstate < n_resolutions; fromstate ++)
|
||||
{
|
||||
unsigned n_zerocrossings = n_crossings - unsigned_bitcount (fromstate);
|
||||
unsigned n_cobordisms = ((unsigned)1) << n_zerocrossings;
|
||||
|
||||
from_s.init (kd, smallbitset (n_crossings, fromstate));
|
||||
|
||||
unionfind<1> u (from_s.n_circles);
|
||||
|
||||
basedvector<unsigned, 1> from_circle_edge_rep (from_s.n_circles);
|
||||
for (unsigned j = 1; j <= kd.num_edges (); j ++)
|
||||
from_circle_edge_rep[from_s.edge_circle[j]] = j;
|
||||
|
||||
for (unsigned j = 0; j < n_cobordisms; j ++)
|
||||
{
|
||||
if (dh && unsigned_bitcount (j) != dh)
|
||||
continue;
|
||||
|
||||
unsigned tostate = unsigned_pack (n_crossings, fromstate, j);
|
||||
unsigned crossings = tostate & ~fromstate;
|
||||
|
||||
int sign = 1;
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
if (unsigned_bittest (crossings, i))
|
||||
break;
|
||||
if (unsigned_bittest (fromstate, i))
|
||||
sign *= -1;
|
||||
}
|
||||
// printf ("fromstate = %d, tostate = %d, sign = %d\n", fromstate, tostate, sign);
|
||||
|
||||
u.clear ();
|
||||
from_circles.clear ();
|
||||
|
||||
for (unsigned_const_iter k = crossings; k; k ++)
|
||||
{
|
||||
unsigned c = k.val ();
|
||||
|
||||
unsigned from = from_s.ept_circle (kd, kd.crossings[c][1]),
|
||||
to = from_s.ept_circle (kd, kd.crossings[c][3]);
|
||||
from_circles += from;
|
||||
from_circles += to;
|
||||
u.join (from, to);
|
||||
}
|
||||
if (from_s.n_circles - from_circles.card () + 1 != u.num_sets ())
|
||||
continue;
|
||||
|
||||
to_s.init (kd, smallbitset (n_crossings, tostate));
|
||||
rdb.init (kd,
|
||||
smallbitset (n_crossings, fromstate), from_s,
|
||||
smallbitset (n_crossings, tostate), to_s,
|
||||
smallbitset (n_crossings, crossings));
|
||||
if (to_reverse)
|
||||
rdb.reverse_crossing (kd, from_s, to_s, to_reverse);
|
||||
|
||||
// display (rdb.rd);
|
||||
|
||||
out.resize (0);
|
||||
rules.map (out, rdb);
|
||||
if (out.size () == 0)
|
||||
continue;
|
||||
|
||||
free_circles.clear ();
|
||||
for (unsigned i = 1; i <= from_s.n_circles; i ++)
|
||||
{
|
||||
if (! (rdb.gl_starting_circles % i))
|
||||
free_circles.push (i);
|
||||
}
|
||||
unsigned n_free_circles = free_circles.card ();
|
||||
unsigned n_free_monomials = ((unsigned)1) << n_free_circles;
|
||||
|
||||
for (unsigned i = 0; i < n_free_monomials; i ++)
|
||||
{
|
||||
unsigned m_from = 0,
|
||||
m_to = 0;
|
||||
|
||||
for (unsigned_const_iter jj = i; jj; jj ++)
|
||||
{
|
||||
unsigned s = free_circles.nth (jj.val () - 1);
|
||||
m_from = unsigned_bitset (m_from, s);
|
||||
m_to = unsigned_bitset (m_to, to_s.edge_circle[from_circle_edge_rep[s]]);
|
||||
}
|
||||
|
||||
for (unsigned j = 1; j <= out.size (); j ++)
|
||||
{
|
||||
unsigned v_from = m_from,
|
||||
v_to = m_to;
|
||||
|
||||
unsigned l_from = out[j].first,
|
||||
l_to = out[j].second;
|
||||
for (unsigned_const_iter kk = l_from; kk; kk ++)
|
||||
{
|
||||
unsigned s = rdb.gl_starting_circles.nth (kk.val () - 1);
|
||||
v_from = unsigned_bitset (v_from, s);
|
||||
}
|
||||
for (unsigned_const_iter kk = l_to; kk; kk ++)
|
||||
{
|
||||
unsigned s = rdb.gl_ending_circles.nth (kk.val () - 1);
|
||||
v_to = unsigned_bitset (v_to, s);
|
||||
}
|
||||
|
||||
int w = 0;
|
||||
for (set_const_iter<unsigned> le = out[j].third; le; le ++)
|
||||
{
|
||||
for (set_const_iter<unsigned> ge = rdb.lg_edges[le.val ()]; ge; ge ++)
|
||||
w += edge_weight[ge.val ()];
|
||||
}
|
||||
|
||||
if (c.markedp_only)
|
||||
{
|
||||
unsigned p = from_s.edge_circle[kd.marked_edge];
|
||||
if (unsigned_bittest (v_from, p))
|
||||
continue;
|
||||
assert (!unsigned_bittest (v_to, p));
|
||||
}
|
||||
|
||||
// ??? sign
|
||||
r[c.generator (fromstate, v_from)].muladd
|
||||
(polynomial<F> (1) + polynomial<F> (1, w),
|
||||
c.generator (tostate, v_to));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
class twisted_barE_rules : public twisted_map_rules
|
||||
{
|
||||
public:
|
||||
twisted_barE_rules () { }
|
||||
twisted_barE_rules (const twisted_barE_rules &); // doesn't exist
|
||||
~twisted_barE_rules () { }
|
||||
|
||||
twisted_barE_rules &operator = (const twisted_barE_rules &); // doesn't exist
|
||||
|
||||
void map (basedvector<triple<unsigned, unsigned, set<unsigned> >, 1> &out,
|
||||
resolution_diagram_builder &rdb) const
|
||||
{
|
||||
rdb.rd.twisted_barE (out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class F> mod_map<typename twisted_cube<F>::R>
|
||||
twisted_cube<F>::compute_twisted_barE (basedvector<int, 1> edge_weight,
|
||||
unsigned dh, unsigned to_reverse) const
|
||||
{
|
||||
return compute_twisted_map (edge_weight,
|
||||
dh, to_reverse,
|
||||
twisted_barE_rules ());
|
||||
}
|
||||
|
||||
template<class F> mod_map<typename twisted_cube<F>::R>
|
||||
twisted_cube<F>::twisted_d0 (basedvector<int, 1> edge_weight) const
|
||||
{
|
||||
mod_map<R> d0 (c.khC);
|
||||
for (unsigned i = 0, j = 1; i < c.n_resolutions; i ++)
|
||||
{
|
||||
smoothing r (c.kd, smallbitset (c.n_crossings, i));
|
||||
|
||||
unsigned marked_s = c.markedp_only
|
||||
? r.edge_circle[c.kd.marked_edge]
|
||||
: 0;
|
||||
|
||||
for (unsigned j = 0; j < r.num_monomials (); j ++)
|
||||
{
|
||||
if (c.markedp_only
|
||||
&& unsigned_bittest (j, marked_s))
|
||||
continue;
|
||||
|
||||
for (unsigned s = 1; s <= r.n_circles; s ++)
|
||||
{
|
||||
if (unsigned_bittest (j, s))
|
||||
{
|
||||
int w = 0;
|
||||
|
||||
for (unsigned k = 1; k <= c.kd.num_edges (); k ++)
|
||||
if (r.edge_circle[k] == s)
|
||||
w += edge_weight[k];
|
||||
|
||||
unsigned j2 = unsigned_bitclear (j, s);
|
||||
d0[c.generator (i, j)].muladd (polynomial<F> (1) + polynomial<F> (1, w),
|
||||
c.generator (i, j2));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return d0;
|
||||
}
|
54
dt_code.cpp
Normal file
54
dt_code.cpp
Normal file
@ -0,0 +1,54 @@
|
||||
|
||||
#include <knotkit.h>
|
||||
|
||||
dt_code::dt_code (const std::string &name_, const char *p)
|
||||
: name(name_)
|
||||
{
|
||||
unsigned n_crossings = alpha_to_int (*p++);
|
||||
|
||||
unsigned n_components = alpha_to_int (*p++);
|
||||
even_labels = basedvector<basedvector<int, 1>, 1> (n_components);
|
||||
|
||||
for (unsigned i = 1; i <= n_components; i ++)
|
||||
even_labels[i] = basedvector<int, 1> (alpha_to_int (*p++));
|
||||
|
||||
for (unsigned i = 1; i <= n_components; i ++)
|
||||
{
|
||||
for (unsigned j = 1; j <= even_labels[i].size (); j ++)
|
||||
even_labels[i][j] = alpha_to_int (*p++) * 2;
|
||||
}
|
||||
if (*p == '\n')
|
||||
p++;
|
||||
assert (*p == 0);
|
||||
|
||||
assert (num_crossings () == n_crossings);
|
||||
}
|
||||
|
||||
unsigned
|
||||
dt_code::num_crossings () const
|
||||
{
|
||||
unsigned n = 0;
|
||||
for (unsigned i = 1; i <= even_labels.size (); i ++)
|
||||
n += even_labels[i].size ();
|
||||
return n;
|
||||
}
|
||||
|
||||
void
|
||||
dt_code::display_self () const
|
||||
{
|
||||
printf ("dt_code %s [", name.c_str ());
|
||||
for (unsigned i = 1; i <= even_labels.size (); i ++)
|
||||
{
|
||||
if (i > 1)
|
||||
printf (", ");
|
||||
printf ("[");
|
||||
for (unsigned j = 1; j <= even_labels[i].size (); j ++)
|
||||
{
|
||||
if (j > 1)
|
||||
printf (", ");
|
||||
printf ("%d", even_labels[i][j]);
|
||||
}
|
||||
printf ("]");
|
||||
}
|
||||
printf ("]\n");
|
||||
}
|
49
dt_code.h
Normal file
49
dt_code.h
Normal file
@ -0,0 +1,49 @@
|
||||
|
||||
/* Dowker and Thistlethwaite codes */
|
||||
|
||||
/* minus = over */
|
||||
|
||||
class dt_code
|
||||
{
|
||||
public:
|
||||
std::string name;
|
||||
basedvector<basedvector<int, 1>, 1> even_labels;
|
||||
|
||||
public:
|
||||
dt_code ();
|
||||
dt_code (const std::string &name_, unsigned n_crossings, int even_labels_ar[])
|
||||
: name(name_), even_labels(1)
|
||||
{
|
||||
even_labels[1] = basedvector<int, 1> (n_crossings);
|
||||
for (unsigned i = 0; i < n_crossings; i ++)
|
||||
even_labels[1][i + 1] = even_labels_ar[i];
|
||||
}
|
||||
dt_code (const std::string &name_, const basedvector<int, 1> &even_labels_)
|
||||
: name(name_), even_labels(1)
|
||||
{
|
||||
even_labels[1] = even_labels_;
|
||||
}
|
||||
dt_code (const std::string &name_, const basedvector<basedvector<int, 1>, 1> &even_labels_)
|
||||
: name(name_), even_labels(even_labels_)
|
||||
{
|
||||
}
|
||||
dt_code (const std::string &name_, const char *p);
|
||||
|
||||
dt_code (const dt_code &dt)
|
||||
: name(dt.name), even_labels(dt.even_labels)
|
||||
{ }
|
||||
~dt_code () { }
|
||||
|
||||
dt_code &operator = (const dt_code &dt)
|
||||
{
|
||||
name = dt.name;
|
||||
even_labels = dt.even_labels;
|
||||
return *this;
|
||||
}
|
||||
|
||||
unsigned num_crossings () const;
|
||||
unsigned num_components () const { return even_labels.size (); }
|
||||
|
||||
void show_self () const { printf ("dt_code %s", name.c_str ()); }
|
||||
void display_self () const;
|
||||
};
|
126
gss.cpp
Normal file
126
gss.cpp
Normal file
@ -0,0 +1,126 @@
|
||||
|
||||
#include <knotkit.h>
|
||||
|
||||
const char *program_name;
|
||||
|
||||
void
|
||||
usage ()
|
||||
{
|
||||
printf ("usage: %s [-f] [-h] [-o <file>] [-v] <knot>\n", program_name);
|
||||
printf (" compute Szabo's geometric spectral sequence for knot <knot>\n");
|
||||
printf ("options:\n");
|
||||
printf (" -f : compute unreduced spectral sequence\n");
|
||||
printf (" (reduced is the default)\n");
|
||||
printf (" -h : print this message\n");
|
||||
printf (" -o <file> : write output to <file>\n");
|
||||
printf (" (stdout is the default)\n");
|
||||
printf (" -v : verbose: report progress as the computation proceeds\n");
|
||||
printf ("<knot> can be one of:\n");
|
||||
printf (" - the unknot, e.g. U or unknot\n");
|
||||
printf (" - a torus knot, e.g. T(2,3)\n");
|
||||
printf (" - a Rolfsen table knot, e.g. 10_124\n");
|
||||
printf (" - a Hoste-Thistlethwaite-Weeks knot, e.g. 11a12 or 12n214\n");
|
||||
printf (" - a Morwen Thistlethwaite link, e.g. L9a21 or L14n7631\n");
|
||||
printf (" - a planar diagram, e.g.\n");
|
||||
printf (" PD[X[1, 4, 2, 5], X[3, 6, 4, 1], X[5, 2, 6, 3]] or\n");
|
||||
printf (" PD[[1, 4, 2, 5], [3, 6, 4, 1], [5, 2, 6, 3]]\n");
|
||||
printf (" - a Dowker-Thistlethwaite code, e.g.\n");
|
||||
printf (" DTCode[6,8,2,4],\n");
|
||||
printf (" DT[dadbcda] or\n");
|
||||
printf (" DT[{6, -8}, {-10, 12, -14, 2, -4}]\n");
|
||||
printf (" - a braid, e.g. BR[2, {-1, -1, -1}]\n");
|
||||
}
|
||||
|
||||
int
|
||||
main (int argc, char **argv)
|
||||
{
|
||||
program_name = argv[0];
|
||||
|
||||
bool reduced = 1;
|
||||
const char *knot = 0;
|
||||
const char *file = 0;
|
||||
|
||||
for (int i = 1; i < argc; i ++)
|
||||
{
|
||||
if (argv[i][0] == '-')
|
||||
{
|
||||
if (strcmp (argv[i], "-f") == 0)
|
||||
reduced = 0;
|
||||
else if (strcmp (argv[i], "-h") == 0)
|
||||
{
|
||||
usage ();
|
||||
exit (EXIT_SUCCESS);
|
||||
}
|
||||
else if (!strcmp (argv[i], "-v"))
|
||||
verbose = 1;
|
||||
else if (!strcmp (argv[i], "-o"))
|
||||
{
|
||||
i ++;
|
||||
if (i == argc)
|
||||
{
|
||||
fprintf (stderr, "error: missing argument to option `-o'\n");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
file = argv[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
fprintf (stderr, "error: unknown argument `%s'\n", argv[1]);
|
||||
usage ();
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (knot)
|
||||
{
|
||||
fprintf (stderr, "error: too many arguments\n");
|
||||
usage ();
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
else
|
||||
knot = argv[i];
|
||||
}
|
||||
}
|
||||
|
||||
if (!knot)
|
||||
{
|
||||
fprintf (stderr, "error: missing <knot> argument\n");
|
||||
usage ();
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
FILE *outfp = 0;
|
||||
if (file)
|
||||
{
|
||||
outfp = fopen (file, "w");
|
||||
if (!outfp)
|
||||
{
|
||||
stderror ("fopen: %s", file);
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
else
|
||||
outfp = stdout;
|
||||
|
||||
knot_diagram d = parse_knot (knot);
|
||||
d.marked_edge = 1;
|
||||
cube<Z2> c (d, reduced);
|
||||
|
||||
fprintf (outfp, "\\documentclass{article}\n\
|
||||
\\usepackage{amsmath, tikz, hyperref}\n\
|
||||
\\DeclareMathOperator{\\rank}{rank}\n\
|
||||
\\setlength{\\parindent}{0pt}\n\
|
||||
\n\
|
||||
\\begin{document}\n\
|
||||
\\pagestyle{empty}\n\
|
||||
\\tableofcontents\n\
|
||||
\\sloppy\n");
|
||||
|
||||
compute_szabo_sseq (c).texshow (outfp, d.name);
|
||||
|
||||
fprintf (outfp, "\\end{document}\n");
|
||||
|
||||
if (file)
|
||||
fclose (outfp);
|
||||
}
|
809
knot_diagram.cpp
Normal file
809
knot_diagram.cpp
Normal file
@ -0,0 +1,809 @@
|
||||
|
||||
#include <knotkit.h>
|
||||
|
||||
knot_diagram::knot_diagram (const planar_diagram &pd)
|
||||
: name(pd.name),
|
||||
n_crossings(pd.crossings.size ()),
|
||||
marked_edge(0),
|
||||
crossings(n_crossings),
|
||||
ept_crossing(num_epts ()),
|
||||
ept_index(num_epts ()),
|
||||
nminus(0), nplus(0)
|
||||
{
|
||||
basedvector<basedvector<pair<unsigned, unsigned>, 1>, 1> edge_ci (num_edges ());
|
||||
for (unsigned c = 1; c <= n_crossings; c ++)
|
||||
{
|
||||
for (unsigned i = 1; i <= 4; i ++)
|
||||
{
|
||||
unsigned e = pd.crossings[c][i];
|
||||
edge_ci[e].append (pair<unsigned, unsigned> (c, i));
|
||||
}
|
||||
|
||||
crossings[c] = basedvector<unsigned, 1> (4);
|
||||
}
|
||||
|
||||
smallbitset done (num_edges ());
|
||||
for (unsigned c0 = 1; c0 <= n_crossings; c0 ++)
|
||||
{
|
||||
for (unsigned i0 = 1; i0 <= 2; i0 ++)
|
||||
{
|
||||
unsigned e = pd.crossings[c0][i0];
|
||||
if (done % e)
|
||||
continue;
|
||||
|
||||
for (unsigned c = c0, i = i0;;)
|
||||
{
|
||||
crossings[c][i] = edge_to_ept (e);
|
||||
done.push (e);
|
||||
ept_crossing[edge_to_ept (e)] = c;
|
||||
ept_index[edge_to_ept (e)] = i;
|
||||
|
||||
i = add_base1_mod4 (i, 2);
|
||||
e = pd.crossings[c][i];
|
||||
crossings[c][i] = edge_from_ept (e);
|
||||
ept_crossing[edge_from_ept (e)] = c;
|
||||
ept_index[edge_from_ept (e)] = i;
|
||||
|
||||
if (edge_ci[e][1].first == c
|
||||
&& edge_ci[e][1].second == i)
|
||||
{
|
||||
c = edge_ci[e][2].first;
|
||||
i = edge_ci[e][2].second;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert (edge_ci[e][2].first == c && edge_ci[e][2].second == i);
|
||||
c = edge_ci[e][1].first;
|
||||
i = edge_ci[e][1].second;
|
||||
}
|
||||
|
||||
if (c == c0 && i == i0)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert (done.card () == num_edges ());
|
||||
|
||||
calculate_smoothing_orientation ();
|
||||
calculate_nminus_nplus ();
|
||||
}
|
||||
|
||||
class dt_layout
|
||||
{
|
||||
public:
|
||||
knot_diagram &kd;
|
||||
|
||||
unsigned n_components;
|
||||
basedvector<unsigned, 1> comp_first_edge,
|
||||
comp_last_edge;
|
||||
basedvector<unsigned, 1> edge_to_crossing;
|
||||
smallbitset edge_to_under;
|
||||
smallbitset placed;
|
||||
|
||||
public:
|
||||
dt_layout (const dt_code &dt, knot_diagram &kd_);
|
||||
dt_layout (const dt_layout &); // doesn't exist
|
||||
~dt_layout () { }
|
||||
|
||||
dt_layout &operator = (const dt_layout &); // doesn't exist
|
||||
|
||||
unsigned find_crossing (unsigned prevc, unsigned previ, unsigned target,
|
||||
bool under, unsigned dir);
|
||||
|
||||
bool layout_2 (unsigned e,
|
||||
unsigned prevc, unsigned previ,
|
||||
unsigned c, unsigned i);
|
||||
bool layout_1 (unsigned e,
|
||||
unsigned prevc, unsigned previ);
|
||||
unsigned comp_next_edge (unsigned e) const;
|
||||
|
||||
void layout ();
|
||||
};
|
||||
|
||||
dt_layout::dt_layout (const dt_code &dt, knot_diagram &kd_)
|
||||
: kd(kd_),
|
||||
n_components(dt.num_components ()),
|
||||
comp_first_edge(n_components),
|
||||
comp_last_edge(n_components),
|
||||
edge_to_crossing(kd.num_edges ()),
|
||||
edge_to_under(kd.num_edges ()),
|
||||
placed(kd.n_crossings)
|
||||
{
|
||||
unsigned k = 1;
|
||||
for (unsigned i = 1; i <= dt.even_labels.size (); i ++)
|
||||
{
|
||||
comp_first_edge[i] = 2 * k - 1;
|
||||
comp_last_edge[i] = 2 * (k + dt.even_labels[i].size () - 1);
|
||||
for (unsigned j = 1; j <= dt.even_labels[i].size (); j ++, k ++)
|
||||
{
|
||||
int as = dt.even_labels[i][j];
|
||||
unsigned a = abs (as),
|
||||
b = 2 * k - 1;
|
||||
if (as > 0)
|
||||
edge_to_under.push (a);
|
||||
else
|
||||
edge_to_under.push (b);
|
||||
|
||||
edge_to_crossing[a] = edge_to_crossing[b] = k;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsigned
|
||||
dt_layout::find_crossing (unsigned prevc, unsigned previ, unsigned target,
|
||||
bool under, unsigned dir)
|
||||
{
|
||||
assert (!kd.crossings[prevc][previ]);
|
||||
assert (placed % prevc);
|
||||
|
||||
unsigned c = prevc,
|
||||
i = add_base1_mod4 (previ, dir);
|
||||
for (;;)
|
||||
{
|
||||
if (c == prevc && i == previ)
|
||||
return 0;
|
||||
|
||||
if (c == target && under == (i == 1 || i == 3) && kd.crossings[c][i] == 0)
|
||||
return i;
|
||||
unsigned p = kd.crossings[c][i];
|
||||
if (p)
|
||||
{
|
||||
unsigned p2 = kd.edge_other_ept (p);
|
||||
c = kd.ept_crossing[p2];
|
||||
i = kd.ept_index[p2];
|
||||
}
|
||||
i = add_base1_mod4 (i, dir);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned
|
||||
dt_layout::comp_next_edge (unsigned e) const
|
||||
{
|
||||
for (unsigned comp = 1; comp <= n_components; comp ++)
|
||||
{
|
||||
if (comp_first_edge[comp] <= e
|
||||
&& e <= comp_last_edge[comp])
|
||||
{
|
||||
if (e == comp_last_edge[comp])
|
||||
return comp_first_edge[comp];
|
||||
else
|
||||
return e + 1;
|
||||
}
|
||||
}
|
||||
abort ();
|
||||
}
|
||||
|
||||
bool
|
||||
dt_layout::layout_2 (unsigned e,
|
||||
unsigned prevc, unsigned previ,
|
||||
unsigned c, unsigned i)
|
||||
{
|
||||
assert (placed % prevc);
|
||||
assert (placed % c);
|
||||
|
||||
unsigned from = kd.edge_from_ept (e),
|
||||
to = kd.edge_to_ept (e);
|
||||
|
||||
assert (kd.crossings[prevc][previ] == 0);
|
||||
kd.crossings[prevc][previ] = from;
|
||||
kd.ept_crossing[from] = prevc;
|
||||
kd.ept_index[from] = previ;
|
||||
|
||||
assert (kd.crossings[c][i] == 0);
|
||||
kd.crossings[c][i] = to;
|
||||
kd.ept_crossing[to] = c;
|
||||
kd.ept_index[to] = i;
|
||||
|
||||
if (layout_1 (comp_next_edge (e), c, add_base1_mod4 (i, 2)))
|
||||
return 1;
|
||||
|
||||
kd.crossings[prevc][previ] = 0;
|
||||
kd.crossings[c][i] = 0;
|
||||
kd.ept_crossing[from] = kd.ept_crossing[to] = 0;
|
||||
kd.ept_index[from] = kd.ept_index[to] = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool
|
||||
dt_layout::layout_1 (unsigned e, unsigned prevc, unsigned previ)
|
||||
{
|
||||
if (kd.crossings[prevc][previ])
|
||||
{
|
||||
unsigned from = kd.edge_from_ept (e);
|
||||
|
||||
assert (kd.crossings[prevc][previ] == from);
|
||||
assert (kd.ept_crossing[from] == prevc);
|
||||
assert (kd.ept_index[from] == previ);
|
||||
|
||||
for (unsigned e = 1; e <= kd.num_edges (); e ++)
|
||||
{
|
||||
unsigned to = kd.edge_to_ept (e);
|
||||
unsigned prevc = edge_to_crossing[e];
|
||||
if (placed % prevc
|
||||
&& !kd.ept_crossing[to])
|
||||
{
|
||||
unsigned previ1 = edge_to_under % e ? 3 : 4;
|
||||
if (layout_1 (comp_next_edge (e), prevc, previ1))
|
||||
return 1;
|
||||
|
||||
unsigned previ2 = edge_to_under % e ? 1 : 2;
|
||||
return layout_1 (comp_next_edge (e), prevc, previ2);
|
||||
}
|
||||
}
|
||||
|
||||
/* done! */
|
||||
return 1;
|
||||
}
|
||||
|
||||
unsigned c = edge_to_crossing[e];
|
||||
if (placed % c)
|
||||
{
|
||||
unsigned i = find_crossing (prevc, previ, c, edge_to_under % e, 1);
|
||||
if (i && layout_2 (e, prevc, previ, c, i))
|
||||
return 1;
|
||||
|
||||
unsigned i2 = find_crossing (prevc, previ, c, edge_to_under % e, 3);
|
||||
return i2 && layout_2 (e, prevc, previ, c, i2); // return i && ... ??
|
||||
}
|
||||
else
|
||||
{
|
||||
unsigned i = (edge_to_under % e) ? 1 : 2;
|
||||
placed.push (c);
|
||||
if (!layout_2 (e, prevc, previ, c, i))
|
||||
{
|
||||
placed -= c;
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
dt_layout::layout ()
|
||||
{
|
||||
unsigned last = comp_last_edge[1];
|
||||
unsigned prevc = edge_to_crossing[last];
|
||||
unsigned previ = (edge_to_under % last) ? 3 : 4;
|
||||
|
||||
placed.push (prevc);
|
||||
bool b = layout_1 (comp_first_edge[1], prevc, previ);
|
||||
assert (b);
|
||||
assert (placed.card () == kd.n_crossings);
|
||||
}
|
||||
|
||||
knot_diagram::knot_diagram (const dt_code &dt)
|
||||
: name(dt.name),
|
||||
n_crossings(dt.num_crossings ()),
|
||||
marked_edge(0),
|
||||
crossings(n_crossings),
|
||||
ept_crossing(num_epts ()),
|
||||
ept_index(num_epts ()),
|
||||
nminus(0), nplus(0)
|
||||
{
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
basedvector<unsigned, 1> v (4);
|
||||
v[1] = v[2] = v[3] = v[4] = 0;
|
||||
crossings[i] = v;
|
||||
}
|
||||
|
||||
dt_layout layout (dt, *this);
|
||||
layout.layout ();
|
||||
|
||||
calculate_nminus_nplus ();
|
||||
calculate_smoothing_orientation ();
|
||||
}
|
||||
|
||||
knot_diagram::knot_diagram (mirror, const knot_diagram &kd)
|
||||
: name("mirror(" + kd.name + ")"),
|
||||
n_crossings(kd.n_crossings),
|
||||
marked_edge(0),
|
||||
crossings(n_crossings),
|
||||
ept_crossing(num_epts ()),
|
||||
ept_index(num_epts ()),
|
||||
nminus(0), nplus(0)
|
||||
{
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
basedvector<unsigned, 1> v (4);
|
||||
v[1] = kd.crossings[i][1];
|
||||
v[2] = kd.crossings[i][4];
|
||||
v[3] = kd.crossings[i][3];
|
||||
v[4] = kd.crossings[i][2];
|
||||
crossings[i] = v;
|
||||
}
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
for (unsigned j = 1; j <= 4; j ++)
|
||||
{
|
||||
unsigned c = crossings[i][j];
|
||||
ept_crossing[c] = i;
|
||||
ept_index[c] = j;
|
||||
}
|
||||
}
|
||||
|
||||
calculate_smoothing_orientation ();
|
||||
calculate_nminus_nplus ();
|
||||
assert (nminus == kd.nplus);
|
||||
assert (nplus == kd.nminus);
|
||||
}
|
||||
|
||||
void
|
||||
knot_diagram::check_crossings ()
|
||||
{
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
for (unsigned j = 1; j <= 4; j ++)
|
||||
{
|
||||
unsigned p = crossings[i][j];
|
||||
|
||||
assert (ept_crossing[p] == i);
|
||||
assert (ept_index[p] == j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
knot_diagram::rotate_crossing (unsigned c)
|
||||
{
|
||||
std::swap (crossings[c][1], crossings[c][3]);
|
||||
std::swap (crossings[c][2], crossings[c][4]);
|
||||
for (unsigned j = 1; j <= 4; j ++)
|
||||
{
|
||||
unsigned p = crossings[c][j];
|
||||
ept_index[p] = j;
|
||||
}
|
||||
}
|
||||
|
||||
knot_diagram::knot_diagram (connect_sum,
|
||||
const knot_diagram &d1,
|
||||
const knot_diagram &d2)
|
||||
: name(d1.name + "\\#" + d2.name),
|
||||
n_crossings(d1.n_crossings + d2.n_crossings),
|
||||
marked_edge(0),
|
||||
crossings(n_crossings),
|
||||
ept_crossing(num_epts ()),
|
||||
ept_index(num_epts ()),
|
||||
nminus(0), nplus(0)
|
||||
{
|
||||
for (unsigned i = 1; i <= d1.n_crossings; i ++)
|
||||
crossings[i] = basedvector<unsigned, 1> (COPY, d1.crossings[i]);
|
||||
|
||||
for (unsigned i = 1; i <= d2.n_crossings; i ++)
|
||||
{
|
||||
basedvector<unsigned, 1> v (4);
|
||||
for (unsigned j = 1; j <= 4; j ++)
|
||||
v[j] = d1.num_epts () + d2.crossings[i][j];
|
||||
crossings[d1.n_crossings + i] = v;
|
||||
}
|
||||
|
||||
unsigned p1 = d1.edge_from_ept (1);
|
||||
crossings[d1.ept_crossing[p1]][d1.ept_index[p1]]
|
||||
= edge_from_ept (d1.num_edges () + 1);
|
||||
|
||||
unsigned p2 = d2.edge_from_ept (1);
|
||||
crossings[d1.n_crossings + d2.ept_crossing[p2]][d2.ept_index[p2]]
|
||||
= d1.edge_from_ept (1);
|
||||
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
for (unsigned j = 1; j <= 4; j ++)
|
||||
{
|
||||
unsigned p = crossings[i][j];
|
||||
ept_crossing[p] = i;
|
||||
ept_index[p] = j;
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
check_crossings ();
|
||||
#endif
|
||||
|
||||
orient ();
|
||||
calculate_smoothing_orientation ();
|
||||
calculate_nminus_nplus ();
|
||||
|
||||
}
|
||||
|
||||
knot_diagram::knot_diagram (const std::string &name_, unsigned n_crossings_, unsigned crossings_ar[][4])
|
||||
: name(name_),
|
||||
n_crossings(n_crossings_),
|
||||
marked_edge(0),
|
||||
crossings(n_crossings),
|
||||
ept_crossing(num_epts ()),
|
||||
ept_index(num_epts ()),
|
||||
nminus(0), nplus(0)
|
||||
{
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
basedvector<unsigned, 1> v (4);
|
||||
v[1] = crossings_ar[i - 1][0];
|
||||
v[2] = crossings_ar[i - 1][1];
|
||||
v[3] = crossings_ar[i - 1][2];
|
||||
v[4] = crossings_ar[i - 1][3];
|
||||
crossings[i] = v;
|
||||
for (unsigned j = 1; j <= 4; j ++)
|
||||
{
|
||||
unsigned p = crossings[i][j];
|
||||
ept_crossing[p] = i;
|
||||
ept_index[p] = j;
|
||||
}
|
||||
}
|
||||
|
||||
calculate_smoothing_orientation ();
|
||||
calculate_nminus_nplus ();
|
||||
}
|
||||
|
||||
knot_diagram::knot_diagram (const std::string &name_, const basedvector<basedvector<unsigned, 1>, 1> &crossings_)
|
||||
: name(name_),
|
||||
n_crossings(crossings_.size ()),
|
||||
marked_edge(0),
|
||||
crossings(crossings_),
|
||||
ept_crossing(num_epts ()),
|
||||
ept_index(num_epts ()),
|
||||
nminus(0), nplus(0)
|
||||
{
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
for (unsigned j = 1; j <= 4; j ++)
|
||||
{
|
||||
unsigned p = crossings[i][j];
|
||||
ept_crossing[p] = i;
|
||||
ept_index[p] = j;
|
||||
}
|
||||
}
|
||||
|
||||
calculate_smoothing_orientation ();
|
||||
calculate_nminus_nplus ();
|
||||
}
|
||||
|
||||
void
|
||||
knot_diagram::orient ()
|
||||
{
|
||||
bitset done (num_edges ());
|
||||
for (unsigned i = 1; i <= num_edges (); i ++)
|
||||
{
|
||||
if (done % i)
|
||||
continue;
|
||||
|
||||
unsigned p = edge_to_ept (i);
|
||||
for (;;)
|
||||
{
|
||||
unsigned e = ept_edge (p);
|
||||
done.push (e);
|
||||
if (is_from_ept (p))
|
||||
{
|
||||
unsigned e_from = edge_from_ept (e),
|
||||
e_to = edge_to_ept (e),
|
||||
c_from = ept_crossing[e_from],
|
||||
c_to = ept_crossing[e_to],
|
||||
j_from = ept_index[e_from],
|
||||
j_to = ept_index[e_to];
|
||||
ept_crossing[e_to] = c_from;
|
||||
ept_index[e_to] = j_from;
|
||||
ept_crossing[e_from] = c_to;
|
||||
ept_index[e_from] = j_to;
|
||||
crossings[c_from][j_from] = e_to;
|
||||
crossings[c_to][j_to] = e_from;
|
||||
|
||||
p = e_to;
|
||||
}
|
||||
|
||||
p = crossings[ept_crossing[p]][add_base1_mod4 (ept_index[p], 2)];
|
||||
if (ept_edge (p) == i)
|
||||
break;
|
||||
p = edge_other_ept (p);
|
||||
}
|
||||
}
|
||||
assert (done.card () == num_edges ());
|
||||
|
||||
#ifndef NDEBUG
|
||||
check_crossings ();
|
||||
#endif
|
||||
}
|
||||
|
||||
void
|
||||
knot_diagram::calculate_nminus_nplus ()
|
||||
{
|
||||
assert (nplus == 0 && nminus == 0);
|
||||
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
if (is_to_ept (crossings[i][1]) == is_to_ept (crossings[i][4]))
|
||||
nplus ++;
|
||||
else
|
||||
nminus ++;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
knot_diagram::calculate_smoothing_orientation ()
|
||||
{
|
||||
edge_smoothing_oriented = set<unsigned> ();
|
||||
|
||||
set<unsigned> done;
|
||||
vector<unsigned> q;
|
||||
|
||||
for (unsigned i = 1; i <= num_edges (); i ++)
|
||||
{
|
||||
if (done % i)
|
||||
continue;
|
||||
|
||||
edge_smoothing_oriented.push (i);
|
||||
done.push (i);
|
||||
q.append (i);
|
||||
|
||||
while (q.size () != 0)
|
||||
{
|
||||
unsigned e = q.pop ();
|
||||
assert (done % e);
|
||||
|
||||
unsigned p = edge_smoothing_to_ept (e);
|
||||
|
||||
unsigned r = resolve_next_ept (p, 0);
|
||||
unsigned f = ept_edge (r);
|
||||
if (done % f)
|
||||
assert (is_smoothing_from_ept (r));
|
||||
else
|
||||
{
|
||||
if (is_from_ept (r))
|
||||
edge_smoothing_oriented.push (f);
|
||||
done.push (f);
|
||||
q.append (f);
|
||||
}
|
||||
|
||||
unsigned r2 = resolve_next_ept (p, 1);
|
||||
unsigned f2 = ept_edge (r2);
|
||||
if (done % f2)
|
||||
assert (is_smoothing_from_ept (r2));
|
||||
else
|
||||
{
|
||||
if (is_from_ept (r2))
|
||||
edge_smoothing_oriented.push (f2);
|
||||
done.push (f2);
|
||||
q.append (f2);
|
||||
}
|
||||
}
|
||||
}
|
||||
assert (done.card () == num_edges ());
|
||||
}
|
||||
|
||||
unsigned
|
||||
knot_diagram::resolve_next_ept (unsigned p, bool resolution) const
|
||||
{
|
||||
static unsigned lookup[2][4] = { { 2, 1, 4, 3 }, { 4, 3, 2, 1 } };
|
||||
|
||||
unsigned c = ept_crossing[p],
|
||||
i = ept_index[p];
|
||||
assert (i >= 1 && i <= 4);
|
||||
i = lookup[(int)resolution][i - 1];
|
||||
return crossings[c][i];
|
||||
}
|
||||
|
||||
static unsigned crossing_index_corner (unsigned c, unsigned i)
|
||||
{
|
||||
return (c - 1) * 4 + i;
|
||||
}
|
||||
|
||||
static unsigned corner_crossing (unsigned x)
|
||||
{
|
||||
return (x - 1) / 4 + 1;
|
||||
}
|
||||
|
||||
static unsigned corner_index (unsigned x)
|
||||
{
|
||||
return ((x - 1) % 4) + 1;
|
||||
}
|
||||
|
||||
directed_multigraph
|
||||
knot_diagram::black_graph (basedvector<unsigned, 1> &bg_edge_height) const
|
||||
{
|
||||
unsigned n_corners = n_crossings * 4;
|
||||
|
||||
#if 1
|
||||
for (unsigned c = 1; c <= n_crossings; c ++)
|
||||
for (unsigned j = 1; j <= 4; j ++)
|
||||
{
|
||||
unsigned x = crossing_index_corner (c, j);
|
||||
assert (x >= 1 && x <= n_corners);
|
||||
|
||||
assert (corner_crossing (x) == c);
|
||||
assert (corner_index (x) == j);
|
||||
}
|
||||
|
||||
for (unsigned x = 1; x <= n_corners; x ++)
|
||||
{
|
||||
unsigned c = corner_crossing (x);
|
||||
assert (c >= 1 && c <= n_crossings);
|
||||
|
||||
unsigned j = corner_index (x);
|
||||
assert (j >= 1 && j <= 4);
|
||||
|
||||
assert (crossing_index_corner (c, j) == x);
|
||||
}
|
||||
#endif
|
||||
|
||||
unionfind<1> u (n_corners);
|
||||
|
||||
unsigned n_edges = num_edges ();
|
||||
for (unsigned i = 1; i <= n_edges; i ++)
|
||||
{
|
||||
unsigned i_from = edge_from_ept (i),
|
||||
i_to = edge_to_ept (i);
|
||||
|
||||
u.join (crossing_index_corner (ept_crossing (i_from),
|
||||
ept_index (i_from)),
|
||||
crossing_index_corner (ept_crossing (i_to),
|
||||
add_base1_mod4 (ept_index (i_to), 3)));
|
||||
u.join (crossing_index_corner (ept_crossing (i_from),
|
||||
add_base1_mod4 (ept_index (i_from), 3)),
|
||||
crossing_index_corner (ept_crossing (i_to),
|
||||
ept_index (i_to)));
|
||||
}
|
||||
|
||||
ullmanset<1> present (n_corners);
|
||||
for (unsigned i = 1; i <= n_corners; i ++)
|
||||
present += u.find (i);
|
||||
|
||||
basedvector<unsigned, 1> edge_from, edge_to;
|
||||
|
||||
basedvector<unsigned, 1> edge_height;
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
edge_from.append (present.position (u.find (crossing_index_corner (i, 1))) + 1);
|
||||
edge_to.append (present.position (u.find (crossing_index_corner (i, 3))) + 1);
|
||||
edge_height.append (1);
|
||||
|
||||
edge_from.append (present.position (u.find (crossing_index_corner (i, 2))) + 1);
|
||||
edge_to.append (present.position (u.find (crossing_index_corner (i, 4))) + 1);
|
||||
edge_height.append (0);
|
||||
}
|
||||
|
||||
assert (u.num_sets () == present.card ());
|
||||
directed_multigraph bwg (u.num_sets (), edge_from, edge_to);
|
||||
// display ("bwg:\n", bwg);
|
||||
|
||||
assert (bwg.num_components () == 2);
|
||||
|
||||
basedvector<unsigned, 1> edge_inj,
|
||||
vertex_inj;
|
||||
|
||||
directed_multigraph bg = bwg.component (1, edge_inj, vertex_inj);
|
||||
|
||||
bg_edge_height = basedvector<unsigned, 1> (bg.num_edges ());
|
||||
for (unsigned i = 1; i <= bg.num_edges (); i ++)
|
||||
bg_edge_height[i] = edge_height[edge_inj[i]];
|
||||
|
||||
return bg;
|
||||
}
|
||||
|
||||
basedvector<basedvector<int, 1>, 1>
|
||||
knot_diagram::planar_diagram_crossings () const
|
||||
{
|
||||
unsigned n_edges = num_edges ();
|
||||
|
||||
ullmanset<1> edges (n_edges);
|
||||
for (unsigned e = 1; e <= n_edges; e ++)
|
||||
{
|
||||
if (edges % e)
|
||||
continue;
|
||||
|
||||
for (unsigned i = e;;)
|
||||
{
|
||||
edges.push (i);
|
||||
|
||||
unsigned c = ept_crossing[edge_to_ept (i)],
|
||||
j = ept_index[edge_to_ept (i)];
|
||||
unsigned j2 = add_base1_mod4 (j, 2);
|
||||
|
||||
assert (is_from_ept (crossings[c][j2]));
|
||||
|
||||
i = ept_edge (crossings[c][j2]);
|
||||
if (i == e)
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert (edges.card () == n_edges);
|
||||
|
||||
basedvector<basedvector<int, 1>, 1> r (n_crossings);
|
||||
unsigned k = 0;
|
||||
|
||||
bool first = 1;
|
||||
for (unsigned i = 1; i <= n_edges; i ++)
|
||||
{
|
||||
unsigned e = edges.nth (i - 1);
|
||||
|
||||
unsigned c = ept_crossing[edge_to_ept (e)],
|
||||
j = ept_index[edge_to_ept (e)];
|
||||
if (j == 1)
|
||||
{
|
||||
basedvector<int, 1> v (4);
|
||||
v[1] = edges.position (ept_edge (crossings[c][1])) + 1;
|
||||
v[2] = edges.position (ept_edge (crossings[c][2])) + 1;
|
||||
v[3] = edges.position (ept_edge (crossings[c][3])) + 1;
|
||||
v[4] = edges.position (ept_edge (crossings[c][4])) + 1;
|
||||
r[++ k] = v;
|
||||
}
|
||||
else if (j == 3)
|
||||
{
|
||||
basedvector<int, 1> v (4);
|
||||
v[1] = edges.position (ept_edge (crossings[c][3])) + 1;
|
||||
v[2] = edges.position (ept_edge (crossings[c][4])) + 1;
|
||||
v[3] = edges.position (ept_edge (crossings[c][1])) + 1;
|
||||
v[4] = edges.position (ept_edge (crossings[c][2])) + 1;
|
||||
r[++ k] = v;
|
||||
}
|
||||
unsigned j2 = add_base1_mod4 (j, 2);
|
||||
assert (is_from_ept (crossings[c][j2]));
|
||||
|
||||
unsigned e2 = ept_edge (crossings[c][j2]);
|
||||
unsigned i2 = edges.position (e2) + 1;
|
||||
#if 0
|
||||
assert ((i == n_edges && i2 == 1)
|
||||
|| i2 == i + 1);
|
||||
#endif
|
||||
}
|
||||
assert (k == n_crossings);
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
hash_t
|
||||
knot_diagram::hash_self () const
|
||||
{
|
||||
// ??? we can do better
|
||||
unsigned n_loops = 0;
|
||||
for (unsigned i = 1; i <= num_edges (); i ++)
|
||||
{
|
||||
if (ept_edge (edge_from_ept (i)) == ept_edge (edge_to_ept (i)))
|
||||
n_loops ++;
|
||||
}
|
||||
|
||||
return hash_combine (hash (n_crossings),
|
||||
hash (n_loops));
|
||||
}
|
||||
|
||||
void
|
||||
knot_diagram::show_ept (unsigned p) const
|
||||
{
|
||||
unsigned e = ept_edge (p);
|
||||
if (is_to_ept (p))
|
||||
printf (">");
|
||||
printf ("%d", e);
|
||||
if (is_from_ept (p))
|
||||
printf (">");
|
||||
}
|
||||
|
||||
void
|
||||
knot_diagram::show_self () const
|
||||
{
|
||||
printf ("knot_diagram %s", name.c_str ());
|
||||
}
|
||||
|
||||
void
|
||||
knot_diagram::display_self () const
|
||||
{
|
||||
comment (); printf ("knot_diagram %s\n", name.c_str ());
|
||||
comment (); printf ("n_crossings = %d, n+ = %d, n- = %d\n", n_crossings, nplus, nminus);
|
||||
if (marked_edge)
|
||||
{
|
||||
comment ();
|
||||
printf ("marked_edge = %d\n", marked_edge);
|
||||
}
|
||||
|
||||
comment ();
|
||||
for (unsigned i = 1; i <= crossings.size (); i ++)
|
||||
{
|
||||
printf ("%d:(", i);
|
||||
show_ept (crossings[i][1]);
|
||||
printf (" ");
|
||||
show_ept (crossings[i][2]);
|
||||
printf (" ");
|
||||
show_ept (crossings[i][3]);
|
||||
printf (" ");
|
||||
show_ept (crossings[i][4]);
|
||||
printf (")");
|
||||
}
|
||||
printf ("\n");
|
||||
}
|
161
knot_diagram.h
Normal file
161
knot_diagram.h
Normal file
@ -0,0 +1,161 @@
|
||||
|
||||
static inline unsigned
|
||||
add_base1_mod4 (unsigned x, unsigned y)
|
||||
{
|
||||
assert (between (1, x, 4));
|
||||
assert (between (0, y, 4));
|
||||
|
||||
return ((x - 1 + y) % 4) + 1;
|
||||
}
|
||||
|
||||
enum mirror { MIRROR };
|
||||
enum connect_sum { CONNECT_SUM };
|
||||
|
||||
class knot_diagram
|
||||
{
|
||||
public:
|
||||
std::string name;
|
||||
|
||||
unsigned n_crossings;
|
||||
unsigned marked_edge;
|
||||
|
||||
basedvector<basedvector<unsigned, 1>, 1> crossings;
|
||||
basedvector<unsigned, 1> ept_crossing;
|
||||
basedvector<unsigned, 1> ept_index;
|
||||
|
||||
/* true if the smoothing orientation for an edge matches the link
|
||||
orientation */
|
||||
set<unsigned> edge_smoothing_oriented;
|
||||
|
||||
unsigned nminus, nplus;
|
||||
|
||||
unsigned num_edges () const { return n_crossings * 2; }
|
||||
unsigned num_epts () const { return n_crossings * 4; }
|
||||
unsigned ept_edge (unsigned p) const
|
||||
{
|
||||
assert (between (1, p, num_epts ()));
|
||||
return (p + 1) / 2;
|
||||
}
|
||||
unsigned edge_other_ept (unsigned p) const
|
||||
{
|
||||
assert (between (1, p, num_epts ()));
|
||||
if (is_odd (p))
|
||||
return p + 1;
|
||||
else
|
||||
return p - 1;
|
||||
}
|
||||
|
||||
unsigned edge_from_ept (unsigned e) const
|
||||
{
|
||||
assert (between (1, e, num_edges ()));
|
||||
return e * 2 - 1;
|
||||
}
|
||||
unsigned edge_to_ept (unsigned e) const
|
||||
{
|
||||
assert (between (1, e, num_edges ()));
|
||||
return e * 2;
|
||||
}
|
||||
unsigned is_from_ept (unsigned p) const
|
||||
{
|
||||
assert (between (1, p, num_epts ()));
|
||||
return is_odd (p);
|
||||
}
|
||||
unsigned is_to_ept (unsigned p) const { return !is_from_ept (p); }
|
||||
|
||||
unsigned is_under_ept (unsigned p) const
|
||||
{
|
||||
assert (between (1, p, num_epts ()));
|
||||
return ept_index[p] == 1 || ept_index[p] == 3;
|
||||
}
|
||||
unsigned is_over_ept (unsigned p) const { return !is_under_ept (p); }
|
||||
|
||||
bool is_crossing_from_ept (unsigned p) const
|
||||
{
|
||||
assert (is_under_ept (p));
|
||||
return ept_index[p] == 1;
|
||||
}
|
||||
bool is_crossing_to_ept (unsigned p) const { return !is_crossing_from_ept (p); }
|
||||
|
||||
/* wrt smoothing orientation */
|
||||
unsigned edge_smoothing_from_ept (unsigned e) const
|
||||
{
|
||||
return edge_smoothing_oriented % e
|
||||
? edge_from_ept (e)
|
||||
: edge_to_ept (e);
|
||||
}
|
||||
unsigned edge_smoothing_to_ept (unsigned e) const
|
||||
{
|
||||
return edge_smoothing_oriented % e
|
||||
? edge_to_ept (e)
|
||||
: edge_from_ept (e);
|
||||
}
|
||||
bool is_smoothing_from_ept (unsigned p) const
|
||||
{
|
||||
unsigned e = ept_edge (p);
|
||||
return p == edge_smoothing_from_ept (e);
|
||||
}
|
||||
bool is_smoothing_to_ept (unsigned p) const { return !is_smoothing_from_ept (p); }
|
||||
|
||||
void orient ();
|
||||
void calculate_nminus_nplus ();
|
||||
void calculate_smoothing_orientation ();
|
||||
|
||||
void check_crossings ();
|
||||
void rotate_crossing (unsigned c);
|
||||
|
||||
public:
|
||||
knot_diagram ()
|
||||
: n_crossings(0),
|
||||
marked_edge(0),
|
||||
nminus(0),
|
||||
nplus(0)
|
||||
{ }
|
||||
explicit knot_diagram (const planar_diagram &pd);
|
||||
explicit knot_diagram (const dt_code &dt);
|
||||
knot_diagram (mirror, const knot_diagram &kd);
|
||||
knot_diagram (connect_sum,
|
||||
const knot_diagram &d1,
|
||||
const knot_diagram &d2);
|
||||
|
||||
knot_diagram (const std::string &name_, unsigned n_crossings_, unsigned crossings_ar[][4]);
|
||||
knot_diagram (const std::string &name_, const basedvector<basedvector<unsigned, 1>, 1> &crossings_);
|
||||
knot_diagram (const knot_diagram &kd)
|
||||
: name(kd.name),
|
||||
n_crossings(kd.n_crossings),
|
||||
marked_edge(kd.marked_edge),
|
||||
crossings(kd.crossings),
|
||||
ept_crossing(kd.ept_crossing),
|
||||
ept_index(kd.ept_index),
|
||||
edge_smoothing_oriented(kd.edge_smoothing_oriented),
|
||||
nminus(kd.nminus), nplus(kd.nplus)
|
||||
{ }
|
||||
~knot_diagram () { }
|
||||
|
||||
knot_diagram &operator = (const knot_diagram &kd)
|
||||
{
|
||||
name = kd.name;
|
||||
n_crossings = kd.n_crossings;
|
||||
marked_edge = kd.marked_edge;
|
||||
crossings = kd.crossings;
|
||||
ept_crossing = kd.ept_crossing;
|
||||
ept_index = kd.ept_index;
|
||||
edge_smoothing_oriented = kd.edge_smoothing_oriented;
|
||||
nminus = kd.nminus;
|
||||
nplus = kd.nplus;
|
||||
return *this;
|
||||
}
|
||||
|
||||
directed_multigraph black_graph (basedvector<unsigned, 1> &bg_edge_height) const;
|
||||
|
||||
unsigned resolve_next_ept (unsigned p, bool resolution) const;
|
||||
|
||||
int writhe () const { return (int)nplus - (int)nminus; }
|
||||
|
||||
basedvector<basedvector<int, 1>, 1> planar_diagram_crossings () const;
|
||||
|
||||
hash_t hash_self () const;
|
||||
|
||||
void show_ept (unsigned p) const;
|
||||
void show_self () const;
|
||||
void display_self () const;
|
||||
};
|
1148
knot_parser/knot_parser.cc
Normal file
1148
knot_parser/knot_parser.cc
Normal file
File diff suppressed because it is too large
Load Diff
337
knot_parser/knot_parser.hh
Normal file
337
knot_parser/knot_parser.hh
Normal file
@ -0,0 +1,337 @@
|
||||
/* A Bison parser, made by GNU Bison 2.4.3. */
|
||||
|
||||
/* Skeleton interface for Bison LALR(1) parsers in C++
|
||||
|
||||
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free
|
||||
Software Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* As a special exception, you may create a larger work that contains
|
||||
part or all of the Bison parser skeleton and distribute that work
|
||||
under terms of your choice, so long as that work isn't itself a
|
||||
parser generator using the skeleton or a modified version thereof
|
||||
as a parser skeleton. Alternatively, if you modify or redistribute
|
||||
the parser skeleton itself, you may (at your option) remove this
|
||||
special exception, which will cause the skeleton and the resulting
|
||||
Bison output files to be licensed under the GNU General Public
|
||||
License without this special exception.
|
||||
|
||||
This special exception was added by the Free Software Foundation in
|
||||
version 2.2 of Bison. */
|
||||
|
||||
/* C++ LALR(1) parser skeleton written by Akim Demaille. */
|
||||
|
||||
#ifndef PARSER_HEADER_H
|
||||
# define PARSER_HEADER_H
|
||||
|
||||
/* "%code requires" blocks. */
|
||||
|
||||
/* Line 35 of lalr1.cc */
|
||||
#line 11 "knot_parser/knot_parser.yy"
|
||||
|
||||
#include <knotkit.h>
|
||||
|
||||
|
||||
|
||||
/* Line 35 of lalr1.cc */
|
||||
#line 50 "knot_parser/knot_parser.hh"
|
||||
|
||||
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include "stack.hh"
|
||||
|
||||
|
||||
namespace yy {
|
||||
|
||||
/* Line 35 of lalr1.cc */
|
||||
#line 61 "knot_parser/knot_parser.hh"
|
||||
class position;
|
||||
class location;
|
||||
|
||||
} // yy
|
||||
|
||||
/* Line 35 of lalr1.cc */
|
||||
#line 68 "knot_parser/knot_parser.hh"
|
||||
|
||||
#include "location.hh"
|
||||
|
||||
/* Enabling traces. */
|
||||
#ifndef YYDEBUG
|
||||
# define YYDEBUG 0
|
||||
#endif
|
||||
|
||||
/* Enabling verbose error messages. */
|
||||
#ifdef YYERROR_VERBOSE
|
||||
# undef YYERROR_VERBOSE
|
||||
# define YYERROR_VERBOSE 1
|
||||
#else
|
||||
# define YYERROR_VERBOSE 0
|
||||
#endif
|
||||
|
||||
/* Enabling the token table. */
|
||||
#ifndef YYTOKEN_TABLE
|
||||
# define YYTOKEN_TABLE 0
|
||||
#endif
|
||||
|
||||
/* YYLLOC_DEFAULT -- Set CURRENT to span from RHS[1] to RHS[N].
|
||||
If N is 0, then set CURRENT to the empty location which ends
|
||||
the previous symbol: RHS[0] (always defined). */
|
||||
|
||||
#ifndef YYLLOC_DEFAULT
|
||||
# define YYLLOC_DEFAULT(Current, Rhs, N) \
|
||||
do { \
|
||||
if (N) \
|
||||
{ \
|
||||
(Current).begin = (Rhs)[1].begin; \
|
||||
(Current).end = (Rhs)[N].end; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
(Current).begin = (Current).end = (Rhs)[0].end; \
|
||||
} \
|
||||
} while (false)
|
||||
#endif
|
||||
|
||||
|
||||
namespace yy {
|
||||
|
||||
/* Line 35 of lalr1.cc */
|
||||
#line 113 "knot_parser/knot_parser.hh"
|
||||
|
||||
/// A Bison parser.
|
||||
class knot_parser
|
||||
{
|
||||
public:
|
||||
/// Symbol semantic values.
|
||||
#ifndef YYSTYPE
|
||||
union semantic_type
|
||||
{
|
||||
|
||||
/* Line 35 of lalr1.cc */
|
||||
#line 21 "knot_parser/knot_parser.yy"
|
||||
|
||||
int integer;
|
||||
bool alternating;
|
||||
basedvector<int, 1> *int_vec;
|
||||
basedvector<basedvector<int, 1>, 1> *int_vec2;
|
||||
const char *string;
|
||||
|
||||
|
||||
|
||||
/* Line 35 of lalr1.cc */
|
||||
#line 136 "knot_parser/knot_parser.hh"
|
||||
};
|
||||
#else
|
||||
typedef YYSTYPE semantic_type;
|
||||
#endif
|
||||
/// Symbol locations.
|
||||
typedef location location_type;
|
||||
/// Tokens.
|
||||
struct token
|
||||
{
|
||||
/* Tokens. */
|
||||
enum yytokentype {
|
||||
END = 0,
|
||||
INT = 258,
|
||||
PD = 259,
|
||||
DT = 260,
|
||||
BR = 261,
|
||||
LINK = 262,
|
||||
X = 263,
|
||||
T = 264,
|
||||
U = 265,
|
||||
UNKNOT = 266,
|
||||
ALT = 267,
|
||||
NONALT = 268,
|
||||
STRING = 269
|
||||
};
|
||||
|
||||
};
|
||||
/// Token type.
|
||||
typedef token::yytokentype token_type;
|
||||
|
||||
/// Build a parser object.
|
||||
knot_parser (knot_diagram &parsed_knot_yyarg);
|
||||
virtual ~knot_parser ();
|
||||
|
||||
/// Parse.
|
||||
/// \returns 0 iff parsing succeeded.
|
||||
virtual int parse ();
|
||||
|
||||
#if YYDEBUG
|
||||
/// The current debugging stream.
|
||||
std::ostream& debug_stream () const;
|
||||
/// Set the current debugging stream.
|
||||
void set_debug_stream (std::ostream &);
|
||||
|
||||
/// Type for debugging levels.
|
||||
typedef int debug_level_type;
|
||||
/// The current debugging level.
|
||||
debug_level_type debug_level () const;
|
||||
/// Set the current debugging level.
|
||||
void set_debug_level (debug_level_type l);
|
||||
#endif
|
||||
|
||||
private:
|
||||
/// Report a syntax error.
|
||||
/// \param loc where the syntax error is found.
|
||||
/// \param msg a description of the syntax error.
|
||||
virtual void error (const location_type& loc, const std::string& msg);
|
||||
|
||||
/// Generate an error message.
|
||||
/// \param state the state where the error occurred.
|
||||
/// \param tok the lookahead token.
|
||||
virtual std::string yysyntax_error_ (int yystate);
|
||||
|
||||
#if YYDEBUG
|
||||
/// \brief Report a symbol value on the debug stream.
|
||||
/// \param yytype The token type.
|
||||
/// \param yyvaluep Its semantic value.
|
||||
/// \param yylocationp Its location.
|
||||
virtual void yy_symbol_value_print_ (int yytype,
|
||||
const semantic_type* yyvaluep,
|
||||
const location_type* yylocationp);
|
||||
/// \brief Report a symbol on the debug stream.
|
||||
/// \param yytype The token type.
|
||||
/// \param yyvaluep Its semantic value.
|
||||
/// \param yylocationp Its location.
|
||||
virtual void yy_symbol_print_ (int yytype,
|
||||
const semantic_type* yyvaluep,
|
||||
const location_type* yylocationp);
|
||||
#endif
|
||||
|
||||
|
||||
/// State numbers.
|
||||
typedef int state_type;
|
||||
/// State stack type.
|
||||
typedef stack<state_type> state_stack_type;
|
||||
/// Semantic value stack type.
|
||||
typedef stack<semantic_type> semantic_stack_type;
|
||||
/// location stack type.
|
||||
typedef stack<location_type> location_stack_type;
|
||||
|
||||
/// The state stack.
|
||||
state_stack_type yystate_stack_;
|
||||
/// The semantic value stack.
|
||||
semantic_stack_type yysemantic_stack_;
|
||||
/// The location stack.
|
||||
location_stack_type yylocation_stack_;
|
||||
|
||||
/// Internal symbol numbers.
|
||||
typedef unsigned char token_number_type;
|
||||
/* Tables. */
|
||||
/// For a state, the index in \a yytable_ of its portion.
|
||||
static const signed char yypact_[];
|
||||
static const signed char yypact_ninf_;
|
||||
|
||||
/// For a state, default rule to reduce.
|
||||
/// Unless\a yytable_ specifies something else to do.
|
||||
/// Zero means the default is an error.
|
||||
static const unsigned char yydefact_[];
|
||||
|
||||
static const signed char yypgoto_[];
|
||||
static const signed char yydefgoto_[];
|
||||
|
||||
/// What to do in a state.
|
||||
/// \a yytable_[yypact_[s]]: what to do in state \a s.
|
||||
/// - if positive, shift that token.
|
||||
/// - if negative, reduce the rule which number is the opposite.
|
||||
/// - if zero, do what YYDEFACT says.
|
||||
static const unsigned char yytable_[];
|
||||
static const signed char yytable_ninf_;
|
||||
|
||||
static const signed char yycheck_[];
|
||||
|
||||
/// For a state, its accessing symbol.
|
||||
static const unsigned char yystos_[];
|
||||
|
||||
/// For a rule, its LHS.
|
||||
static const unsigned char yyr1_[];
|
||||
/// For a rule, its RHS length.
|
||||
static const unsigned char yyr2_[];
|
||||
|
||||
#if YYDEBUG || YYERROR_VERBOSE || YYTOKEN_TABLE
|
||||
/// For a symbol, its name in clear.
|
||||
static const char* const yytname_[];
|
||||
#endif
|
||||
|
||||
#if YYERROR_VERBOSE
|
||||
/// Convert the symbol name \a n to a form suitable for a diagnostic.
|
||||
virtual std::string yytnamerr_ (const char *n);
|
||||
#endif
|
||||
|
||||
#if YYDEBUG
|
||||
/// A type to store symbol numbers and -1.
|
||||
typedef signed char rhs_number_type;
|
||||
/// A `-1'-separated list of the rules' RHS.
|
||||
static const rhs_number_type yyrhs_[];
|
||||
/// For each rule, the index of the first RHS symbol in \a yyrhs_.
|
||||
static const unsigned char yyprhs_[];
|
||||
/// For each rule, its source line number.
|
||||
static const unsigned char yyrline_[];
|
||||
/// For each scanner token number, its symbol number.
|
||||
static const unsigned short int yytoken_number_[];
|
||||
/// Report on the debug stream that the rule \a r is going to be reduced.
|
||||
virtual void yy_reduce_print_ (int r);
|
||||
/// Print the state stack on the debug stream.
|
||||
virtual void yystack_print_ ();
|
||||
|
||||
/* Debugging. */
|
||||
int yydebug_;
|
||||
std::ostream* yycdebug_;
|
||||
#endif
|
||||
|
||||
/// Convert a scanner token number \a t to a symbol number.
|
||||
token_number_type yytranslate_ (int t);
|
||||
|
||||
/// \brief Reclaim the memory associated to a symbol.
|
||||
/// \param yymsg Why this token is reclaimed.
|
||||
/// \param yytype The symbol type.
|
||||
/// \param yyvaluep Its semantic value.
|
||||
/// \param yylocationp Its location.
|
||||
inline void yydestruct_ (const char* yymsg,
|
||||
int yytype,
|
||||
semantic_type* yyvaluep,
|
||||
location_type* yylocationp);
|
||||
|
||||
/// Pop \a n symbols the three stacks.
|
||||
inline void yypop_ (unsigned int n = 1);
|
||||
|
||||
/* Constants. */
|
||||
static const int yyeof_;
|
||||
/* LAST_ -- Last index in TABLE_. */
|
||||
static const int yylast_;
|
||||
static const int yynnts_;
|
||||
static const int yyempty_;
|
||||
static const int yyfinal_;
|
||||
static const int yyterror_;
|
||||
static const int yyerrcode_;
|
||||
static const int yyntokens_;
|
||||
static const unsigned int yyuser_token_number_max_;
|
||||
static const token_number_type yyundef_token_;
|
||||
|
||||
/* User arguments. */
|
||||
knot_diagram &parsed_knot;
|
||||
};
|
||||
|
||||
} // yy
|
||||
|
||||
/* Line 35 of lalr1.cc */
|
||||
#line 334 "knot_parser/knot_parser.hh"
|
||||
|
||||
|
||||
|
||||
#endif /* ! defined PARSER_HEADER_H */
|
255
knot_parser/knot_parser.yy
Normal file
255
knot_parser/knot_parser.yy
Normal file
@ -0,0 +1,255 @@
|
||||
|
||||
%skeleton "lalr1.cc"
|
||||
%require "2.4.3"
|
||||
%defines
|
||||
%define parser_class_name "knot_parser"
|
||||
|
||||
%parse-param { knot_diagram &parsed_knot }
|
||||
|
||||
// %no-lines
|
||||
|
||||
%code requires {
|
||||
#include <knotkit.h>
|
||||
}
|
||||
|
||||
%code{
|
||||
#define YY_DECL \
|
||||
yy::knot_parser::token_type knot_yylex (yy::knot_parser::semantic_type *yylval)
|
||||
YY_DECL;
|
||||
}
|
||||
|
||||
%union {
|
||||
int integer;
|
||||
bool alternating;
|
||||
basedvector<int, 1> *int_vec;
|
||||
basedvector<basedvector<int, 1>, 1> *int_vec2;
|
||||
const char *string;
|
||||
}
|
||||
|
||||
%code {
|
||||
#define yylex knot_yylex
|
||||
}
|
||||
|
||||
%token <integer> INT
|
||||
|
||||
%token END 0 "end of file"
|
||||
|
||||
%token PD DT BR LINK X T
|
||||
%token U UNKNOT
|
||||
%token <alternating> ALT NONALT
|
||||
%token <string> STRING
|
||||
|
||||
%type <alternating> alt_spec
|
||||
|
||||
%type <int_vec> int_vec int_vec_1
|
||||
%type <int_vec2> int_vec2
|
||||
|
||||
%type <int_vec> crossing
|
||||
%type <int_vec2> crossing_vec
|
||||
|
||||
%%
|
||||
|
||||
%start knot;
|
||||
|
||||
knot:
|
||||
rolfsen_knot
|
||||
| htw_knot
|
||||
| mt_link
|
||||
| planar_diagram
|
||||
| dt
|
||||
| torus_link
|
||||
| unknot
|
||||
| braid
|
||||
;
|
||||
|
||||
rolfsen_knot:
|
||||
INT '_' INT
|
||||
{
|
||||
unsigned n = $1,
|
||||
k = $3;
|
||||
|
||||
if (n >= 1 && n <= 10
|
||||
&& k >= 1 && k <= rolfsen_crossing_knots (n))
|
||||
parsed_knot = knot_diagram (rolfsen_knot (n, k));
|
||||
else
|
||||
{
|
||||
fprintf (stderr, "knot_parser: no such Rolfsen knot `%d_%d'\n",
|
||||
n, k);
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
;
|
||||
|
||||
htw_knot:
|
||||
INT alt_spec INT
|
||||
{
|
||||
unsigned n = $1,
|
||||
k = $3;
|
||||
bool alt = $2;
|
||||
|
||||
if (n >= 1 && n <= 16
|
||||
&& k >= 1 && k <= htw_knots (n, alt))
|
||||
parsed_knot = knot_diagram (htw_knot (n, alt, k));
|
||||
else
|
||||
{
|
||||
fprintf (stderr, "knot_parser: no such HTW knot `%d%c%d'\n",
|
||||
n, alt ? 'a' : 'n', k);
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
;
|
||||
|
||||
mt_link:
|
||||
LINK INT alt_spec INT
|
||||
{
|
||||
unsigned n = $2,
|
||||
k = $4;
|
||||
bool alt = $3;
|
||||
|
||||
if (n >= 1 && n <= 14
|
||||
&& k >= 1 && k <= mt_links (n, alt))
|
||||
parsed_knot = knot_diagram (mt_link (n, alt, k));
|
||||
else
|
||||
{
|
||||
fprintf (stderr, "knot_parser: no such MT link `%d%c%d'\n",
|
||||
n, alt ? 'a' : 'n', k);
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
;
|
||||
|
||||
planar_diagram:
|
||||
PD '[' int_vec2 ']'
|
||||
{ parsed_knot = knot_diagram (planar_diagram ("<parsed>", *$3)); }
|
||||
| PD '[' crossing_vec ']'
|
||||
{ parsed_knot = knot_diagram (planar_diagram ("<parsed>", *$3)); }
|
||||
;
|
||||
|
||||
dt:
|
||||
DT '[' int_vec_1 ']'
|
||||
{
|
||||
basedvector<basedvector<int, 1>, 1> even_labels (1);
|
||||
even_labels[1] = *$3;
|
||||
parsed_knot = knot_diagram (dt_code ("<parsed>", even_labels));
|
||||
}
|
||||
| DT '[' int_vec2 ']'
|
||||
{ parsed_knot = knot_diagram (dt_code ("<parsed>", *$3)); }
|
||||
| DT '[' STRING ']'
|
||||
{ parsed_knot = knot_diagram (dt_code ("<parsed>", $3)); }
|
||||
;
|
||||
|
||||
torus_link:
|
||||
T '(' INT ',' INT ')'
|
||||
{ parsed_knot = knot_diagram (torus_knot ($3, $5)); }
|
||||
;
|
||||
|
||||
braid:
|
||||
BR '[' INT ',' int_vec ']'
|
||||
{ parsed_knot = knot_diagram (braid ($3, *$5)); }
|
||||
;
|
||||
|
||||
unknot:
|
||||
UNKNOT
|
||||
{
|
||||
unsigned unknot_ar[1][4] = {
|
||||
{ 2, 1, 3, 4, },
|
||||
};
|
||||
parsed_knot = knot_diagram ("U", 1, unknot_ar);
|
||||
}
|
||||
;
|
||||
|
||||
alt_spec:
|
||||
ALT
|
||||
| NONALT
|
||||
;
|
||||
|
||||
int_vec2:
|
||||
int_vec
|
||||
{
|
||||
basedvector<basedvector<int, 1>, 1> *v
|
||||
= new basedvector<basedvector<int, 1>, 1> ();
|
||||
v->append (*$1);
|
||||
$$ = v;
|
||||
}
|
||||
| int_vec2 ',' int_vec
|
||||
{
|
||||
basedvector<basedvector<int, 1>, 1> *v = $1;
|
||||
v->append (*$3);
|
||||
$$ = v;
|
||||
}
|
||||
;
|
||||
|
||||
int_vec:
|
||||
'{' int_vec_1 '}'
|
||||
{ $$ = $2; }
|
||||
| '[' int_vec_1 ']'
|
||||
{ $$ = $2; }
|
||||
;
|
||||
|
||||
int_vec_1:
|
||||
INT
|
||||
{
|
||||
basedvector<int, 1> *v =
|
||||
new basedvector<int, 1> ();
|
||||
v->append ($1);
|
||||
$$ = v;
|
||||
}
|
||||
| int_vec_1 ',' INT
|
||||
{
|
||||
basedvector<int, 1> *v = $1;
|
||||
v->append ($3);
|
||||
$$ = v;
|
||||
}
|
||||
;
|
||||
|
||||
crossing_vec:
|
||||
crossing
|
||||
{
|
||||
basedvector<basedvector<int, 1>, 1> *v
|
||||
= new basedvector<basedvector<int, 1>, 1> ();
|
||||
v->append (*$1);
|
||||
$$ = v;
|
||||
}
|
||||
| crossing_vec ',' crossing
|
||||
{
|
||||
basedvector<basedvector<int, 1>, 1> *v = $1;
|
||||
v->append (*$3);
|
||||
$$ = v;
|
||||
}
|
||||
;
|
||||
|
||||
crossing:
|
||||
X '[' INT ',' INT ',' INT ',' INT ']'
|
||||
{
|
||||
basedvector<int, 1> *v
|
||||
= new basedvector<int, 1> ();
|
||||
v->append ($3);
|
||||
v->append ($5);
|
||||
v->append ($7);
|
||||
v->append ($9);
|
||||
$$ = v;
|
||||
}
|
||||
|
||||
%%
|
||||
|
||||
void
|
||||
yy::knot_parser::error (const yy::knot_parser::location_type &l,
|
||||
const std::string &m)
|
||||
{
|
||||
fprintf (stderr, "knot_parser: parse error.\n");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
void knot_scan_string (const char *s);
|
||||
|
||||
knot_diagram
|
||||
parse_knot (const char *s)
|
||||
{
|
||||
knot_scan_string (s);
|
||||
|
||||
knot_diagram d;
|
||||
yy::knot_parser parser (d);
|
||||
parser.parse ();
|
||||
|
||||
return d;
|
||||
}
|
17
knot_parser/knot_parser_driver.cpp
Normal file
17
knot_parser/knot_parser_driver.cpp
Normal file
@ -0,0 +1,17 @@
|
||||
|
||||
// includes knotkit
|
||||
#include "knot_parser.hh"
|
||||
|
||||
void knot_scan_string (const char *s);
|
||||
|
||||
knot_diagram
|
||||
parse_knot (const char *s)
|
||||
{
|
||||
knot_scan_string (s);
|
||||
|
||||
knot_diagram d;
|
||||
yy::knot_parser parser (d);
|
||||
parser.parse ();
|
||||
|
||||
return d;
|
||||
}
|
2
knot_parser/knot_parser_driver.h
Normal file
2
knot_parser/knot_parser_driver.h
Normal file
@ -0,0 +1,2 @@
|
||||
|
||||
knot_diagram parse_knot (const char *s);
|
1782
knot_parser/knot_scanner.cc
Normal file
1782
knot_parser/knot_scanner.cc
Normal file
File diff suppressed because it is too large
Load Diff
69
knot_parser/knot_scanner.ll
Normal file
69
knot_parser/knot_scanner.ll
Normal file
@ -0,0 +1,69 @@
|
||||
|
||||
%{
|
||||
#include "knot_parser.hh"
|
||||
|
||||
#define YY_DECL \
|
||||
yy::knot_parser::token_type knot_yylex (yy::knot_parser::semantic_type *yylval)
|
||||
|
||||
#define yyterminate() return token::END
|
||||
|
||||
typedef yy::knot_parser::token token;
|
||||
typedef yy::knot_parser::token_type token_type;
|
||||
%}
|
||||
|
||||
%option noyywrap nounput batch prefix="knot_yy"
|
||||
|
||||
%%
|
||||
|
||||
-?[0-9]+ {
|
||||
yylval->integer = atoi (yytext);
|
||||
return token::INT;
|
||||
}
|
||||
|
||||
[a-zA-Z]+ {
|
||||
if (!strcmp (yytext, "a"))
|
||||
{
|
||||
yylval->alternating = 1;
|
||||
return token::ALT;
|
||||
}
|
||||
else if (!strcmp (yytext, "L"))
|
||||
return token::LINK;
|
||||
else if (!strcmp (yytext, "n"))
|
||||
{
|
||||
yylval->alternating = 0;
|
||||
return token::NONALT;
|
||||
}
|
||||
else if (!strcmp (yytext, "T"))
|
||||
return token::T;
|
||||
else if (!strcmp (yytext, "U")
|
||||
|| !strcmp (yytext, "unknot"))
|
||||
return token::UNKNOT;
|
||||
else if (!strcmp (yytext, "X"))
|
||||
return token::X;
|
||||
else if (!strcmp (yytext, "BR"))
|
||||
return token::BR;
|
||||
else if (!strcmp (yytext, "PD"))
|
||||
return token::PD;
|
||||
else if (!strcmp (yytext, "DT")
|
||||
|| !strcmp (yytext, "DTCode"))
|
||||
return token::DT;
|
||||
else if (!strcmp (yytext, "BR"))
|
||||
return token::BR;
|
||||
else
|
||||
{
|
||||
yylval->string = strdup (yytext);
|
||||
return token::STRING;
|
||||
}
|
||||
}
|
||||
|
||||
[\t\r\n ] /* ignore */
|
||||
|
||||
. { return token_type (yytext[0]); }
|
||||
|
||||
%%
|
||||
|
||||
void
|
||||
knot_scan_string (const char *s)
|
||||
{
|
||||
knot_yy_scan_string (s);
|
||||
}
|
165
knot_parser/location.hh
Normal file
165
knot_parser/location.hh
Normal file
@ -0,0 +1,165 @@
|
||||
/* A Bison parser, made by GNU Bison 2.4.3. */
|
||||
|
||||
/* Locations for Bison parsers in C++
|
||||
|
||||
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010 Free Software
|
||||
Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* As a special exception, you may create a larger work that contains
|
||||
part or all of the Bison parser skeleton and distribute that work
|
||||
under terms of your choice, so long as that work isn't itself a
|
||||
parser generator using the skeleton or a modified version thereof
|
||||
as a parser skeleton. Alternatively, if you modify or redistribute
|
||||
the parser skeleton itself, you may (at your option) remove this
|
||||
special exception, which will cause the skeleton and the resulting
|
||||
Bison output files to be licensed under the GNU General Public
|
||||
License without this special exception.
|
||||
|
||||
This special exception was added by the Free Software Foundation in
|
||||
version 2.2 of Bison. */
|
||||
|
||||
/**
|
||||
** \file location.hh
|
||||
** Define the yy::location class.
|
||||
*/
|
||||
|
||||
#ifndef BISON_LOCATION_HH
|
||||
# define BISON_LOCATION_HH
|
||||
|
||||
# include <iostream>
|
||||
# include <string>
|
||||
# include "position.hh"
|
||||
|
||||
|
||||
namespace yy {
|
||||
|
||||
/* Line 163 of location.cc */
|
||||
#line 51 "knot_parser/location.hh"
|
||||
|
||||
/// Abstract a location.
|
||||
class location
|
||||
{
|
||||
public:
|
||||
|
||||
/// Construct a location.
|
||||
location ()
|
||||
: begin (), end ()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/// Initialization.
|
||||
inline void initialize (std::string* fn)
|
||||
{
|
||||
begin.initialize (fn);
|
||||
end = begin;
|
||||
}
|
||||
|
||||
/** \name Line and Column related manipulators
|
||||
** \{ */
|
||||
public:
|
||||
/// Reset initial location to final location.
|
||||
inline void step ()
|
||||
{
|
||||
begin = end;
|
||||
}
|
||||
|
||||
/// Extend the current location to the COUNT next columns.
|
||||
inline void columns (unsigned int count = 1)
|
||||
{
|
||||
end += count;
|
||||
}
|
||||
|
||||
/// Extend the current location to the COUNT next lines.
|
||||
inline void lines (unsigned int count = 1)
|
||||
{
|
||||
end.lines (count);
|
||||
}
|
||||
/** \} */
|
||||
|
||||
|
||||
public:
|
||||
/// Beginning of the located region.
|
||||
position begin;
|
||||
/// End of the located region.
|
||||
position end;
|
||||
};
|
||||
|
||||
/// Join two location objects to create a location.
|
||||
inline const location operator+ (const location& begin, const location& end)
|
||||
{
|
||||
location res = begin;
|
||||
res.end = end.end;
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Add two location objects.
|
||||
inline const location operator+ (const location& begin, unsigned int width)
|
||||
{
|
||||
location res = begin;
|
||||
res.columns (width);
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Add and assign a location.
|
||||
inline location& operator+= (location& res, unsigned int width)
|
||||
{
|
||||
res.columns (width);
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Compare two location objects.
|
||||
inline bool
|
||||
operator== (const location& loc1, const location& loc2)
|
||||
{
|
||||
return loc1.begin == loc2.begin && loc1.end == loc2.end;
|
||||
}
|
||||
|
||||
/// Compare two location objects.
|
||||
inline bool
|
||||
operator!= (const location& loc1, const location& loc2)
|
||||
{
|
||||
return !(loc1 == loc2);
|
||||
}
|
||||
|
||||
/** \brief Intercept output stream redirection.
|
||||
** \param ostr the destination output stream
|
||||
** \param loc a reference to the location to redirect
|
||||
**
|
||||
** Avoid duplicate information.
|
||||
*/
|
||||
inline std::ostream& operator<< (std::ostream& ostr, const location& loc)
|
||||
{
|
||||
position last = loc.end - 1;
|
||||
ostr << loc.begin;
|
||||
if (last.filename
|
||||
&& (!loc.begin.filename
|
||||
|| *loc.begin.filename != *last.filename))
|
||||
ostr << '-' << last;
|
||||
else if (loc.begin.line != last.line)
|
||||
ostr << '-' << last.line << '.' << last.column;
|
||||
else if (loc.begin.column != last.column)
|
||||
ostr << '-' << last.column;
|
||||
return ostr;
|
||||
}
|
||||
|
||||
|
||||
} // yy
|
||||
|
||||
/* Line 272 of location.cc */
|
||||
#line 164 "knot_parser/location.hh"
|
||||
|
||||
#endif // not BISON_LOCATION_HH
|
162
knot_parser/position.hh
Normal file
162
knot_parser/position.hh
Normal file
@ -0,0 +1,162 @@
|
||||
/* A Bison parser, made by GNU Bison 2.4.3. */
|
||||
|
||||
/* Positions for Bison parsers in C++
|
||||
|
||||
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010 Free Software
|
||||
Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* As a special exception, you may create a larger work that contains
|
||||
part or all of the Bison parser skeleton and distribute that work
|
||||
under terms of your choice, so long as that work isn't itself a
|
||||
parser generator using the skeleton or a modified version thereof
|
||||
as a parser skeleton. Alternatively, if you modify or redistribute
|
||||
the parser skeleton itself, you may (at your option) remove this
|
||||
special exception, which will cause the skeleton and the resulting
|
||||
Bison output files to be licensed under the GNU General Public
|
||||
License without this special exception.
|
||||
|
||||
This special exception was added by the Free Software Foundation in
|
||||
version 2.2 of Bison. */
|
||||
|
||||
/**
|
||||
** \file position.hh
|
||||
** Define the yy::position class.
|
||||
*/
|
||||
|
||||
#ifndef BISON_POSITION_HH
|
||||
# define BISON_POSITION_HH
|
||||
|
||||
# include <iostream>
|
||||
# include <string>
|
||||
# include <algorithm>
|
||||
|
||||
|
||||
namespace yy {
|
||||
|
||||
/* Line 38 of location.cc */
|
||||
#line 51 "knot_parser/position.hh"
|
||||
/// Abstract a position.
|
||||
class position
|
||||
{
|
||||
public:
|
||||
|
||||
/// Construct a position.
|
||||
position ()
|
||||
: filename (0), line (1), column (1)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/// Initialization.
|
||||
inline void initialize (std::string* fn)
|
||||
{
|
||||
filename = fn;
|
||||
line = 1;
|
||||
column = 1;
|
||||
}
|
||||
|
||||
/** \name Line and Column related manipulators
|
||||
** \{ */
|
||||
public:
|
||||
/// (line related) Advance to the COUNT next lines.
|
||||
inline void lines (int count = 1)
|
||||
{
|
||||
column = 1;
|
||||
line += count;
|
||||
}
|
||||
|
||||
/// (column related) Advance to the COUNT next columns.
|
||||
inline void columns (int count = 1)
|
||||
{
|
||||
column = std::max (1u, column + count);
|
||||
}
|
||||
/** \} */
|
||||
|
||||
public:
|
||||
/// File name to which this position refers.
|
||||
std::string* filename;
|
||||
/// Current line number.
|
||||
unsigned int line;
|
||||
/// Current column number.
|
||||
unsigned int column;
|
||||
};
|
||||
|
||||
/// Add and assign a position.
|
||||
inline const position&
|
||||
operator+= (position& res, const int width)
|
||||
{
|
||||
res.columns (width);
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Add two position objects.
|
||||
inline const position
|
||||
operator+ (const position& begin, const int width)
|
||||
{
|
||||
position res = begin;
|
||||
return res += width;
|
||||
}
|
||||
|
||||
/// Add and assign a position.
|
||||
inline const position&
|
||||
operator-= (position& res, const int width)
|
||||
{
|
||||
return res += -width;
|
||||
}
|
||||
|
||||
/// Add two position objects.
|
||||
inline const position
|
||||
operator- (const position& begin, const int width)
|
||||
{
|
||||
return begin + -width;
|
||||
}
|
||||
|
||||
/// Compare two position objects.
|
||||
inline bool
|
||||
operator== (const position& pos1, const position& pos2)
|
||||
{
|
||||
return (pos1.line == pos2.line
|
||||
&& pos1.column == pos2.column
|
||||
&& (pos1.filename == pos2.filename
|
||||
|| (pos1.filename && pos2.filename
|
||||
&& *pos1.filename == *pos2.filename)));
|
||||
}
|
||||
|
||||
/// Compare two position objects.
|
||||
inline bool
|
||||
operator!= (const position& pos1, const position& pos2)
|
||||
{
|
||||
return !(pos1 == pos2);
|
||||
}
|
||||
|
||||
/** \brief Intercept output stream redirection.
|
||||
** \param ostr the destination output stream
|
||||
** \param pos a reference to the position to redirect
|
||||
*/
|
||||
inline std::ostream&
|
||||
operator<< (std::ostream& ostr, const position& pos)
|
||||
{
|
||||
if (pos.filename)
|
||||
ostr << *pos.filename << ':';
|
||||
return ostr << pos.line << '.' << pos.column;
|
||||
}
|
||||
|
||||
|
||||
} // yy
|
||||
|
||||
/* Line 145 of location.cc */
|
||||
#line 162 "knot_parser/position.hh"
|
||||
#endif // not BISON_POSITION_HH
|
136
knot_parser/stack.hh
Normal file
136
knot_parser/stack.hh
Normal file
@ -0,0 +1,136 @@
|
||||
/* A Bison parser, made by GNU Bison 2.4.3. */
|
||||
|
||||
/* Stack handling for Bison parsers in C++
|
||||
|
||||
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free
|
||||
Software Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* As a special exception, you may create a larger work that contains
|
||||
part or all of the Bison parser skeleton and distribute that work
|
||||
under terms of your choice, so long as that work isn't itself a
|
||||
parser generator using the skeleton or a modified version thereof
|
||||
as a parser skeleton. Alternatively, if you modify or redistribute
|
||||
the parser skeleton itself, you may (at your option) remove this
|
||||
special exception, which will cause the skeleton and the resulting
|
||||
Bison output files to be licensed under the GNU General Public
|
||||
License without this special exception.
|
||||
|
||||
This special exception was added by the Free Software Foundation in
|
||||
version 2.2 of Bison. */
|
||||
|
||||
#ifndef BISON_STACK_HH
|
||||
# define BISON_STACK_HH
|
||||
|
||||
#include <deque>
|
||||
|
||||
|
||||
namespace yy {
|
||||
|
||||
/* Line 1067 of lalr1.cc */
|
||||
#line 44 "knot_parser/stack.hh"
|
||||
template <class T, class S = std::deque<T> >
|
||||
class stack
|
||||
{
|
||||
public:
|
||||
|
||||
// Hide our reversed order.
|
||||
typedef typename S::reverse_iterator iterator;
|
||||
typedef typename S::const_reverse_iterator const_iterator;
|
||||
|
||||
stack () : seq_ ()
|
||||
{
|
||||
}
|
||||
|
||||
stack (unsigned int n) : seq_ (n)
|
||||
{
|
||||
}
|
||||
|
||||
inline
|
||||
T&
|
||||
operator [] (unsigned int i)
|
||||
{
|
||||
return seq_[i];
|
||||
}
|
||||
|
||||
inline
|
||||
const T&
|
||||
operator [] (unsigned int i) const
|
||||
{
|
||||
return seq_[i];
|
||||
}
|
||||
|
||||
inline
|
||||
void
|
||||
push (const T& t)
|
||||
{
|
||||
seq_.push_front (t);
|
||||
}
|
||||
|
||||
inline
|
||||
void
|
||||
pop (unsigned int n = 1)
|
||||
{
|
||||
for (; n; --n)
|
||||
seq_.pop_front ();
|
||||
}
|
||||
|
||||
inline
|
||||
unsigned int
|
||||
height () const
|
||||
{
|
||||
return seq_.size ();
|
||||
}
|
||||
|
||||
inline const_iterator begin () const { return seq_.rbegin (); }
|
||||
inline const_iterator end () const { return seq_.rend (); }
|
||||
|
||||
private:
|
||||
|
||||
S seq_;
|
||||
};
|
||||
|
||||
/// Present a slice of the top of a stack.
|
||||
template <class T, class S = stack<T> >
|
||||
class slice
|
||||
{
|
||||
public:
|
||||
|
||||
slice (const S& stack,
|
||||
unsigned int range) : stack_ (stack),
|
||||
range_ (range)
|
||||
{
|
||||
}
|
||||
|
||||
inline
|
||||
const T&
|
||||
operator [] (unsigned int i) const
|
||||
{
|
||||
return stack_[range_ - i];
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
const S& stack_;
|
||||
unsigned int range_;
|
||||
};
|
||||
|
||||
} // yy
|
||||
|
||||
/* Line 1153 of lalr1.cc */
|
||||
#line 134 "knot_parser/stack.hh"
|
||||
|
||||
#endif // not BISON_STACK_HH[]dnl
|
||||
|
730
knot_tables.cpp
Normal file
730
knot_tables.cpp
Normal file
@ -0,0 +1,730 @@
|
||||
|
||||
#include <knotkit.h>
|
||||
|
||||
#define HOME "/Users/cotton/src/knotkit/"
|
||||
|
||||
bool verbose = 0;
|
||||
|
||||
static const struct {
|
||||
const char *name;
|
||||
int crossing_ar[3][4];
|
||||
} rolfsen3[] = {
|
||||
{ "3_{1}", { { 1, 5, 2, 4 }, { 3, 1, 4, 6 }, { 5, 3, 6, 2 } } }
|
||||
};
|
||||
|
||||
static const struct {
|
||||
const char *name;
|
||||
int crossing_ar[4][4];
|
||||
} rolfsen4[] = {
|
||||
{ "4_{1}", { { 4, 2, 5, 1 }, { 8, 6, 1, 5 }, { 6, 3, 7, 4 }, { 2, 7, 3, 8 } } }
|
||||
};
|
||||
|
||||
static const struct {
|
||||
const char *name;
|
||||
int crossing_ar[5][4];
|
||||
} rolfsen5[] = {
|
||||
{ "5_{1}", { { 2, 8, 3, 7 }, { 4, 10, 5, 9 }, { 6, 2, 7, 1 }, { 8, 4, 9, 3 }, { 10, 6, 1, 5 } } },
|
||||
{ "5_{2}", { { 1, 5, 2, 4 }, { 3, 9, 4, 8 }, { 5, 1, 6, 10 }, { 7, 3, 8, 2 }, { 9, 7, 10, 6 } } }
|
||||
};
|
||||
|
||||
static const struct {
|
||||
const char *name;
|
||||
int crossing_ar[6][4];
|
||||
} rolfsen6[] = {
|
||||
{ "6_{1}", { { 1, 7, 2, 6 }, { 3, 10, 4, 11 }, { 5, 3, 6, 2 }, { 7, 1, 8, 12 }, { 9, 4, 10, 5 }, { 11, 9, 12, 8 } } },
|
||||
{ "6_{2}", { { 1, 8, 2, 9 }, { 3, 11, 4, 10 }, { 5, 1, 6, 12 }, { 7, 2, 8, 3 }, { 9, 7, 10, 6 }, { 11, 5, 12, 4 } } },
|
||||
{ "6_{3}", { { 4, 2, 5, 1 }, { 8, 4, 9, 3 }, { 12, 9, 1, 10 }, { 10, 5, 11, 6 }, { 6, 11, 7, 12 }, { 2, 8, 3, 7 } } }
|
||||
};
|
||||
|
||||
static const struct {
|
||||
const char *name;
|
||||
int crossing_ar[7][4];
|
||||
} rolfsen7[] = {
|
||||
{ "7_{1}", { { 1, 9, 2, 8 }, { 3, 11, 4, 10 }, { 5, 13, 6, 12 }, { 7, 1, 8, 14 }, { 9, 3, 10, 2 }, { 11, 5, 12, 4 }, { 13, 7, 14, 6 } } },
|
||||
{ "7_{2}", { { 2, 10, 3, 9 }, { 4, 14, 5, 13 }, { 6, 12, 7, 11 }, { 8, 2, 9, 1 }, { 10, 8, 11, 7 }, { 12, 6, 13, 5 }, { 14, 4, 1, 3 } } },
|
||||
{ "7_{3}", { { 1, 9, 2, 8 }, { 3, 11, 4, 10 }, { 5, 1, 6, 14 }, { 7, 13, 8, 12 }, { 9, 3, 10, 2 }, { 11, 5, 12, 4 }, { 13, 7, 14, 6 } } },
|
||||
{ "7_{4}", { { 2, 10, 3, 9 }, { 4, 12, 5, 11 }, { 6, 14, 7, 13 }, { 8, 4, 9, 3 }, { 10, 2, 11, 1 }, { 12, 8, 13, 7 }, { 14, 6, 1, 5 } } },
|
||||
{ "7_{5}", { { 2, 10, 3, 9 }, { 4, 2, 5, 1 }, { 6, 14, 7, 13 }, { 8, 12, 9, 11 }, { 10, 4, 11, 3 }, { 12, 6, 13, 5 }, { 14, 8, 1, 7 } } },
|
||||
{ "7_{6}", { { 1, 13, 2, 12 }, { 3, 9, 4, 8 }, { 5, 1, 6, 14 }, { 7, 10, 8, 11 }, { 9, 3, 10, 2 }, { 11, 6, 12, 7 }, { 13, 5, 14, 4 } } },
|
||||
{ "7_{7}", { { 1, 10, 2, 11 }, { 3, 13, 4, 12 }, { 5, 14, 6, 1 }, { 7, 5, 8, 4 }, { 9, 2, 10, 3 }, { 11, 9, 12, 8 }, { 13, 6, 14, 7 } } }
|
||||
};
|
||||
|
||||
static const struct {
|
||||
const char *name;
|
||||
int crossing_ar[8][4];
|
||||
} rolfsen8[] = {
|
||||
{ "8_{1}", { { 1, 9, 2, 8 }, { 3, 7, 4, 6 }, { 5, 12, 6, 13 }, { 7, 3, 8, 2 }, { 9, 1, 10, 16 }, { 11, 15, 12, 14 }, { 13, 4, 14, 5 }, { 15, 11, 16, 10 } } },
|
||||
{ "8_{2}", { { 1, 10, 2, 11 }, { 3, 13, 4, 12 }, { 5, 15, 6, 14 }, { 7, 1, 8, 16 }, { 9, 2, 10, 3 }, { 11, 9, 12, 8 }, { 13, 5, 14, 4 }, { 15, 7, 16, 6 } } },
|
||||
{ "8_{3}", { { 6, 2, 7, 1 }, { 14, 10, 15, 9 }, { 10, 5, 11, 6 }, { 12, 3, 13, 4 }, { 4, 11, 5, 12 }, { 2, 13, 3, 14 }, { 16, 8, 1, 7 }, { 8, 16, 9, 15 } } },
|
||||
{ "8_{4}", { { 2, 11, 3, 12 }, { 4, 9, 5, 10 }, { 6, 16, 7, 15 }, { 8, 14, 9, 13 }, { 10, 1, 11, 2 }, { 12, 3, 13, 4 }, { 14, 8, 15, 7 }, { 16, 6, 1, 5 } } },
|
||||
{ "8_{5}", { { 1, 7, 2, 6 }, { 3, 9, 4, 8 }, { 5, 12, 6, 13 }, { 7, 3, 8, 2 }, { 9, 15, 10, 14 }, { 11, 1, 12, 16 }, { 13, 4, 14, 5 }, { 15, 11, 16, 10 } } },
|
||||
{ "8_{6}", { { 2, 9, 3, 10 }, { 4, 14, 5, 13 }, { 6, 16, 7, 15 }, { 8, 12, 9, 11 }, { 10, 1, 11, 2 }, { 12, 8, 13, 7 }, { 14, 6, 15, 5 }, { 16, 4, 1, 3 } } },
|
||||
{ "8_{7}", { { 2, 9, 3, 10 }, { 4, 14, 5, 13 }, { 6, 15, 7, 16 }, { 8, 1, 9, 2 }, { 10, 5, 11, 6 }, { 12, 4, 13, 3 }, { 14, 12, 15, 11 }, { 16, 7, 1, 8 } } },
|
||||
{ "8_{8}", { { 1, 7, 2, 6 }, { 3, 12, 4, 13 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 16, 10, 1 }, { 11, 14, 12, 15 }, { 13, 4, 14, 5 }, { 15, 10, 16, 11 } } },
|
||||
{ "8_{9}", { { 6, 2, 7, 1 }, { 14, 8, 15, 7 }, { 10, 3, 11, 4 }, { 2, 13, 3, 14 }, { 12, 5, 13, 6 }, { 4, 11, 5, 12 }, { 16, 10, 1, 9 }, { 8, 16, 9, 15 } } },
|
||||
{ "8_{10}", { { 2, 14, 3, 13 }, { 4, 9, 5, 10 }, { 6, 11, 7, 12 }, { 8, 15, 9, 16 }, { 10, 5, 11, 6 }, { 12, 2, 13, 1 }, { 14, 7, 15, 8 }, { 16, 4, 1, 3 } } },
|
||||
{ "8_{11}", { { 1, 10, 2, 11 }, { 3, 13, 4, 12 }, { 5, 15, 6, 14 }, { 7, 1, 8, 16 }, { 9, 2, 10, 3 }, { 11, 9, 12, 8 }, { 13, 7, 14, 6 }, { 15, 5, 16, 4 } } },
|
||||
{ "8_{12}", { { 4, 2, 5, 1 }, { 10, 8, 11, 7 }, { 8, 3, 9, 4 }, { 2, 9, 3, 10 }, { 14, 6, 15, 5 }, { 16, 11, 1, 12 }, { 12, 15, 13, 16 }, { 6, 14, 7, 13 } } },
|
||||
{ "8_{13}", { { 1, 9, 2, 8 }, { 3, 14, 4, 15 }, { 5, 12, 6, 13 }, { 7, 11, 8, 10 }, { 9, 3, 10, 2 }, { 11, 16, 12, 1 }, { 13, 4, 14, 5 }, { 15, 6, 16, 7 } } },
|
||||
{ "8_{14}", { { 2, 12, 3, 11 }, { 4, 8, 5, 7 }, { 6, 15, 7, 16 }, { 8, 14, 9, 13 }, { 10, 2, 11, 1 }, { 12, 10, 13, 9 }, { 14, 4, 15, 3 }, { 16, 5, 1, 6 } } },
|
||||
{ "8_{15}", { { 1, 7, 2, 6 }, { 3, 15, 4, 14 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 13, 10, 12 }, { 11, 1, 12, 16 }, { 13, 5, 14, 4 }, { 15, 11, 16, 10 } } },
|
||||
{ "8_{16}", { { 2, 7, 3, 8 }, { 4, 10, 5, 9 }, { 6, 1, 7, 2 }, { 8, 14, 9, 13 }, { 10, 15, 11, 16 }, { 12, 6, 13, 5 }, { 14, 3, 15, 4 }, { 16, 11, 1, 12 } } },
|
||||
{ "8_{17}", { { 6, 2, 7, 1 }, { 14, 8, 15, 7 }, { 8, 3, 9, 4 }, { 2, 13, 3, 14 }, { 12, 5, 13, 6 }, { 4, 9, 5, 10 }, { 16, 12, 1, 11 }, { 10, 16, 11, 15 } } },
|
||||
{ "8_{18}", { { 6, 2, 7, 1 }, { 8, 3, 9, 4 }, { 16, 11, 1, 12 }, { 2, 14, 3, 13 }, { 4, 15, 5, 16 }, { 10, 6, 11, 5 }, { 12, 7, 13, 8 }, { 14, 10, 15, 9 } } },
|
||||
{ "8_{19}", { { 2, 14, 3, 13 }, { 5, 11, 6, 10 }, { 7, 15, 8, 14 }, { 9, 5, 10, 4 }, { 11, 7, 12, 6 }, { 12, 2, 13, 1 }, { 15, 9, 16, 8 }, { 16, 4, 1, 3 } } },
|
||||
{ "8_{20}", { { 1, 7, 2, 6 }, { 4, 13, 5, 14 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 10, 15, 11, 16 }, { 12, 9, 13, 10 }, { 14, 3, 15, 4 }, { 16, 11, 1, 12 } } },
|
||||
{ "8_{21}", { { 1, 7, 2, 6 }, { 4, 13, 5, 14 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 13, 10, 12 }, { 11, 1, 12, 16 }, { 14, 3, 15, 4 }, { 15, 11, 16, 10 } } }
|
||||
};
|
||||
|
||||
static const struct {
|
||||
const char *name;
|
||||
int crossing_ar[9][4];
|
||||
} rolfsen9[] = {
|
||||
{ "9_{1}", { { 1, 11, 2, 10 }, { 3, 13, 4, 12 }, { 5, 15, 6, 14 }, { 7, 17, 8, 16 }, { 9, 1, 10, 18 }, { 11, 3, 12, 2 }, { 13, 5, 14, 4 }, { 15, 7, 16, 6 }, { 17, 9, 18, 8 } } },
|
||||
{ "9_{2}", { { 2, 8, 3, 7 }, { 4, 14, 5, 13 }, { 6, 4, 7, 3 }, { 8, 2, 9, 1 }, { 10, 18, 11, 17 }, { 12, 16, 13, 15 }, { 14, 6, 15, 5 }, { 16, 12, 17, 11 }, { 18, 10, 1, 9 } } },
|
||||
{ "9_{3}", { { 1, 11, 2, 10 }, { 3, 15, 4, 14 }, { 5, 13, 6, 12 }, { 7, 17, 8, 16 }, { 9, 1, 10, 18 }, { 11, 3, 12, 2 }, { 13, 5, 14, 4 }, { 15, 7, 16, 6 }, { 17, 9, 18, 8 } } },
|
||||
{ "9_{4}", { { 2, 14, 3, 13 }, { 4, 12, 5, 11 }, { 6, 16, 7, 15 }, { 8, 18, 9, 17 }, { 10, 6, 11, 5 }, { 12, 4, 13, 3 }, { 14, 2, 15, 1 }, { 16, 8, 17, 7 }, { 18, 10, 1, 9 } } },
|
||||
{ "9_{5}", { { 2, 14, 3, 13 }, { 4, 12, 5, 11 }, { 6, 16, 7, 15 }, { 8, 18, 9, 17 }, { 10, 6, 11, 5 }, { 12, 4, 13, 3 }, { 14, 2, 15, 1 }, { 16, 10, 17, 9 }, { 18, 8, 1, 7 } } },
|
||||
{ "9_{6}", { { 1, 13, 2, 12 }, { 3, 7, 4, 6 }, { 5, 15, 6, 14 }, { 7, 3, 8, 2 }, { 9, 17, 10, 16 }, { 11, 1, 12, 18 }, { 13, 5, 14, 4 }, { 15, 9, 16, 8 }, { 17, 11, 18, 10 } } },
|
||||
{ "9_{7}", { { 2, 10, 3, 9 }, { 4, 12, 5, 11 }, { 6, 16, 7, 15 }, { 8, 6, 9, 5 }, { 10, 4, 11, 3 }, { 12, 2, 13, 1 }, { 14, 18, 15, 17 }, { 16, 8, 17, 7 }, { 18, 14, 1, 13 } } },
|
||||
{ "9_{8}", { { 1, 16, 2, 17 }, { 3, 14, 4, 15 }, { 5, 11, 6, 10 }, { 7, 1, 8, 18 }, { 9, 13, 10, 12 }, { 11, 7, 12, 6 }, { 13, 4, 14, 5 }, { 15, 2, 16, 3 }, { 17, 9, 18, 8 } } },
|
||||
{ "9_{9}", { { 1, 13, 2, 12 }, { 3, 9, 4, 8 }, { 5, 15, 6, 14 }, { 7, 17, 8, 16 }, { 9, 3, 10, 2 }, { 11, 1, 12, 18 }, { 13, 5, 14, 4 }, { 15, 7, 16, 6 }, { 17, 11, 18, 10 } } },
|
||||
{ "9_{10}", { { 1, 13, 2, 12 }, { 3, 11, 4, 10 }, { 5, 17, 6, 16 }, { 7, 15, 8, 14 }, { 9, 1, 10, 18 }, { 11, 3, 12, 2 }, { 13, 5, 14, 4 }, { 15, 7, 16, 6 }, { 17, 9, 18, 8 } } },
|
||||
{ "9_{11}", { { 2, 7, 3, 8 }, { 4, 13, 5, 14 }, { 6, 15, 7, 16 }, { 8, 12, 9, 11 }, { 10, 17, 11, 18 }, { 12, 3, 13, 4 }, { 14, 5, 15, 6 }, { 16, 2, 17, 1 }, { 18, 9, 1, 10 } } },
|
||||
{ "9_{12}", { { 2, 9, 3, 10 }, { 4, 16, 5, 15 }, { 6, 14, 7, 13 }, { 8, 3, 9, 4 }, { 10, 18, 11, 17 }, { 12, 8, 13, 7 }, { 14, 6, 15, 5 }, { 16, 2, 17, 1 }, { 18, 12, 1, 11 } } },
|
||||
{ "9_{13}", { { 2, 12, 3, 11 }, { 4, 14, 5, 13 }, { 6, 16, 7, 15 }, { 8, 18, 9, 17 }, { 10, 6, 11, 5 }, { 12, 4, 13, 3 }, { 14, 2, 15, 1 }, { 16, 10, 17, 9 }, { 18, 8, 1, 7 } } },
|
||||
{ "9_{14}", { { 1, 12, 2, 13 }, { 3, 10, 4, 11 }, { 5, 16, 6, 17 }, { 7, 1, 8, 18 }, { 9, 4, 10, 5 }, { 11, 2, 12, 3 }, { 13, 9, 14, 8 }, { 15, 6, 16, 7 }, { 17, 15, 18, 14 } } },
|
||||
{ "9_{15}", { { 2, 9, 3, 10 }, { 4, 7, 5, 8 }, { 6, 15, 7, 16 }, { 8, 3, 9, 4 }, { 10, 14, 11, 13 }, { 12, 17, 13, 18 }, { 14, 5, 15, 6 }, { 16, 2, 17, 1 }, { 18, 11, 1, 12 } } },
|
||||
{ "9_{16}", { { 1, 9, 2, 8 }, { 3, 11, 4, 10 }, { 5, 15, 6, 14 }, { 7, 5, 8, 4 }, { 9, 3, 10, 2 }, { 11, 17, 12, 16 }, { 13, 1, 14, 18 }, { 15, 7, 16, 6 }, { 17, 13, 18, 12 } } },
|
||||
{ "9_{17}", { { 1, 9, 2, 8 }, { 3, 12, 4, 13 }, { 5, 16, 6, 17 }, { 7, 1, 8, 18 }, { 9, 3, 10, 2 }, { 11, 4, 12, 5 }, { 13, 11, 14, 10 }, { 15, 6, 16, 7 }, { 17, 15, 18, 14 } } },
|
||||
{ "9_{18}", { { 2, 12, 3, 11 }, { 4, 2, 5, 1 }, { 6, 16, 7, 15 }, { 8, 14, 9, 13 }, { 10, 18, 11, 17 }, { 12, 4, 13, 3 }, { 14, 8, 15, 7 }, { 16, 10, 17, 9 }, { 18, 6, 1, 5 } } },
|
||||
{ "9_{19}", { { 2, 14, 3, 13 }, { 4, 11, 5, 12 }, { 6, 4, 7, 3 }, { 8, 17, 9, 18 }, { 10, 5, 11, 6 }, { 12, 8, 13, 7 }, { 14, 2, 15, 1 }, { 16, 9, 17, 10 }, { 18, 16, 1, 15 } } },
|
||||
{ "9_{20}", { { 1, 11, 2, 10 }, { 3, 16, 4, 17 }, { 5, 13, 6, 12 }, { 7, 3, 8, 2 }, { 9, 1, 10, 18 }, { 11, 15, 12, 14 }, { 13, 7, 14, 6 }, { 15, 4, 16, 5 }, { 17, 9, 18, 8 } } },
|
||||
{ "9_{21}", { { 2, 7, 3, 8 }, { 4, 13, 5, 14 }, { 6, 15, 7, 16 }, { 8, 12, 9, 11 }, { 10, 17, 11, 18 }, { 12, 5, 13, 6 }, { 14, 3, 15, 4 }, { 16, 2, 17, 1 }, { 18, 9, 1, 10 } } },
|
||||
{ "9_{22}", { { 1, 7, 2, 6 }, { 3, 8, 4, 9 }, { 5, 14, 6, 15 }, { 7, 11, 8, 10 }, { 9, 2, 10, 3 }, { 11, 17, 12, 16 }, { 13, 1, 14, 18 }, { 15, 4, 16, 5 }, { 17, 13, 18, 12 } } },
|
||||
{ "9_{23}", { { 2, 16, 3, 15 }, { 4, 12, 5, 11 }, { 6, 4, 7, 3 }, { 8, 18, 9, 17 }, { 10, 14, 11, 13 }, { 12, 6, 13, 5 }, { 14, 8, 15, 7 }, { 16, 2, 17, 1 }, { 18, 10, 1, 9 } } },
|
||||
{ "9_{24}", { { 1, 13, 2, 12 }, { 3, 7, 4, 6 }, { 5, 1, 6, 18 }, { 7, 14, 8, 15 }, { 9, 16, 10, 17 }, { 11, 3, 12, 2 }, { 13, 10, 14, 11 }, { 15, 8, 16, 9 }, { 17, 5, 18, 4 } } },
|
||||
{ "9_{25}", { { 2, 10, 3, 9 }, { 4, 17, 5, 18 }, { 6, 12, 7, 11 }, { 8, 4, 9, 3 }, { 10, 14, 11, 13 }, { 12, 8, 13, 7 }, { 14, 2, 15, 1 }, { 16, 5, 17, 6 }, { 18, 16, 1, 15 } } },
|
||||
{ "9_{26}", { { 2, 10, 3, 9 }, { 4, 11, 5, 12 }, { 6, 17, 7, 18 }, { 8, 15, 9, 16 }, { 10, 14, 11, 13 }, { 12, 3, 13, 4 }, { 14, 2, 15, 1 }, { 16, 5, 17, 6 }, { 18, 7, 1, 8 } } },
|
||||
{ "9_{27}", { { 2, 9, 3, 10 }, { 4, 7, 5, 8 }, { 6, 14, 7, 13 }, { 8, 15, 9, 16 }, { 10, 18, 11, 17 }, { 12, 3, 13, 4 }, { 14, 6, 15, 5 }, { 16, 2, 17, 1 }, { 18, 12, 1, 11 } } },
|
||||
{ "9_{28}", { { 1, 16, 2, 17 }, { 3, 15, 4, 14 }, { 5, 3, 6, 2 }, { 7, 13, 8, 12 }, { 9, 7, 10, 6 }, { 11, 18, 12, 1 }, { 13, 9, 14, 8 }, { 15, 5, 16, 4 }, { 17, 10, 18, 11 } } },
|
||||
{ "9_{29}", { { 2, 10, 3, 9 }, { 4, 17, 5, 18 }, { 6, 12, 7, 11 }, { 8, 4, 9, 3 }, { 10, 15, 11, 16 }, { 12, 6, 13, 5 }, { 14, 1, 15, 2 }, { 16, 7, 17, 8 }, { 18, 13, 1, 14 } } },
|
||||
{ "9_{30}", { { 1, 9, 2, 8 }, { 3, 16, 4, 17 }, { 5, 1, 6, 18 }, { 7, 12, 8, 13 }, { 9, 3, 10, 2 }, { 11, 6, 12, 7 }, { 13, 10, 14, 11 }, { 15, 4, 16, 5 }, { 17, 15, 18, 14 } } },
|
||||
{ "9_{31}", { { 1, 9, 2, 8 }, { 3, 10, 4, 11 }, { 5, 13, 6, 12 }, { 7, 1, 8, 18 }, { 9, 16, 10, 17 }, { 11, 15, 12, 14 }, { 13, 7, 14, 6 }, { 15, 4, 16, 5 }, { 17, 3, 18, 2 } } },
|
||||
{ "9_{32}", { { 2, 8, 3, 7 }, { 4, 9, 5, 10 }, { 6, 13, 7, 14 }, { 8, 16, 9, 15 }, { 10, 5, 11, 6 }, { 12, 17, 13, 18 }, { 14, 3, 15, 4 }, { 16, 2, 17, 1 }, { 18, 11, 1, 12 } } },
|
||||
{ "9_{33}", { { 1, 15, 2, 14 }, { 3, 16, 4, 17 }, { 5, 12, 6, 13 }, { 7, 5, 8, 4 }, { 9, 2, 10, 3 }, { 11, 6, 12, 7 }, { 13, 1, 14, 18 }, { 15, 11, 16, 10 }, { 17, 8, 18, 9 } } },
|
||||
{ "9_{34}", { { 2, 13, 3, 14 }, { 4, 17, 5, 18 }, { 6, 16, 7, 15 }, { 8, 4, 9, 3 }, { 10, 5, 11, 6 }, { 12, 8, 13, 7 }, { 14, 1, 15, 2 }, { 16, 11, 17, 12 }, { 18, 10, 1, 9 } } },
|
||||
{ "9_{35}", { { 2, 12, 3, 11 }, { 4, 16, 5, 15 }, { 6, 14, 7, 13 }, { 8, 18, 9, 17 }, { 10, 4, 11, 3 }, { 12, 2, 13, 1 }, { 14, 6, 15, 5 }, { 16, 10, 17, 9 }, { 18, 8, 1, 7 } } },
|
||||
{ "9_{36}", { { 2, 15, 3, 16 }, { 4, 11, 5, 12 }, { 6, 4, 7, 3 }, { 8, 17, 9, 18 }, { 10, 5, 11, 6 }, { 12, 10, 13, 9 }, { 14, 1, 15, 2 }, { 16, 7, 17, 8 }, { 18, 13, 1, 14 } } },
|
||||
{ "9_{37}", { { 1, 10, 2, 11 }, { 3, 14, 4, 15 }, { 5, 1, 6, 18 }, { 7, 17, 8, 16 }, { 9, 2, 10, 3 }, { 11, 9, 12, 8 }, { 13, 4, 14, 5 }, { 15, 13, 16, 12 }, { 17, 7, 18, 6 } } },
|
||||
{ "9_{38}", { { 2, 14, 3, 13 }, { 4, 10, 5, 9 }, { 6, 16, 7, 15 }, { 8, 4, 9, 3 }, { 10, 18, 11, 17 }, { 12, 6, 13, 5 }, { 14, 2, 15, 1 }, { 16, 12, 17, 11 }, { 18, 8, 1, 7 } } },
|
||||
{ "9_{39}", { { 1, 12, 2, 13 }, { 3, 17, 4, 16 }, { 5, 10, 6, 11 }, { 7, 18, 8, 1 }, { 9, 14, 10, 15 }, { 11, 2, 12, 3 }, { 13, 6, 14, 7 }, { 15, 5, 16, 4 }, { 17, 8, 18, 9 } } },
|
||||
{ "9_{40}", { { 1, 15, 2, 14 }, { 3, 12, 4, 13 }, { 5, 11, 6, 10 }, { 7, 3, 8, 2 }, { 9, 18, 10, 1 }, { 11, 17, 12, 16 }, { 13, 9, 14, 8 }, { 15, 6, 16, 7 }, { 17, 5, 18, 4 } } },
|
||||
{ "9_{41}", { { 1, 15, 2, 14 }, { 3, 12, 4, 13 }, { 5, 16, 6, 17 }, { 7, 3, 8, 2 }, { 9, 18, 10, 1 }, { 11, 4, 12, 5 }, { 13, 9, 14, 8 }, { 15, 6, 16, 7 }, { 17, 10, 18, 11 } } },
|
||||
{ "9_{42}", { { 1, 4, 2, 5 }, { 5, 10, 6, 11 }, { 3, 9, 4, 8 }, { 9, 3, 10, 2 }, { 16, 12, 17, 11 }, { 14, 7, 15, 8 }, { 6, 15, 7, 16 }, { 18, 14, 1, 13 }, { 12, 18, 13, 17 } } },
|
||||
{ "9_{43}", { { 1, 9, 2, 8 }, { 3, 16, 4, 17 }, { 5, 1, 6, 18 }, { 6, 12, 7, 11 }, { 9, 3, 10, 2 }, { 10, 14, 11, 13 }, { 12, 8, 13, 7 }, { 15, 4, 16, 5 }, { 17, 15, 18, 14 } } },
|
||||
{ "9_{44}", { { 2, 9, 3, 10 }, { 3, 16, 4, 17 }, { 5, 1, 6, 18 }, { 6, 12, 7, 11 }, { 8, 1, 9, 2 }, { 10, 14, 11, 13 }, { 12, 8, 13, 7 }, { 15, 4, 16, 5 }, { 17, 15, 18, 14 } } },
|
||||
{ "9_{45}", { { 2, 9, 3, 10 }, { 3, 16, 4, 17 }, { 5, 1, 6, 18 }, { 7, 12, 8, 13 }, { 8, 1, 9, 2 }, { 11, 6, 12, 7 }, { 13, 10, 14, 11 }, { 15, 4, 16, 5 }, { 17, 15, 18, 14 } } },
|
||||
{ "9_{46}", { { 2, 10, 3, 9 }, { 3, 14, 4, 15 }, { 6, 17, 7, 18 }, { 8, 11, 9, 12 }, { 10, 2, 11, 1 }, { 13, 4, 14, 5 }, { 15, 13, 16, 12 }, { 16, 7, 17, 8 }, { 18, 5, 1, 6 } } },
|
||||
{ "9_{47}", { { 1, 15, 2, 14 }, { 4, 17, 5, 18 }, { 6, 16, 7, 15 }, { 8, 4, 9, 3 }, { 10, 5, 11, 6 }, { 12, 8, 13, 7 }, { 13, 3, 14, 2 }, { 16, 11, 17, 12 }, { 18, 10, 1, 9 } } },
|
||||
{ "9_{48}", { { 1, 10, 2, 11 }, { 3, 14, 4, 15 }, { 6, 17, 7, 18 }, { 9, 2, 10, 3 }, { 11, 9, 12, 8 }, { 13, 4, 14, 5 }, { 15, 13, 16, 12 }, { 16, 7, 17, 8 }, { 18, 5, 1, 6 } } },
|
||||
{ "9_{49}", { { 1, 15, 2, 14 }, { 4, 12, 5, 11 }, { 6, 16, 7, 15 }, { 7, 3, 8, 2 }, { 10, 18, 11, 17 }, { 12, 4, 13, 3 }, { 13, 9, 14, 8 }, { 16, 6, 17, 5 }, { 18, 10, 1, 9 } } }
|
||||
};
|
||||
|
||||
static const struct {
|
||||
const char *name;
|
||||
int crossing_ar[10][4];
|
||||
} rolfsen10[] = {
|
||||
{ "10_{1}", { { 2, 11, 3, 12 }, { 4, 20, 5, 19 }, { 6, 18, 7, 17 }, { 8, 16, 9, 15 }, { 10, 14, 11, 13 }, { 12, 1, 13, 2 }, { 14, 10, 15, 9 }, { 16, 8, 17, 7 }, { 18, 6, 19, 5 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{2}", { { 1, 13, 2, 12 }, { 3, 14, 4, 15 }, { 5, 3, 6, 2 }, { 7, 17, 8, 16 }, { 9, 19, 10, 18 }, { 11, 1, 12, 20 }, { 13, 4, 14, 5 }, { 15, 7, 16, 6 }, { 17, 9, 18, 8 }, { 19, 11, 20, 10 } } },
|
||||
{ "10_{3}", { { 2, 10, 3, 9 }, { 4, 17, 5, 18 }, { 6, 15, 7, 16 }, { 8, 4, 9, 3 }, { 10, 2, 11, 1 }, { 12, 20, 13, 19 }, { 14, 7, 15, 8 }, { 16, 5, 17, 6 }, { 18, 14, 19, 13 }, { 20, 12, 1, 11 } } },
|
||||
{ "10_{4}", { { 2, 13, 3, 14 }, { 4, 11, 5, 12 }, { 6, 20, 7, 19 }, { 8, 18, 9, 17 }, { 10, 16, 11, 15 }, { 12, 1, 13, 2 }, { 14, 3, 15, 4 }, { 16, 10, 17, 9 }, { 18, 8, 19, 7 }, { 20, 6, 1, 5 } } },
|
||||
{ "10_{5}", { { 2, 13, 3, 14 }, { 4, 17, 5, 18 }, { 6, 16, 7, 15 }, { 8, 6, 9, 5 }, { 10, 19, 11, 20 }, { 12, 1, 13, 2 }, { 14, 3, 15, 4 }, { 16, 8, 17, 7 }, { 18, 9, 19, 10 }, { 20, 11, 1, 12 } } },
|
||||
{ "10_{6}", { { 2, 11, 3, 12 }, { 4, 16, 5, 15 }, { 6, 18, 7, 17 }, { 8, 20, 9, 19 }, { 10, 14, 11, 13 }, { 12, 1, 13, 2 }, { 14, 10, 15, 9 }, { 16, 6, 17, 5 }, { 18, 8, 19, 7 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{7}", { { 1, 12, 2, 13 }, { 3, 15, 4, 14 }, { 5, 19, 6, 18 }, { 7, 17, 8, 16 }, { 9, 1, 10, 20 }, { 11, 2, 12, 3 }, { 13, 11, 14, 10 }, { 15, 9, 16, 8 }, { 17, 7, 18, 6 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{8}", { { 1, 12, 2, 13 }, { 3, 10, 4, 11 }, { 5, 15, 6, 14 }, { 7, 17, 8, 16 }, { 9, 19, 10, 18 }, { 11, 2, 12, 3 }, { 13, 20, 14, 1 }, { 15, 7, 16, 6 }, { 17, 9, 18, 8 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{9}", { { 1, 13, 2, 12 }, { 3, 16, 4, 17 }, { 5, 14, 6, 15 }, { 7, 3, 8, 2 }, { 9, 19, 10, 18 }, { 11, 1, 12, 20 }, { 13, 4, 14, 5 }, { 15, 6, 16, 7 }, { 17, 9, 18, 8 }, { 19, 11, 20, 10 } } },
|
||||
{ "10_{10}", { { 1, 11, 2, 10 }, { 3, 18, 4, 19 }, { 5, 16, 6, 17 }, { 7, 14, 8, 15 }, { 9, 13, 10, 12 }, { 11, 3, 12, 2 }, { 13, 20, 14, 1 }, { 15, 6, 16, 7 }, { 17, 4, 18, 5 }, { 19, 8, 20, 9 } } },
|
||||
{ "10_{11}", { { 2, 15, 3, 16 }, { 4, 13, 5, 14 }, { 6, 2, 7, 1 }, { 8, 18, 9, 17 }, { 10, 20, 11, 19 }, { 12, 5, 13, 6 }, { 14, 3, 15, 4 }, { 16, 12, 17, 11 }, { 18, 10, 19, 9 }, { 20, 8, 1, 7 } } },
|
||||
{ "10_{12}", { { 2, 11, 3, 12 }, { 4, 18, 5, 17 }, { 6, 13, 7, 14 }, { 8, 19, 9, 20 }, { 10, 1, 11, 2 }, { 12, 7, 13, 8 }, { 14, 5, 15, 6 }, { 16, 4, 17, 3 }, { 18, 16, 19, 15 }, { 20, 9, 1, 10 } } },
|
||||
{ "10_{13}", { { 2, 17, 3, 18 }, { 4, 8, 5, 7 }, { 6, 13, 7, 14 }, { 8, 2, 9, 1 }, { 10, 20, 11, 19 }, { 12, 16, 13, 15 }, { 14, 5, 15, 6 }, { 16, 3, 17, 4 }, { 18, 12, 19, 11 }, { 20, 10, 1, 9 } } },
|
||||
{ "10_{14}", { { 1, 14, 2, 15 }, { 3, 17, 4, 16 }, { 5, 11, 6, 10 }, { 7, 19, 8, 18 }, { 9, 1, 10, 20 }, { 11, 5, 12, 4 }, { 13, 2, 14, 3 }, { 15, 13, 16, 12 }, { 17, 7, 18, 6 }, { 19, 9, 20, 8 } } },
|
||||
{ "10_{15}", { { 2, 6, 3, 5 }, { 4, 16, 5, 15 }, { 6, 2, 7, 1 }, { 8, 17, 9, 18 }, { 10, 19, 11, 20 }, { 12, 7, 13, 8 }, { 14, 4, 15, 3 }, { 16, 14, 17, 13 }, { 18, 9, 19, 10 }, { 20, 11, 1, 12 } } },
|
||||
{ "10_{16}", { { 1, 10, 2, 11 }, { 3, 15, 4, 14 }, { 5, 17, 6, 16 }, { 7, 19, 8, 18 }, { 9, 2, 10, 3 }, { 11, 20, 12, 1 }, { 13, 9, 14, 8 }, { 15, 7, 16, 6 }, { 17, 5, 18, 4 }, { 19, 12, 20, 13 } } },
|
||||
{ "10_{17}", { { 6, 2, 7, 1 }, { 12, 4, 13, 3 }, { 20, 15, 1, 16 }, { 16, 7, 17, 8 }, { 18, 9, 19, 10 }, { 8, 17, 9, 18 }, { 10, 19, 11, 20 }, { 14, 6, 15, 5 }, { 2, 12, 3, 11 }, { 4, 14, 5, 13 } } },
|
||||
{ "10_{18}", { { 2, 14, 3, 13 }, { 4, 10, 5, 9 }, { 6, 17, 7, 18 }, { 8, 15, 9, 16 }, { 10, 20, 11, 19 }, { 12, 2, 13, 1 }, { 14, 12, 15, 11 }, { 16, 7, 17, 8 }, { 18, 5, 19, 6 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{19}", { { 1, 13, 2, 12 }, { 3, 15, 4, 14 }, { 5, 10, 6, 11 }, { 7, 16, 8, 17 }, { 9, 18, 10, 19 }, { 11, 1, 12, 20 }, { 13, 3, 14, 2 }, { 15, 8, 16, 9 }, { 17, 6, 18, 7 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{20}", { { 2, 8, 3, 7 }, { 4, 15, 5, 16 }, { 6, 4, 7, 3 }, { 8, 2, 9, 1 }, { 10, 18, 11, 17 }, { 12, 20, 13, 19 }, { 14, 5, 15, 6 }, { 16, 14, 17, 13 }, { 18, 12, 19, 11 }, { 20, 10, 1, 9 } } },
|
||||
{ "10_{21}", { { 1, 15, 2, 14 }, { 3, 13, 4, 12 }, { 5, 17, 6, 16 }, { 7, 11, 8, 10 }, { 9, 18, 10, 19 }, { 11, 1, 12, 20 }, { 13, 3, 14, 2 }, { 15, 5, 16, 4 }, { 17, 7, 18, 6 }, { 19, 8, 20, 9 } } },
|
||||
{ "10_{22}", { { 2, 11, 3, 12 }, { 4, 18, 5, 17 }, { 6, 16, 7, 15 }, { 8, 14, 9, 13 }, { 10, 1, 11, 2 }, { 12, 19, 13, 20 }, { 14, 6, 15, 5 }, { 16, 8, 17, 7 }, { 18, 4, 19, 3 }, { 20, 9, 1, 10 } } },
|
||||
{ "10_{23}", { { 2, 13, 3, 14 }, { 4, 11, 5, 12 }, { 6, 18, 7, 17 }, { 8, 19, 9, 20 }, { 10, 1, 11, 2 }, { 12, 3, 13, 4 }, { 14, 7, 15, 8 }, { 16, 6, 17, 5 }, { 18, 16, 19, 15 }, { 20, 9, 1, 10 } } },
|
||||
{ "10_{24}", { { 2, 14, 3, 13 }, { 4, 10, 5, 9 }, { 6, 17, 7, 18 }, { 8, 6, 9, 5 }, { 10, 4, 11, 3 }, { 12, 20, 13, 19 }, { 14, 2, 15, 1 }, { 16, 7, 17, 8 }, { 18, 12, 19, 11 }, { 20, 16, 1, 15 } } },
|
||||
{ "10_{25}", { { 1, 11, 2, 10 }, { 3, 15, 4, 14 }, { 5, 13, 6, 12 }, { 7, 18, 8, 19 }, { 9, 1, 10, 20 }, { 11, 5, 12, 4 }, { 13, 7, 14, 6 }, { 15, 3, 16, 2 }, { 17, 8, 18, 9 }, { 19, 17, 20, 16 } } },
|
||||
{ "10_{26}", { { 1, 12, 2, 13 }, { 3, 14, 4, 15 }, { 5, 17, 6, 16 }, { 7, 19, 8, 18 }, { 9, 1, 10, 20 }, { 11, 4, 12, 5 }, { 13, 2, 14, 3 }, { 15, 11, 16, 10 }, { 17, 9, 18, 8 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{27}", { { 1, 11, 2, 10 }, { 3, 18, 4, 19 }, { 5, 16, 6, 17 }, { 7, 14, 8, 15 }, { 9, 13, 10, 12 }, { 11, 3, 12, 2 }, { 13, 20, 14, 1 }, { 15, 4, 16, 5 }, { 17, 6, 18, 7 }, { 19, 8, 20, 9 } } },
|
||||
{ "10_{28}", { { 1, 9, 2, 8 }, { 3, 16, 4, 17 }, { 5, 14, 6, 15 }, { 7, 11, 8, 10 }, { 9, 3, 10, 2 }, { 11, 20, 12, 1 }, { 13, 18, 14, 19 }, { 15, 4, 16, 5 }, { 17, 6, 18, 7 }, { 19, 12, 20, 13 } } },
|
||||
{ "10_{29}", { { 2, 15, 3, 16 }, { 4, 2, 5, 1 }, { 6, 11, 7, 12 }, { 8, 18, 9, 17 }, { 10, 20, 11, 19 }, { 12, 5, 13, 6 }, { 14, 3, 15, 4 }, { 16, 14, 17, 13 }, { 18, 10, 19, 9 }, { 20, 8, 1, 7 } } },
|
||||
{ "10_{30}", { { 1, 14, 2, 15 }, { 3, 17, 4, 16 }, { 5, 11, 6, 10 }, { 7, 19, 8, 18 }, { 9, 1, 10, 20 }, { 11, 5, 12, 4 }, { 13, 2, 14, 3 }, { 15, 13, 16, 12 }, { 17, 9, 18, 8 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{31}", { { 2, 6, 3, 5 }, { 4, 16, 5, 15 }, { 6, 2, 7, 1 }, { 8, 17, 9, 18 }, { 10, 19, 11, 20 }, { 12, 7, 13, 8 }, { 14, 4, 15, 3 }, { 16, 14, 17, 13 }, { 18, 11, 19, 12 }, { 20, 9, 1, 10 } } },
|
||||
{ "10_{32}", { { 2, 14, 3, 13 }, { 4, 10, 5, 9 }, { 6, 15, 7, 16 }, { 8, 17, 9, 18 }, { 10, 20, 11, 19 }, { 12, 2, 13, 1 }, { 14, 12, 15, 11 }, { 16, 7, 17, 8 }, { 18, 5, 19, 6 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{33}", { { 6, 2, 7, 1 }, { 14, 6, 15, 5 }, { 20, 15, 1, 16 }, { 16, 7, 17, 8 }, { 8, 19, 9, 20 }, { 18, 9, 19, 10 }, { 10, 17, 11, 18 }, { 2, 14, 3, 13 }, { 12, 4, 13, 3 }, { 4, 12, 5, 11 } } },
|
||||
{ "10_{34}", { { 1, 7, 2, 6 }, { 3, 14, 4, 15 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 20, 10, 1 }, { 11, 18, 12, 19 }, { 13, 16, 14, 17 }, { 15, 4, 16, 5 }, { 17, 12, 18, 13 }, { 19, 10, 20, 11 } } },
|
||||
{ "10_{35}", { { 1, 11, 2, 10 }, { 3, 18, 4, 19 }, { 5, 3, 6, 2 }, { 7, 14, 8, 15 }, { 9, 12, 10, 13 }, { 11, 1, 12, 20 }, { 13, 8, 14, 9 }, { 15, 6, 16, 7 }, { 17, 4, 18, 5 }, { 19, 17, 20, 16 } } },
|
||||
{ "10_{36}", { { 2, 15, 3, 16 }, { 4, 14, 5, 13 }, { 6, 12, 7, 11 }, { 8, 18, 9, 17 }, { 10, 8, 11, 7 }, { 12, 6, 13, 5 }, { 14, 20, 15, 19 }, { 16, 1, 17, 2 }, { 18, 10, 19, 9 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{37}", { { 4, 2, 5, 1 }, { 10, 4, 11, 3 }, { 12, 8, 13, 7 }, { 8, 12, 9, 11 }, { 18, 15, 19, 16 }, { 16, 5, 17, 6 }, { 6, 17, 7, 18 }, { 20, 13, 1, 14 }, { 14, 19, 15, 20 }, { 2, 10, 3, 9 } } },
|
||||
{ "10_{38}", { { 2, 16, 3, 15 }, { 4, 12, 5, 11 }, { 6, 10, 7, 9 }, { 8, 17, 9, 18 }, { 10, 6, 11, 5 }, { 12, 20, 13, 19 }, { 14, 2, 15, 1 }, { 16, 14, 17, 13 }, { 18, 7, 19, 8 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{39}", { { 1, 14, 2, 15 }, { 3, 17, 4, 16 }, { 5, 19, 6, 18 }, { 7, 11, 8, 10 }, { 9, 1, 10, 20 }, { 11, 7, 12, 6 }, { 13, 2, 14, 3 }, { 15, 13, 16, 12 }, { 17, 5, 18, 4 }, { 19, 9, 20, 8 } } },
|
||||
{ "10_{40}", { { 2, 11, 3, 12 }, { 4, 18, 5, 17 }, { 6, 19, 7, 20 }, { 8, 13, 9, 14 }, { 10, 1, 11, 2 }, { 12, 9, 13, 10 }, { 14, 5, 15, 6 }, { 16, 4, 17, 3 }, { 18, 16, 19, 15 }, { 20, 7, 1, 8 } } },
|
||||
{ "10_{41}", { { 1, 14, 2, 15 }, { 3, 17, 4, 16 }, { 5, 10, 6, 11 }, { 7, 19, 8, 18 }, { 9, 6, 10, 7 }, { 11, 1, 12, 20 }, { 13, 2, 14, 3 }, { 15, 13, 16, 12 }, { 17, 9, 18, 8 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{42}", { { 1, 9, 2, 8 }, { 3, 18, 4, 19 }, { 5, 14, 6, 15 }, { 7, 11, 8, 10 }, { 9, 3, 10, 2 }, { 11, 20, 12, 1 }, { 13, 17, 14, 16 }, { 15, 4, 16, 5 }, { 17, 13, 18, 12 }, { 19, 6, 20, 7 } } },
|
||||
{ "10_{43}", { { 4, 2, 5, 1 }, { 10, 4, 11, 3 }, { 14, 8, 15, 7 }, { 20, 11, 1, 12 }, { 12, 19, 13, 20 }, { 8, 14, 9, 13 }, { 18, 15, 19, 16 }, { 16, 5, 17, 6 }, { 6, 17, 7, 18 }, { 2, 10, 3, 9 } } },
|
||||
{ "10_{44}", { { 1, 14, 2, 15 }, { 3, 17, 4, 16 }, { 5, 20, 6, 1 }, { 7, 19, 8, 18 }, { 9, 7, 10, 6 }, { 11, 5, 12, 4 }, { 13, 2, 14, 3 }, { 15, 13, 16, 12 }, { 17, 10, 18, 11 }, { 19, 9, 20, 8 } } },
|
||||
{ "10_{45}", { { 4, 2, 5, 1 }, { 12, 6, 13, 5 }, { 10, 3, 11, 4 }, { 2, 11, 3, 12 }, { 20, 14, 1, 13 }, { 14, 7, 15, 8 }, { 6, 19, 7, 20 }, { 18, 15, 19, 16 }, { 16, 10, 17, 9 }, { 8, 18, 9, 17 } } },
|
||||
{ "10_{46}", { { 1, 15, 2, 14 }, { 3, 9, 4, 8 }, { 5, 11, 6, 10 }, { 7, 16, 8, 17 }, { 9, 5, 10, 4 }, { 11, 19, 12, 18 }, { 13, 1, 14, 20 }, { 15, 3, 16, 2 }, { 17, 6, 18, 7 }, { 19, 13, 20, 12 } } },
|
||||
{ "10_{47}", { { 2, 9, 3, 10 }, { 4, 11, 5, 12 }, { 6, 17, 7, 18 }, { 8, 1, 9, 2 }, { 10, 3, 11, 4 }, { 12, 5, 13, 6 }, { 14, 20, 15, 19 }, { 16, 14, 17, 13 }, { 18, 7, 19, 8 }, { 20, 16, 1, 15 } } },
|
||||
{ "10_{48}", { { 6, 2, 7, 1 }, { 8, 4, 9, 3 }, { 14, 6, 15, 5 }, { 20, 15, 1, 16 }, { 16, 9, 17, 10 }, { 18, 11, 19, 12 }, { 10, 17, 11, 18 }, { 12, 19, 13, 20 }, { 2, 8, 3, 7 }, { 4, 14, 5, 13 } } },
|
||||
{ "10_{49}", { { 1, 7, 2, 6 }, { 3, 17, 4, 16 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 15, 10, 14 }, { 11, 19, 12, 18 }, { 13, 1, 14, 20 }, { 15, 5, 16, 4 }, { 17, 11, 18, 10 }, { 19, 13, 20, 12 } } },
|
||||
{ "10_{50}", { { 1, 10, 2, 11 }, { 3, 19, 4, 18 }, { 5, 13, 6, 12 }, { 7, 15, 8, 14 }, { 9, 17, 10, 16 }, { 11, 20, 12, 1 }, { 13, 9, 14, 8 }, { 15, 7, 16, 6 }, { 17, 3, 18, 2 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{51}", { { 2, 18, 3, 17 }, { 4, 11, 5, 12 }, { 6, 13, 7, 14 }, { 8, 15, 9, 16 }, { 10, 19, 11, 20 }, { 12, 7, 13, 8 }, { 14, 5, 15, 6 }, { 16, 2, 17, 1 }, { 18, 9, 19, 10 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{52}", { { 1, 13, 2, 12 }, { 3, 19, 4, 18 }, { 5, 10, 6, 11 }, { 7, 14, 8, 15 }, { 9, 16, 10, 17 }, { 11, 1, 12, 20 }, { 13, 8, 14, 9 }, { 15, 6, 16, 7 }, { 17, 3, 18, 2 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{53}", { { 1, 7, 2, 6 }, { 3, 17, 4, 16 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 15, 10, 14 }, { 11, 19, 12, 18 }, { 13, 1, 14, 20 }, { 15, 5, 16, 4 }, { 17, 13, 18, 12 }, { 19, 11, 20, 10 } } },
|
||||
{ "10_{54}", { { 2, 16, 3, 15 }, { 4, 9, 5, 10 }, { 6, 11, 7, 12 }, { 8, 19, 9, 20 }, { 10, 5, 11, 6 }, { 12, 18, 13, 17 }, { 14, 2, 15, 1 }, { 16, 14, 17, 13 }, { 18, 7, 19, 8 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{55}", { { 2, 10, 3, 9 }, { 4, 18, 5, 17 }, { 6, 12, 7, 11 }, { 8, 2, 9, 1 }, { 10, 8, 11, 7 }, { 12, 6, 13, 5 }, { 14, 20, 15, 19 }, { 16, 14, 17, 13 }, { 18, 4, 19, 3 }, { 20, 16, 1, 15 } } },
|
||||
{ "10_{56}", { { 2, 16, 3, 15 }, { 4, 10, 5, 9 }, { 6, 12, 7, 11 }, { 8, 17, 9, 18 }, { 10, 6, 11, 5 }, { 12, 20, 13, 19 }, { 14, 2, 15, 1 }, { 16, 14, 17, 13 }, { 18, 7, 19, 8 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{57}", { { 1, 4, 2, 5 }, { 3, 16, 4, 17 }, { 5, 20, 6, 1 }, { 7, 13, 8, 12 }, { 9, 7, 10, 6 }, { 11, 18, 12, 19 }, { 13, 9, 14, 8 }, { 15, 2, 16, 3 }, { 17, 10, 18, 11 }, { 19, 14, 20, 15 } } },
|
||||
{ "10_{58}", { { 2, 15, 3, 16 }, { 4, 10, 5, 9 }, { 6, 13, 7, 14 }, { 8, 6, 9, 5 }, { 10, 20, 11, 19 }, { 12, 7, 13, 8 }, { 14, 18, 15, 17 }, { 16, 1, 17, 2 }, { 18, 12, 19, 11 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{59}", { { 1, 4, 2, 5 }, { 3, 17, 4, 16 }, { 5, 20, 6, 1 }, { 7, 14, 8, 15 }, { 9, 7, 10, 6 }, { 11, 19, 12, 18 }, { 13, 8, 14, 9 }, { 15, 11, 16, 10 }, { 17, 3, 18, 2 }, { 19, 13, 20, 12 } } },
|
||||
{ "10_{60}", { { 2, 15, 3, 16 }, { 4, 8, 5, 7 }, { 6, 11, 7, 12 }, { 8, 14, 9, 13 }, { 10, 17, 11, 18 }, { 12, 5, 13, 6 }, { 14, 20, 15, 19 }, { 16, 1, 17, 2 }, { 18, 9, 19, 10 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{61}", { { 1, 9, 2, 8 }, { 3, 16, 4, 17 }, { 5, 14, 6, 15 }, { 7, 1, 8, 20 }, { 9, 3, 10, 2 }, { 11, 19, 12, 18 }, { 13, 6, 14, 7 }, { 15, 4, 16, 5 }, { 17, 11, 18, 10 }, { 19, 13, 20, 12 } } },
|
||||
{ "10_{62}", { { 2, 11, 3, 12 }, { 4, 18, 5, 17 }, { 6, 13, 7, 14 }, { 8, 19, 9, 20 }, { 10, 1, 11, 2 }, { 12, 5, 13, 6 }, { 14, 7, 15, 8 }, { 16, 4, 17, 3 }, { 18, 16, 19, 15 }, { 20, 9, 1, 10 } } },
|
||||
{ "10_{63}", { { 1, 9, 2, 8 }, { 3, 19, 4, 18 }, { 5, 17, 6, 16 }, { 7, 11, 8, 10 }, { 9, 3, 10, 2 }, { 11, 15, 12, 14 }, { 13, 1, 14, 20 }, { 15, 7, 16, 6 }, { 17, 5, 18, 4 }, { 19, 13, 20, 12 } } },
|
||||
{ "10_{64}", { { 2, 11, 3, 12 }, { 4, 18, 5, 17 }, { 6, 14, 7, 13 }, { 8, 16, 9, 15 }, { 10, 1, 11, 2 }, { 12, 19, 13, 20 }, { 14, 8, 15, 7 }, { 16, 4, 17, 3 }, { 18, 6, 19, 5 }, { 20, 9, 1, 10 } } },
|
||||
{ "10_{65}", { { 1, 9, 2, 8 }, { 3, 16, 4, 17 }, { 5, 14, 6, 15 }, { 7, 11, 8, 10 }, { 9, 3, 10, 2 }, { 11, 18, 12, 19 }, { 13, 20, 14, 1 }, { 15, 4, 16, 5 }, { 17, 6, 18, 7 }, { 19, 12, 20, 13 } } },
|
||||
{ "10_{66}", { { 1, 11, 2, 10 }, { 3, 13, 4, 12 }, { 5, 19, 6, 18 }, { 7, 15, 8, 14 }, { 9, 5, 10, 4 }, { 11, 3, 12, 2 }, { 13, 17, 14, 16 }, { 15, 9, 16, 8 }, { 17, 1, 18, 20 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{67}", { { 1, 14, 2, 15 }, { 3, 19, 4, 18 }, { 5, 17, 6, 16 }, { 7, 11, 8, 10 }, { 9, 1, 10, 20 }, { 11, 7, 12, 6 }, { 13, 2, 14, 3 }, { 15, 13, 16, 12 }, { 17, 5, 18, 4 }, { 19, 9, 20, 8 } } },
|
||||
{ "10_{68}", { { 1, 11, 2, 10 }, { 3, 16, 4, 17 }, { 5, 14, 6, 15 }, { 7, 18, 8, 19 }, { 9, 13, 10, 12 }, { 11, 3, 12, 2 }, { 13, 20, 14, 1 }, { 15, 4, 16, 5 }, { 17, 8, 18, 9 }, { 19, 6, 20, 7 } } },
|
||||
{ "10_{69}", { { 2, 13, 3, 14 }, { 4, 17, 5, 18 }, { 6, 2, 7, 1 }, { 8, 19, 9, 20 }, { 10, 7, 11, 8 }, { 12, 3, 13, 4 }, { 14, 12, 15, 11 }, { 16, 5, 17, 6 }, { 18, 16, 19, 15 }, { 20, 9, 1, 10 } } },
|
||||
{ "10_{70}", { { 2, 15, 3, 16 }, { 4, 11, 5, 12 }, { 6, 13, 7, 14 }, { 8, 20, 9, 19 }, { 10, 7, 11, 8 }, { 12, 5, 13, 6 }, { 14, 18, 15, 17 }, { 16, 1, 17, 2 }, { 18, 10, 19, 9 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{71}", { { 1, 4, 2, 5 }, { 3, 8, 4, 9 }, { 11, 15, 12, 14 }, { 5, 13, 6, 12 }, { 13, 7, 14, 6 }, { 9, 19, 10, 18 }, { 15, 20, 16, 1 }, { 19, 16, 20, 17 }, { 17, 11, 18, 10 }, { 7, 2, 8, 3 } } },
|
||||
{ "10_{72}", { { 2, 15, 3, 16 }, { 4, 12, 5, 11 }, { 6, 14, 7, 13 }, { 8, 18, 9, 17 }, { 10, 8, 11, 7 }, { 12, 6, 13, 5 }, { 14, 20, 15, 19 }, { 16, 1, 17, 2 }, { 18, 10, 19, 9 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{73}", { { 2, 15, 3, 16 }, { 4, 7, 5, 8 }, { 6, 13, 7, 14 }, { 8, 12, 9, 11 }, { 10, 17, 11, 18 }, { 12, 5, 13, 6 }, { 14, 20, 15, 19 }, { 16, 1, 17, 2 }, { 18, 9, 19, 10 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{74}", { { 1, 12, 2, 13 }, { 3, 15, 4, 14 }, { 5, 17, 6, 16 }, { 7, 1, 8, 20 }, { 9, 19, 10, 18 }, { 11, 2, 12, 3 }, { 13, 11, 14, 10 }, { 15, 7, 16, 6 }, { 17, 5, 18, 4 }, { 19, 9, 20, 8 } } },
|
||||
{ "10_{75}", { { 1, 14, 2, 15 }, { 3, 17, 4, 16 }, { 5, 18, 6, 19 }, { 7, 5, 8, 4 }, { 9, 20, 10, 1 }, { 11, 9, 12, 8 }, { 13, 2, 14, 3 }, { 15, 13, 16, 12 }, { 17, 6, 18, 7 }, { 19, 10, 20, 11 } } },
|
||||
{ "10_{76}", { { 2, 11, 3, 12 }, { 4, 18, 5, 17 }, { 6, 20, 7, 19 }, { 8, 14, 9, 13 }, { 10, 16, 11, 15 }, { 12, 1, 13, 2 }, { 14, 10, 15, 9 }, { 16, 8, 17, 7 }, { 18, 6, 19, 5 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{77}", { { 1, 7, 2, 6 }, { 3, 14, 4, 15 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 18, 10, 19 }, { 11, 20, 12, 1 }, { 13, 16, 14, 17 }, { 15, 4, 16, 5 }, { 17, 12, 18, 13 }, { 19, 10, 20, 11 } } },
|
||||
{ "10_{78}", { { 1, 7, 2, 6 }, { 3, 17, 4, 16 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 13, 10, 12 }, { 11, 1, 12, 20 }, { 13, 18, 14, 19 }, { 15, 5, 16, 4 }, { 17, 14, 18, 15 }, { 19, 11, 20, 10 } } },
|
||||
{ "10_{79}", { { 6, 2, 7, 1 }, { 8, 4, 9, 3 }, { 12, 6, 13, 5 }, { 18, 13, 19, 14 }, { 16, 9, 17, 10 }, { 10, 17, 11, 18 }, { 20, 15, 1, 16 }, { 14, 19, 15, 20 }, { 2, 8, 3, 7 }, { 4, 12, 5, 11 } } },
|
||||
{ "10_{80}", { { 1, 17, 2, 16 }, { 3, 11, 4, 10 }, { 5, 19, 6, 18 }, { 7, 13, 8, 12 }, { 9, 5, 10, 4 }, { 11, 15, 12, 14 }, { 13, 9, 14, 8 }, { 15, 1, 16, 20 }, { 17, 3, 18, 2 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{81}", { { 4, 2, 5, 1 }, { 8, 4, 9, 3 }, { 12, 6, 13, 5 }, { 16, 9, 17, 10 }, { 20, 17, 1, 18 }, { 18, 13, 19, 14 }, { 14, 19, 15, 20 }, { 10, 15, 11, 16 }, { 6, 12, 7, 11 }, { 2, 8, 3, 7 } } },
|
||||
{ "10_{82}", { { 1, 12, 2, 13 }, { 3, 15, 4, 14 }, { 5, 19, 6, 18 }, { 7, 1, 8, 20 }, { 9, 2, 10, 3 }, { 11, 16, 12, 17 }, { 13, 9, 14, 8 }, { 15, 10, 16, 11 }, { 17, 5, 18, 4 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{83}", { { 2, 7, 3, 8 }, { 4, 10, 5, 9 }, { 6, 1, 7, 2 }, { 8, 16, 9, 15 }, { 10, 17, 11, 18 }, { 12, 19, 13, 20 }, { 14, 6, 15, 5 }, { 16, 3, 17, 4 }, { 18, 13, 19, 14 }, { 20, 11, 1, 12 } } },
|
||||
{ "10_{84}", { { 2, 10, 3, 9 }, { 4, 2, 5, 1 }, { 6, 13, 7, 14 }, { 8, 12, 9, 11 }, { 10, 4, 11, 3 }, { 12, 17, 13, 18 }, { 14, 20, 15, 19 }, { 16, 7, 17, 8 }, { 18, 6, 19, 5 }, { 20, 16, 1, 15 } } },
|
||||
{ "10_{85}", { { 2, 7, 3, 8 }, { 4, 10, 5, 9 }, { 6, 1, 7, 2 }, { 8, 16, 9, 15 }, { 10, 17, 11, 18 }, { 12, 19, 13, 20 }, { 14, 6, 15, 5 }, { 16, 3, 17, 4 }, { 18, 11, 19, 12 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{86}", { { 2, 7, 3, 8 }, { 4, 10, 5, 9 }, { 6, 1, 7, 2 }, { 8, 15, 9, 16 }, { 10, 18, 11, 17 }, { 12, 20, 13, 19 }, { 14, 4, 15, 3 }, { 16, 5, 17, 6 }, { 18, 14, 19, 13 }, { 20, 12, 1, 11 } } },
|
||||
{ "10_{87}", { { 2, 11, 3, 12 }, { 4, 14, 5, 13 }, { 6, 1, 7, 2 }, { 8, 16, 9, 15 }, { 10, 8, 11, 7 }, { 12, 19, 13, 20 }, { 14, 18, 15, 17 }, { 16, 10, 17, 9 }, { 18, 4, 19, 3 }, { 20, 5, 1, 6 } } },
|
||||
{ "10_{88}", { { 4, 2, 5, 1 }, { 20, 14, 1, 13 }, { 8, 3, 9, 4 }, { 2, 9, 3, 10 }, { 14, 7, 15, 8 }, { 18, 15, 19, 16 }, { 12, 6, 13, 5 }, { 10, 18, 11, 17 }, { 16, 12, 17, 11 }, { 6, 19, 7, 20 } } },
|
||||
{ "10_{89}", { { 2, 7, 3, 8 }, { 4, 13, 5, 14 }, { 6, 12, 7, 11 }, { 8, 1, 9, 2 }, { 10, 15, 11, 16 }, { 12, 19, 13, 20 }, { 14, 18, 15, 17 }, { 16, 9, 17, 10 }, { 18, 5, 19, 6 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{90}", { { 2, 9, 3, 10 }, { 4, 13, 5, 14 }, { 6, 20, 7, 19 }, { 8, 16, 9, 15 }, { 10, 3, 11, 4 }, { 12, 18, 13, 17 }, { 14, 1, 15, 2 }, { 16, 12, 17, 11 }, { 18, 8, 19, 7 }, { 20, 6, 1, 5 } } },
|
||||
{ "10_{91}", { { 6, 2, 7, 1 }, { 20, 6, 1, 5 }, { 16, 9, 17, 10 }, { 10, 3, 11, 4 }, { 2, 18, 3, 17 }, { 14, 7, 15, 8 }, { 8, 15, 9, 16 }, { 12, 20, 13, 19 }, { 18, 12, 19, 11 }, { 4, 13, 5, 14 } } },
|
||||
{ "10_{92}", { { 1, 9, 2, 8 }, { 3, 19, 4, 18 }, { 5, 12, 6, 13 }, { 7, 11, 8, 10 }, { 9, 3, 10, 2 }, { 11, 17, 12, 16 }, { 13, 4, 14, 5 }, { 15, 1, 16, 20 }, { 17, 7, 18, 6 }, { 19, 15, 20, 14 } } },
|
||||
{ "10_{93}", { { 2, 17, 3, 18 }, { 4, 12, 5, 11 }, { 6, 20, 7, 19 }, { 8, 15, 9, 16 }, { 10, 6, 11, 5 }, { 12, 4, 13, 3 }, { 14, 7, 15, 8 }, { 16, 1, 17, 2 }, { 18, 13, 19, 14 }, { 20, 10, 1, 9 } } },
|
||||
{ "10_{94}", { { 1, 9, 2, 8 }, { 3, 10, 4, 11 }, { 5, 14, 6, 15 }, { 7, 1, 8, 20 }, { 9, 17, 10, 16 }, { 11, 4, 12, 5 }, { 13, 19, 14, 18 }, { 15, 2, 16, 3 }, { 17, 13, 18, 12 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{95}", { { 2, 16, 3, 15 }, { 4, 11, 5, 12 }, { 6, 17, 7, 18 }, { 8, 13, 9, 14 }, { 10, 19, 11, 20 }, { 12, 7, 13, 8 }, { 14, 2, 15, 1 }, { 16, 9, 17, 10 }, { 18, 5, 19, 6 }, { 20, 4, 1, 3 } } },
|
||||
{ "10_{96}", { { 1, 16, 2, 17 }, { 3, 10, 4, 11 }, { 5, 1, 6, 20 }, { 7, 12, 8, 13 }, { 9, 4, 10, 5 }, { 11, 19, 12, 18 }, { 13, 6, 14, 7 }, { 15, 2, 16, 3 }, { 17, 15, 18, 14 }, { 19, 9, 20, 8 } } },
|
||||
{ "10_{97}", { { 2, 12, 3, 11 }, { 4, 18, 5, 17 }, { 6, 13, 7, 14 }, { 8, 6, 9, 5 }, { 10, 20, 11, 19 }, { 12, 7, 13, 8 }, { 14, 2, 15, 1 }, { 16, 10, 17, 9 }, { 18, 4, 19, 3 }, { 20, 16, 1, 15 } } },
|
||||
{ "10_{98}", { { 1, 10, 2, 11 }, { 3, 17, 4, 16 }, { 5, 13, 6, 12 }, { 7, 19, 8, 18 }, { 9, 15, 10, 14 }, { 11, 20, 12, 1 }, { 13, 7, 14, 6 }, { 15, 3, 16, 2 }, { 17, 9, 18, 8 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{99}", { { 6, 2, 7, 1 }, { 10, 4, 11, 3 }, { 16, 11, 17, 12 }, { 14, 7, 15, 8 }, { 8, 15, 9, 16 }, { 20, 13, 1, 14 }, { 12, 19, 13, 20 }, { 18, 6, 19, 5 }, { 2, 10, 3, 9 }, { 4, 18, 5, 17 } } },
|
||||
{ "10_{100}", { { 2, 9, 3, 10 }, { 4, 17, 5, 18 }, { 6, 12, 7, 11 }, { 8, 1, 9, 2 }, { 10, 16, 11, 15 }, { 12, 19, 13, 20 }, { 14, 8, 15, 7 }, { 16, 3, 17, 4 }, { 18, 5, 19, 6 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{101}", { { 2, 12, 3, 11 }, { 4, 18, 5, 17 }, { 6, 14, 7, 13 }, { 8, 20, 9, 19 }, { 10, 6, 11, 5 }, { 12, 2, 13, 1 }, { 14, 10, 15, 9 }, { 16, 4, 17, 3 }, { 18, 16, 19, 15 }, { 20, 8, 1, 7 } } },
|
||||
{ "10_{102}", { { 2, 9, 3, 10 }, { 4, 12, 5, 11 }, { 6, 18, 7, 17 }, { 8, 16, 9, 15 }, { 10, 19, 11, 20 }, { 12, 6, 13, 5 }, { 14, 1, 15, 2 }, { 16, 8, 17, 7 }, { 18, 4, 19, 3 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{103}", { { 2, 9, 3, 10 }, { 4, 17, 5, 18 }, { 6, 12, 7, 11 }, { 8, 1, 9, 2 }, { 10, 16, 11, 15 }, { 12, 19, 13, 20 }, { 14, 8, 15, 7 }, { 16, 5, 17, 6 }, { 18, 3, 19, 4 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{104}", { { 6, 2, 7, 1 }, { 16, 4, 17, 3 }, { 18, 9, 19, 10 }, { 14, 7, 15, 8 }, { 20, 13, 1, 14 }, { 8, 17, 9, 18 }, { 10, 19, 11, 20 }, { 12, 6, 13, 5 }, { 4, 12, 5, 11 }, { 2, 16, 3, 15 } } },
|
||||
{ "10_{105}", { { 1, 11, 2, 10 }, { 3, 16, 4, 17 }, { 5, 1, 6, 20 }, { 7, 18, 8, 19 }, { 9, 13, 10, 12 }, { 11, 3, 12, 2 }, { 13, 7, 14, 6 }, { 15, 4, 16, 5 }, { 17, 8, 18, 9 }, { 19, 15, 20, 14 } } },
|
||||
{ "10_{106}", { { 1, 15, 2, 14 }, { 3, 10, 4, 11 }, { 5, 17, 6, 16 }, { 7, 13, 8, 12 }, { 9, 2, 10, 3 }, { 11, 18, 12, 19 }, { 13, 1, 14, 20 }, { 15, 5, 16, 4 }, { 17, 7, 18, 6 }, { 19, 8, 20, 9 } } },
|
||||
{ "10_{107}", { { 1, 11, 2, 10 }, { 3, 16, 4, 17 }, { 5, 1, 6, 20 }, { 7, 14, 8, 15 }, { 9, 13, 10, 12 }, { 11, 3, 12, 2 }, { 13, 18, 14, 19 }, { 15, 4, 16, 5 }, { 17, 8, 18, 9 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{108}", { { 1, 15, 2, 14 }, { 3, 11, 4, 10 }, { 5, 12, 6, 13 }, { 7, 16, 8, 17 }, { 9, 3, 10, 2 }, { 11, 18, 12, 19 }, { 13, 1, 14, 20 }, { 15, 8, 16, 9 }, { 17, 6, 18, 7 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{109}", { { 6, 2, 7, 1 }, { 10, 4, 11, 3 }, { 18, 11, 19, 12 }, { 16, 7, 17, 8 }, { 8, 17, 9, 18 }, { 20, 15, 1, 16 }, { 12, 19, 13, 20 }, { 14, 6, 15, 5 }, { 2, 10, 3, 9 }, { 4, 14, 5, 13 } } },
|
||||
{ "10_{110}", { { 1, 14, 2, 15 }, { 3, 10, 4, 11 }, { 5, 1, 6, 20 }, { 7, 17, 8, 16 }, { 9, 4, 10, 5 }, { 11, 19, 12, 18 }, { 13, 2, 14, 3 }, { 15, 7, 16, 6 }, { 17, 13, 18, 12 }, { 19, 9, 20, 8 } } },
|
||||
{ "10_{111}", { { 1, 9, 2, 8 }, { 3, 19, 4, 18 }, { 5, 11, 6, 10 }, { 7, 14, 8, 15 }, { 9, 3, 10, 2 }, { 11, 17, 12, 16 }, { 13, 1, 14, 20 }, { 15, 6, 16, 7 }, { 17, 5, 18, 4 }, { 19, 13, 20, 12 } } },
|
||||
{ "10_{112}", { { 2, 10, 3, 9 }, { 4, 11, 5, 12 }, { 6, 19, 7, 20 }, { 8, 14, 9, 13 }, { 10, 15, 11, 16 }, { 12, 18, 13, 17 }, { 14, 1, 15, 2 }, { 16, 4, 17, 3 }, { 18, 5, 19, 6 }, { 20, 7, 1, 8 } } },
|
||||
{ "10_{113}", { { 2, 8, 3, 7 }, { 4, 14, 5, 13 }, { 6, 11, 7, 12 }, { 8, 16, 9, 15 }, { 10, 2, 11, 1 }, { 12, 19, 13, 20 }, { 14, 18, 15, 17 }, { 16, 10, 17, 9 }, { 18, 4, 19, 3 }, { 20, 5, 1, 6 } } },
|
||||
{ "10_{114}", { { 1, 8, 2, 9 }, { 3, 11, 4, 10 }, { 5, 14, 6, 15 }, { 7, 12, 8, 13 }, { 9, 17, 10, 16 }, { 11, 18, 12, 19 }, { 13, 6, 14, 7 }, { 15, 1, 16, 20 }, { 17, 2, 18, 3 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{115}", { { 6, 2, 7, 1 }, { 14, 6, 15, 5 }, { 20, 15, 1, 16 }, { 16, 7, 17, 8 }, { 8, 19, 9, 20 }, { 18, 11, 19, 12 }, { 10, 4, 11, 3 }, { 4, 10, 5, 9 }, { 12, 17, 13, 18 }, { 2, 14, 3, 13 } } },
|
||||
{ "10_{116}", { { 2, 16, 3, 15 }, { 4, 17, 5, 18 }, { 6, 12, 7, 11 }, { 8, 1, 9, 2 }, { 10, 4, 11, 3 }, { 12, 19, 13, 20 }, { 14, 8, 15, 7 }, { 16, 9, 17, 10 }, { 18, 5, 19, 6 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{117}", { { 1, 14, 2, 15 }, { 3, 8, 4, 9 }, { 5, 18, 6, 19 }, { 7, 17, 8, 16 }, { 9, 20, 10, 1 }, { 11, 4, 12, 5 }, { 13, 7, 14, 6 }, { 15, 2, 16, 3 }, { 17, 13, 18, 12 }, { 19, 10, 20, 11 } } },
|
||||
{ "10_{118}", { { 6, 2, 7, 1 }, { 18, 6, 19, 5 }, { 20, 13, 1, 14 }, { 12, 19, 13, 20 }, { 14, 7, 15, 8 }, { 8, 3, 9, 4 }, { 2, 16, 3, 15 }, { 10, 18, 11, 17 }, { 16, 10, 17, 9 }, { 4, 11, 5, 12 } } },
|
||||
{ "10_{119}", { { 1, 16, 2, 17 }, { 3, 10, 4, 11 }, { 5, 1, 6, 20 }, { 7, 2, 8, 3 }, { 9, 14, 10, 15 }, { 11, 19, 12, 18 }, { 13, 4, 14, 5 }, { 15, 8, 16, 9 }, { 17, 7, 18, 6 }, { 19, 13, 20, 12 } } },
|
||||
{ "10_{120}", { { 2, 10, 3, 9 }, { 4, 18, 5, 17 }, { 6, 12, 7, 11 }, { 8, 4, 9, 3 }, { 10, 16, 11, 15 }, { 12, 20, 13, 19 }, { 14, 8, 15, 7 }, { 16, 2, 17, 1 }, { 18, 14, 19, 13 }, { 20, 6, 1, 5 } } },
|
||||
{ "10_{121}", { { 2, 11, 3, 12 }, { 4, 10, 5, 9 }, { 6, 2, 7, 1 }, { 8, 16, 9, 15 }, { 10, 17, 11, 18 }, { 12, 8, 13, 7 }, { 14, 20, 15, 19 }, { 16, 3, 17, 4 }, { 18, 6, 19, 5 }, { 20, 14, 1, 13 } } },
|
||||
{ "10_{122}", { { 1, 8, 2, 9 }, { 3, 11, 4, 10 }, { 5, 12, 6, 13 }, { 7, 16, 8, 17 }, { 9, 15, 10, 14 }, { 11, 18, 12, 19 }, { 13, 1, 14, 20 }, { 15, 2, 16, 3 }, { 17, 6, 18, 7 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{123}", { { 8, 2, 9, 1 }, { 10, 3, 11, 4 }, { 12, 6, 13, 5 }, { 4, 18, 5, 17 }, { 18, 11, 19, 12 }, { 2, 15, 3, 16 }, { 16, 10, 17, 9 }, { 20, 14, 1, 13 }, { 14, 7, 15, 8 }, { 6, 19, 7, 20 } } },
|
||||
{ "10_{124}", { { 1, 9, 2, 8 }, { 3, 11, 4, 10 }, { 5, 13, 6, 12 }, { 7, 19, 8, 18 }, { 9, 3, 10, 2 }, { 11, 5, 12, 4 }, { 14, 20, 15, 19 }, { 16, 14, 17, 13 }, { 17, 7, 18, 6 }, { 20, 16, 1, 15 } } },
|
||||
{ "10_{125}", { { 1, 4, 2, 5 }, { 3, 8, 4, 9 }, { 5, 14, 6, 15 }, { 20, 16, 1, 15 }, { 16, 10, 17, 9 }, { 18, 12, 19, 11 }, { 10, 18, 11, 17 }, { 12, 20, 13, 19 }, { 13, 6, 14, 7 }, { 7, 2, 8, 3 } } },
|
||||
{ "10_{126}", { { 1, 7, 2, 6 }, { 4, 15, 5, 16 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 10, 17, 11, 18 }, { 12, 19, 13, 20 }, { 14, 9, 15, 10 }, { 16, 3, 17, 4 }, { 18, 11, 19, 12 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{127}", { { 1, 7, 2, 6 }, { 4, 15, 5, 16 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 15, 10, 14 }, { 11, 19, 12, 18 }, { 13, 1, 14, 20 }, { 16, 3, 17, 4 }, { 17, 11, 18, 10 }, { 19, 13, 20, 12 } } },
|
||||
{ "10_{128}", { { 1, 9, 2, 8 }, { 3, 11, 4, 10 }, { 5, 13, 6, 12 }, { 7, 19, 8, 18 }, { 9, 5, 10, 4 }, { 11, 3, 12, 2 }, { 14, 20, 15, 19 }, { 16, 14, 17, 13 }, { 17, 7, 18, 6 }, { 20, 16, 1, 15 } } },
|
||||
{ "10_{129}", { { 1, 7, 2, 6 }, { 3, 17, 4, 16 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 10, 19, 11, 20 }, { 12, 17, 13, 18 }, { 14, 9, 15, 10 }, { 15, 5, 16, 4 }, { 18, 11, 19, 12 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{130}", { { 1, 7, 2, 6 }, { 4, 15, 5, 16 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 10, 19, 11, 20 }, { 12, 17, 13, 18 }, { 14, 9, 15, 10 }, { 16, 3, 17, 4 }, { 18, 11, 19, 12 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{131}", { { 1, 7, 2, 6 }, { 4, 15, 5, 16 }, { 5, 9, 6, 8 }, { 7, 3, 8, 2 }, { 9, 15, 10, 14 }, { 11, 19, 12, 18 }, { 13, 1, 14, 20 }, { 16, 3, 17, 4 }, { 17, 13, 18, 12 }, { 19, 11, 20, 10 } } },
|
||||
{ "10_{132}", { { 1, 8, 2, 9 }, { 3, 18, 4, 19 }, { 5, 12, 6, 13 }, { 7, 10, 8, 11 }, { 9, 2, 10, 3 }, { 11, 6, 12, 7 }, { 14, 20, 15, 19 }, { 16, 14, 17, 13 }, { 17, 4, 18, 5 }, { 20, 16, 1, 15 } } },
|
||||
{ "10_{133}", { { 2, 16, 3, 15 }, { 4, 2, 5, 1 }, { 7, 13, 8, 12 }, { 9, 7, 10, 6 }, { 11, 18, 12, 19 }, { 13, 9, 14, 8 }, { 14, 20, 15, 19 }, { 16, 4, 17, 3 }, { 17, 10, 18, 11 }, { 20, 6, 1, 5 } } },
|
||||
{ "10_{134}", { { 2, 16, 3, 15 }, { 4, 2, 5, 1 }, { 7, 13, 8, 12 }, { 9, 7, 10, 6 }, { 10, 18, 11, 17 }, { 13, 9, 14, 8 }, { 14, 20, 15, 19 }, { 16, 4, 17, 3 }, { 18, 12, 19, 11 }, { 20, 6, 1, 5 } } },
|
||||
{ "10_{135}", { { 1, 4, 2, 5 }, { 3, 16, 4, 17 }, { 5, 20, 6, 1 }, { 7, 13, 8, 12 }, { 9, 7, 10, 6 }, { 10, 18, 11, 17 }, { 13, 9, 14, 8 }, { 15, 2, 16, 3 }, { 18, 12, 19, 11 }, { 19, 14, 20, 15 } } },
|
||||
{ "10_{136}", { { 2, 17, 3, 18 }, { 4, 2, 5, 1 }, { 7, 14, 8, 15 }, { 9, 7, 10, 6 }, { 12, 19, 13, 20 }, { 13, 8, 14, 9 }, { 15, 11, 16, 10 }, { 16, 3, 17, 4 }, { 18, 11, 19, 12 }, { 20, 6, 1, 5 } } },
|
||||
{ "10_{137}", { { 1, 15, 2, 14 }, { 4, 8, 5, 7 }, { 6, 19, 7, 20 }, { 9, 17, 10, 16 }, { 11, 8, 12, 9 }, { 13, 3, 14, 2 }, { 15, 11, 16, 10 }, { 17, 12, 18, 13 }, { 18, 4, 19, 3 }, { 20, 5, 1, 6 } } },
|
||||
{ "10_{138}", { { 1, 15, 2, 14 }, { 4, 8, 5, 7 }, { 6, 19, 7, 20 }, { 8, 12, 9, 11 }, { 10, 15, 11, 16 }, { 12, 18, 13, 17 }, { 13, 3, 14, 2 }, { 16, 9, 17, 10 }, { 18, 4, 19, 3 }, { 20, 5, 1, 6 } } },
|
||||
{ "10_{139}", { { 1, 11, 2, 10 }, { 4, 18, 5, 17 }, { 5, 13, 6, 12 }, { 7, 15, 8, 14 }, { 9, 1, 10, 20 }, { 11, 3, 12, 2 }, { 13, 7, 14, 6 }, { 16, 4, 17, 3 }, { 18, 16, 19, 15 }, { 19, 9, 20, 8 } } },
|
||||
{ "10_{140}", { { 1, 15, 2, 14 }, { 3, 10, 4, 11 }, { 5, 12, 6, 13 }, { 6, 18, 7, 17 }, { 8, 16, 9, 15 }, { 11, 4, 12, 5 }, { 13, 1, 14, 20 }, { 16, 8, 17, 7 }, { 18, 10, 19, 9 }, { 19, 3, 20, 2 } } },
|
||||
{ "10_{141}", { { 2, 11, 3, 12 }, { 4, 9, 5, 10 }, { 5, 19, 6, 18 }, { 7, 15, 8, 14 }, { 10, 1, 11, 2 }, { 12, 3, 13, 4 }, { 13, 17, 14, 16 }, { 15, 9, 16, 8 }, { 17, 1, 18, 20 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{142}", { { 1, 15, 2, 14 }, { 4, 12, 5, 11 }, { 6, 18, 7, 17 }, { 8, 16, 9, 15 }, { 10, 4, 11, 3 }, { 12, 6, 13, 5 }, { 13, 1, 14, 20 }, { 16, 8, 17, 7 }, { 18, 10, 19, 9 }, { 19, 3, 20, 2 } } },
|
||||
{ "10_{143}", { { 2, 11, 3, 12 }, { 4, 9, 5, 10 }, { 6, 19, 7, 20 }, { 7, 15, 8, 14 }, { 10, 1, 11, 2 }, { 12, 3, 13, 4 }, { 13, 17, 14, 16 }, { 15, 9, 16, 8 }, { 18, 5, 19, 6 }, { 20, 17, 1, 18 } } },
|
||||
{ "10_{144}", { { 1, 9, 2, 8 }, { 3, 16, 4, 17 }, { 5, 14, 6, 15 }, { 7, 11, 8, 10 }, { 9, 3, 10, 2 }, { 12, 20, 13, 19 }, { 15, 4, 16, 5 }, { 17, 6, 18, 7 }, { 18, 12, 19, 11 }, { 20, 14, 1, 13 } } },
|
||||
{ "10_{145}", { { 1, 14, 2, 15 }, { 3, 18, 4, 19 }, { 6, 13, 7, 14 }, { 8, 6, 9, 5 }, { 9, 16, 10, 17 }, { 11, 2, 12, 3 }, { 12, 7, 13, 8 }, { 15, 20, 16, 1 }, { 17, 4, 18, 5 }, { 19, 10, 20, 11 } } },
|
||||
{ "10_{146}", { { 1, 14, 2, 15 }, { 4, 10, 5, 9 }, { 6, 14, 7, 13 }, { 8, 17, 9, 18 }, { 10, 4, 11, 3 }, { 12, 8, 13, 7 }, { 15, 20, 16, 1 }, { 16, 11, 17, 12 }, { 18, 5, 19, 6 }, { 19, 3, 20, 2 } } },
|
||||
{ "10_{147}", { { 2, 8, 3, 7 }, { 3, 18, 4, 19 }, { 6, 11, 7, 12 }, { 8, 16, 9, 15 }, { 10, 2, 11, 1 }, { 13, 4, 14, 5 }, { 14, 18, 15, 17 }, { 16, 10, 17, 9 }, { 19, 13, 20, 12 }, { 20, 5, 1, 6 } } },
|
||||
{ "10_{148}", { { 2, 17, 3, 18 }, { 4, 9, 5, 10 }, { 6, 19, 7, 20 }, { 7, 13, 8, 12 }, { 10, 3, 11, 4 }, { 11, 15, 12, 14 }, { 13, 9, 14, 8 }, { 16, 1, 17, 2 }, { 18, 5, 19, 6 }, { 20, 15, 1, 16 } } },
|
||||
{ "10_{149}", { { 1, 17, 2, 16 }, { 4, 9, 5, 10 }, { 5, 19, 6, 18 }, { 7, 13, 8, 12 }, { 10, 3, 11, 4 }, { 11, 15, 12, 14 }, { 13, 9, 14, 8 }, { 15, 1, 16, 20 }, { 17, 3, 18, 2 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{150}", { { 1, 17, 2, 16 }, { 3, 7, 4, 6 }, { 5, 1, 6, 20 }, { 8, 14, 9, 13 }, { 10, 8, 11, 7 }, { 11, 18, 12, 19 }, { 14, 10, 15, 9 }, { 15, 3, 16, 2 }, { 17, 12, 18, 13 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{151}", { { 2, 15, 3, 16 }, { 4, 19, 5, 20 }, { 6, 3, 7, 4 }, { 8, 14, 9, 13 }, { 10, 8, 11, 7 }, { 11, 18, 12, 19 }, { 14, 10, 15, 9 }, { 16, 1, 17, 2 }, { 17, 12, 18, 13 }, { 20, 5, 1, 6 } } },
|
||||
{ "10_{152}", { { 1, 7, 2, 6 }, { 3, 9, 4, 8 }, { 5, 19, 6, 18 }, { 7, 3, 8, 2 }, { 10, 16, 11, 15 }, { 12, 20, 13, 19 }, { 14, 10, 15, 9 }, { 16, 12, 17, 11 }, { 17, 5, 18, 4 }, { 20, 14, 1, 13 } } },
|
||||
{ "10_{153}", { { 2, 17, 3, 18 }, { 3, 11, 4, 10 }, { 6, 19, 7, 20 }, { 7, 13, 8, 12 }, { 9, 5, 10, 4 }, { 11, 15, 12, 14 }, { 13, 9, 14, 8 }, { 16, 1, 17, 2 }, { 18, 5, 19, 6 }, { 20, 15, 1, 16 } } },
|
||||
{ "10_{154}", { { 1, 17, 2, 16 }, { 3, 7, 4, 6 }, { 5, 1, 6, 20 }, { 8, 14, 9, 13 }, { 10, 8, 11, 7 }, { 12, 18, 13, 17 }, { 14, 10, 15, 9 }, { 15, 3, 16, 2 }, { 18, 12, 19, 11 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{155}", { { 1, 11, 2, 10 }, { 3, 13, 4, 12 }, { 5, 14, 6, 15 }, { 6, 19, 7, 20 }, { 9, 16, 10, 17 }, { 11, 3, 12, 2 }, { 13, 19, 14, 18 }, { 15, 8, 16, 9 }, { 17, 4, 18, 5 }, { 20, 7, 1, 8 } } },
|
||||
{ "10_{156}", { { 1, 13, 2, 12 }, { 3, 8, 4, 9 }, { 5, 14, 6, 15 }, { 7, 18, 8, 19 }, { 10, 15, 11, 16 }, { 11, 1, 12, 20 }, { 13, 6, 14, 7 }, { 16, 9, 17, 10 }, { 17, 4, 18, 5 }, { 19, 3, 20, 2 } } },
|
||||
{ "10_{157}", { { 2, 8, 3, 7 }, { 3, 10, 4, 11 }, { 5, 18, 6, 19 }, { 8, 15, 9, 16 }, { 11, 4, 12, 5 }, { 14, 1, 15, 2 }, { 16, 9, 17, 10 }, { 17, 13, 18, 12 }, { 19, 6, 20, 7 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{158}", { { 3, 9, 4, 8 }, { 4, 11, 5, 12 }, { 6, 20, 7, 19 }, { 9, 17, 10, 16 }, { 12, 5, 13, 6 }, { 14, 1, 15, 2 }, { 15, 11, 16, 10 }, { 17, 3, 18, 2 }, { 18, 8, 19, 7 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{159}", { { 2, 10, 3, 9 }, { 4, 11, 5, 12 }, { 5, 19, 6, 18 }, { 7, 1, 8, 20 }, { 8, 14, 9, 13 }, { 10, 15, 11, 16 }, { 12, 18, 13, 17 }, { 14, 1, 15, 2 }, { 16, 4, 17, 3 }, { 19, 7, 20, 6 } } },
|
||||
{ "10_{160}", { { 1, 13, 2, 12 }, { 4, 18, 5, 17 }, { 6, 14, 7, 13 }, { 8, 4, 9, 3 }, { 10, 15, 11, 16 }, { 11, 1, 12, 20 }, { 14, 6, 15, 5 }, { 16, 9, 17, 10 }, { 18, 8, 19, 7 }, { 19, 3, 20, 2 } } },
|
||||
{ "10_{161}", { { 1, 13, 2, 12 }, { 4, 18, 5, 17 }, { 6, 14, 7, 13 }, { 8, 4, 9, 3 }, { 9, 17, 10, 16 }, { 11, 1, 12, 20 }, { 14, 6, 15, 5 }, { 15, 11, 16, 10 }, { 18, 8, 19, 7 }, { 19, 3, 20, 2 } } },
|
||||
{ "10_{162}", { { 2, 9, 3, 10 }, { 5, 12, 6, 13 }, { 6, 18, 7, 17 }, { 8, 16, 9, 15 }, { 10, 19, 11, 20 }, { 11, 4, 12, 5 }, { 14, 1, 15, 2 }, { 16, 8, 17, 7 }, { 18, 4, 19, 3 }, { 20, 13, 1, 14 } } },
|
||||
{ "10_{163}", { { 1, 8, 2, 9 }, { 3, 11, 4, 10 }, { 6, 14, 7, 13 }, { 9, 17, 10, 16 }, { 11, 18, 12, 19 }, { 12, 8, 13, 7 }, { 14, 6, 15, 5 }, { 15, 1, 16, 20 }, { 17, 2, 18, 3 }, { 19, 5, 20, 4 } } },
|
||||
{ "10_{164}", { { 2, 12, 3, 11 }, { 3, 16, 4, 17 }, { 6, 14, 7, 13 }, { 8, 15, 9, 16 }, { 9, 5, 10, 4 }, { 12, 2, 13, 1 }, { 14, 19, 15, 20 }, { 17, 10, 18, 11 }, { 18, 5, 19, 6 }, { 20, 8, 1, 7 } } },
|
||||
{ "10_{165}", { { 1, 8, 2, 9 }, { 3, 12, 4, 13 }, { 4, 17, 5, 18 }, { 7, 2, 8, 3 }, { 9, 14, 10, 15 }, { 11, 17, 12, 16 }, { 13, 6, 14, 7 }, { 15, 20, 16, 1 }, { 18, 5, 19, 6 }, { 19, 11, 20, 10 } } }
|
||||
};
|
||||
|
||||
unsigned
|
||||
rolfsen_crossing_knots (unsigned n)
|
||||
{
|
||||
assert (n <= 10);
|
||||
switch (n)
|
||||
{
|
||||
case 0: // ??? really?
|
||||
case 1:
|
||||
case 2:
|
||||
return 0;
|
||||
|
||||
case 3:
|
||||
return sizeof rolfsen3 / sizeof rolfsen3[0];
|
||||
case 4:
|
||||
return sizeof rolfsen4 / sizeof rolfsen4[0];
|
||||
case 5:
|
||||
return sizeof rolfsen5 / sizeof rolfsen5[0];
|
||||
case 6:
|
||||
return sizeof rolfsen6 / sizeof rolfsen6[0];
|
||||
case 7:
|
||||
return sizeof rolfsen7 / sizeof rolfsen7[0];
|
||||
case 8:
|
||||
return sizeof rolfsen8 / sizeof rolfsen8[0];
|
||||
case 9:
|
||||
return sizeof rolfsen9 / sizeof rolfsen9[0];
|
||||
case 10:
|
||||
return sizeof rolfsen10 / sizeof rolfsen10[0];
|
||||
default: abort ();
|
||||
}
|
||||
}
|
||||
|
||||
planar_diagram
|
||||
rolfsen_knot (unsigned n, unsigned k)
|
||||
{
|
||||
assert (n <= 10);
|
||||
assert (k >= 1);
|
||||
assert (k <= rolfsen_crossing_knots (n));
|
||||
k --;
|
||||
switch (n)
|
||||
{
|
||||
case 3:
|
||||
return planar_diagram (rolfsen3[k].name, 3, rolfsen3[k].crossing_ar);
|
||||
case 4:
|
||||
return planar_diagram (rolfsen4[k].name, 4, rolfsen4[k].crossing_ar);
|
||||
case 5:
|
||||
return planar_diagram (rolfsen5[k].name, 5, rolfsen5[k].crossing_ar);
|
||||
case 6:
|
||||
return planar_diagram (rolfsen6[k].name, 6, rolfsen6[k].crossing_ar);
|
||||
case 7:
|
||||
return planar_diagram (rolfsen7[k].name, 7, rolfsen7[k].crossing_ar);
|
||||
case 8:
|
||||
return planar_diagram (rolfsen8[k].name, 8, rolfsen8[k].crossing_ar);
|
||||
case 9:
|
||||
return planar_diagram (rolfsen9[k].name, 9, rolfsen9[k].crossing_ar);
|
||||
case 10:
|
||||
return planar_diagram (rolfsen10[k].name, 10, rolfsen10[k].crossing_ar);
|
||||
default: abort ();
|
||||
}
|
||||
}
|
||||
|
||||
unsigned htw_alternating[16] = {
|
||||
0, 0, 1, 1, 2, 3, 7, 18, 41, 123, 367, 1288, 4878, 19536, 85263, 379799
|
||||
};
|
||||
|
||||
unsigned htw_nonalternating[16] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 3, 8, 42, 185, 888, 5110, 27436, 168030, 1008906
|
||||
};
|
||||
|
||||
unsigned
|
||||
htw_knots (unsigned n, bool alternating)
|
||||
{
|
||||
assert (between (1, n, 16));
|
||||
if (alternating)
|
||||
return htw_alternating[n - 1];
|
||||
else
|
||||
return htw_nonalternating[n - 1];
|
||||
}
|
||||
|
||||
unsigned
|
||||
htw_knots (unsigned n)
|
||||
{
|
||||
assert (between (1, n, 16));
|
||||
return htw_alternating[n - 1] + htw_nonalternating[n - 1];
|
||||
}
|
||||
|
||||
dt_code
|
||||
htw_knot (unsigned n, bool alternating, unsigned k)
|
||||
{
|
||||
assert (between (1, n, 16));
|
||||
assert (between (1, k, htw_knots (n, alternating)));
|
||||
|
||||
const char *file;
|
||||
long off;
|
||||
if (alternating)
|
||||
{
|
||||
unsigned before = 0;
|
||||
for (unsigned i = 0; i < n - 1; i ++)
|
||||
before += htw_alternating[i];
|
||||
off = 8 * (before + k - 1);
|
||||
|
||||
file = HOME "alternating";
|
||||
}
|
||||
else
|
||||
{
|
||||
unsigned before = 0;
|
||||
for (unsigned i = 0; i < n - 1; i ++)
|
||||
before += htw_nonalternating[i];
|
||||
off = 10 * (before + k - 1);
|
||||
|
||||
file = HOME "nonalternating";
|
||||
}
|
||||
FILE *fp = fopen (file, "r");
|
||||
if (fp == 0)
|
||||
{
|
||||
stderror ("fopen: %s", file);
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
if (fseek (fp, off, SEEK_SET) != 0)
|
||||
{
|
||||
stderror ("fseek");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
unsigned char buf[10];
|
||||
size_t count = (n + 1) / 2;
|
||||
if (!alternating)
|
||||
count += 2;
|
||||
if (fread (buf, 1, count, fp) != count)
|
||||
{
|
||||
stderror ("fread");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
fclose (fp);
|
||||
fp = 0;
|
||||
|
||||
int even_labels_ar[16];
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
unsigned j = buf[i / 2];
|
||||
j = is_even (i)
|
||||
? j >> 4
|
||||
: j & 0xf;
|
||||
if (j == 0)
|
||||
j = 16;
|
||||
j *= 2;
|
||||
even_labels_ar[i] = j;
|
||||
}
|
||||
|
||||
if (!alternating)
|
||||
{
|
||||
unsigned signs = buf[count - 2] << 8 | buf[count - 1];
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
if (!unsigned_bittest (signs, 16 - i))
|
||||
even_labels_ar[i] *= -1;
|
||||
}
|
||||
}
|
||||
|
||||
char buf2[100];
|
||||
sprintf (buf2, "%d%c%d", n, alternating ? 'a' : 'n', k);
|
||||
|
||||
return dt_code (std::string (buf2), n, even_labels_ar);
|
||||
}
|
||||
|
||||
dt_code
|
||||
htw_knot (unsigned n, unsigned k)
|
||||
{
|
||||
assert (between (1, n, 16));
|
||||
assert (k >= 1);
|
||||
|
||||
unsigned na = htw_knots (n, 1);
|
||||
if (k <= na)
|
||||
return htw_knot (n, 1, k);
|
||||
else
|
||||
return htw_knot (n, 0, k - na);
|
||||
}
|
||||
|
||||
unsigned mt_alternating[14] = {
|
||||
0, 0, 0, 1, 3, 8, 14, 39, 96, 297, 915, 3308, 12417, 51347,
|
||||
};
|
||||
|
||||
unsigned mt_nonalternating[14] = {
|
||||
0, 0, 0, 0, 0, 1, 2, 11, 36, 155, 644, 3144, 16454, 91616,
|
||||
};
|
||||
|
||||
unsigned
|
||||
mt_links (unsigned n, bool alternating)
|
||||
{
|
||||
assert (between (1, n, 14));
|
||||
if (alternating)
|
||||
return mt_alternating[n - 1];
|
||||
else
|
||||
return mt_nonalternating[n - 1];
|
||||
}
|
||||
|
||||
dt_code
|
||||
mt_link (unsigned n, bool alternating, unsigned k)
|
||||
{
|
||||
assert (between (1, n, 14));
|
||||
assert (between (1, k, mt_links (n, alternating)));
|
||||
|
||||
char buf[1000];
|
||||
|
||||
sprintf (buf, HOME "mtlinks/hyperbolic_data_%02d%c", n, alternating ? 'a' : 'n');
|
||||
FILE *fp = fopen (buf, "r");
|
||||
if (fp == 0)
|
||||
{
|
||||
stderror ("fopen: %s", buf);
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
char *p;
|
||||
|
||||
for (unsigned i = 1; i <= k; i ++)
|
||||
{
|
||||
if (fgets (buf, 1000, fp) == 0)
|
||||
{
|
||||
stderror ("fgets: %s", buf);
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
assert (alpha_to_int (buf[0]) == (int)n);
|
||||
}
|
||||
|
||||
fclose (fp);
|
||||
|
||||
char buf2[1000];
|
||||
sprintf (buf2, "L%d%c%d", n, alternating ? 'a' : 'n', k);
|
||||
|
||||
return dt_code (buf2, buf);
|
||||
}
|
||||
|
||||
planar_diagram
|
||||
torus_knot (unsigned n_strands, unsigned n_shifts)
|
||||
{
|
||||
basedvector<basedvector<int, 1>, 1> crossings ((n_strands - 1) * n_shifts);
|
||||
for (unsigned i = 1; i <= crossings.size (); i ++)
|
||||
crossings[i].resize (4);
|
||||
|
||||
basedvector<unsigned, 1> start_strands (n_strands),
|
||||
strands (n_strands),
|
||||
new_strands (n_strands);
|
||||
|
||||
unsigned n_crossings = 0;
|
||||
unsigned n_edges = 0;
|
||||
|
||||
for (unsigned i = 1; i <= n_strands; i ++)
|
||||
strands[i] = start_strands[i] = ++ n_edges;
|
||||
|
||||
for (unsigned i = 1; i <= n_shifts; i ++)
|
||||
{
|
||||
if (i == n_shifts)
|
||||
new_strands = start_strands;
|
||||
else
|
||||
{
|
||||
for (unsigned j = 1; j <= n_strands; j ++)
|
||||
new_strands[j] = ++ n_edges;
|
||||
}
|
||||
|
||||
unsigned p = strands[1];
|
||||
for (unsigned j = 1; j < n_strands; j ++)
|
||||
{
|
||||
unsigned c = ++ n_crossings;
|
||||
unsigned newp;
|
||||
if (j == n_strands - 1)
|
||||
newp = new_strands[n_strands];
|
||||
else
|
||||
newp = ++ n_edges;
|
||||
|
||||
crossings[c][1] = strands[j + 1];
|
||||
crossings[c][2] = newp;
|
||||
crossings[c][3] = new_strands[j];
|
||||
crossings[c][4] = p;
|
||||
|
||||
p = newp;
|
||||
}
|
||||
|
||||
basedvector<unsigned, 1> tmp = new_strands;
|
||||
new_strands = strands;
|
||||
strands = tmp;
|
||||
}
|
||||
|
||||
assert (n_crossings == crossings.size ());
|
||||
assert (n_edges == n_crossings * 2);
|
||||
|
||||
char buf[1000];
|
||||
sprintf (buf, "T(%d,%d)", n_strands, n_shifts);
|
||||
|
||||
return planar_diagram (std::string (buf), crossings);
|
||||
}
|
||||
|
||||
planar_diagram
|
||||
braid (unsigned n_strands, unsigned n_twists, int twists_ar[])
|
||||
{
|
||||
basedvector<int, 1> twists (n_twists);
|
||||
for (unsigned i = 1; i <= n_twists; i ++)
|
||||
twists[i] = twists_ar[i - 1];
|
||||
return braid (n_strands, twists);
|
||||
}
|
||||
|
||||
planar_diagram
|
||||
braid (unsigned n_strands, const basedvector<int, 1> &twists)
|
||||
{
|
||||
unsigned n_crossings = twists.size ();
|
||||
unsigned e = 0;
|
||||
|
||||
basedvector<unsigned, 1> final_strands (n_strands);
|
||||
basedvector<unsigned, 1> strands (n_strands);
|
||||
for (unsigned i = 1; i <= n_strands; i ++)
|
||||
{
|
||||
++ e;
|
||||
final_strands[i] = strands[i] = e;
|
||||
}
|
||||
|
||||
basedvector<unsigned, 1> last_twist (n_strands);
|
||||
for (unsigned i = 1; i <= n_strands; i ++)
|
||||
last_twist[i] = 0;
|
||||
for (unsigned i = 1; i <= twists.size (); i ++)
|
||||
{
|
||||
unsigned t = std::abs (twists[i]);
|
||||
last_twist[t] = i;
|
||||
last_twist[t + 1] = i;
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
for (unsigned i = 1; i <= n_strands; i ++)
|
||||
assert (last_twist[i] != 0);
|
||||
#endif
|
||||
|
||||
basedvector<basedvector<int, 1>, 1> crossings (n_crossings);
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
crossings[i] = basedvector<int, 1> (4);
|
||||
|
||||
for (unsigned i = 1; i <= twists.size (); i ++)
|
||||
{
|
||||
unsigned t = std::abs (twists[i]);
|
||||
unsigned e1 = strands[t],
|
||||
e4 = strands[t + 1];
|
||||
unsigned e2, e3;
|
||||
if (last_twist[t] == i)
|
||||
{
|
||||
assert (final_strands[t] != 0);
|
||||
e2 = final_strands[t];
|
||||
strands[t] = final_strands[t] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
e ++;
|
||||
e2 = e;
|
||||
strands[t] = e;
|
||||
}
|
||||
if (last_twist[t + 1] == i)
|
||||
{
|
||||
assert (final_strands[t + 1] != 0);
|
||||
e3 = final_strands[t + 1];
|
||||
strands[t + 1] = final_strands[t + 1] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
e ++;
|
||||
e3 = e;
|
||||
strands[t + 1] = e;
|
||||
}
|
||||
|
||||
if (twists[i] > 0)
|
||||
{
|
||||
crossings[i][1] = e1;
|
||||
crossings[i][2] = e2;
|
||||
crossings[i][3] = e3;
|
||||
crossings[i][4] = e4;
|
||||
}
|
||||
else
|
||||
{
|
||||
crossings[i][1] = e2;
|
||||
crossings[i][2] = e3;
|
||||
crossings[i][3] = e4;
|
||||
crossings[i][4] = e1;
|
||||
}
|
||||
}
|
||||
|
||||
assert (e == n_crossings * 2);
|
||||
#ifndef NDEBUG
|
||||
for (unsigned i = 1; i <= n_strands; i ++)
|
||||
assert (final_strands[i] == 0);
|
||||
#endif
|
||||
|
||||
return planar_diagram ("abraid", crossings);
|
||||
}
|
||||
|
||||
basedvector<basedvector<unsigned, 1>, 1>
|
||||
mutant_knot_groups (unsigned n)
|
||||
{
|
||||
assert (11 <= n && n <= 15);
|
||||
|
||||
char buf[1000];
|
||||
sprintf (buf, HOME "mutant_knot_groups/dat%d", n);
|
||||
|
||||
FILE *fp = fopen (buf, "r");
|
||||
if (fp == 0)
|
||||
{
|
||||
stderror ("fopen: %s", buf);
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
basedvector<basedvector<unsigned, 1>, 1> r;
|
||||
while (fgets (buf, sizeof buf, fp) != 0)
|
||||
{
|
||||
const char *p = buf;
|
||||
|
||||
basedvector<unsigned, 1> g;
|
||||
|
||||
unsigned i;
|
||||
int k;
|
||||
while (sscanf (p, "%d%n", &i, &k) == 1)
|
||||
{
|
||||
g.append (i);
|
||||
p += k;
|
||||
}
|
||||
|
||||
assert (*p == '\n');
|
||||
assert (g.size () > 0);
|
||||
r.append (g);
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
45
knotkit.h
Normal file
45
knotkit.h
Normal file
@ -0,0 +1,45 @@
|
||||
|
||||
// includes lib.h
|
||||
#include <algebra/algebra.h>
|
||||
|
||||
extern bool verbose;
|
||||
|
||||
static const unsigned max_edges = 58;
|
||||
static const unsigned max_crossings = 29;
|
||||
static const unsigned max_circles = 58;
|
||||
|
||||
class knot_diagram;
|
||||
|
||||
#include <planar_diagram.h>
|
||||
#include <dt_code.h>
|
||||
#include <knot_diagram.h>
|
||||
|
||||
#include <sseq.h>
|
||||
#include <smoothing.h>
|
||||
#include <cobordism.h>
|
||||
|
||||
#include <cube.h>
|
||||
#include <spanning_tree_complex.h>
|
||||
|
||||
unsigned rolfsen_crossing_knots (unsigned n);
|
||||
planar_diagram rolfsen_knot (unsigned n, unsigned k);
|
||||
|
||||
unsigned htw_knots (unsigned n, bool alternating);
|
||||
unsigned htw_knots (unsigned n);
|
||||
|
||||
dt_code htw_knot (unsigned n, bool alternating, unsigned k);
|
||||
dt_code htw_knot (unsigned n, unsigned k);
|
||||
|
||||
unsigned mt_links (unsigned n, bool alternating);
|
||||
dt_code mt_link (unsigned n, bool alternating, unsigned k);
|
||||
|
||||
planar_diagram torus_knot (unsigned n_strands, unsigned n_shifts);
|
||||
|
||||
planar_diagram braid (unsigned n_strands, const basedvector<int, 1> &twists);
|
||||
planar_diagram braid (unsigned n_strands, unsigned n_twists, int twists_ar[]);
|
||||
|
||||
knot_diagram parse_knot (const char *s);
|
||||
resolution_diagram parse_resolution_diagram (const char *s);
|
||||
|
||||
// 11 <= n <= 15
|
||||
basedvector<basedvector<unsigned, 1>, 1> mutant_knot_groups (unsigned n);
|
107
lib/bitset.cpp
Normal file
107
lib/bitset.cpp
Normal file
@ -0,0 +1,107 @@
|
||||
|
||||
#include <lib/lib.h>
|
||||
|
||||
bool
|
||||
bitset::is_empty () const
|
||||
{
|
||||
unsigned nw = v.size ();
|
||||
for (unsigned i = 0; i < nw; i ++)
|
||||
{
|
||||
if (v[i] != 0)
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
unsigned
|
||||
bitset::card () const
|
||||
{
|
||||
unsigned c = 0;
|
||||
unsigned nw = v.size ();
|
||||
for (unsigned i = 0; i < nw; i ++)
|
||||
c += word_bitcount (v[i]);
|
||||
|
||||
assert (c <= n);
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
unsigned
|
||||
bitset::head () const
|
||||
{
|
||||
bitset_const_iter i = *this;
|
||||
assert (i);
|
||||
return i.val ();
|
||||
}
|
||||
|
||||
unsigned
|
||||
bitset::pop ()
|
||||
{
|
||||
unsigned i = head ();
|
||||
operator -= (i);
|
||||
return i;
|
||||
}
|
||||
|
||||
bitset &
|
||||
bitset::operator |= (const bitset &bs)
|
||||
{
|
||||
assert (n == bs.n);
|
||||
assert (v.size () == bs.v.size ());
|
||||
int nw = v.size ();
|
||||
for (int i = 0; i < nw; i ++)
|
||||
v[i] |= bs.v[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
bitset &
|
||||
bitset::operator &= (const bitset &bs)
|
||||
{
|
||||
assert (n == bs.n);
|
||||
assert (v.size () == bs.v.size ());
|
||||
int nw = v.size ();
|
||||
for (int i = 0; i < nw; i ++)
|
||||
v[i] &= bs.v[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
bitset &
|
||||
bitset::operator ^= (const bitset &bs)
|
||||
{
|
||||
assert (n == bs.n);
|
||||
assert (v.size () == bs.v.size ());
|
||||
int nw = v.size ();
|
||||
for (int i = 0; i < nw; i ++)
|
||||
v[i] ^= bs.v[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool
|
||||
bitset::operator == (const bitset &bs) const
|
||||
{
|
||||
assert (n == bs.n);
|
||||
assert (v.size () == bs.v.size ());
|
||||
int nw = v.size ();
|
||||
for (int i = 0; i < nw; i ++)
|
||||
{
|
||||
if (v[i] != bs.v[i])
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void
|
||||
bitset_const_iter::find_next ()
|
||||
{
|
||||
unsigned wn = v.size ();
|
||||
|
||||
while (!w)
|
||||
{
|
||||
wi ++;
|
||||
if (wi < wn)
|
||||
w = v[wi];
|
||||
else
|
||||
break;
|
||||
}
|
||||
if (wi < wn)
|
||||
b = word_ffs (w);
|
||||
}
|
138
lib/bitset.h
Normal file
138
lib/bitset.h
Normal file
@ -0,0 +1,138 @@
|
||||
|
||||
typedef uint64 word_t;
|
||||
|
||||
static const unsigned word_bits = uint64_bits;
|
||||
static const unsigned word_bit_mask = uint64_bit_mask;
|
||||
|
||||
inline unsigned word_bitcount (word_t x) { return uint64_bitcount (x); }
|
||||
inline unsigned word_ffs (word_t x) { return uint64_ffs (x); }
|
||||
|
||||
inline word_t word_bitset (word_t x, unsigned i) { return uint64_bitset (x, i); }
|
||||
inline word_t word_bitclear (word_t x, unsigned i) { return uint64_bitclear (x, i); }
|
||||
inline bool word_bittest (word_t x, unsigned i) { return uint64_bittest (x, i); }
|
||||
|
||||
class bitset_iter;
|
||||
class bitset_const_iter;
|
||||
|
||||
class bitset
|
||||
{
|
||||
private:
|
||||
friend class bitset_iter;
|
||||
friend class bitset_const_iter;
|
||||
|
||||
friend class smallbitset;
|
||||
|
||||
unsigned n;
|
||||
vector<word_t> v;
|
||||
|
||||
public:
|
||||
typedef bitset_iter iter;
|
||||
typedef bitset_const_iter const_iter;
|
||||
|
||||
public:
|
||||
bitset () : n(0) { }
|
||||
inline bitset (unsigned n_);
|
||||
bitset (const bitset &bs) : n(bs.n), v(bs.v) { }
|
||||
|
||||
bitset (copy, const bitset &bs) : n(bs.n), v(COPY, bs.v) { }
|
||||
// explicit bitset (const unsignedset &t);
|
||||
explicit bitset (const ullmanset<1> &t);
|
||||
|
||||
~bitset () { }
|
||||
|
||||
bitset &operator = (const bitset &bs) { n = bs.n; v = bs.v; return *this; }
|
||||
// bitset &operator = (const unsignedset &t);
|
||||
bitset &operator = (const ullmanset<1> &t);
|
||||
|
||||
bool is_empty () const;
|
||||
unsigned card () const;
|
||||
unsigned size () const { return n; }
|
||||
unsigned head () const;
|
||||
unsigned pop ();
|
||||
|
||||
void push (unsigned i) { assert (! (*this % i)); operator += (i); }
|
||||
void yank (unsigned i) { assert (*this % i); operator -= (i); }
|
||||
inline void operator += (unsigned i);
|
||||
inline void operator -= (unsigned i);
|
||||
|
||||
bitset &operator |= (const bitset &bs);
|
||||
bitset &operator &= (const bitset &bs);
|
||||
bitset &operator ^= (const bitset &bs);
|
||||
|
||||
bool operator == (const bitset &bs) const;
|
||||
bool operator != (const bitset &bs) const { return !operator == (bs); }
|
||||
|
||||
inline bool operator % (unsigned i) const;
|
||||
inline bool operator () (unsigned i) const { return operator % (i); }
|
||||
};
|
||||
|
||||
class bitset_const_iter
|
||||
{
|
||||
private:
|
||||
const vector<word_t> &v;
|
||||
|
||||
unsigned wi;
|
||||
word_t w;
|
||||
unsigned b;
|
||||
|
||||
void find_next ();
|
||||
void advance ()
|
||||
{
|
||||
assert (wi < v.size ());
|
||||
assert (word_bittest (w, b));
|
||||
|
||||
w = word_bitclear (w, b);
|
||||
find_next ();
|
||||
}
|
||||
|
||||
public:
|
||||
bitset_const_iter (const bitset &bs) : v(bs.v), wi(0), w(v[0]) { find_next (); }
|
||||
~bitset_const_iter () { }
|
||||
|
||||
int val () const { assert (wi < v.size ()); return wi * word_bits + b; }
|
||||
bitset_const_iter &operator ++ () { advance (); return *this; }
|
||||
void operator ++ (int) { advance (); }
|
||||
operator bool () const { return wi < v.size (); }
|
||||
};
|
||||
|
||||
bitset::bitset (unsigned n_)
|
||||
: n(n_),
|
||||
v((n_ + word_bits - 1) / word_bits)
|
||||
{
|
||||
unsigned wn = v.size ();
|
||||
for (unsigned i = 0; i < wn; i ++)
|
||||
v[i] = 0;
|
||||
}
|
||||
|
||||
void
|
||||
bitset::operator += (unsigned i)
|
||||
{
|
||||
assert (i >= 1);
|
||||
assert (i <= n);
|
||||
|
||||
unsigned w = (i - 1) / word_bits;
|
||||
unsigned b = (i - 1) & word_bit_mask;
|
||||
v[w] = word_bitset (v[w], b + 1);
|
||||
}
|
||||
|
||||
void
|
||||
bitset::operator -= (unsigned i)
|
||||
{
|
||||
assert (i >= 1);
|
||||
assert (i <= n);
|
||||
|
||||
unsigned w = (i - 1) / word_bits;
|
||||
unsigned b = (i - 1) & word_bit_mask;
|
||||
v[w] = word_bitclear (v[w], b + 1);
|
||||
}
|
||||
|
||||
bool
|
||||
bitset::operator % (unsigned i) const
|
||||
{
|
||||
assert (i >= 1);
|
||||
assert (i <= n);
|
||||
|
||||
unsigned w = (i - 1) / word_bits;
|
||||
unsigned b = (i - 1) & word_bit_mask;
|
||||
return word_bittest (v[w], b + 1);
|
||||
}
|
182
lib/directed_multigraph.cpp
Normal file
182
lib/directed_multigraph.cpp
Normal file
@ -0,0 +1,182 @@
|
||||
|
||||
#include <lib/lib.h>
|
||||
|
||||
unsigned
|
||||
directed_multigraph::num_components () const
|
||||
{
|
||||
unionfind<1> u (n_vertices);
|
||||
|
||||
unsigned n_edges = num_edges ();
|
||||
for (unsigned i = 1; i <= n_edges; i ++)
|
||||
u.join (edge_from[i], edge_to[i]);
|
||||
return u.num_sets ();
|
||||
}
|
||||
|
||||
directed_multigraph
|
||||
directed_multigraph::component (unsigned v,
|
||||
basedvector<unsigned, 1> &edge_inj,
|
||||
basedvector<unsigned, 1> &virtex_inj) const
|
||||
{
|
||||
unionfind<1> u (n_vertices);
|
||||
|
||||
unsigned n_edges = num_edges ();
|
||||
for (unsigned i = 1; i <= n_edges; i ++)
|
||||
u.join (edge_from[i], edge_to[i]);
|
||||
|
||||
ullmanset<1> comp_vertices (n_vertices);
|
||||
for (unsigned i = 1; i <= n_vertices; i ++)
|
||||
{
|
||||
if (u.find (v) == u.find (i))
|
||||
comp_vertices.push (i);
|
||||
}
|
||||
|
||||
unsigned comp_n_vertices = comp_vertices.card ();
|
||||
virtex_inj = basedvector<unsigned, 1> (comp_n_vertices);
|
||||
for (unsigned i = 1; i <= comp_n_vertices; i ++)
|
||||
virtex_inj[i] = comp_vertices.nth (i - 1);
|
||||
|
||||
basedvector<unsigned, 1> comp_edge_from,
|
||||
comp_edge_to;
|
||||
for (unsigned i = 1; i <= n_edges; i ++)
|
||||
{
|
||||
if (comp_vertices % edge_from[i])
|
||||
{
|
||||
comp_edge_from.append (comp_vertices.position (edge_from[i]) + 1);
|
||||
comp_edge_to.append (comp_vertices.position (edge_to[i]) + 1);
|
||||
edge_inj.append (i);
|
||||
}
|
||||
}
|
||||
|
||||
return directed_multigraph (comp_n_vertices,
|
||||
comp_edge_from,
|
||||
comp_edge_to);
|
||||
}
|
||||
|
||||
class spanning_tree_builder
|
||||
{
|
||||
public:
|
||||
const directed_multigraph &g;
|
||||
basedvector<set<unsigned>, 1> vertex_edges;
|
||||
|
||||
ullmanset<1> tree;
|
||||
ullmanset<1> visited_edges;
|
||||
ullmanset<1> visited_vertices;
|
||||
|
||||
ullmanset<1> edges_to_visit;
|
||||
|
||||
basedvector<set<unsigned>, 1> trees;
|
||||
|
||||
void enumerate (unsigned i);
|
||||
|
||||
public:
|
||||
spanning_tree_builder (const directed_multigraph &g_);
|
||||
};
|
||||
|
||||
spanning_tree_builder::spanning_tree_builder (const directed_multigraph &g_)
|
||||
: g(g_),
|
||||
vertex_edges(g.n_vertices),
|
||||
tree(g.num_edges ()),
|
||||
visited_edges(g.num_edges ()),
|
||||
visited_vertices(g.n_vertices),
|
||||
edges_to_visit(g.num_edges ())
|
||||
{
|
||||
for (unsigned i = 1; i <= g.num_edges (); i ++)
|
||||
{
|
||||
vertex_edges[g.edge_from[i]] += i;
|
||||
vertex_edges[g.edge_to[i]] += i;
|
||||
}
|
||||
|
||||
for (set_const_iter<unsigned> i = vertex_edges[1]; i; i ++)
|
||||
edges_to_visit += i.val ();
|
||||
enumerate (1);
|
||||
}
|
||||
|
||||
void
|
||||
spanning_tree_builder::enumerate (unsigned i)
|
||||
{
|
||||
assert (i >= 1);
|
||||
|
||||
if (visited_vertices.card () == g.n_vertices)
|
||||
{
|
||||
set<unsigned> s;
|
||||
setassign (s, tree.size (), tree);
|
||||
trees.append (s);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if (i > g.num_edges ()
|
||||
|| i > edges_to_visit.card ())
|
||||
return;
|
||||
|
||||
unsigned e = edges_to_visit.nth (i - 1);
|
||||
|
||||
unsigned visited_edges_card = visited_edges.card ();
|
||||
visited_edges.push (e);
|
||||
|
||||
unsigned from = g.edge_from[e],
|
||||
to = g.edge_to[e];
|
||||
if (! ((visited_vertices % from) && (visited_vertices % to)))
|
||||
{
|
||||
unsigned edges_to_visit_card = edges_to_visit.card ();
|
||||
unsigned visited_vertices_card = visited_vertices.card ();
|
||||
unsigned tree_card = tree.card ();
|
||||
|
||||
tree.push (e);
|
||||
if (! (visited_vertices % from))
|
||||
{
|
||||
visited_vertices += from;
|
||||
|
||||
for (set_const_iter<unsigned> j = vertex_edges[from]; j; j ++)
|
||||
{
|
||||
if (! (visited_edges % j.val ()))
|
||||
edges_to_visit += j.val ();
|
||||
}
|
||||
}
|
||||
if (! (visited_vertices % to))
|
||||
{
|
||||
visited_vertices += to;
|
||||
|
||||
for (set_const_iter<unsigned> j = vertex_edges[to]; j; j ++)
|
||||
{
|
||||
if (! (visited_edges % j.val ()))
|
||||
edges_to_visit += j.val ();
|
||||
}
|
||||
}
|
||||
|
||||
// with e
|
||||
enumerate (i + 1);
|
||||
|
||||
tree.restore (tree_card);
|
||||
visited_vertices.restore (visited_vertices_card);
|
||||
edges_to_visit.restore (edges_to_visit_card);
|
||||
}
|
||||
|
||||
// without e
|
||||
enumerate (i + 1);
|
||||
|
||||
visited_edges.restore (visited_edges_card);
|
||||
}
|
||||
|
||||
basedvector<set<unsigned>, 1>
|
||||
directed_multigraph::spanning_trees () const
|
||||
{
|
||||
spanning_tree_builder builder (*this);
|
||||
return builder.trees;
|
||||
}
|
||||
|
||||
void
|
||||
directed_multigraph::display_self () const
|
||||
{
|
||||
printf ("directed_multigraph\n");
|
||||
printf (" n_vertices %d\n", n_vertices);
|
||||
printf (" n_edges %d\n", num_edges ());
|
||||
printf (" edges:\n");
|
||||
for (unsigned i = 1; i <= num_edges (); i ++)
|
||||
{
|
||||
printf (" % 4d: %d -> %d\n",
|
||||
i,
|
||||
edge_from[i],
|
||||
edge_to[i]);
|
||||
}
|
||||
}
|
52
lib/directed_multigraph.h
Normal file
52
lib/directed_multigraph.h
Normal file
@ -0,0 +1,52 @@
|
||||
|
||||
class directed_multigraph
|
||||
{
|
||||
public:
|
||||
unsigned n_vertices;
|
||||
basedvector<unsigned, 1> edge_from,
|
||||
edge_to;
|
||||
|
||||
public:
|
||||
directed_multigraph () : n_vertices(0) { }
|
||||
directed_multigraph (unsigned n_vertices_,
|
||||
basedvector<unsigned, 1> edge_from_,
|
||||
basedvector<unsigned, 1> edge_to_)
|
||||
: n_vertices(n_vertices_),
|
||||
edge_from(edge_from_),
|
||||
edge_to(edge_to_)
|
||||
{
|
||||
}
|
||||
|
||||
directed_multigraph (const directed_multigraph &g)
|
||||
: n_vertices(g.n_vertices),
|
||||
edge_from(g.edge_from),
|
||||
edge_to(g.edge_to)
|
||||
{ }
|
||||
|
||||
directed_multigraph (copy, const directed_multigraph &g)
|
||||
: n_vertices(g.n_vertices),
|
||||
edge_from(COPY, g.edge_from),
|
||||
edge_to(COPY, g.edge_to)
|
||||
{
|
||||
}
|
||||
|
||||
directed_multigraph &operator = (const directed_multigraph &g)
|
||||
{
|
||||
n_vertices = g.n_vertices;
|
||||
edge_from = g.edge_from;
|
||||
edge_to = g.edge_to;
|
||||
return *this;
|
||||
}
|
||||
|
||||
unsigned num_edges () const { return edge_from.size (); }
|
||||
unsigned num_components () const;
|
||||
|
||||
// the component containing the vertex v
|
||||
directed_multigraph component (unsigned v,
|
||||
basedvector<unsigned, 1> &edge_inj,
|
||||
basedvector<unsigned, 1> &virtex_inj) const;
|
||||
|
||||
basedvector<set<unsigned>, 1> spanning_trees () const;
|
||||
|
||||
void display_self () const;
|
||||
};
|
23
lib/hashmap.h
Normal file
23
lib/hashmap.h
Normal file
@ -0,0 +1,23 @@
|
||||
|
||||
/* wrapper for std::unordered_map */
|
||||
|
||||
template<class K>
|
||||
struct hasher : public std::unary_function<K, hash_t>
|
||||
{
|
||||
hash_t operator () (const K &k) const { return hash (k); }
|
||||
};
|
||||
|
||||
template<class K, class V>
|
||||
class hashmap : public map_wrapper<std::tr1::unordered_map<K, V, hasher<K> >, K, V>
|
||||
{
|
||||
typedef map_wrapper<std::tr1::unordered_map<K, V, hasher<K> >, K, V> base;
|
||||
|
||||
public:
|
||||
hashmap () { }
|
||||
hashmap (const hashmap &m) : base(m) { }
|
||||
hashmap (copy, const hashmap &m) : base(COPY, m) { }
|
||||
hashmap (reader &r) : base(r) { }
|
||||
~hashmap () { }
|
||||
|
||||
hashmap &operator = (const hashmap &m) { base::operator = (m); return *this; }
|
||||
};
|
152
lib/io.cpp
Normal file
152
lib/io.cpp
Normal file
@ -0,0 +1,152 @@
|
||||
|
||||
#include <lib/lib.h>
|
||||
|
||||
writer::writer (const std::string &filename)
|
||||
: fp(0)
|
||||
{
|
||||
fp = fopen (filename.c_str (), "w");
|
||||
if (fp == 0)
|
||||
{
|
||||
stderror ("fopen: %s", filename.c_str ());
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
writer::~writer ()
|
||||
{
|
||||
if (fp)
|
||||
{
|
||||
fclose (fp);
|
||||
fp = 0;
|
||||
}
|
||||
}
|
||||
|
||||
reader::reader (const std::string &filename)
|
||||
: fp(0)
|
||||
{
|
||||
fp = fopen (filename.c_str (), "r");
|
||||
if (fp == 0)
|
||||
{
|
||||
stderror ("fopen: %s", filename.c_str ());
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
reader::~reader ()
|
||||
{
|
||||
if (fp)
|
||||
{
|
||||
fclose (fp);
|
||||
fp = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
writer::write_char (char x)
|
||||
{
|
||||
if (fwrite (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fwrite");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
writer::write_bool (bool x)
|
||||
{
|
||||
if (fwrite (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fwrite");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
writer::write_int (int x)
|
||||
{
|
||||
if (fwrite (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fwrite");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
writer::write_unsigned (unsigned x)
|
||||
{
|
||||
if (fwrite (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fwrite");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
writer::write_uint64 (uint64 x)
|
||||
{
|
||||
if (fwrite (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fwrite");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
bool
|
||||
reader::read_bool ()
|
||||
{
|
||||
bool x;
|
||||
if (fread (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fread");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
char
|
||||
reader::read_char ()
|
||||
{
|
||||
char x;
|
||||
if (fread (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fread");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
int
|
||||
reader::read_int ()
|
||||
{
|
||||
int x;
|
||||
if (fread (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fread");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
unsigned
|
||||
reader::read_unsigned ()
|
||||
{
|
||||
unsigned x;
|
||||
if (fread (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fread");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
uint64
|
||||
reader::read_uint64 ()
|
||||
{
|
||||
uint64 x;
|
||||
if (fread (&x, sizeof x, 1, fp) != 1)
|
||||
{
|
||||
stderror ("fread");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
return x;
|
||||
}
|
59
lib/io.h
Normal file
59
lib/io.h
Normal file
@ -0,0 +1,59 @@
|
||||
|
||||
class writer
|
||||
{
|
||||
public:
|
||||
FILE *fp;
|
||||
|
||||
public:
|
||||
writer (const std::string &filename);
|
||||
writer (const writer &); // doesn't exist
|
||||
~writer ();
|
||||
|
||||
writer &operator = (const writer &); // doesn't exist
|
||||
|
||||
void write_bool (bool x);
|
||||
void write_char (char x);
|
||||
void write_int (int x);
|
||||
void write_unsigned (unsigned x);
|
||||
void write_uint64 (uint64 x);
|
||||
};
|
||||
|
||||
class reader
|
||||
{
|
||||
public:
|
||||
FILE *fp;
|
||||
|
||||
public:
|
||||
reader (const std::string &filename);
|
||||
reader (const reader &); // doesn't exist
|
||||
~reader ();
|
||||
|
||||
reader &operator = (const reader &); // doesn't exist
|
||||
|
||||
bool read_bool ();
|
||||
char read_char ();
|
||||
int read_int ();
|
||||
unsigned read_unsigned ();
|
||||
uint64 read_uint64 ();
|
||||
};
|
||||
|
||||
inline void read (reader &r, bool &x) { x = r.read_bool (); }
|
||||
inline void read (reader &r, char &x) { x = r.read_char (); }
|
||||
inline void read (reader &r, int &x) { x = r.read_int (); }
|
||||
inline void read (reader &r, unsigned &x) { x = r.read_unsigned (); }
|
||||
inline void read (reader &r, uint64 &x) { x = r.read_uint64 (); }
|
||||
template<class T> inline void read (reader &r, T &x) { x = T(r); }
|
||||
|
||||
inline void ctor_read (reader &r, bool *p) { *p = r.read_bool (); }
|
||||
inline void ctor_read (reader &r, char *p) { *p = r.read_char (); }
|
||||
inline void ctor_read (reader &r, int *p) { *p = r.read_int (); }
|
||||
inline void ctor_read (reader &r, unsigned *p) { *p = r.read_unsigned (); }
|
||||
inline void ctor_read (reader &r, uint64 *p) { *p = r.read_uint64 (); }
|
||||
template<class T> inline void ctor_read (reader &r, T *p) { new (p) T (r); }
|
||||
|
||||
inline void write (writer &w, bool x) { w.write_bool (x); }
|
||||
inline void write (writer &w, char x) { w.write_char (x); }
|
||||
inline void write (writer &w, int x) { w.write_int (x); }
|
||||
inline void write (writer &w, unsigned x) { w.write_unsigned (x); }
|
||||
inline void write (writer &w, uint64 x) { w.write_uint64 (x); }
|
||||
template<class T> inline void write (writer &w, const T &x) { x.write_self (w); }
|
74
lib/lib.cpp
Normal file
74
lib/lib.cpp
Normal file
@ -0,0 +1,74 @@
|
||||
|
||||
#include <lib/lib.h>
|
||||
|
||||
#include <stdarg.h>
|
||||
|
||||
unsigned
|
||||
unsigned_pack (unsigned n, unsigned x, unsigned z)
|
||||
{
|
||||
assert (n <= 32);
|
||||
assert ((x >> n) == 0);
|
||||
|
||||
static const unsigned pack4[256] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 3, 5, 7, 9, 11, 13, 15, 1, 3, 5, 7, 9, 11, 13, 15, 2, 3, 6, 7, 10, 11, 14, 15, 2, 3, 6, 7, 10, 11, 14, 15, 3, 7, 11, 15, 3, 7, 11, 15, 3, 7, 11, 15, 3, 7, 11, 15, 4, 5, 6, 7, 12, 13, 14, 15, 4, 5, 6, 7, 12, 13, 14, 15, 5, 7, 13, 15, 5, 7, 13, 15, 5, 7, 13, 15, 5, 7, 13, 15, 6, 7, 14, 15, 6, 7, 14, 15, 6, 7, 14, 15, 6, 7, 14, 15, 7, 15, 7, 15, 7, 15, 7, 15, 7, 15, 7, 15, 7, 15, 7, 15, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, 9, 11, 13, 15, 9, 11, 13, 15, 9, 11, 13, 15, 9, 11, 13, 15, 10, 11, 14, 15, 10, 11, 14, 15, 10, 11, 14, 15, 10, 11, 14, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 13, 15, 13, 15, 13, 15, 13, 15, 13, 15, 13, 15, 13, 15, 13, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, };
|
||||
static const unsigned zerocount4[16] = {4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, };
|
||||
|
||||
unsigned r = 0;
|
||||
for (unsigned i = 0; i < n; i += 4)
|
||||
{
|
||||
unsigned xnib = ((x >> i) & 0xf);
|
||||
r |= pack4[(xnib << 4) | (z & 0xf)] << i;
|
||||
z >>= zerocount4[xnib];
|
||||
}
|
||||
assert (z == 0);
|
||||
return r;
|
||||
}
|
||||
|
||||
void
|
||||
stderror (const char *fmt, ...)
|
||||
{
|
||||
va_list ap;
|
||||
va_start (ap, fmt);
|
||||
|
||||
vfprintf (stderr, fmt, ap);
|
||||
|
||||
fprintf (stderr, ": ");
|
||||
perror (0);
|
||||
|
||||
va_end (ap);
|
||||
}
|
||||
|
||||
unsigned
|
||||
fact (unsigned n)
|
||||
{
|
||||
unsigned r = 1;
|
||||
for (unsigned i = n; i >= 2; i --)
|
||||
r *= i;
|
||||
return r;
|
||||
}
|
||||
|
||||
unsigned
|
||||
choose (unsigned n, unsigned k)
|
||||
{
|
||||
if (n < k)
|
||||
return 0;
|
||||
|
||||
unsigned r = 1;
|
||||
for (unsigned i = n; i >= k + 1; i --)
|
||||
r *= i;
|
||||
|
||||
unsigned d = fact (n - k);
|
||||
assert (r % d == 0);
|
||||
return r / d;
|
||||
}
|
||||
|
||||
int
|
||||
alpha_to_int (char c)
|
||||
{
|
||||
if ('a' <= c && c <= 'z')
|
||||
return c - 'a' + 1;
|
||||
else
|
||||
{
|
||||
assert ('A' <= c && c <= 'Z');
|
||||
return - (c - 'A' + 1);
|
||||
}
|
||||
}
|
166
lib/lib.h
Normal file
166
lib/lib.h
Normal file
@ -0,0 +1,166 @@
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <sys/errno.h>
|
||||
|
||||
#include <set>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <queue>
|
||||
#include <algorithm>
|
||||
|
||||
#include <tr1/functional>
|
||||
#include <tr1/unordered_map>
|
||||
|
||||
/* just need to implement ==, < */
|
||||
template<class T> bool operator != (const T &a, const T &b) { return ! (a == b); }
|
||||
template<class T> bool operator <= (const T &a, const T &b) { return (a < b) || (a == b); }
|
||||
template<class T> bool operator > (const T &a, const T &b) { return ! (a <= b); }
|
||||
template<class T> bool operator >= (const T &a, const T &b) { return ! (a < b); }
|
||||
|
||||
typedef enum copy { COPY, COPY1 } copy;
|
||||
typedef enum copy2 { COPY2 } copy2;
|
||||
|
||||
typedef unsigned char uchar;
|
||||
typedef unsigned short ushort;
|
||||
typedef unsigned int uint;
|
||||
typedef unsigned long ulong;
|
||||
|
||||
typedef long long int64;
|
||||
typedef unsigned long long uint64;
|
||||
|
||||
typedef size_t hash_t;
|
||||
|
||||
inline hash_t hash (bool x) { return (hash_t)x; }
|
||||
inline hash_t hash (char x) { return (hash_t)x; }
|
||||
inline hash_t hash (unsigned char x) { return (hash_t)x; }
|
||||
inline hash_t hash (short x) { return (hash_t)x; }
|
||||
inline hash_t hash (unsigned short x) { return (hash_t)x; }
|
||||
inline hash_t hash (int x) { return (hash_t)x; }
|
||||
inline hash_t hash (unsigned x) { return (hash_t)x; }
|
||||
inline hash_t hash (long x) { return (hash_t)x; }
|
||||
inline hash_t hash (unsigned long x) { return (hash_t)x; }
|
||||
|
||||
inline hash_t hash (uint64 x) { return (hash_t)((x >> 32) ^ x); }
|
||||
|
||||
template<class T>
|
||||
inline hash_t hash (const T &x)
|
||||
{
|
||||
return x.hash_self ();
|
||||
}
|
||||
|
||||
inline hash_t
|
||||
hash_combine (hash_t a, hash_t b)
|
||||
{
|
||||
return (a ^ b) * 131;
|
||||
}
|
||||
|
||||
/* uint64 */
|
||||
static const unsigned uint64_bits = 64;
|
||||
static const unsigned uint64_bit_mask = 0x3f;
|
||||
|
||||
static const unsigned unsigned_bits = 32;
|
||||
static const unsigned unsigned_bit_mask = 0x1f;
|
||||
|
||||
inline unsigned uint64_bitcount (uint64 x) { return __builtin_popcountll (x); }
|
||||
inline unsigned uint64_ffs (uint64 x) { assert (x != 0); return __builtin_ctzll (x) + 1; }
|
||||
|
||||
inline uint64 uint64_bitmask (unsigned i) { assert (i >= 1 && i <= uint64_bits); return ((uint64)1) << (i - 1); }
|
||||
inline unsigned uint64_fill (unsigned b) { assert (b <= uint64_bits); return ((uint64)1 << b) - 1; }
|
||||
inline uint64 uint64_bitset (uint64 x, unsigned i) { return x | uint64_bitmask (i); }
|
||||
inline uint64 uint64_bitclear (uint64 x, unsigned i) { return x & ~uint64_bitmask (i); }
|
||||
inline uint64 uint64_bittoggle (uint64 x, unsigned i) { return x ^ uint64_bitmask (i); }
|
||||
inline bool uint64_bittest (uint64 x, unsigned i) { return (bool)(x & uint64_bitmask (i)); }
|
||||
|
||||
/* unsigned */
|
||||
inline unsigned unsigned_bitmask (unsigned i) { assert (i >= 1 && i <= unsigned_bits); return ((unsigned)1) << (i - 1); }
|
||||
inline unsigned unsigned_fill (unsigned b) { assert (b <= unsigned_bits); return ((unsigned)1 << b) - 1; }
|
||||
|
||||
inline unsigned unsigned_discard_bit (unsigned w, unsigned i)
|
||||
{
|
||||
assert (i >= 1 && i <= unsigned_bits);
|
||||
return (w & ((((unsigned)1) << (i - 1)) - 1))
|
||||
| ((w >> i) << (i - 1));
|
||||
}
|
||||
|
||||
inline unsigned unsigned_bitset (unsigned w, unsigned i) { return w | unsigned_bitmask (i); }
|
||||
inline unsigned unsigned_bitclear (unsigned w, unsigned i) { return w &~ unsigned_bitmask (i); }
|
||||
inline bool unsigned_bittest (unsigned w, unsigned i) { return (bool)(w & unsigned_bitmask (i)); }
|
||||
|
||||
inline unsigned unsigned_bitcount (unsigned w) { return __builtin_popcount (w); }
|
||||
inline unsigned unsigned_ffs (unsigned w) { assert (w); return __builtin_ctzl (w) + 1; }
|
||||
|
||||
/* pack the bits of z into the zeros of x, where x has n bits. */
|
||||
unsigned unsigned_pack (unsigned n, unsigned x, unsigned z);
|
||||
|
||||
inline bool is_odd (int x) { return x & 1; }
|
||||
inline bool is_odd (unsigned x) { return x & 1; }
|
||||
|
||||
inline bool is_even (int x) { return !is_odd (x); }
|
||||
inline bool is_even (unsigned x) { return !is_odd (x); }
|
||||
|
||||
inline unsigned unsigned_2pow (unsigned e) { return ((unsigned)1) << e; }
|
||||
|
||||
class unsigned_const_iter
|
||||
{
|
||||
private:
|
||||
unsigned x;
|
||||
unsigned b;
|
||||
|
||||
public:
|
||||
unsigned_const_iter (unsigned x_) : x(x_), b(0) { if (x) b = unsigned_ffs (x); }
|
||||
unsigned_const_iter (const unsigned_const_iter &i) : x(i.x), b(i.b) { }
|
||||
~unsigned_const_iter () { }
|
||||
|
||||
unsigned_const_iter &operator = (const unsigned_const_iter &i) { x = i.x; b = i.b; return *this; }
|
||||
|
||||
unsigned val () const { assert (x); return b; }
|
||||
operator bool () { return (bool)x; }
|
||||
void operator ++ () { assert (x); x = unsigned_bitclear (x, b); if (x) b = unsigned_ffs (x); }
|
||||
void operator ++ (int) { operator ++ (); }
|
||||
};
|
||||
|
||||
inline bool between (unsigned a, unsigned x, unsigned b) { return a <= x && x <= b; }
|
||||
|
||||
void stderror (const char *fmt, ...);
|
||||
|
||||
int alpha_to_int (char c);
|
||||
|
||||
#include <lib/io.h>
|
||||
|
||||
#include <lib/show.h>
|
||||
#include <lib/refcount.h>
|
||||
#include <lib/pair.h>
|
||||
#include <lib/maybe.h>
|
||||
#include <lib/vector.h>
|
||||
#include <lib/set.h>
|
||||
|
||||
class bitset;
|
||||
template<unsigned B> class ullmanset;
|
||||
|
||||
unsigned fact (unsigned n);
|
||||
unsigned choose (unsigned n, unsigned k);
|
||||
|
||||
inline int random_int (int from, int to)
|
||||
{
|
||||
assert (to >= from);
|
||||
return from + (random () % (to - from + 1));
|
||||
}
|
||||
|
||||
#include <lib/smallbitset.h>
|
||||
#include <lib/bitset.h>
|
||||
#include <lib/ullmanset.h>
|
||||
#include <lib/setcommon.h>
|
||||
|
||||
#include <lib/map_wrapper.h>
|
||||
#include <lib/map.h>
|
||||
#include <lib/hashmap.h>
|
||||
#include <lib/ullmanmap.h>
|
||||
#include <lib/mapcommon.h>
|
||||
#include <lib/unionfind.h>
|
||||
#include <lib/priority_queue.h>
|
||||
#include <lib/directed_multigraph.h>
|
18
lib/map.h
Normal file
18
lib/map.h
Normal file
@ -0,0 +1,18 @@
|
||||
|
||||
/* wrapper for stl map */
|
||||
|
||||
template<class K, class V>
|
||||
class map : public map_wrapper<std::map<K, V>, K, V>
|
||||
{
|
||||
typedef map_wrapper<std::map<K, V>, K, V> base;
|
||||
|
||||
public:
|
||||
map () { }
|
||||
map (unsigned dummy_size) : base(dummy_size) { }
|
||||
map (const map &m) : base(m) { }
|
||||
map (copy, const map &m) : base(COPY, m) { }
|
||||
map (reader &r) : base(r) { }
|
||||
~map () { }
|
||||
|
||||
map &operator = (const map &m) { base::operator = (m); return *this; }
|
||||
};
|
221
lib/map_wrapper.h
Normal file
221
lib/map_wrapper.h
Normal file
@ -0,0 +1,221 @@
|
||||
|
||||
/* wrapper for stl maps */
|
||||
|
||||
template<class M, class K, class V> class map_wrapper_iter;
|
||||
template<class M, class K, class V> class map_wrapper_const_iter;
|
||||
|
||||
template<class M, class K, class V>
|
||||
class map_wrapper
|
||||
{
|
||||
private:
|
||||
friend class map_wrapper_iter<M, K, V>;
|
||||
friend class map_wrapper_const_iter<M, K, V>;
|
||||
|
||||
class map_impl : public refcounted
|
||||
{
|
||||
public:
|
||||
M t;
|
||||
};
|
||||
|
||||
ptr<map_impl> impl;
|
||||
|
||||
public:
|
||||
typedef map_wrapper_iter<M, K, V> iter;
|
||||
typedef map_wrapper_const_iter<M, K, V> const_iter;
|
||||
|
||||
public:
|
||||
map_wrapper () : impl(new map_impl) { }
|
||||
map_wrapper (unsigned dummy_size) : impl(new map_impl) { }
|
||||
map_wrapper (const map_wrapper &m) : impl(m.impl) { }
|
||||
map_wrapper (copy, const map_wrapper &m) : impl(new map_impl) { impl->t = M (m.impl->t); }
|
||||
map_wrapper (reader &r);
|
||||
~map_wrapper () { }
|
||||
|
||||
map_wrapper &operator = (const map_wrapper &m) { impl = m.impl; return *this; }
|
||||
|
||||
/* returns the pair associated to the smallest key */
|
||||
pair<K, V> head () const
|
||||
{
|
||||
typename M::const_iterator i = impl->t.begin ();
|
||||
assert (i != impl->t.end ());
|
||||
return pair<K, V> (i->first, i->second);
|
||||
}
|
||||
|
||||
/* returns the pair associated to the largest key */
|
||||
pair<K, V> tail () const
|
||||
{
|
||||
typename M::const_reverse_iterator i = impl->t.rbegin ();
|
||||
assert (i != impl->t.rend ());
|
||||
return pair<K, V> (i->first, i->second);
|
||||
}
|
||||
|
||||
maybe<V> remove_with_value (const K &k)
|
||||
{
|
||||
typename M::iterator i = impl->t.find (k);
|
||||
if (i == impl->t.end ())
|
||||
return maybe<V> ();
|
||||
else
|
||||
{
|
||||
V v = i->second;
|
||||
impl->t.erase (i);
|
||||
return maybe<V> (v);
|
||||
}
|
||||
}
|
||||
|
||||
void clear () { impl->t.clear (); }
|
||||
bool is_empty () const { return impl->t.empty (); }
|
||||
unsigned card () const { return impl->t.size (); }
|
||||
void yank (const K &k) { assert (operator % (k)); impl->t.erase (k); }
|
||||
V yank_with_value (const K &k)
|
||||
{
|
||||
typename M::iterator i = impl->t.find (k);
|
||||
assert (i != impl->t.end ());
|
||||
V v = i->second;
|
||||
impl->t.erase (i);
|
||||
return v;
|
||||
}
|
||||
|
||||
void operator -= (const K &k) { impl->t.erase (k); }
|
||||
|
||||
void push (const K &k, const V &v) { assert (!operator % (k)); impl->t.insert (std::pair<K, V> (k, v)); }
|
||||
void set (const K &k, const V &v) { operator [] (k) = v; }
|
||||
|
||||
pair<V &, bool> find (const K &k)
|
||||
{
|
||||
typename M::iterator i = impl->t.find (k);
|
||||
bool present;
|
||||
if (i == impl->t.end ())
|
||||
{
|
||||
i = impl->t.insert (std::pair<K, V> (k, V ())).first;
|
||||
present = 0;
|
||||
}
|
||||
else
|
||||
present = 1;
|
||||
return pair<V &, bool> (i->second, present);
|
||||
}
|
||||
|
||||
V *operator ^ (const K &k)
|
||||
{
|
||||
typename M::iterator i = impl->t.find (k);
|
||||
return i == impl->t.end () ? 0 : &i->second;
|
||||
}
|
||||
const V *operator ^ (const K &k) const
|
||||
{
|
||||
typename M::const_iterator i = impl->t.find (k);
|
||||
return i == impl->t.end () ? 0 : &i->second;
|
||||
}
|
||||
|
||||
V &operator [] (const K &k) { return impl->t[k]; }
|
||||
const V &operator [] (const K &k) const
|
||||
{
|
||||
typename M::const_iterator i = impl->t.find (k);
|
||||
assert (i != impl->t.end ());
|
||||
return i->second;
|
||||
}
|
||||
const V &operator () (const K &k) const { return operator [] (k); }
|
||||
const V &operator () (const K &k, const V &d) const
|
||||
{
|
||||
typename M::const_iterator i = impl->t.find (k);
|
||||
if (i == impl->t.end ())
|
||||
return d;
|
||||
else
|
||||
return i->second;
|
||||
}
|
||||
|
||||
bool operator % (const K &k) const
|
||||
{
|
||||
typename M::const_iterator i = impl->t.find (k);
|
||||
return i != impl->t.end ();
|
||||
}
|
||||
|
||||
bool operator == (const map_wrapper &m) const;
|
||||
|
||||
void write_self (writer &w) const;
|
||||
};
|
||||
|
||||
template<class M, class K, class V>
|
||||
map_wrapper<M, K, V>::map_wrapper (reader &r)
|
||||
: impl(new map_impl)
|
||||
{
|
||||
unsigned card_ = r.read_unsigned ();
|
||||
K k;
|
||||
V v;
|
||||
for (unsigned i = 0; i < card_; i ++)
|
||||
{
|
||||
read (r, k);
|
||||
read (r, v);
|
||||
push (k, v);
|
||||
}
|
||||
}
|
||||
|
||||
template<class M, class K, class V> bool
|
||||
map_wrapper<M, K, V>::operator == (const map_wrapper &m) const
|
||||
{
|
||||
// event bettr: use (ordered) dual iterators
|
||||
if (card () != m.card ())
|
||||
return 0;
|
||||
|
||||
for (const_iter i = *this; i; i ++)
|
||||
{
|
||||
// ??? inefficient: use operator ^
|
||||
if (! (m % i.key ())
|
||||
|| m(i.key ()) != i.val ())
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
template<class M, class K, class V> void
|
||||
map_wrapper<M, K, V>::write_self (writer &w) const
|
||||
{
|
||||
write (w, card ());
|
||||
for (const_iter i = *this; i; i ++)
|
||||
{
|
||||
write (w, i.key ());
|
||||
write (w, i.val ());
|
||||
}
|
||||
}
|
||||
|
||||
template<class M, class K, class V>
|
||||
class map_wrapper_iter
|
||||
{
|
||||
private:
|
||||
map_wrapper<M, K, V> &m;
|
||||
typename M::iterator i, end;
|
||||
bool deleted;
|
||||
|
||||
public:
|
||||
map_wrapper_iter (map_wrapper<M, K, V> &m_) : m(m_), i(m_.impl->t.begin ()), end(m_.impl->t.end ()), deleted(0) { }
|
||||
~map_wrapper_iter () { }
|
||||
|
||||
void del ()
|
||||
{
|
||||
assert (!deleted);
|
||||
typename M::iterator iprev = i ++;
|
||||
m.impl->t.erase (iprev);
|
||||
deleted = 1;
|
||||
}
|
||||
|
||||
const K &key () const { assert (!deleted); return i->first; }
|
||||
V &val () { assert (!deleted); return i->second; }
|
||||
operator bool () const { assert (!deleted); return i != end; }
|
||||
void operator ++ () { if (deleted) deleted = 0; else i ++; }
|
||||
void operator ++ (int) { operator ++ (); }
|
||||
};
|
||||
|
||||
template<class M, class K, class V>
|
||||
class map_wrapper_const_iter
|
||||
{
|
||||
private:
|
||||
typename M::const_iterator i, end;
|
||||
|
||||
public:
|
||||
map_wrapper_const_iter (const map_wrapper<M, K, V> &m) : i(m.impl->t.begin ()), end(m.impl->t.end ()) { }
|
||||
~map_wrapper_const_iter () { }
|
||||
|
||||
const K &key () const { return i->first; }
|
||||
const V &val () { return i->second; }
|
||||
operator bool () const { return i != end; }
|
||||
void operator ++ () { i ++; }
|
||||
void operator ++ (int) { i ++; }
|
||||
};
|
28
lib/mapcommon.h
Normal file
28
lib/mapcommon.h
Normal file
@ -0,0 +1,28 @@
|
||||
|
||||
template<class V, unsigned B> map<unsigned, V> &
|
||||
mapassign (map<unsigned, V> &to, unsigned dummy_size, const ullmanmap<V, B> &from)
|
||||
{
|
||||
assert (dummy_size == from.size ());
|
||||
|
||||
to = map<unsigned, V> ();
|
||||
for (ullmanmap_const_iter<V, B> i = from; i; i ++)
|
||||
to.push (i.key (), i.val ());
|
||||
return to;
|
||||
}
|
||||
|
||||
template<class V, unsigned B> ullmanmap<V, B> &
|
||||
mapassign (ullmanmap<V, B> &to, unsigned size, const map<unsigned, V> &from)
|
||||
{
|
||||
to = ullmanmap<V, B> (size);
|
||||
for (typename map<unsigned, V>::const_iter i = from; i; i ++)
|
||||
to.push (i.key (), i.val ());
|
||||
return to;
|
||||
}
|
||||
|
||||
template<class K, class V> map<K, V> &
|
||||
mapassign (map<K, V> &to, unsigned dummy_size, const map<K, V> &from)
|
||||
{
|
||||
// todo: ?? careful about allocation: this unref's the previous object pointed to by to
|
||||
to = map<K, V> (COPY, from);
|
||||
return to;
|
||||
}
|
58
lib/maybe.h
Normal file
58
lib/maybe.h
Normal file
@ -0,0 +1,58 @@
|
||||
|
||||
template <class T>
|
||||
class maybe
|
||||
{
|
||||
private:
|
||||
bool present;
|
||||
T v;
|
||||
|
||||
public:
|
||||
maybe () : present(0) { }
|
||||
maybe (const T &v_) : present(1), v(v_) { }
|
||||
maybe (const maybe &m) : present(m.present), v(m.v) { }
|
||||
maybe (reader &r);
|
||||
~maybe () { }
|
||||
|
||||
maybe &operator = (const maybe &m) { present = m.present; v = m.v; return *this; }
|
||||
|
||||
bool is_some () const { return present; }
|
||||
bool is_none () const { return !present; }
|
||||
T &some () { assert (present); return v; }
|
||||
|
||||
bool operator == (const maybe &m) const
|
||||
{
|
||||
if (present != m.present)
|
||||
return 0;
|
||||
if (present)
|
||||
return v == m.v;
|
||||
}
|
||||
bool operator != (const maybe &m) const { return !operator == (m); }
|
||||
|
||||
void write_self (writer &w) const;
|
||||
hash_t hash_self () const;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
maybe<T>::maybe (reader &r)
|
||||
{
|
||||
read (r, present);
|
||||
if (present)
|
||||
read (r, v);
|
||||
}
|
||||
|
||||
template<class T> void
|
||||
maybe<T>::write_self (writer &w) const
|
||||
{
|
||||
write (w, present);
|
||||
if (present)
|
||||
write (w, v);
|
||||
}
|
||||
|
||||
template<class T> hash_t
|
||||
maybe<T>::hash_self () const
|
||||
{
|
||||
if (present)
|
||||
return hash_combine (hash (0xdeadbeef), hash (v));
|
||||
else
|
||||
return hash (0xcafebabe);
|
||||
}
|
94
lib/pair.h
Normal file
94
lib/pair.h
Normal file
@ -0,0 +1,94 @@
|
||||
|
||||
template <class F, class S>
|
||||
class pair
|
||||
{
|
||||
public:
|
||||
F first;
|
||||
S second;
|
||||
|
||||
public:
|
||||
pair () { }
|
||||
pair (const pair &p) : first(p.first), second(p.second) { }
|
||||
/* F, S might be references. */
|
||||
pair (F first_, S second_) : first(first_), second(second_) { }
|
||||
pair (reader &r);
|
||||
~pair () { }
|
||||
|
||||
pair &operator = (const pair &p) { first = p.first; second = p.second; return *this; }
|
||||
|
||||
bool operator == (const pair &p) const { return first == p.first && second == p.second; }
|
||||
bool operator < (const pair &p) const { return (first < p.first
|
||||
|| (first == p.first && second < p.second)); }
|
||||
|
||||
void write_self (writer &w) const;
|
||||
hash_t hash_self () const { return hash_combine (hash (first), hash (second)); }
|
||||
};
|
||||
|
||||
template <class F, class S>
|
||||
pair<F, S>::pair (reader &r)
|
||||
{
|
||||
read (r, first);
|
||||
read (r, second);
|
||||
}
|
||||
|
||||
template<class F, class S> void
|
||||
pair<F, S>::write_self (writer &w) const
|
||||
{
|
||||
write (w, first);
|
||||
write (w, second);
|
||||
}
|
||||
|
||||
template<class F, class S, class T>
|
||||
class triple
|
||||
{
|
||||
public:
|
||||
F first;
|
||||
S second;
|
||||
T third;
|
||||
|
||||
triple () { }
|
||||
triple (const triple &t)
|
||||
: first(t.first), second(t.second), third(t.third)
|
||||
{ }
|
||||
triple (const F &first_, const S &second_, const T &third_)
|
||||
: first(first_), second(second_), third(third_)
|
||||
{ }
|
||||
~triple () { }
|
||||
|
||||
triple &operator = (const triple &t)
|
||||
{
|
||||
first = t.first;
|
||||
second = t.second;
|
||||
third = t.third;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator == (const triple &t) const
|
||||
{
|
||||
return first == t.first && second == t.second && third == t.third;
|
||||
}
|
||||
bool operator < (const triple &t) const
|
||||
{
|
||||
if (first < t.first)
|
||||
return 1;
|
||||
else if (first > t.first)
|
||||
return 0;
|
||||
|
||||
if (second < t.second)
|
||||
return 1;
|
||||
else if (second > t.second)
|
||||
return 0;
|
||||
|
||||
if (third < t.third)
|
||||
return 1;
|
||||
else if (third > t.third)
|
||||
return 0;
|
||||
}
|
||||
|
||||
hash_t hash_self () const
|
||||
{
|
||||
hash_t h = hash (first);
|
||||
h = hash_combine (h, hash (second));
|
||||
return hash_combine (h, hash (third));
|
||||
}
|
||||
};
|
78
lib/priority_queue.h
Normal file
78
lib/priority_queue.h
Normal file
@ -0,0 +1,78 @@
|
||||
|
||||
template<class V>
|
||||
class priority_queue
|
||||
{
|
||||
private:
|
||||
class weighted
|
||||
{
|
||||
public:
|
||||
V v;
|
||||
int pri;
|
||||
|
||||
public:
|
||||
weighted () { }
|
||||
weighted (const weighted &w) : v(w.v), pri(w.pri) { }
|
||||
weighted (const V &v_, int pri_) : v(v_), pri(pri_) { }
|
||||
~weighted () { }
|
||||
|
||||
weighted &operator = (const weighted &w) { v = w.v; pri = w.pri; }
|
||||
|
||||
bool operator == (const weighted &w) const { return v == w.v && pri == w.pri; }
|
||||
bool operator < (const weighted &w) const { return pri > w.pri || (pri == w.pri && v < w.v); }
|
||||
};
|
||||
|
||||
map<V, int> pri;
|
||||
set<weighted> s;
|
||||
|
||||
public:
|
||||
priority_queue () { }
|
||||
priority_queue (const priority_queue &q) : pri(q.pri), s(q.s) { }
|
||||
priority_queue (copy, const priority_queue &q) : pri(COPY, q.pri), s(COPY, q.s) { }
|
||||
~priority_queue () { }
|
||||
|
||||
priority_queue &operator = (const priority_queue &q) { pri = q.pri; s = q.s; }
|
||||
|
||||
bool is_empty () const { return s.is_empty (); }
|
||||
bool operator % (const V &v) const { return pri % v; }
|
||||
void push (const V &v, int p)
|
||||
{
|
||||
assert (! (pri % v));
|
||||
pri.push (v, p);
|
||||
s.push (weighted (v, p));
|
||||
}
|
||||
priority_queue &operator -= (const V &v)
|
||||
{
|
||||
maybe<int> old_p = pri.remove_with_value (v);
|
||||
if (old_p.is_some ())
|
||||
s.yank (weighted (v, old_p.some ()));
|
||||
return *this;
|
||||
}
|
||||
void yank (const V &v) { assert (pri % v); operator -= (v); }
|
||||
void insert (const V &v, int p)
|
||||
{
|
||||
int *old_p = pri ^ v;
|
||||
if (old_p)
|
||||
{
|
||||
if (*old_p != p)
|
||||
{
|
||||
s.yank (weighted (v, *old_p));
|
||||
s.push (weighted (v, p));
|
||||
*old_p = p;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
pri.push (v, p);
|
||||
s.push (weighted (v, p));
|
||||
}
|
||||
}
|
||||
V pop ()
|
||||
{
|
||||
weighted w = s.pop ();
|
||||
pri.yank (w.v);
|
||||
return w.v;
|
||||
}
|
||||
const V &top () const { return s.head ().v; }
|
||||
|
||||
unsigned card () const { return s.card (); }
|
||||
};
|
25
lib/refcount.cpp
Normal file
25
lib/refcount.cpp
Normal file
@ -0,0 +1,25 @@
|
||||
|
||||
#include <lib/lib.h>
|
||||
|
||||
#ifndef NDEBUG
|
||||
uint64 allocations = 0;
|
||||
uint64 deallocations = 0;
|
||||
|
||||
class finalize
|
||||
{
|
||||
public:
|
||||
finalize ();
|
||||
~finalize ();
|
||||
};
|
||||
|
||||
finalize::finalize ()
|
||||
{
|
||||
}
|
||||
|
||||
finalize::~finalize ()
|
||||
{
|
||||
// assert (allocations == deallocations);
|
||||
}
|
||||
|
||||
static finalize finalizer;
|
||||
#endif
|
84
lib/refcount.h
Normal file
84
lib/refcount.h
Normal file
@ -0,0 +1,84 @@
|
||||
|
||||
#ifndef NDEBUG
|
||||
extern uint64 allocations, deallocations;
|
||||
#endif
|
||||
|
||||
inline void *operator new (size_t size)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
allocations ++;
|
||||
#endif
|
||||
return malloc (size);
|
||||
}
|
||||
inline void *operator new [] (size_t size)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
allocations ++;
|
||||
#endif
|
||||
return malloc (size);
|
||||
}
|
||||
|
||||
inline void operator delete (void *p)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
deallocations ++;
|
||||
#endif
|
||||
free (p);
|
||||
}
|
||||
inline void operator delete [] (void *p)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
deallocations ++;
|
||||
#endif
|
||||
free (p);
|
||||
}
|
||||
|
||||
class refcounted
|
||||
{
|
||||
private:
|
||||
template<class T> friend class ptr;
|
||||
|
||||
mutable unsigned refcount;
|
||||
|
||||
public:
|
||||
refcounted () : refcount(0) { }
|
||||
refcounted (const refcounted &rc); // doesn't exist
|
||||
~refcounted () { }
|
||||
|
||||
refcounted &operator = (const refcounted &rc); // doesn't exist
|
||||
};
|
||||
|
||||
template<class T>
|
||||
class ptr
|
||||
{
|
||||
private:
|
||||
template<class S> friend class ptr;
|
||||
|
||||
T *p;
|
||||
|
||||
void ref (T *newp) { assert (p == 0); p = newp; if (p) p->refcount ++; }
|
||||
void unref () { if (p && -- p->refcount == 0) { delete p; } p = 0; }
|
||||
|
||||
public:
|
||||
ptr () : p(0) { }
|
||||
ptr (const ptr &r) : p(0) { ref (r.p); }
|
||||
template<class S> ptr (S *p_) : p(0) { ref (p_); }
|
||||
template<class S> ptr (const ptr<S> &r) : p(0) { ref (r.p); }
|
||||
~ptr () { unref (); }
|
||||
|
||||
ptr &operator = (const ptr &r) { unref (); ref (r.p); return *this; }
|
||||
template<class S> ptr &operator = (S *p_) { unref (); ref (p_); return *this; }
|
||||
|
||||
template<class S> bool operator == (const ptr<S> &r) const { return p == r.p; }
|
||||
template<class S> bool operator != (const ptr<S> &r) const { return p != r.p; }
|
||||
|
||||
template<class S> bool operator == (S *p_) const { return p == p_; }
|
||||
template<class S> bool operator != (S *p_) const { return p != p_; }
|
||||
|
||||
bool operator == (int x) const { assert (x == 0); return p == 0; }
|
||||
bool operator != (int x) const { assert (x == 0); return p != 0; }
|
||||
|
||||
T &operator * () const { assert (p); return *p; }
|
||||
T *get () const { assert (p); return p; }
|
||||
T *operator -> () const { assert (p); return p; }
|
||||
};
|
341
lib/set.h
Normal file
341
lib/set.h
Normal file
@ -0,0 +1,341 @@
|
||||
|
||||
/* wrap for std::set */
|
||||
|
||||
template<class T> class set_iter;
|
||||
template<class T> class set_const_iter;
|
||||
|
||||
template<class T>
|
||||
class set
|
||||
{
|
||||
private:
|
||||
friend class set_iter<T>;
|
||||
friend class set_const_iter<T>;
|
||||
|
||||
class set_impl : public refcounted
|
||||
{
|
||||
public:
|
||||
std::set<T> t;
|
||||
};
|
||||
|
||||
ptr<set_impl> impl;
|
||||
|
||||
public:
|
||||
typedef set_iter<T> iter;
|
||||
typedef set_const_iter<T> const_iter;
|
||||
|
||||
public:
|
||||
set () : impl(new set_impl) { }
|
||||
set (unsigned dummy_size) : impl(new set_impl) { }
|
||||
set (const set &s) : impl(s.impl) { }
|
||||
set (copy, const set &s) : impl(new set_impl) { impl->t = std::set<T> (s.impl->t); }
|
||||
set (reader &r);
|
||||
~set () { }
|
||||
|
||||
set &operator = (const set &s) { impl = s.impl; return *this; }
|
||||
|
||||
T pop ()
|
||||
{
|
||||
typename std::set<T>::const_iterator i = impl->t.begin ();
|
||||
assert (i != impl->t.end ());
|
||||
T tmp = *i;
|
||||
impl->t.erase (i);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
bool is_empty () const { return impl->t.empty (); }
|
||||
unsigned card () const { return impl->t.size (); }
|
||||
const T &head () const;
|
||||
const T &tail () const;
|
||||
|
||||
bool operator == (const set &s) const;
|
||||
bool operator < (const set &s) const;
|
||||
bool operator <= (const set &s) const;
|
||||
|
||||
void clear () { impl->t.clear (); }
|
||||
void push (const T &v) { assert (impl->t.find (v) == impl->t.end ()); impl->t.insert (v); }
|
||||
bool toggle (const T &v);
|
||||
void operator += (const T &v) { impl->t.insert (v); }
|
||||
void operator -= (const T &v) { impl->t.erase (v); }
|
||||
void yank (const T &v) { assert (operator % (v)); impl->t.erase (v); }
|
||||
|
||||
set &operator |= (const set<T> &s);
|
||||
set &operator &= (const set<T> &s);
|
||||
set &operator ^= (const set<T> &s);
|
||||
|
||||
bool operator % (const T &v) const { return impl->t.find (v) != impl->t.end (); }
|
||||
bool operator () (const T &v) const { return operator % (v); }
|
||||
|
||||
void write_self (writer &w) const;
|
||||
hash_t hash_self () const;
|
||||
};
|
||||
|
||||
template<class T>
|
||||
class set_iter
|
||||
{
|
||||
set<T> &s;
|
||||
typename std::set<T>::const_iterator i, end;
|
||||
bool deleted;
|
||||
|
||||
public:
|
||||
set_iter (set<T> &s_) : s(s_), i(s_.impl->t.begin ()), end(s_.impl->t.end ()), deleted(0) { }
|
||||
~set_iter () { }
|
||||
|
||||
void del ()
|
||||
{
|
||||
assert (!deleted);
|
||||
typename std::set<T>::const_iterator iprev = i ++;
|
||||
s.impl->t.erase (iprev);
|
||||
deleted = 1;
|
||||
}
|
||||
|
||||
const T &val () const { assert (!deleted); return *i; }
|
||||
operator bool () const { assert (!deleted); return i != end; }
|
||||
set_iter &operator ++ () { if (deleted) deleted = 0; else i ++; return *this; }
|
||||
void operator ++ (int) { operator ++ (); }
|
||||
};
|
||||
|
||||
template<class T>
|
||||
class set_const_iter
|
||||
{
|
||||
typename std::set<T>::const_iterator i, end;
|
||||
|
||||
public:
|
||||
set_const_iter (const set<T> &s) : i(s.impl->t.begin ()), end(s.impl->t.end ()) { }
|
||||
~set_const_iter () { }
|
||||
|
||||
const T &val () const { return *i; }
|
||||
operator bool () const { return i != end; }
|
||||
set_const_iter &operator ++ () { i ++; return *this; }
|
||||
void operator ++ (int) { i ++; }
|
||||
};
|
||||
|
||||
template<class T>
|
||||
set<T>::set (reader &r)
|
||||
{
|
||||
unsigned n;
|
||||
read (r, n);
|
||||
T x;
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
read (r, x);
|
||||
push (x);
|
||||
}
|
||||
}
|
||||
|
||||
template<class T> const T &
|
||||
set<T>::head () const
|
||||
{
|
||||
set_const_iter<T> i = *this;
|
||||
assert (i);
|
||||
return i.val ();
|
||||
}
|
||||
|
||||
template<class T> const T &
|
||||
set<T>::tail () const
|
||||
{
|
||||
typename std::set<T>::const_reverse_iterator i = impl->t.rbegin ();
|
||||
assert (i != impl->t.rend ());
|
||||
return *i;
|
||||
}
|
||||
|
||||
template<class T> bool
|
||||
set<T>::operator == (const set &s) const
|
||||
{
|
||||
typename std::set<T>::const_iterator i = impl->t.begin (),
|
||||
j = s.impl->t.begin (),
|
||||
iend = impl->t.end (),
|
||||
jend = s.impl->t.end ();
|
||||
|
||||
while (i != iend && j != jend && *i == *j)
|
||||
i ++, j ++;
|
||||
|
||||
return i == iend && j == jend;
|
||||
}
|
||||
|
||||
template<class T> bool
|
||||
set<T>::operator < (const set &s) const
|
||||
{
|
||||
typename std::set<T>::const_iterator i = impl->t.begin (),
|
||||
j = s.impl->t.begin (),
|
||||
iend = impl->t.end (),
|
||||
jend = s.impl->t.end ();
|
||||
|
||||
while (i != iend && j != jend && *i == *j)
|
||||
i ++, j ++;
|
||||
|
||||
return (i == iend && j != jend) || (i != iend && j != jend && *i < *j);
|
||||
}
|
||||
|
||||
template<class T> bool
|
||||
set<T>::operator <= (const set &s) const
|
||||
{
|
||||
typename std::set<T>::const_iterator i = impl->t.begin (),
|
||||
j = s.impl->t.begin (),
|
||||
iend = impl->t.end (),
|
||||
jend = s.impl->t.end ();
|
||||
|
||||
while (i != iend && j != jend && *i == *j)
|
||||
i ++, j ++;
|
||||
|
||||
return i == iend
|
||||
|| (i != iend && j != jend && *i <= *j);
|
||||
}
|
||||
|
||||
template<class T> bool
|
||||
set<T>::toggle (const T &v)
|
||||
{
|
||||
typename std::set<T>::const_iterator i = impl->t.lower_bound (v),
|
||||
end = impl->t.end ();
|
||||
if (i != end && *i == v)
|
||||
{
|
||||
impl->t.erase (i);
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (i == impl->t.begin ())
|
||||
impl->t.insert (v);
|
||||
else
|
||||
{
|
||||
typename std::set<T>::const_iterator j = --i;
|
||||
assert (*j < v);
|
||||
impl->t.insert (j, v);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
template<class T> set<T> &
|
||||
set<T>::operator |= (const set<T> &s)
|
||||
{
|
||||
std::set<T> news;
|
||||
std::set_union (impl->t.begin (), impl->t.end (),
|
||||
s.impl->t.begin (), s.impl->t.end (),
|
||||
inserter (news, news.begin ()));
|
||||
impl->t = news;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class T> set<T> &
|
||||
set<T>::operator &= (const set<T> &s)
|
||||
{
|
||||
std::set<T> news;
|
||||
std::set_intersection (impl->t.begin (), impl->t.end (),
|
||||
s.impl->t.begin (), s.impl->t.end (),
|
||||
inserter (news, news.begin ()));
|
||||
impl->t = news;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class T> set<T> &
|
||||
set<T>::operator ^= (const set<T> &s)
|
||||
{
|
||||
#if 0
|
||||
printf ("before:\n");
|
||||
printf ("this:");
|
||||
for (typename std::set<T>::const_iterator i = impl->t.begin (); i != impl->t.end (); i ++)
|
||||
printf (" %d", *i);
|
||||
printf ("\n");
|
||||
printf ("s:");
|
||||
for (typename std::set<T>::const_iterator i = s.impl->t.begin (); i != s.impl->t.end (); i ++)
|
||||
printf (" %d", *i);
|
||||
printf ("\n");
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
typename std::set<T>::const_iterator i = impl->t.begin (),
|
||||
iend = impl->t.end (),
|
||||
j = s.impl->t.begin (),
|
||||
jend = s.impl->t.end ();
|
||||
|
||||
while (i != iend && j != jend && *i == *j)
|
||||
{
|
||||
impl->t.erase (i);
|
||||
i = impl->t.begin ();
|
||||
j ++;
|
||||
}
|
||||
|
||||
if (i == iend)
|
||||
impl->t.insert (j, jend);
|
||||
else
|
||||
{
|
||||
if (j != jend && *j < *i)
|
||||
{
|
||||
i = impl->t.insert (*j).first;
|
||||
j ++;
|
||||
}
|
||||
|
||||
while (j != jend)
|
||||
{
|
||||
assert (*i < *j);
|
||||
|
||||
typename std::set<T>::const_iterator iprev = i ++;
|
||||
if (i == iend)
|
||||
{
|
||||
while (j != jend)
|
||||
{
|
||||
iprev = impl->t.insert (iprev, *j);
|
||||
j ++;
|
||||
}
|
||||
break;
|
||||
}
|
||||
else if (*i == *j)
|
||||
{
|
||||
impl->t.erase (i);
|
||||
i = iprev;
|
||||
j ++;
|
||||
}
|
||||
else
|
||||
{
|
||||
while (j != jend && *j < *i)
|
||||
{
|
||||
iprev = impl->t.insert (iprev, *j);
|
||||
j ++;
|
||||
}
|
||||
if (j != jend && *j == *i)
|
||||
{
|
||||
impl->t.erase (i);
|
||||
i = iprev;
|
||||
j ++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
std::set<T> news;
|
||||
std::set_symmetric_difference (impl->t.begin (), impl->t.end (),
|
||||
s.impl->t.begin (), s.impl->t.end (),
|
||||
inserter (news, news.begin ()));
|
||||
impl->t = news;
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
printf ("after:\n");
|
||||
printf ("this:");
|
||||
for (typename std::set<T>::const_iterator i = impl->t.begin (); i != impl->t.end (); i ++)
|
||||
printf (" %d", *i);
|
||||
printf ("\n");
|
||||
#endif
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class T> void
|
||||
set<T>::write_self (writer &w) const
|
||||
{
|
||||
write (w, card ());
|
||||
for (const_iter i = *this; i; i ++)
|
||||
write (w, i.val ());
|
||||
}
|
||||
|
||||
template<class T> hash_t
|
||||
set<T>::hash_self () const
|
||||
{
|
||||
hash_t h = hash (card ());
|
||||
unsigned j = 0;
|
||||
for (const_iter i = *this; i && j < 10; i ++, j ++)
|
||||
h = hash_combine (h, hash (i.val ()));
|
||||
return h;
|
||||
}
|
60
lib/setcommon.cpp
Normal file
60
lib/setcommon.cpp
Normal file
@ -0,0 +1,60 @@
|
||||
|
||||
#include <lib/lib.h>
|
||||
|
||||
unsigned unsigned_set (const ullmanset<1> &s)
|
||||
{
|
||||
assert (s.size () <= unsigned_bits);
|
||||
|
||||
unsigned v = 0;
|
||||
for (ullmanset_const_iter<1> i = s; i; i ++)
|
||||
v = unsigned_bitset (v, i.val ());
|
||||
return v;
|
||||
}
|
||||
|
||||
unsigned
|
||||
unsigned_set (const bitset &s)
|
||||
{
|
||||
assert (s.size () <= unsigned_bits);
|
||||
|
||||
unsigned v = 0;
|
||||
for (bitset_const_iter i = s; i; i ++)
|
||||
v = unsigned_bitset (v, i.val ());
|
||||
return v;
|
||||
}
|
||||
|
||||
unsigned
|
||||
unsigned_set (const set<unsigned> &s)
|
||||
{
|
||||
unsigned v = 0;
|
||||
for (set_const_iter<unsigned> i = s; i; i ++)
|
||||
v = unsigned_bitset (v, i.val ());
|
||||
return v;
|
||||
}
|
||||
|
||||
/* bitset */
|
||||
|
||||
bitset::bitset (const ullmanset<1> &t)
|
||||
: n(0)
|
||||
{
|
||||
*this = bitset (t.size ());
|
||||
for (ullmanset_const_iter<1> i = t; i; i ++)
|
||||
push (i.val ());
|
||||
}
|
||||
|
||||
bitset &
|
||||
bitset::operator = (const ullmanset<1> &t)
|
||||
{
|
||||
*this = bitset (t.size ());
|
||||
for (ullmanset_const_iter<1> i = t; i; i ++)
|
||||
push (i.val ());
|
||||
return *this;
|
||||
}
|
||||
|
||||
smallbitset::smallbitset (const ullmanset<1> &t)
|
||||
: n(t.size ()), x(0)
|
||||
{
|
||||
assert (n <= 58);
|
||||
|
||||
for (ullmanset_const_iter<1> i = t; i; i ++)
|
||||
push (i.val ());
|
||||
}
|
55
lib/setcommon.h
Normal file
55
lib/setcommon.h
Normal file
@ -0,0 +1,55 @@
|
||||
|
||||
extern unsigned unsigned_set (const ullmanset<1> &s);
|
||||
extern unsigned unsigned_set (const bitset &s);
|
||||
extern unsigned unsigned_set (const set<unsigned> &s);
|
||||
|
||||
smallbitset::smallbitset (const bitset &t)
|
||||
: n(t.size ()),
|
||||
x(0)
|
||||
{
|
||||
assert (t.size () <= max_size);
|
||||
if (n)
|
||||
{
|
||||
assert (t.v.size () == 1);
|
||||
x = t.v[0];
|
||||
}
|
||||
assert ((x >> n) == 0);
|
||||
}
|
||||
|
||||
template<unsigned B>
|
||||
ullmanset<B>::ullmanset (const bitset &t)
|
||||
: d(0)
|
||||
{
|
||||
*this = ullmanset (t.size ());
|
||||
for (bitset_const_iter i = t; i; i ++)
|
||||
push (i.val ());
|
||||
}
|
||||
|
||||
template<unsigned B> ullmanset<B> &
|
||||
ullmanset<B>::operator = (const bitset &t)
|
||||
{
|
||||
*this = ullmanset (t.size ());
|
||||
for (bitset_const_iter i = t; i; i ++)
|
||||
push (i.val ());
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<unsigned B> set<unsigned> &
|
||||
setassign (set<unsigned> &to, unsigned dummy_size, const ullmanset<B> &from)
|
||||
{
|
||||
assert (dummy_size == from.size ());
|
||||
|
||||
to = set<unsigned> ();
|
||||
for (ullmanset_const_iter<B> i = from; i; i ++)
|
||||
to.push (i.val ());
|
||||
return to;
|
||||
}
|
||||
|
||||
template<unsigned B> ullmanset<B> &
|
||||
setassign (ullmanset<B> &to, unsigned size, const set<unsigned> &from)
|
||||
{
|
||||
to = ullmanset<B> (size);
|
||||
for (set_const_iter<unsigned> i = from; i; i ++)
|
||||
to.push (i.val ());
|
||||
return to;
|
||||
}
|
16
lib/show.h
Normal file
16
lib/show.h
Normal file
@ -0,0 +1,16 @@
|
||||
|
||||
inline void newline () { printf ("\n"); }
|
||||
inline void comment () { printf ("%% "); }
|
||||
inline void show (int i) { printf ("%d", i); }
|
||||
inline void show (unsigned i) { printf ("%d", i); }
|
||||
inline void display (int i) { printf ("%d\n", i); }
|
||||
inline void display (unsigned i) { printf ("%d\n", i); }
|
||||
|
||||
template<class T> inline void show (const T &e) { e.show_self (); }
|
||||
template<class T> inline void display (const T &e) { e.display_self (); }
|
||||
|
||||
template<class T> inline void display (const char *h, const T &e)
|
||||
{
|
||||
printf ("%s", h);
|
||||
e.display_self ();
|
||||
}
|
44
lib/smallbitset.cpp
Normal file
44
lib/smallbitset.cpp
Normal file
@ -0,0 +1,44 @@
|
||||
|
||||
#include <lib/lib.h>
|
||||
|
||||
smallbitset::smallbitset (reader &r)
|
||||
{
|
||||
uint64 t;
|
||||
read (r, t);
|
||||
n = t >> 58;
|
||||
x = t;
|
||||
|
||||
assert (n <= max_size);
|
||||
}
|
||||
|
||||
#if 0
|
||||
smallbitset::smallbitset (const unsignedset &t)
|
||||
: n(t.size ()),
|
||||
x(0)
|
||||
{
|
||||
assert (n <= max_size);
|
||||
for (unsignedset_const_iter i = t; i; i ++)
|
||||
push (i.val ());
|
||||
}
|
||||
#endif
|
||||
|
||||
void
|
||||
smallbitset::write_self (writer &w) const
|
||||
{
|
||||
write (w, x | (((uint64)n) << 58));
|
||||
}
|
||||
|
||||
void
|
||||
smallbitset::show_self () const
|
||||
{
|
||||
printf ("%d:", n);
|
||||
for (unsigned i = n; i >= 1; i --)
|
||||
printf ("%c", operator % (i) ? '1' : '0');
|
||||
}
|
||||
|
||||
void
|
||||
smallbitset::display_self () const
|
||||
{
|
||||
show_self ();
|
||||
newline ();
|
||||
}
|
147
lib/smallbitset.h
Normal file
147
lib/smallbitset.h
Normal file
@ -0,0 +1,147 @@
|
||||
|
||||
class smallbitset_iter;
|
||||
class smallbitset_const_iter;
|
||||
|
||||
class smallbitset
|
||||
{
|
||||
private:
|
||||
friend class smallbitset_iter;
|
||||
friend class smallbitset_const_iter;
|
||||
|
||||
unsigned n : 6;
|
||||
uint64 x : 58;
|
||||
|
||||
public:
|
||||
static const unsigned max_size = 58;
|
||||
|
||||
typedef smallbitset_iter iter;
|
||||
typedef smallbitset_const_iter const_iter;
|
||||
|
||||
public:
|
||||
smallbitset () : n(0), x(0) { }
|
||||
explicit smallbitset (unsigned n_) : n(n_), x(0) { assert (n_ <= max_size); }
|
||||
explicit smallbitset (reader &r);
|
||||
smallbitset (unsigned n_, uint64 x_)
|
||||
: n(n_), x(x_ & uint64_fill (n_))
|
||||
{
|
||||
assert (n <= max_size);
|
||||
assert ((x >> n) == 0);
|
||||
}
|
||||
|
||||
smallbitset (const smallbitset &bs) : n(bs.n), x(bs.x) { }
|
||||
explicit smallbitset (const ullmanset<1> &t);
|
||||
// explicit smallbitset (const unsignedset &t);
|
||||
explicit inline smallbitset (const bitset &t);
|
||||
|
||||
~smallbitset () { }
|
||||
|
||||
smallbitset &operator = (const smallbitset &bs) { n = bs.n; x = bs.x; return *this; }
|
||||
smallbitset &operator = (const bitset &t) { *this = smallbitset (t); return *this; }
|
||||
// smallbitset &operator = (const unsignedset &t) { *this = smallbitset (t); return *this; }
|
||||
smallbitset &operator = (const ullmanset<1> &t) { *this = smallbitset (t); return *this; }
|
||||
|
||||
bool is_empty () const { assert ((x >> n) == 0); return x == 0; }
|
||||
unsigned card () const { assert ((x >> n) == 0); return uint64_bitcount (x); }
|
||||
unsigned size () const { return n; }
|
||||
unsigned head () const { assert (x); return uint64_ffs (x); }
|
||||
unsigned pop ()
|
||||
{
|
||||
assert (x);
|
||||
|
||||
unsigned i = uint64_ffs (x);
|
||||
x = uint64_bitclear (x, i);
|
||||
return i;
|
||||
}
|
||||
|
||||
bool subset (const smallbitset &bs) const
|
||||
{
|
||||
assert (n == bs.n);
|
||||
assert ((x >> n) == 0);
|
||||
assert ((bs.x >> n) == 0);
|
||||
return (x & bs.x) == x;
|
||||
}
|
||||
|
||||
void push (unsigned i) { assert (! (*this % i)); operator += (i); }
|
||||
void yank (unsigned i) { assert (*this % i); operator -= (i); }
|
||||
void operator += (unsigned i) { assert (i <= n); x = uint64_bitset (x, i); }
|
||||
void operator -= (unsigned i) { assert (i <= n); x = uint64_bitclear (x, i); }
|
||||
|
||||
void toggle (unsigned i) { assert (i <= n); x = uint64_bittoggle (x, i); }
|
||||
void toggle () { x ^= (((uint64)1) << n) - 1; }
|
||||
|
||||
smallbitset &operator |= (const smallbitset &bs) { assert (n == bs.n); x |= bs.x; return *this; }
|
||||
smallbitset &operator &= (const smallbitset &bs) { assert (n == bs.n); x &= bs.x; return *this; }
|
||||
smallbitset &operator ^= (const smallbitset &bs) { assert (n == bs.n); x ^= bs.x; return *this; }
|
||||
|
||||
bool operator == (const smallbitset &bs) const { return n == bs.n && x == bs.x; }
|
||||
bool operator != (const smallbitset &bs) const { return !operator == (bs); }
|
||||
|
||||
inline bool operator % (unsigned i) const { return uint64_bittest (x, i); }
|
||||
inline bool operator () (unsigned i) const { return operator % (i); }
|
||||
|
||||
void show_self () const;
|
||||
void display_self () const;
|
||||
|
||||
void write_self (writer &w) const;
|
||||
hash_t hash_self () const { assert ((x >> n) == 0); return hash_combine (hash (n), hash (x)); }
|
||||
};
|
||||
|
||||
class smallbitset_const_iter
|
||||
{
|
||||
uint64 x;
|
||||
unsigned b;
|
||||
|
||||
public:
|
||||
smallbitset_const_iter (const smallbitset &bs) : x(bs.x), b(0) { if (x) b = uint64_ffs (x); }
|
||||
smallbitset_const_iter (const smallbitset_const_iter &i) : x(i.x), b(i.b) { }
|
||||
~smallbitset_const_iter () { }
|
||||
|
||||
smallbitset_const_iter &operator = (const smallbitset_const_iter &i) { x = i.x; b = i.b; return *this; }
|
||||
|
||||
unsigned val () const { return b; }
|
||||
operator bool () const { return (bool)x; }
|
||||
void operator ++ () { assert (x); x = uint64_bitclear (x, b); if (x) b = uint64_ffs (x); }
|
||||
void operator ++ (int) { operator ++ (); }
|
||||
};
|
||||
|
||||
class smallbitset_iter
|
||||
{
|
||||
smallbitset *bs;
|
||||
uint64 x;
|
||||
unsigned b;
|
||||
bool deleted;
|
||||
|
||||
public:
|
||||
smallbitset_iter (smallbitset &bs_)
|
||||
: bs(&bs_), x(bs_.x), b(0), deleted(0)
|
||||
{
|
||||
if (x)
|
||||
b = uint64_ffs (x);
|
||||
}
|
||||
smallbitset_iter (const smallbitset_iter &i)
|
||||
: bs(i.bs), x(i.x), b(i.b), deleted(i.deleted) { }
|
||||
~smallbitset_iter () { }
|
||||
|
||||
smallbitset_iter &operator = (const smallbitset_iter &i)
|
||||
{
|
||||
bs = i.bs;
|
||||
x = i.x;
|
||||
b = i.b;
|
||||
deleted = i.deleted;
|
||||
return *this;
|
||||
}
|
||||
|
||||
void del () { assert (!deleted); (*bs) -= b; deleted = 1; }
|
||||
unsigned val () const { assert (!deleted); return b; }
|
||||
operator bool () const { assert (!deleted); return (bool)x; }
|
||||
void operator ++ ()
|
||||
{
|
||||
assert (x);
|
||||
|
||||
x = uint64_bitclear (x, b);
|
||||
if (x)
|
||||
b = uint64_ffs (x);
|
||||
deleted = 0;
|
||||
}
|
||||
void operator ++ (int) { operator ++ (); }
|
||||
};
|
128
lib/ullmanmap.h
Normal file
128
lib/ullmanmap.h
Normal file
@ -0,0 +1,128 @@
|
||||
|
||||
template<class V, unsigned B> class ullmanmap_iter;
|
||||
template<class V, unsigned B> class ullmanmap_const_iter;
|
||||
|
||||
template<class V, unsigned B>
|
||||
class ullmanmap
|
||||
{
|
||||
private:
|
||||
friend class ullmanmap_iter<V, B>;
|
||||
friend class ullmanmap_const_iter<V, B>;
|
||||
|
||||
ullmanset<B> present;
|
||||
basedvector<V, B> values;
|
||||
|
||||
public:
|
||||
typedef ullmanmap_iter<V, B> iter;
|
||||
typedef ullmanmap_const_iter<V, B> const_iter;
|
||||
|
||||
public:
|
||||
ullmanmap () { }
|
||||
ullmanmap (unsigned size) : present(size), values(size) { }
|
||||
ullmanmap (unsigned size, const map<unsigned, V> &m); // common
|
||||
ullmanmap (const ullmanmap &m) : present(m.present), values(m.values) { }
|
||||
ullmanmap (copy, const ullmanmap &m) : present(COPY, m.present), values(COPY, m.values) { }
|
||||
ullmanmap (reader &r);
|
||||
~ullmanmap () { }
|
||||
|
||||
ullmanmap &operator = (const ullmanmap &m) { present = m.present; values = m.values; return *this; }
|
||||
ullmanmap &operator = (const map<unsigned, V> &m); // common
|
||||
|
||||
unsigned size () const { return present.size (); }
|
||||
|
||||
pair<unsigned, V> head ();
|
||||
void clear () { present.clear (); }
|
||||
unsigned card () { return present.card (); }
|
||||
void operator -= (unsigned k) { present -= k; }
|
||||
|
||||
void push (unsigned k, const V &v) { present.push (k); values[k] = v; }
|
||||
void set (unsigned k, const V &v) { present += k; values[k] = v; }
|
||||
|
||||
V &operator [] (unsigned k) { if (! (present % k)) { present.push (k); values[k] = V (); } return values[k]; }
|
||||
const V &operator [] (unsigned k) const { assert (present % k); return values[k]; }
|
||||
const V &operator () (unsigned k) const { assert (present % k); return operator [] (k); }
|
||||
const V &operator () (unsigned k, const V &d) const { if (present % k) return values[k]; else return d; }
|
||||
|
||||
pair<V &, bool> find (unsigned k)
|
||||
{
|
||||
bool p = present % k;
|
||||
return pair<V &, bool> (operator [] (k), p);
|
||||
}
|
||||
|
||||
bool operator % (unsigned k) const { return present % k; }
|
||||
|
||||
unsigned nth (unsigned p) const { return present.nth (p); }
|
||||
unsigned position (unsigned k) const { return present.position (k); }
|
||||
|
||||
void write_self (writer &w) const;
|
||||
};
|
||||
|
||||
template<class V, unsigned B>
|
||||
ullmanmap<V, B>::ullmanmap (unsigned size, const map<unsigned, V> &m)
|
||||
: present(size), values(size)
|
||||
{
|
||||
for (typename map<unsigned, V>::const_iter i = m; i; i ++)
|
||||
push (i.key (), i.val ());
|
||||
}
|
||||
|
||||
template<class V, unsigned B>
|
||||
ullmanmap<V, B>::ullmanmap (reader &r)
|
||||
: present(r),
|
||||
values(r)
|
||||
{
|
||||
}
|
||||
|
||||
template<class V, unsigned B> ullmanmap<V, B> &
|
||||
ullmanmap<V, B>::operator = (const map<unsigned, V> &m)
|
||||
{
|
||||
/* assume the ullman map is already allocated */
|
||||
clear ();
|
||||
for (typename map<unsigned, V>::const_iter i = m; i; i ++)
|
||||
push (i.key (), i.val ());
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<class V, unsigned B> void
|
||||
ullmanmap<V, B>::write_self (writer &w) const
|
||||
{
|
||||
write (w, present);
|
||||
write (w, values);
|
||||
}
|
||||
|
||||
template<class V, unsigned B>
|
||||
class ullmanmap_iter
|
||||
{
|
||||
private:
|
||||
ullmanset_iter<B> i;
|
||||
basedvector<V, B> &values;
|
||||
|
||||
public:
|
||||
ullmanmap_iter (ullmanmap<V, B> &m) : i(m.present), values(m.values) { }
|
||||
~ullmanmap_iter () { }
|
||||
|
||||
void del () { i.del (); }
|
||||
unsigned key () const { return i.val (); }
|
||||
V &val () { return values[i.val ()]; }
|
||||
const V &val () const { return values[i.val ()]; }
|
||||
operator bool () const { return (bool)i; }
|
||||
void operator ++ () { i ++; }
|
||||
void operator ++ (int) { i ++; }
|
||||
};
|
||||
|
||||
template<class V, unsigned B>
|
||||
class ullmanmap_const_iter
|
||||
{
|
||||
private:
|
||||
ullmanset_const_iter<B> i;
|
||||
const basedvector<V, B> &values;
|
||||
|
||||
public:
|
||||
ullmanmap_const_iter (const ullmanmap<V, B> &m) : i(m.present), values(m.values) { }
|
||||
~ullmanmap_const_iter () { }
|
||||
|
||||
unsigned key () const { return i.val (); }
|
||||
const V &val () const { return values[i.val ()]; }
|
||||
operator bool () const { return (bool)i; }
|
||||
void operator ++ () { i ++; }
|
||||
void operator ++ (int) { i ++; }
|
||||
};
|
352
lib/ullmanset.h
Normal file
352
lib/ullmanset.h
Normal file
@ -0,0 +1,352 @@
|
||||
|
||||
template<unsigned B> class ullmanset_iter;
|
||||
template<unsigned B> class ullmanset_const_iter;
|
||||
|
||||
template<unsigned B>
|
||||
class ullmanset
|
||||
{
|
||||
private:
|
||||
friend class ullmanset_iter<B>;
|
||||
friend class ullmanset_const_iter<B>;
|
||||
|
||||
class keypos
|
||||
{
|
||||
public:
|
||||
unsigned key;
|
||||
unsigned pos;
|
||||
};
|
||||
|
||||
class data
|
||||
{
|
||||
public:
|
||||
unsigned refcount;
|
||||
unsigned size;
|
||||
unsigned n;
|
||||
keypos kp[1];
|
||||
};
|
||||
|
||||
data *d;
|
||||
|
||||
void ref (data *newd) { assert (!d); d = newd; if (d) d->refcount ++; }
|
||||
void unref ();
|
||||
|
||||
inline void delete_at_pos (unsigned p);
|
||||
|
||||
public:
|
||||
typedef ullmanset_iter<B> iter;
|
||||
typedef ullmanset_const_iter<B> const_iter;
|
||||
|
||||
public:
|
||||
ullmanset () : d(0) { }
|
||||
ullmanset (unsigned size);
|
||||
ullmanset (const ullmanset &s) : d(0) { ref (s.d); }
|
||||
ullmanset (copy, const ullmanset &s);
|
||||
// ullmanset (const unsignedset &t);
|
||||
ullmanset (const bitset &t);
|
||||
ullmanset (reader &r);
|
||||
~ullmanset () { unref (); }
|
||||
|
||||
ullmanset &operator = (const ullmanset &s) { unref (); ref (s.d); return *this; }
|
||||
// ullmanset &operator = (const unsignedset &t);
|
||||
ullmanset &operator = (const bitset &t);
|
||||
|
||||
unsigned size () const { return d ? d->size : 0; }
|
||||
|
||||
bool is_empty () const { assert (d); return d->n == 0; }
|
||||
unsigned card () const { assert (d); return d->n; }
|
||||
unsigned head () const { assert (d); assert (d->n > 0); return d->kp[0].key; }
|
||||
|
||||
bool operator == (const ullmanset &s);
|
||||
bool operator != (const ullmanset &s) { return !operator == (s); }
|
||||
|
||||
void restore (unsigned old_card)
|
||||
{
|
||||
assert (d);
|
||||
assert (d->n >= old_card);
|
||||
d->n = old_card;
|
||||
}
|
||||
|
||||
void clear () { if (d) { d->n = 0; } }
|
||||
|
||||
inline void push (unsigned k);
|
||||
inline void operator += (unsigned k); // ??? should these be inline?
|
||||
inline void operator -= (unsigned k);
|
||||
|
||||
void yank (unsigned k) { assert (operator % (k)); operator -= (k); }
|
||||
|
||||
void toggle (unsigned k)
|
||||
{
|
||||
if (operator % (k))
|
||||
operator -= (k);
|
||||
else
|
||||
operator += (k);
|
||||
}
|
||||
|
||||
ullmanset &operator |= (const ullmanset &s);
|
||||
ullmanset &operator &= (const ullmanset &s);
|
||||
ullmanset &operator ^= (const ullmanset &s);
|
||||
|
||||
bool operator % (unsigned k) const
|
||||
{
|
||||
assert (d);
|
||||
assert ((k - B) >= 0);
|
||||
assert ((k - B) < d->size);
|
||||
unsigned p = d->kp[k - B].pos;
|
||||
return p < d->n && d->kp[p].key == k;
|
||||
}
|
||||
bool operator () (unsigned k) const { return operator % (k); }
|
||||
|
||||
// always 0-based
|
||||
unsigned nth (unsigned p) const { assert (d); assert (p < d->n); return d->kp[p].key; }
|
||||
|
||||
unsigned position (unsigned k) const { assert (operator % (k)); return d->kp[k - B].pos; }
|
||||
|
||||
void write_self (writer &w) const;
|
||||
};
|
||||
|
||||
template<unsigned B> void
|
||||
ullmanset<B>::unref ()
|
||||
{
|
||||
if (d && --d->refcount == 0)
|
||||
{
|
||||
delete [] (char *)d;
|
||||
d = 0;
|
||||
}
|
||||
}
|
||||
|
||||
template<unsigned B> void
|
||||
ullmanset<B>::delete_at_pos (unsigned p)
|
||||
{
|
||||
assert (d);
|
||||
assert (p < d->n);
|
||||
unsigned n = --d->n;
|
||||
if (p != n)
|
||||
{
|
||||
unsigned ell = d->kp[n].key;
|
||||
d->kp[ell - B].pos = p;
|
||||
d->kp[p].key = ell;
|
||||
}
|
||||
}
|
||||
|
||||
template<unsigned B>
|
||||
ullmanset<B>::ullmanset (unsigned size)
|
||||
: d(0)
|
||||
{
|
||||
data *newd = (data *)new char[sizeof (data)
|
||||
+ sizeof (keypos) * size
|
||||
- sizeof (keypos)];
|
||||
newd->refcount = 0;
|
||||
newd->size = size;
|
||||
newd->n = 0;
|
||||
ref (newd);
|
||||
}
|
||||
|
||||
template<unsigned B>
|
||||
ullmanset<B>::ullmanset (copy, const ullmanset &s)
|
||||
: d(0)
|
||||
{
|
||||
if (s.d)
|
||||
{
|
||||
unsigned bytes = (sizeof (data)
|
||||
+ sizeof (keypos) * s.d->size
|
||||
- sizeof (keypos));
|
||||
data *newd = (data *)new char[bytes];
|
||||
memcpy (newd, s.d, bytes);
|
||||
newd->refcount = 0;
|
||||
ref (newd);
|
||||
}
|
||||
}
|
||||
|
||||
template<unsigned B>
|
||||
ullmanset<B>::ullmanset (reader &r)
|
||||
: d(0)
|
||||
{
|
||||
unsigned size_ = r.read_unsigned ();
|
||||
if (size_ > 0)
|
||||
{
|
||||
data *newd = (data *)new char[sizeof (data) + sizeof (keypos) * (size_ - 1)];
|
||||
newd->refcount = 0;
|
||||
newd->size = size_;
|
||||
newd->n = 0;
|
||||
ref (newd);
|
||||
}
|
||||
|
||||
unsigned card_ = r.read_unsigned ();
|
||||
for (unsigned i = 0; i < card_; i ++)
|
||||
push (r.read_unsigned ());
|
||||
}
|
||||
|
||||
template<unsigned B> bool
|
||||
ullmanset<B>::operator == (const ullmanset &s)
|
||||
{
|
||||
assert (d);
|
||||
assert (s.d);
|
||||
if (d->n != s.d->n)
|
||||
return 0;
|
||||
for (iter i = *this; i; i ++)
|
||||
{
|
||||
if (!s(i.val ()))
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
template<unsigned B> void
|
||||
ullmanset<B>::push (unsigned k)
|
||||
{
|
||||
assert (d);
|
||||
assert (!operator % (k));
|
||||
unsigned p = d->n ++;
|
||||
d->kp[p].key = k;
|
||||
d->kp[k - B].pos = p;
|
||||
}
|
||||
|
||||
template<unsigned B> void
|
||||
ullmanset<B>::operator += (unsigned k)
|
||||
{
|
||||
assert (d);
|
||||
assert ((k - B) >= 0);
|
||||
assert ((k - B) < d->size);
|
||||
if (!operator % (k))
|
||||
{
|
||||
unsigned p = d->n ++;
|
||||
d->kp[p].key = k;
|
||||
d->kp[k - B].pos = p;
|
||||
}
|
||||
}
|
||||
|
||||
template<unsigned B> void
|
||||
ullmanset<B>::operator -= (unsigned k)
|
||||
{
|
||||
assert (d);
|
||||
assert ((k - B) >= 0);
|
||||
assert ((k - B) < d->size);
|
||||
if (operator % (k))
|
||||
{
|
||||
unsigned p = d->kp[k - B].pos;
|
||||
delete_at_pos (p);
|
||||
}
|
||||
}
|
||||
|
||||
template<unsigned B> ullmanset<B> &
|
||||
ullmanset<B>::operator |= (const ullmanset &s)
|
||||
{
|
||||
for (iter i = s; i; i ++)
|
||||
operator += (i.val ());
|
||||
}
|
||||
|
||||
template<unsigned B> ullmanset<B> &
|
||||
ullmanset<B>::operator &= (const ullmanset<B> &s)
|
||||
{
|
||||
for (iter i = *this; i; i ++)
|
||||
{
|
||||
unsigned k = i.val ();
|
||||
if (!s(k))
|
||||
i.del ();
|
||||
}
|
||||
}
|
||||
|
||||
template<unsigned B> ullmanset<B> &
|
||||
ullmanset<B>::operator ^= (const ullmanset<B> &s)
|
||||
{
|
||||
for (const_iter i = s; i; i ++)
|
||||
{
|
||||
int k = i.val ();
|
||||
if (operator % (k))
|
||||
operator -= (k);
|
||||
else
|
||||
push (k);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
template<unsigned B> void
|
||||
ullmanset<B>::write_self (writer &w) const
|
||||
{
|
||||
write (w, size ());
|
||||
write (w, card ());
|
||||
for (const_iter i = *this; i; i ++)
|
||||
write (w, i.val ());
|
||||
}
|
||||
|
||||
template<unsigned B>
|
||||
class ullmanset_iter
|
||||
{
|
||||
private:
|
||||
ullmanset<B> &s;
|
||||
unsigned i;
|
||||
bool deleted;
|
||||
|
||||
public:
|
||||
ullmanset_iter (ullmanset<B> &s_) : s(s_), i(0), deleted(0) { assert (s_.d); }
|
||||
~ullmanset_iter () { }
|
||||
|
||||
void del () { assert (!deleted); assert (i < s.d->n); s.delete_at_pos (i); }
|
||||
unsigned val () const { assert (!deleted); assert (i < s.d->n); return s.d->kp[i].key; }
|
||||
unsigned pos () const { assert (!deleted); assert (i < s.d->n); return i; }
|
||||
operator bool () const { assert (!deleted); return i < s.d->n; }
|
||||
void operator ++ () { if (deleted) deleted = 0; else i ++; }
|
||||
void operator ++ (int) { operator ++ (); }
|
||||
};
|
||||
|
||||
template<unsigned B>
|
||||
class ullmanset_const_iter
|
||||
{
|
||||
private:
|
||||
const ullmanset<B> &s;
|
||||
unsigned i;
|
||||
|
||||
public:
|
||||
ullmanset_const_iter (const ullmanset<B> &s_) : s(s_), i(0) { assert (s_.d); }
|
||||
~ullmanset_const_iter () { }
|
||||
|
||||
unsigned val () const { assert (i < s.d->n); return s.d->kp[i].key; }
|
||||
unsigned pos () const { assert (i < s.d->n); return i; }
|
||||
operator bool () const { return i < s.d->n; }
|
||||
void operator ++ () { i ++; }
|
||||
void operator ++ (int) { i ++; }
|
||||
};
|
||||
|
||||
/* interoperating with other set types */
|
||||
template<unsigned B>
|
||||
set<unsigned> &operator |= (set<unsigned> &s, const ullmanset<B> &t)
|
||||
{
|
||||
for (ullmanset_const_iter<B> i = t; i; i ++)
|
||||
s += i.val ();
|
||||
return s;
|
||||
}
|
||||
|
||||
template<unsigned B>
|
||||
ullmanset<B> &operator |= (ullmanset<B> &s, const set<unsigned> &t)
|
||||
{
|
||||
for (set_const_iter<unsigned> i = t; i; i ++)
|
||||
s += i.val ();
|
||||
return s;
|
||||
}
|
||||
|
||||
template<unsigned B>
|
||||
ullmanset<B> &operator &= (ullmanset<B> &s, const set<unsigned> &t)
|
||||
{
|
||||
for (ullmanset_const_iter<B> i = s; i; i ++)
|
||||
{
|
||||
int k = i.val ();
|
||||
if (!t(k))
|
||||
i.del ();
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
template<unsigned B>
|
||||
ullmanset<B> &operator ^= (ullmanset<B> &s, const set<unsigned> &t)
|
||||
{
|
||||
for (set_const_iter<unsigned> i = t; i; i ++)
|
||||
{
|
||||
int k = i.val ();
|
||||
if (s % k)
|
||||
s -= (k);
|
||||
else
|
||||
s.push (k);
|
||||
}
|
||||
return s;
|
||||
}
|
83
lib/unionfind.h
Normal file
83
lib/unionfind.h
Normal file
@ -0,0 +1,83 @@
|
||||
|
||||
template<unsigned B>
|
||||
class unionfind
|
||||
{
|
||||
unsigned n_sets;
|
||||
basedvector<unsigned, B> parent;
|
||||
|
||||
public:
|
||||
unionfind (unsigned size);
|
||||
unionfind (const unionfind &u) : n_sets(u.n_sets), parent(u.parent) { }
|
||||
unionfind (copy, const unionfind &u) : n_sets(u.n_sets), parent(COPY, u.parent) { }
|
||||
unionfind (reader &r);
|
||||
~unionfind () { }
|
||||
|
||||
unsigned num_sets () const { return n_sets; }
|
||||
void clear ();
|
||||
|
||||
void join (unsigned x, unsigned y);
|
||||
unsigned find (unsigned x);
|
||||
|
||||
void write_self (writer &w) const;
|
||||
};
|
||||
|
||||
template<unsigned B>
|
||||
unionfind<B>::unionfind (unsigned size)
|
||||
: n_sets(size),
|
||||
parent(size)
|
||||
{
|
||||
for (unsigned i = 0; i < size; i ++)
|
||||
parent[i + B] = i + B;
|
||||
}
|
||||
|
||||
template<unsigned B>
|
||||
unionfind<B>::unionfind (reader &r)
|
||||
{
|
||||
read (r, n_sets);
|
||||
read (r, parent);
|
||||
}
|
||||
|
||||
template<unsigned B> void
|
||||
unionfind<B>::clear ()
|
||||
{
|
||||
unsigned size = parent.size ();
|
||||
n_sets = size;
|
||||
for (unsigned i = 0; i < size; i ++)
|
||||
parent[i + B] = i + B;
|
||||
}
|
||||
|
||||
template<unsigned B> void
|
||||
unionfind<B>::join (unsigned x, unsigned y)
|
||||
{
|
||||
unsigned xp = find (x),
|
||||
yp = find (y);
|
||||
if (xp != yp)
|
||||
{
|
||||
n_sets --;
|
||||
parent[yp] = xp;
|
||||
}
|
||||
}
|
||||
|
||||
template<unsigned B> unsigned
|
||||
unionfind<B>::find (unsigned x)
|
||||
{
|
||||
unsigned p = parent[x];
|
||||
while (parent[p] != p)
|
||||
p = parent[p];
|
||||
|
||||
while (x != p)
|
||||
{
|
||||
unsigned xp = parent[x];
|
||||
parent[x] = p;
|
||||
x = xp;
|
||||
}
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
template<unsigned B> void
|
||||
unionfind<B>::write_self (writer &w) const
|
||||
{
|
||||
write (w, n_sets);
|
||||
write (w, parent);
|
||||
}
|
386
lib/vector.h
Normal file
386
lib/vector.h
Normal file
@ -0,0 +1,386 @@
|
||||
|
||||
template<class T>
|
||||
class vector
|
||||
{
|
||||
protected:
|
||||
class data
|
||||
{
|
||||
public:
|
||||
unsigned refcount;
|
||||
unsigned n;
|
||||
unsigned c;
|
||||
T p[1];
|
||||
};
|
||||
|
||||
data *d;
|
||||
|
||||
static data *alloc (unsigned n_, unsigned c_, unsigned initn, T *init);
|
||||
|
||||
void unref ();
|
||||
void ref (data *newd) { assert (d == 0); d = newd; if (d) d->refcount ++; }
|
||||
|
||||
T &at (unsigned i) { return operator [] (i); }
|
||||
const T &at (unsigned i) const { return operator [] (i); }
|
||||
|
||||
public:
|
||||
vector () : d(0) { }
|
||||
explicit vector (unsigned n_);
|
||||
vector (const vector &v) : d(0) { ref (v.d); }
|
||||
vector (const vector &v, const vector &u);
|
||||
vector (copy, const vector &v);
|
||||
vector (copy2, const vector &v);
|
||||
vector (unsigned n_, T *p_);
|
||||
vector (unsigned n_, const vector &v_);
|
||||
explicit vector (reader &r);
|
||||
~vector () { unref (); }
|
||||
|
||||
vector &operator = (const vector &v) { unref (); ref (v.d); return *this; }
|
||||
|
||||
bool operator < (const vector &v) const;
|
||||
bool operator == (const vector &v) const;
|
||||
|
||||
bool operator % (unsigned i) { return d && i < d->n; }
|
||||
|
||||
T &operator [] (unsigned i) { assert (d); assert (i < d->n); return d->p[i]; }
|
||||
const T &operator [] (unsigned i) const { assert (d); assert (i < d->n); return d->p[i]; }
|
||||
|
||||
const T &operator () (unsigned i) const { return operator [] (i); }
|
||||
|
||||
/* ??? break resize into grow_capacity/resize, and specialize this
|
||||
to in-place ctor from v */
|
||||
void append (const T &v)
|
||||
{
|
||||
if (!d)
|
||||
reserve (4);
|
||||
else if (d->n == d->c)
|
||||
reserve (d->c * 2);
|
||||
|
||||
assert (d && d->n < d->c);
|
||||
|
||||
new (&d->p[d->n ++]) T (v);
|
||||
}
|
||||
|
||||
const T &top () const
|
||||
{
|
||||
unsigned n = size ();
|
||||
assert (n > 0);
|
||||
return at (n - 1);
|
||||
}
|
||||
|
||||
T pop ();
|
||||
|
||||
unsigned capacity () const { return d ? d->c : 0; }
|
||||
unsigned size () const { return d ? d->n : 0; }
|
||||
void resize (unsigned new_size);
|
||||
void reserve (unsigned c);
|
||||
|
||||
void sort () { assert (d); sort (0, d->n); }
|
||||
void sort (unsigned from, unsigned len);
|
||||
template<typename C> void sort (unsigned from, unsigned len, C comp);
|
||||
|
||||
unsigned lower_bound (const T &v) const;
|
||||
unsigned upper_bound (const T &v) const;
|
||||
|
||||
void write_self (writer &w) const;
|
||||
hash_t hash_self () const;
|
||||
};
|
||||
|
||||
template<class T> typename vector<T>::data *
|
||||
vector<T>::alloc (unsigned n_, unsigned c_, unsigned initn, T *init)
|
||||
{
|
||||
if (c_ > 0)
|
||||
{
|
||||
data *d = (data *)new char[sizeof (data) + sizeof (T) * (c_ - 1)];
|
||||
|
||||
d->refcount = 1;
|
||||
d->c = c_;
|
||||
d->n = n_;
|
||||
|
||||
if (initn > n_)
|
||||
initn = n_;
|
||||
|
||||
for (unsigned i = 0; i < initn; i ++)
|
||||
new (&d->p[i]) T (init[i]);
|
||||
for (unsigned i = initn; i < n_; i ++)
|
||||
new (&d->p[i]) T ();
|
||||
|
||||
return d;
|
||||
}
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
template<class T> void
|
||||
vector<T>::unref ()
|
||||
{
|
||||
if (d && -- d->refcount == 0)
|
||||
{
|
||||
for (unsigned i = 0; i < d->n; i ++)
|
||||
d->p[i].~T ();
|
||||
delete [] (char *)d;
|
||||
}
|
||||
d = 0;
|
||||
}
|
||||
|
||||
template<class T>
|
||||
vector<T>::vector (const vector &v, const vector &u)
|
||||
: d(0)
|
||||
{
|
||||
if (v.d)
|
||||
{
|
||||
unsigned vn = v.d->n,
|
||||
un = u.size ();
|
||||
d = alloc (vn, vn + un, v.d->n, v.d->p);
|
||||
|
||||
d->n = vn + un;
|
||||
for (unsigned i = 0; i < un; i ++)
|
||||
new (&d->p[vn + i]) T (u[i]);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (u.d)
|
||||
d = alloc (u.d->n, u.d->n, u.d->n, u.d->p);
|
||||
}
|
||||
}
|
||||
|
||||
template<class T>
|
||||
vector<T>::vector (copy, const vector &v)
|
||||
: d(0)
|
||||
{
|
||||
if (v.d)
|
||||
d = alloc (v.d->n, v.d->n, v.d->n, v.d->p);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
vector<T>::vector (copy2, const vector &v)
|
||||
: d(0)
|
||||
{
|
||||
if (v.d && v.d->n > 0)
|
||||
{
|
||||
unsigned n = v.d->n;
|
||||
d = (data *)new char[sizeof (data) + sizeof (T) * (n - 1)];
|
||||
|
||||
d->refcount = 1;
|
||||
d->c = n;
|
||||
d->n = n;
|
||||
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
new (&d->p[i]) T (COPY1, v.d->p[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template<class T>
|
||||
vector<T>::vector (unsigned n_)
|
||||
: d(0)
|
||||
{
|
||||
d = alloc (n_, n_, 0, 0);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
vector<T>::vector (reader &r)
|
||||
: d(0)
|
||||
{
|
||||
unsigned n_;
|
||||
read (r, n_);
|
||||
if (n_ > 0)
|
||||
{
|
||||
d = (data *)new char[sizeof (data) + sizeof (T) * (n_ - 1)];
|
||||
d->refcount = 1;
|
||||
d->c = n_;
|
||||
d->n = n_;
|
||||
|
||||
for (unsigned i = 0; i < n_; i ++)
|
||||
ctor_read (r, &d->p[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template<class T>
|
||||
vector<T>::vector (unsigned n_, T *p_)
|
||||
: d(0)
|
||||
{
|
||||
d = alloc (n_, n_, n_, p_);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
vector<T>::vector (unsigned n_, const vector &v)
|
||||
: d(0)
|
||||
{
|
||||
if (v.d)
|
||||
d = alloc (n_, n_, v.d->n, v.d->p);
|
||||
else
|
||||
d = alloc (n_, n_, 0, 0);
|
||||
}
|
||||
|
||||
template<class T> bool
|
||||
vector<T>::operator < (const vector &v) const
|
||||
{
|
||||
unsigned n = size (),
|
||||
vn = v.size ();
|
||||
if (n < vn)
|
||||
return 1;
|
||||
else if (n > vn)
|
||||
return 0;
|
||||
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
if (at (i) < v[i])
|
||||
return 1;
|
||||
else if (at (i) > v[i])
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
template<class T> bool
|
||||
vector<T>::operator == (const vector &v) const
|
||||
{
|
||||
unsigned n = size ();
|
||||
if (n != v.size ())
|
||||
return 0;
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
{
|
||||
if (at (i) != v[i])
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
template<class T> T
|
||||
vector<T>::pop ()
|
||||
{
|
||||
unsigned n = size ();
|
||||
assert (n > 0);
|
||||
T tmp = at (n - 1);
|
||||
resize (n - 1);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
template<class T> void
|
||||
vector<T>::reserve (unsigned newc)
|
||||
{
|
||||
if (newc <= capacity ())
|
||||
return;
|
||||
|
||||
data *newd;
|
||||
if (d)
|
||||
newd = alloc (d->n, newc, d->n, d->p);
|
||||
else
|
||||
newd = alloc (0, newc, 0, 0);
|
||||
unref ();
|
||||
d = newd;
|
||||
}
|
||||
|
||||
template<class T> void
|
||||
vector<T>::resize (unsigned new_size)
|
||||
{
|
||||
unsigned n = size ();
|
||||
if (new_size == n)
|
||||
return;
|
||||
|
||||
reserve (new_size);
|
||||
|
||||
assert (d);
|
||||
assert (new_size <= capacity ());
|
||||
|
||||
if (new_size < n)
|
||||
{
|
||||
for (unsigned i = new_size; i < n; i ++)
|
||||
d->p[i].~T ();
|
||||
}
|
||||
else
|
||||
{
|
||||
for (unsigned i = n; i < new_size; i ++)
|
||||
new (&d->p[i]) T ();
|
||||
}
|
||||
d->n = new_size;
|
||||
}
|
||||
|
||||
template<class T> void
|
||||
vector<T>::sort (unsigned from, unsigned len)
|
||||
{
|
||||
assert (d);
|
||||
assert (from < d->n);
|
||||
assert (from + len <= d->n);
|
||||
std::sort (&d->p[from], &d->p[from + len]);
|
||||
}
|
||||
|
||||
template<class T> template<typename C> void
|
||||
vector<T>::sort (unsigned from, unsigned len, C comp)
|
||||
{
|
||||
assert (d);
|
||||
assert (from < d->n);
|
||||
assert (from + len <= d->n);
|
||||
std::sort (&d->p[from], &d->p[from + len], comp);
|
||||
}
|
||||
|
||||
template<class T> void
|
||||
vector<T>::write_self (writer &w) const
|
||||
{
|
||||
if (d)
|
||||
{
|
||||
write (w, d->n);
|
||||
for (unsigned i = 0; i < d->n; i ++)
|
||||
write (w, d->p[i]);
|
||||
}
|
||||
else
|
||||
{
|
||||
unsigned n = 0;
|
||||
write (w, n);
|
||||
}
|
||||
}
|
||||
|
||||
template<class T> hash_t
|
||||
vector<T>::hash_self () const
|
||||
{
|
||||
unsigned n = size ();
|
||||
hash_t h = hash (n);
|
||||
for (unsigned i = 0; i < n; i ++)
|
||||
h = hash_combine (h, hash (d->p[i]));
|
||||
return h;
|
||||
}
|
||||
|
||||
template<class T> unsigned
|
||||
vector<T>::lower_bound (const T &v) const
|
||||
{
|
||||
T *r = std::lower_bound (&d->p[0], &d->p[d->n], v);
|
||||
return r - &d->p[0];
|
||||
}
|
||||
|
||||
template<class T> unsigned
|
||||
vector<T>::upper_bound (const T &v) const
|
||||
{
|
||||
T *r = std::upper_bound (&d->p[0], &d->p[d->n], v);
|
||||
return r - &d->p[0];
|
||||
}
|
||||
|
||||
template<class T, unsigned B>
|
||||
class basedvector : public vector<T>
|
||||
{
|
||||
public:
|
||||
basedvector () { }
|
||||
explicit basedvector (unsigned n_) : vector<T>(n_) { }
|
||||
explicit basedvector (vector<T> &v_) : vector<T>(v_) { }
|
||||
basedvector (unsigned n_, T *p_) : vector<T>(n_, p_) { }
|
||||
basedvector (unsigned n_, const vector<T> &v_) : vector<T>(n_, v_) { }
|
||||
basedvector (copy, const vector<T> &v_) : vector<T>(COPY, v_) { }
|
||||
basedvector (copy2, const vector<T> &v_) : vector<T>(COPY2, v_) { }
|
||||
basedvector (const vector<T> &v_, const vector<T> &u_) : vector<T>(v_, u_) { }
|
||||
explicit basedvector (reader &r) : vector<T>(r) { }
|
||||
~basedvector () { }
|
||||
|
||||
vector<T> &operator = (const vector<T> &v) { vector<T>::operator = (v); }
|
||||
|
||||
bool operator % (unsigned i) { return vector<T>::operator % (i - B); }
|
||||
T &operator [] (unsigned i) { return vector<T>::operator [] (i - B); }
|
||||
const T &operator [] (unsigned i) const { return vector<T>::operator [] (i - B); }
|
||||
const T &operator () (unsigned i) const { return vector<T>::operator () (i - B); }
|
||||
|
||||
void sort () { vector<T>::sort (); }
|
||||
void sort (unsigned from, unsigned len) { vector<T>::sort (from - B, len); }
|
||||
template<typename C> void sort (unsigned from, unsigned len, C comp) { vector<T>::sort (from - B, len, comp); }
|
||||
|
||||
unsigned lower_bound (const T &v) const { return vector<T>::lower_bound (v) + B; }
|
||||
unsigned upper_bound (const T &v) const { return vector<T>::upper_bound (v) + B; }
|
||||
};
|
1
mtlinks/hyperbolic_data_04a
Normal file
1
mtlinks/hyperbolic_data_04a
Normal file
@ -0,0 +1 @@
|
||||
dadbcda
|
3
mtlinks/hyperbolic_data_05a
Normal file
3
mtlinks/hyperbolic_data_05a
Normal file
@ -0,0 +1,3 @@
|
||||
eaebdeac
|
||||
eaecdeab
|
||||
ebbccdaeb
|
8
mtlinks/hyperbolic_data_06a
Normal file
8
mtlinks/hyperbolic_data_06a
Normal file
@ -0,0 +1,8 @@
|
||||
fafbdeafc
|
||||
fafbdefac
|
||||
fafbdfeac
|
||||
fbbdceafbd
|
||||
fbccdefacb
|
||||
fbccdefcab
|
||||
fcbbbcdefab
|
||||
fcbbbceafbd
|
1
mtlinks/hyperbolic_data_06n
Normal file
1
mtlinks/hyperbolic_data_06n
Normal file
@ -0,0 +1 @@
|
||||
fcbbbcDEfAb
|
14
mtlinks/hyperbolic_data_07a
Normal file
14
mtlinks/hyperbolic_data_07a
Normal file
@ -0,0 +1,14 @@
|
||||
gagbdefagc
|
||||
gagbdfagce
|
||||
gagbefgadc
|
||||
gagbegfadc
|
||||
gagcefgabd
|
||||
gagcefgbad
|
||||
gagdefgabc
|
||||
gbbecdefgab
|
||||
gbbeceafbgd
|
||||
gbbeceafgbd
|
||||
gbbeceagfbd
|
||||
gbcddefacgb
|
||||
gbcddefagbc
|
||||
gcbbcceafbgd
|
2
mtlinks/hyperbolic_data_07n
Normal file
2
mtlinks/hyperbolic_data_07n
Normal file
@ -0,0 +1,2 @@
|
||||
gbbecDEfGAb
|
||||
gbbecDEfGaB
|
39
mtlinks/hyperbolic_data_08a
Normal file
39
mtlinks/hyperbolic_data_08a
Normal file
@ -0,0 +1,39 @@
|
||||
hahbdegahcf
|
||||
hahbdfagche
|
||||
hahbdfaghce
|
||||
hahbdfahgce
|
||||
hahbdgeahcf
|
||||
hahbefgahcd
|
||||
hahbefgahdc
|
||||
hahbefghacd
|
||||
hahbefghadc
|
||||
hahbeghfadc
|
||||
hahbehgfadc
|
||||
hahcdefghab
|
||||
hahcdfaghbe
|
||||
hahcdfgbhae
|
||||
hahcdgfbhae
|
||||
hahcefghbad
|
||||
hahcefhgbad
|
||||
hahcfehgbad
|
||||
hbbfcdegfhab
|
||||
hbbfceafgbhd
|
||||
hbbfceagbhdf
|
||||
hbbfceagfbhd
|
||||
hbbfcfaghbed
|
||||
hbbfcfahgbed
|
||||
hbbfcfegahdb
|
||||
hbcedefahgbc
|
||||
hbcedefahgcb
|
||||
hbcedegachbf
|
||||
hbcedegcahbf
|
||||
hbddefghadbc
|
||||
hbddefghadcb
|
||||
hbddefghdabc
|
||||
hcbbdceagbhdf
|
||||
hcbcccdfgheab
|
||||
hcbcccfaghbed
|
||||
hcbcccfaghebd
|
||||
hcbcccfghadeb
|
||||
hcbdbceagbhdf
|
||||
hdbbbbceagbhdf
|
11
mtlinks/hyperbolic_data_08n
Normal file
11
mtlinks/hyperbolic_data_08n
Normal file
@ -0,0 +1,11 @@
|
||||
hahbdFaGCHE
|
||||
hahbdFagChe
|
||||
hahbdFaGHCE
|
||||
hbbfcDEgFHAb
|
||||
hbbfcDEgFHaB
|
||||
hcbcccDFgHEAb
|
||||
hcbcccDFgHEaB
|
||||
hcbcccdFgHEab
|
||||
hcbdbceaGbHDF
|
||||
hdbbbbcEaGBHDF
|
||||
hdbbbbcEaGBhDf
|
96
mtlinks/hyperbolic_data_09a
Normal file
96
mtlinks/hyperbolic_data_09a
Normal file
@ -0,0 +1,96 @@
|
||||
iaibdegahcif
|
||||
iaibdegahicf
|
||||
iaibdegaihcf
|
||||
iaibdfahcieg
|
||||
iaibdfahgcie
|
||||
iaibdfgahiec
|
||||
iaibdgahicfe
|
||||
iaibdgaihcfe
|
||||
iaibdgeahicf
|
||||
iaibdgeaihcf
|
||||
iaibdgfahiec
|
||||
iaibefgaihcd
|
||||
iaibefgaihdc
|
||||
iaibefghacid
|
||||
iaibefghaidc
|
||||
iaibefhadicg
|
||||
iaibefhgaidc
|
||||
iaibegfhacid
|
||||
iaibeghaidcf
|
||||
iaibeghfaicd
|
||||
iaibeghfaidc
|
||||
iaibehgaidcf
|
||||
iaibfghiaecd
|
||||
iaibfghiaedc
|
||||
iaibfhigadec
|
||||
iaibfhigaedc
|
||||
iaibfihgaedc
|
||||
iaicdehgibaf
|
||||
iaicegfhaibd
|
||||
iaicegibhadf
|
||||
iaicegibhdaf
|
||||
iaicegihadbf
|
||||
iaicfghiabed
|
||||
iaicfghibaed
|
||||
iaicfgihabed
|
||||
iaicfgihbaed
|
||||
iaichgfbaied
|
||||
iaidfghiabce
|
||||
iaidfghiacbe
|
||||
iaidfhgibace
|
||||
iaiefghiabcd
|
||||
ibbgcdeghiabf
|
||||
ibbgcdfghiabe
|
||||
ibbgcdfhgieab
|
||||
ibbgceafhbidg
|
||||
ibbgceagbhdif
|
||||
ibbgceagbhidf
|
||||
ibbgceagbihdf
|
||||
ibbgceahfbidg
|
||||
ibbgcefghiadb
|
||||
ibbgcefhgiadb
|
||||
ibbgcfaghbeid
|
||||
ibbgcfaghbide
|
||||
ibbgcfaghbied
|
||||
ibbgcfaghibde
|
||||
ibbgcfaghibed
|
||||
ibbgcfahgbeid
|
||||
ibbgcfahigbed
|
||||
ibbgcfaihgbed
|
||||
ibbgcfegaihdb
|
||||
ibcfdefcghiab
|
||||
ibcfdefgahibc
|
||||
ibcfdefgahicb
|
||||
ibcfdegachbif
|
||||
ibcfdegachibf
|
||||
ibcfdegacihbf
|
||||
ibcfdegaibhcf
|
||||
ibcfdegaichbf
|
||||
ibcfdegcahbif
|
||||
ibcfdegcahibf
|
||||
ibcfdegcaihbf
|
||||
ibcfdegchbiaf
|
||||
ibcfdfhagbice
|
||||
ibcfdfhaibecg
|
||||
ibdeefghadbic
|
||||
ibdeefghadicb
|
||||
ibdeefghaibcd
|
||||
ibdeefghaidcb
|
||||
ibdeefghbaicd
|
||||
ibdeefghcabid
|
||||
ibdeefhgdaicb
|
||||
ibdeefigcahdb
|
||||
ibdeefigchbda
|
||||
icbbeceagbhdif
|
||||
icbbeceagbhidf
|
||||
icbbeceagbihdf
|
||||
icbcdcdfgihabe
|
||||
icbcdcfaghbeid
|
||||
icbcdcfaghbide
|
||||
icbcdcfaghbied
|
||||
icbcdcfaghebid
|
||||
icbcdcfgiadheb
|
||||
icbdcceagbhdif
|
||||
icbebcdhfiabeg
|
||||
icbebceafhbidg
|
||||
idbbbcceagbhdif
|
36
mtlinks/hyperbolic_data_09n
Normal file
36
mtlinks/hyperbolic_data_09n
Normal file
@ -0,0 +1,36 @@
|
||||
iaibdeGaHCIF
|
||||
iaibdeGahCif
|
||||
iaibdegaHcIF
|
||||
iaibdeGaHICF
|
||||
iaibeGFHaCID
|
||||
iaibeGFhaCid
|
||||
iaicdehgIbaF
|
||||
iaicEGfHAiBD
|
||||
ibbgcDEgHIAbF
|
||||
ibbgcDEgHIaBF
|
||||
ibbgcdEgHIabF
|
||||
ibbgcDFgHIAbE
|
||||
ibbgcDFgHIaBE
|
||||
ibbgcdFgHIabE
|
||||
ibbgcDFhGIEAb
|
||||
ibbgcdFhGIEab
|
||||
ibbgceaGbHDIF
|
||||
ibbgceaGbhDif
|
||||
ibbgceagbHdIF
|
||||
ibbgceaGbHIDF
|
||||
ibcfdEFcGHIAB
|
||||
ibcfdEFcgHiAB
|
||||
ibcfdEfcGhIaB
|
||||
ibcfdEfcgHiaB
|
||||
ibcfdeFGahIbC
|
||||
ibdeefiGcaHDb
|
||||
ibdeeFiGchBDa
|
||||
icbbecEaGBHDIF
|
||||
icbbecEaGBhDif
|
||||
icbbeceagbHdIF
|
||||
icbcdcDFgIHAbE
|
||||
icbcdcDFgIHaBE
|
||||
icbcdcdFgIHabE
|
||||
icbdcceaGbHDIF
|
||||
icbebcdHfIabEG
|
||||
icbebcdHfiabeG
|
297
mtlinks/hyperbolic_data_10a
Normal file
297
mtlinks/hyperbolic_data_10a
Normal file
@ -0,0 +1,297 @@
|
||||
jajbdegahicjf
|
||||
jajbdegaicjfh
|
||||
jajbdegaihcjf
|
||||
jajbdehaijcgf
|
||||
jajbdehajicgf
|
||||
jajbdfagicjeh
|
||||
jajbdfahciejg
|
||||
jajbdfahcijeg
|
||||
jajbdfahcjieg
|
||||
jajbdfaigcjeh
|
||||
jajbdfgahjiec
|
||||
jajbdfiahjceg
|
||||
jajbdgahicjef
|
||||
jajbdgahicjfe
|
||||
jajbdgahijcef
|
||||
jajbdgahijcfe
|
||||
jajbdgaihcfje
|
||||
jajbdgaijhcfe
|
||||
jajbdgajihcfe
|
||||
jajbdgeaicjfh
|
||||
jajbdgfahjiec
|
||||
jajbdheaijcgf
|
||||
jajbdheajicgf
|
||||
jajbdifahjceg
|
||||
jajbefghajidc
|
||||
jajbefgiacjdh
|
||||
jajbefgiahcjd
|
||||
jajbefhadijcg
|
||||
jajbefhadjicg
|
||||
jajbefhajcidg
|
||||
jajbefhajdicg
|
||||
jajbefhgajidc
|
||||
jajbefhiajcdg
|
||||
jajbefhiajdcg
|
||||
jajbefhjadicg
|
||||
jajbegfahijdc
|
||||
jajbegfiacjdh
|
||||
jajbegfiahcjd
|
||||
jajbeghadijfc
|
||||
jajbeghaidcjf
|
||||
jajbeghaijcdf
|
||||
jajbeghaijdcf
|
||||
jajbeghajicdf
|
||||
jajbeghajidcf
|
||||
jajbegiahcjdf
|
||||
jajbegiahdjfc
|
||||
jajbegiahjdfc
|
||||
jajbehfadijcg
|
||||
jajbehfadjicg
|
||||
jajbehgadijfc
|
||||
jajbehgaidcjf
|
||||
jajbehgajdicf
|
||||
jajbehifajdcg
|
||||
jajbeihfajdcg
|
||||
jajbfghiaejdc
|
||||
jajbfghiajcde
|
||||
jajbfghiajced
|
||||
jajbfghiajedc
|
||||
jajbfghijacde
|
||||
jajbfghijaced
|
||||
jajbfghijaedc
|
||||
jajbfghjiadce
|
||||
jajbfgihaejdc
|
||||
jajbfgihajedc
|
||||
jajbfgihjaedc
|
||||
jajbfhgiadjec
|
||||
jajbfhgiajced
|
||||
jajbfhigaejcd
|
||||
jajbfhigaejdc
|
||||
jajbfhijgaecd
|
||||
jajbfhijgaedc
|
||||
jajbfhjiadceg
|
||||
jajbfijghaedc
|
||||
jajbfijhgaedc
|
||||
jajbfjihgaedc
|
||||
jajcdeghijabf
|
||||
jajcdeghjiabf
|
||||
jajcdfahbijeg
|
||||
jajcdgahibjef
|
||||
jajcdgahibjfe
|
||||
jajcdgahijbef
|
||||
jajcdgahijbfe
|
||||
jajcdghbijaef
|
||||
jajcdghbijafe
|
||||
jajcdgihbjeaf
|
||||
jajcdhgbijaef
|
||||
jajcdhgbijafe
|
||||
jajcdighbjaef
|
||||
jajcefgihjabd
|
||||
jajcefjihdabg
|
||||
jajcegahijdbf
|
||||
jajcegahjidbf
|
||||
jajceghaibjdf
|
||||
jajceghbiajfd
|
||||
jajceghibjadf
|
||||
jajcegiahjbdf
|
||||
jajcegihbjadf
|
||||
jajcehgaidjbf
|
||||
jajcehgibjafd
|
||||
jajcehjgaibdf
|
||||
jajcehjgbiafd
|
||||
jajceifbhjdag
|
||||
jajceigahjdbf
|
||||
jajceighbjdaf
|
||||
jajceihgbjdaf
|
||||
jajcejghibdaf
|
||||
jajcfghiabjde
|
||||
jajcfghiabjed
|
||||
jajcfghibajed
|
||||
jajcfghijbade
|
||||
jajcfghijbaed
|
||||
jajcfgijhbaed
|
||||
jajcfgjihbaed
|
||||
jajcgfhijbade
|
||||
jajcgfhijbaed
|
||||
jajcgfijhbaed
|
||||
jajcgfjihbaed
|
||||
jajchfgibjade
|
||||
jajchfgibjaed
|
||||
jajchigabjdef
|
||||
jajdefghijabc
|
||||
jajdeghaijcbf
|
||||
jajdehgaijcbf
|
||||
jbbhcdeghiabjf
|
||||
jbbhcdehgijabf
|
||||
jbbhcdehgjiabf
|
||||
jbbhcdfghiabje
|
||||
jbbhcdfighjeab
|
||||
jbbhcdfigjheab
|
||||
jbbhcdfihgjeab
|
||||
jbbhceafhbidjg
|
||||
jbbhceafhbijdg
|
||||
jbbhceafhbjidg
|
||||
jbbhceagbhidjf
|
||||
jbbhceagbidjfh
|
||||
jbbhceagbihdjf
|
||||
jbbhceaghbijfd
|
||||
jbbhceahbijdgf
|
||||
jbbhceahbjidgf
|
||||
jbbhceahfbidjg
|
||||
jbbhceahfbijdg
|
||||
jbbhceahfbjidg
|
||||
jbbhceahgbijfd
|
||||
jbbhcefghjaidb
|
||||
jbbhcefhgjaidb
|
||||
jbbhcefhigjadb
|
||||
jbbhcefihgjadb
|
||||
jbbhcfaghbjide
|
||||
jbbhcfaghbjied
|
||||
jbbhcfaghibdje
|
||||
jbbhcfaghibjed
|
||||
jbbhcfaghjbied
|
||||
jbbhcfagibejdh
|
||||
jbbhcfagihbjed
|
||||
jbbhcfahgibdje
|
||||
jbbhcfahibjedg
|
||||
jbbhcfahigbejd
|
||||
jbbhcfahigbjde
|
||||
jbbhcfahigbjed
|
||||
jbbhcfaigbejdh
|
||||
jbbhcfaigbhejd
|
||||
jbbhcfaighbejd
|
||||
jbbhcfaihbjedg
|
||||
jbbhcfaihgbejd
|
||||
jbbhcfehajidgb
|
||||
jbbhcfigajhdbe
|
||||
jbbhcgahijbfde
|
||||
jbbhcgahijbfed
|
||||
jbbhcgaijhbefd
|
||||
jbbhcgaijhbfed
|
||||
jbbhcgajihbfed
|
||||
jbbhcgehaijdbf
|
||||
jbbhcgehajidbf
|
||||
jbcgdefajhibcg
|
||||
jbcgdefajhicbg
|
||||
jbcgdefcihjbag
|
||||
jbcgdefgaihjbc
|
||||
jbcgdefgaihjcb
|
||||
jbcgdefhgjiacb
|
||||
jbcgdegachibjf
|
||||
jbcgdegacibjfh
|
||||
jbcgdegacihbjf
|
||||
jbcgdegajbicfh
|
||||
jbcgdegajcibfh
|
||||
jbcgdegajhibfc
|
||||
jbcgdegajhicfb
|
||||
jbcgdegajihbfc
|
||||
jbcgdegajihcfb
|
||||
jbcgdegcahibjf
|
||||
jbcgdegcaibjfh
|
||||
jbcgdegcaihbjf
|
||||
jbcgdegchbiajf
|
||||
jbcgdegfihcjab
|
||||
jbcgdeghijcfab
|
||||
jbcgdehacijbgf
|
||||
jbcgdehacjibgf
|
||||
jbcgdehcaijbgf
|
||||
jbcgdehcajibgf
|
||||
jbcgdehcgiajfb
|
||||
jbcgdehgaibjfc
|
||||
jbcgdehgaicjfb
|
||||
jbcgdfhagbjice
|
||||
jbcgdfhaibjecg
|
||||
jbcgdfhaicjbeg
|
||||
jbcgdfhajbeicg
|
||||
jbcgdfhajcibge
|
||||
jbcgdfhbgjaice
|
||||
jbcgdfhbiajcge
|
||||
jbcgdfhbijaecg
|
||||
jbcgdfhcjaibge
|
||||
jbdfefghadjicb
|
||||
jbdfefghajbicd
|
||||
jbdfefghajbidc
|
||||
jbdfefghajdicb
|
||||
jbdfefghajicbd
|
||||
jbdfefghajicdb
|
||||
jbdfefgiadbjch
|
||||
jbdfefgiadhbjc
|
||||
jbdfefgibadjch
|
||||
jbdfefgicabjdh
|
||||
jbdfefgidabjch
|
||||
jbdfefhgajicbd
|
||||
jbdfefhiadjbcg
|
||||
jbdfefhiadjcbg
|
||||
jbdfefhidajbcg
|
||||
jbdfefigajcdbh
|
||||
jbdfefigdhcajb
|
||||
jbdfefighacdjb
|
||||
jbdfefjgdihcab
|
||||
jbdfegjhaidbfc
|
||||
jbeefcehbaidjg
|
||||
jbeefcehbaijdg
|
||||
jbeefdehbaijcg
|
||||
jbeefdghicejab
|
||||
jbeefdgihecjab
|
||||
jbeefdgjhaibec
|
||||
jbeefghijaebcd
|
||||
jbeefghijaebdc
|
||||
jbeefghijaedcb
|
||||
jbeefghijbaecd
|
||||
jbeefghijeabcd
|
||||
jbeefghjiaecbd
|
||||
jbeefghjicabed
|
||||
jbeefhjgiacebd
|
||||
jcbbfceagbhidjf
|
||||
jcbbfceagbidjfh
|
||||
jcbbfceagbihdjf
|
||||
jcbbfceahbijdgf
|
||||
jcbbfceahbjidgf
|
||||
jcbcecdfgihabje
|
||||
jcbcecfaghbjide
|
||||
jcbcecfaghbjied
|
||||
jcbcecfagibejdh
|
||||
jcbcecfagiebjdh
|
||||
jcbcecfahibjedg
|
||||
jcbcecfahigbjde
|
||||
jcbcecfahjibdge
|
||||
jcbcecfgiahebjd
|
||||
jcbcecfgjaihebd
|
||||
jcbddcdghijeabf
|
||||
jcbddcdghijfabe
|
||||
jcbddceagbidjfh
|
||||
jcbddceghijfadb
|
||||
jcbddcegihjfadb
|
||||
jcbddcgahijbfde
|
||||
jcbddcgahijbfed
|
||||
jcbddcgahijebdf
|
||||
jcbddcgahijfbde
|
||||
jcbddcgaihjebdf
|
||||
jcbddcghijadfbe
|
||||
jcbddcghijaefbd
|
||||
jcbeccdhfiabgje
|
||||
jcbecceafhbidjg
|
||||
jcbecceaghbidjf
|
||||
jcbecceahbijdgf
|
||||
jcbecceahbijgdf
|
||||
jcbfbceagbidjfh
|
||||
jcbfbcfaigbjdeh
|
||||
jcccddeghijbfca
|
||||
jcccddeghjibcfa
|
||||
jcccddeghjicbfa
|
||||
jcccddghaijcbfe
|
||||
jcccddghaijebcf
|
||||
jcccddghaijfbce
|
||||
jcccddghbijafce
|
||||
jcccddghijbaefc
|
||||
jcccddgiahjbfce
|
||||
jdbbbdceagbidjfh
|
||||
jdbbccceahbijdgf
|
||||
jdbbccceahbijgdf
|
||||
jdbbdbceagbidjfh
|
||||
jdbcbccdfhgijabe
|
||||
jdbcbccdfhiejabg
|
||||
jdbccbcfagibejdh
|
||||
jdbccbcfagiebjdh
|
||||
jdbccbcfaigbjdeh
|
||||
jebbbbbceagbidjfh
|
155
mtlinks/hyperbolic_data_10n
Normal file
155
mtlinks/hyperbolic_data_10n
Normal file
@ -0,0 +1,155 @@
|
||||
jajbdeGaHICJF
|
||||
jajbdeGahiCjf
|
||||
jajbdeGaICJFH
|
||||
jajbdFaGICJEH
|
||||
jajbdFagiCjeh
|
||||
jajbdfaGIcJEH
|
||||
jajbdFaHCIEJG
|
||||
jajbdFahCiejg
|
||||
jajbdfaHcIEJG
|
||||
jajbdFaHCIJEG
|
||||
jajbdFahCijeg
|
||||
jajbdfaHcIJEG
|
||||
jajbdFaHCJIEG
|
||||
jajbdFIaHJCEG
|
||||
jajbdGaHICJEF
|
||||
jajbdGahiCjef
|
||||
jajbdgaHIcJEF
|
||||
jajbdGaHICJFE
|
||||
jajbdGahiCjfe
|
||||
jajbdgaHIcJFE
|
||||
jajbdGaHIJCEF
|
||||
jajbdGaHIJCFE
|
||||
jajbdIFaHJCEG
|
||||
jajbeGfahiJdC
|
||||
jajbeGHaIDCJF
|
||||
jajbeGHaiDCjf
|
||||
jajbeGHaIJCDF
|
||||
jajbeGHaIJDCF
|
||||
jajbeGHaijDCf
|
||||
jajbeghaIJdcF
|
||||
jajbfHGIaDJEC
|
||||
jajbfHgIadJEC
|
||||
jajbfhGiaDjec
|
||||
jajcdeghIJabF
|
||||
jajcdeghJIabF
|
||||
jajcdfaHbIJEG
|
||||
jajcdgihbJeaF
|
||||
jajcEFgIHjABD
|
||||
jajceghibJadF
|
||||
jajcegihbJadF
|
||||
jajcEHgAIdjBF
|
||||
jajcEIgAHjdBf
|
||||
jbbhcDEgHIAbJF
|
||||
jbbhcDEgHIaBJF
|
||||
jbbhcdEgHIabJF
|
||||
jbbhcDEhGIJAbF
|
||||
jbbhcDEhGIJaBF
|
||||
jbbhcdEhGIJabF
|
||||
jbbhcDEhGJIAbF
|
||||
jbbhcDEhGJIaBF
|
||||
jbbhcdEhGJIabF
|
||||
jbbhcDFgHIAbJE
|
||||
jbbhcDFgHIaBJE
|
||||
jbbhcdFgHIabJE
|
||||
jbbhcDFiGHJEAb
|
||||
jbbhcdFiGHJEab
|
||||
jbbhcdFighJeab
|
||||
jbbhcdfiGHjEab
|
||||
jbbhcDFiGJHEAb
|
||||
jbbhcdFiGJHEab
|
||||
jbbhcDFiHGJEAb
|
||||
jbbhcdFiHGJEab
|
||||
jbbhceafHbIDJG
|
||||
jbbhceafHbiDjg
|
||||
jbbhceafhbIdJG
|
||||
jbbhceafHbIJDG
|
||||
jbbhceaGbHIDJF
|
||||
jbbhceaGbhiDjf
|
||||
jbbhceagbHIdJF
|
||||
jbbhceaGbIDJFH
|
||||
jbbhcEaGHBIJFD
|
||||
jbbhcEaHGBIJFD
|
||||
jbbhcEFihGJAdb
|
||||
jbbhcfaHGIbDJE
|
||||
jbbhcfaHGibDje
|
||||
jbbhcfahgIbdJE
|
||||
jbbhcFaIGBHEJD
|
||||
jbbhcFaIgBheJD
|
||||
jbbhcfaIGbHEJD
|
||||
jbbhcfaIgbheJD
|
||||
jbbhcfaIghbeJD
|
||||
jbcgdeFajHiBcg
|
||||
jbcgdeFajHibCg
|
||||
jbcgdeFajhIBcG
|
||||
jbcgdeFajhIbCG
|
||||
jbcgdEFcIHJBAG
|
||||
jbcgdEFciHjBAg
|
||||
jbcgdEfcIhJbAG
|
||||
jbcgdEfcIhjbAg
|
||||
jbcgdEfciHjBag
|
||||
jbcgdEfciHjbAg
|
||||
jbcgdefcihJbaG
|
||||
jbcgdeFgaIhjBc
|
||||
jbcgdEgfIhcjAb
|
||||
jbcgdfHaGbjICE
|
||||
jbdfefIgajcdBH
|
||||
jbdfeFIGdHCAJB
|
||||
jbdfefjGdiHCab
|
||||
jbdfeGjHaIDBFc
|
||||
jbeefCEHBaIDJG
|
||||
jbeefCEHBaiDjg
|
||||
jbeefCEhBaIdJG
|
||||
jbeefCEhBaidjg
|
||||
jbeefCEhBaijdg
|
||||
jbeefDGHICeJAB
|
||||
jbeefDghIcejAb
|
||||
jcbbfcEaGBHIDJF
|
||||
jcbbfcEaGBhiDjf
|
||||
jcbbfceagbHIdJF
|
||||
jcbcecDFgIHAbJE
|
||||
jcbcecDFgIHaBJE
|
||||
jcbcecdFgIHabJE
|
||||
jcbcecFaHJIBDGE
|
||||
jcbcecfaHJIbDGE
|
||||
jcbcecfaHjibDGe
|
||||
jcbddcDGhIJEAbF
|
||||
jcbddcDGhIJEaBF
|
||||
jcbddcdGhIJEabF
|
||||
jcbddcDGhIJFAbE
|
||||
jcbddcDGhIJFaBE
|
||||
jcbddcdGhIJFabE
|
||||
jcbddceaGbIDJFH
|
||||
jcbddcEGhiJFadB
|
||||
jcbddcgaIHJEbDF
|
||||
jcbeccdHfIabGJE
|
||||
jcbecceaHbIJDGF
|
||||
jcbecceaHbijDgf
|
||||
jcbecceahbIJdGF
|
||||
jcbecceaHbIJGDF
|
||||
jcbfbceaGbIDJFH
|
||||
jcbfbceaGbiDjfh
|
||||
jcbfbcFaIGBJDEH
|
||||
jcbfbcfaIGbJDEH
|
||||
jcccddEGHiJBFCa
|
||||
jcccddEGhIjBfCa
|
||||
jcccddEgHiJbFcA
|
||||
jcccddEghJibcfA
|
||||
jdbbcccEaHBIJDGF
|
||||
jdbbcccEaHBijDgf
|
||||
jdbbccceahbIJdGF
|
||||
jdbbdbcEaGBIDJFH
|
||||
jdbbdbcEaGBIDjFh
|
||||
jdbbdbcEaGBiDjfh
|
||||
jdbbdbceagbIdJFH
|
||||
jdbbdbceagbIdjFh
|
||||
jdbcbccDFHgIjAbE
|
||||
jdbcbccDFHgIjaBE
|
||||
jdbcbccDFhGIJAbE
|
||||
jdbcbccdFhGIJabE
|
||||
jdbcbccDFhIEJAbG
|
||||
jdbcbccDFhIEJaBG
|
||||
jdbccbcFaIGBJDEH
|
||||
jdbccbcfaIGbJDEH
|
||||
jebbbbbcEaGBIDJFH
|
||||
jebbbbbcEaGBIDjFh
|
915
mtlinks/hyperbolic_data_11a
Normal file
915
mtlinks/hyperbolic_data_11a
Normal file
@ -0,0 +1,915 @@
|
||||
kakbdegahjckfi
|
||||
kakbdegaicjfkh
|
||||
kakbdegaicjkfh
|
||||
kakbdegaickjfh
|
||||
kakbdegajhckfi
|
||||
kakbdehaijcgkf
|
||||
kakbdehaijckfg
|
||||
kakbdehaijckgf
|
||||
kakbdehaijkcfg
|
||||
kakbdehaijkcgf
|
||||
kakbdehajicgkf
|
||||
kakbdehajkicgf
|
||||
kakbdehakjicgf
|
||||
kakbdfagicjekh
|
||||
kakbdfagicjkeh
|
||||
kakbdfagickjeh
|
||||
kakbdfahcjekgi
|
||||
kakbdfahcjiekg
|
||||
kakbdfahicjkge
|
||||
kakbdfaicjkehg
|
||||
kakbdfaickjehg
|
||||
kakbdfaigcjkeh
|
||||
kakbdfaigckjeh
|
||||
kakbdfaihcjkge
|
||||
kakbdfaijcekgh
|
||||
kakbdfajicekgh
|
||||
kakbdfgaikjehc
|
||||
kakbdfhaijkecg
|
||||
kakbdfhaikjecg
|
||||
kakbdfiahjcekg
|
||||
kakbdgahickjef
|
||||
kakbdgahickjfe
|
||||
kakbdgahijcekf
|
||||
kakbdgahijckfe
|
||||
kakbdgahikcjfe
|
||||
kakbdgahjcfkei
|
||||
kakbdgahjickfe
|
||||
kakbdgaihjcekf
|
||||
kakbdgaijckfeh
|
||||
kakbdgaijhckef
|
||||
kakbdgaijhckfe
|
||||
kakbdgajhcfkei
|
||||
kakbdgajhcifke
|
||||
kakbdgajhicfke
|
||||
kakbdgajickfeh
|
||||
kakbdgajihcfke
|
||||
kakbdgajkicfhe
|
||||
kakbdgeahjckfi
|
||||
kakbdgeaicjkfh
|
||||
kakbdgeaickjfh
|
||||
kakbdgeajhckfi
|
||||
kakbdgfaikjehc
|
||||
kakbdghaijkefc
|
||||
kakbdghaijkfec
|
||||
kakbdhaijkcgef
|
||||
kakbdhaijkcgfe
|
||||
kakbdhajkicfge
|
||||
kakbdhajkicgfe
|
||||
kakbdhakjicgfe
|
||||
kakbdheaijckfg
|
||||
kakbdheaijckgf
|
||||
kakbdheaijkcfg
|
||||
kakbdheaijkcgf
|
||||
kakbdheajkicgf
|
||||
kakbdheakjicgf
|
||||
kakbdhfaijkecg
|
||||
kakbdhfaikjecg
|
||||
kakbdhgaijkefc
|
||||
kakbdhgaijkfec
|
||||
kakbdifahjcekg
|
||||
kakbefgakijcdh
|
||||
kakbefgakijdch
|
||||
kakbefghaijkcd
|
||||
kakbefgiacjkdh
|
||||
kakbefgiackjdh
|
||||
kakbefgiajdkch
|
||||
kakbefgiakjdhc
|
||||
kakbefgjahckdi
|
||||
kakbefgjaidkch
|
||||
kakbefgkaijcdh
|
||||
kakbefgkaijdch
|
||||
kakbefhakijcgd
|
||||
kakbefhakijdgc
|
||||
kakbefhakjicgd
|
||||
kakbefhakjidgc
|
||||
kakbefhiajcdkg
|
||||
kakbefhiajdckg
|
||||
kakbefhiajkdcg
|
||||
kakbefhiakcjdg
|
||||
kakbefhiakjdcg
|
||||
kakbefhjakidcg
|
||||
kakbefhkaijdgc
|
||||
kakbefhkajidgc
|
||||
kakbefiadjkchg
|
||||
kakbefiadkjchg
|
||||
kakbefigakdjch
|
||||
kakbefihajkdcg
|
||||
kakbefihakjdcg
|
||||
kakbefjhaidkcg
|
||||
kakbefjhakdgci
|
||||
kakbegfajikcdh
|
||||
kakbegfiacjkdh
|
||||
kakbegfiackjdh
|
||||
kakbegfjahckdi
|
||||
kakbeghajdckfi
|
||||
kakbeghajicdkf
|
||||
kakbeghajidckf
|
||||
kakbeghajkicdf
|
||||
kakbeghajkidcf
|
||||
kakbeghakjicdf
|
||||
kakbeghakjidcf
|
||||
kakbeghiajckfd
|
||||
kakbeghiajkdfc
|
||||
kakbegiahckjdf
|
||||
kakbegiajckfdh
|
||||
kakbegiajdkcfh
|
||||
kakbegiakdjchf
|
||||
kakbegifadjkch
|
||||
kakbegifadkjch
|
||||
kakbegifakcjdh
|
||||
kakbegifakdjch
|
||||
kakbegihajkdfc
|
||||
kakbegjadikcfh
|
||||
kakbegjahdkfci
|
||||
kakbegjahidkcf
|
||||
kakbegjahkdfci
|
||||
kakbegjakidfch
|
||||
kakbegjhacfkdi
|
||||
kakbegjhaikfcd
|
||||
kakbegjhaikfdc
|
||||
kakbegkiajcdfh
|
||||
kakbehfiajckdg
|
||||
kakbehgajdckfi
|
||||
kakbehgajdickf
|
||||
kakbehgfaijkdc
|
||||
kakbehgiadjkfc
|
||||
kakbehgiajckfd
|
||||
kakbehgiajkfdc
|
||||
kakbehiajkdcgf
|
||||
kakbehiakjdcgf
|
||||
kakbehifadjkgc
|
||||
kakbehifajkcdg
|
||||
kakbehifajkdcg
|
||||
kakbehifakjcdg
|
||||
kakbehifakjdcg
|
||||
kakbehigajkcfd
|
||||
kakbehjakidfcg
|
||||
kakbehjfaickdg
|
||||
kakbehjfaidkgc
|
||||
kakbehjfaikdgc
|
||||
kakbehjgaikfcd
|
||||
kakbehjgaikfdc
|
||||
kakbeifadjkchg
|
||||
kakbeifadkjchg
|
||||
kakbeifahjdkgc
|
||||
kakbeifgadjkch
|
||||
kakbeifhajdkcg
|
||||
kakbeigahjdkcf
|
||||
kakbeigakdjchf
|
||||
kakbeigakjdfch
|
||||
kakbeigfadjkch
|
||||
kakbeighacjkfd
|
||||
kakbeighajdkfc
|
||||
kakbeighajkfcd
|
||||
kakbeihajkdcgf
|
||||
kakbeihakjdcgf
|
||||
kakbeihfadjkgc
|
||||
kakbeihgajdkfc
|
||||
kakbeihgajkcfd
|
||||
kakbeijahcdkgf
|
||||
kakbeijakcdfgh
|
||||
kakbeikgajdcfh
|
||||
kakbejgadikcfh
|
||||
kakbfghiakcjde
|
||||
kakbfghiakcjed
|
||||
kakbfghiakjdce
|
||||
kakbfghiakjdec
|
||||
kakbfghiakjedc
|
||||
kakbfghijacdke
|
||||
kakbfghijacked
|
||||
kakbfghijadcke
|
||||
kakbfghijakdec
|
||||
kakbfghijakedc
|
||||
kakbfghikajdec
|
||||
kakbfghikajedc
|
||||
kakbfghjaeckdi
|
||||
kakbfghjakdcei
|
||||
kakbfghjiacked
|
||||
kakbfghkiajecd
|
||||
kakbfgihakjdce
|
||||
kakbfgijaekcdh
|
||||
kakbfgijaekdch
|
||||
kakbfgijhakedc
|
||||
kakbfgjhiakecd
|
||||
kakbfgjihakedc
|
||||
kakbfgjkiadech
|
||||
kakbfhgiadkjec
|
||||
kakbfhgiakcjed
|
||||
kakbfhgijacked
|
||||
kakbfhgjaeckdi
|
||||
kakbfhgjiacked
|
||||
kakbfhigjadcke
|
||||
kakbfhijakecdg
|
||||
kakbfhijakedcg
|
||||
kakbfhijgaekdc
|
||||
kakbfhijgakcde
|
||||
kakbfhijgakced
|
||||
kakbfhijgakedc
|
||||
kakbfhjgiadkec
|
||||
kakbfhjigaekdc
|
||||
kakbfhjigakedc
|
||||
kakbfhkiadcjeg
|
||||
kakbfhkiajecgd
|
||||
kakbfhkjiacged
|
||||
kakbfighakjecd
|
||||
kakbfigjakdech
|
||||
kakbfigjhadkce
|
||||
kakbfihjgadkec
|
||||
kakbfihjgakced
|
||||
kakbfijgaekdch
|
||||
kakbfijghaekcd
|
||||
kakbfijghaekdc
|
||||
kakbfijhakdecg
|
||||
kakbfijhakedcg
|
||||
kakbfijhgaekcd
|
||||
kakbfijhgaekdc
|
||||
kakbfikhadjecg
|
||||
kakbfikjgadceh
|
||||
kakbfjigaekdch
|
||||
kakbfjihakedcg
|
||||
kakbgeficajkdh
|
||||
kakbgehkiajcfd
|
||||
kakbgejkiadcfh
|
||||
kakbghijkafcde
|
||||
kakbghijkafced
|
||||
kakbghijkafedc
|
||||
kakbghikjafdce
|
||||
kakbghjikafedc
|
||||
kakbgijkcadefh
|
||||
kakbgijkhaefcd
|
||||
kakbgijkhaefdc
|
||||
kakbgijkhafecd
|
||||
kakbgijkhafedc
|
||||
kakbgikhjadfce
|
||||
kakbgjkhiafedc
|
||||
kakbgjkihafedc
|
||||
kakbgkjihafedc
|
||||
kakcdeihjkbagf
|
||||
kakcdeihkjbagf
|
||||
kakcdfagibjkeh
|
||||
kakcdfahibjkge
|
||||
kakcdfaihbjkge
|
||||
kakcdfaijbekgh
|
||||
kakcdfajibekgh
|
||||
kakcdfjhikbeag
|
||||
kakcdfjihkbeag
|
||||
kakcdgahijbkfe
|
||||
kakcdgahjibkfe
|
||||
kakcdgaijbkfeh
|
||||
kakcdgajibkfeh
|
||||
kakcdghbijakfe
|
||||
kakcdghbjiakfe
|
||||
kakcdhajkibfge
|
||||
kakcdhgbijakfe
|
||||
kakcdhgbjiakfe
|
||||
kakcefghikjbad
|
||||
kakcefgjikdbah
|
||||
kakcefijhkbadg
|
||||
kakcefjhikdbag
|
||||
kakcefjihkbadg
|
||||
kakcefkhidjbag
|
||||
kakcefkihjbagd
|
||||
kakceghjbiakfd
|
||||
kakcegiajkbfdh
|
||||
kakcegjaibkfdh
|
||||
kakcegjbiakdfh
|
||||
kakcehfbijkadg
|
||||
kakcehfbikjadg
|
||||
kakcehfiajkbdg
|
||||
kakcehfiakjbdg
|
||||
kakcehfjaibkdg
|
||||
kakcehgbijkafd
|
||||
kakcehgiajkbfd
|
||||
kakcehgjbiakdf
|
||||
kakcehgjiakfbd
|
||||
kakcehigajbkfd
|
||||
kakcehijadbkfg
|
||||
kakcehijbdakgf
|
||||
kakcehjbidkafg
|
||||
kakcehjiadkbfg
|
||||
kakcehkbijadfg
|
||||
kakcehkbijadgf
|
||||
kakcehkbijdafg
|
||||
kakcehkbijdagf
|
||||
kakcehkiajdbfg
|
||||
kakcehkiajdbgf
|
||||
kakcehkjiadfbg
|
||||
kakceiahjkbdgf
|
||||
kakceiahkjbdgf
|
||||
kakceigajkdfbh
|
||||
kakceighbkjfad
|
||||
kakceigjbkdfah
|
||||
kakceikhbdjfag
|
||||
kakcejgaidkfbh
|
||||
kakcfekhijdbag
|
||||
kakcfghijbaked
|
||||
kakcfghjibaked
|
||||
kakcfgijabkedh
|
||||
kakcfgijbakedh
|
||||
kakcfgjiabkedh
|
||||
kakcfgjibakedh
|
||||
kakcfhgijakbed
|
||||
kakcfhgjiakbed
|
||||
kakcfhigbjkade
|
||||
kakcfhikbjeadg
|
||||
kakcfhjkbieagd
|
||||
kakcfhjkiaebgd
|
||||
kakcfhkiajbdge
|
||||
kakcfhkibjadeg
|
||||
kakcfhkibjaedg
|
||||
kakcfhkijadbeg
|
||||
kakcfhkjbidaeg
|
||||
kakcfhkjbieagd
|
||||
kakcfhkjiadbeg
|
||||
kakcfhkjiaebgd
|
||||
kakcfigkbjdeah
|
||||
kakcfihgbjkaed
|
||||
kakcfihkbjdaeg
|
||||
kakcfikgbjdaeh
|
||||
kakcfikhbjdeag
|
||||
kakcfikhbjedag
|
||||
kakcgeiakjbfdh
|
||||
kakcgfhjibaked
|
||||
kakcghijkabfde
|
||||
kakcghijkabfed
|
||||
kakcghijkbafde
|
||||
kakcghijkbafed
|
||||
kakcghjkiabefd
|
||||
kakcghjkiabfed
|
||||
kakcghjkibaefd
|
||||
kakcghjkibafed
|
||||
kakcghkjiabfed
|
||||
kakcghkjibafed
|
||||
kakcgihjkbdafe
|
||||
kakcgihkjbdafe
|
||||
kakchfijbkeadg
|
||||
kakchfjibkeadg
|
||||
kakcihfbajkedg
|
||||
kakcihfbakjedg
|
||||
kakcihgbajkefd
|
||||
kakcihgjbakfde
|
||||
kakcihgjbakfed
|
||||
kakdfhikbjaceg
|
||||
kakdfhjaikcbeg
|
||||
kakdghijkabcfe
|
||||
kakdghijkacbfe
|
||||
kakdghijkcbafe
|
||||
kakdghikjabcfe
|
||||
kakdghikjacbfe
|
||||
kakdghikjcbafe
|
||||
kakdgihjkbacfe
|
||||
kakdgihkjbacfe
|
||||
kakdhgikjcbafe
|
||||
kakeghijkabcdf
|
||||
kakeghijkabdcf
|
||||
kakeghijkbadcf
|
||||
kakfghijkabcde
|
||||
kbbicdeghjabkfi
|
||||
kbbicdehgijabkf
|
||||
kbbicdehgjiabkf
|
||||
kbbicdehijkabgf
|
||||
kbbicdehikjabgf
|
||||
kbbicdfghjabkei
|
||||
kbbicdfhijkabeg
|
||||
kbbicdfhjgkabei
|
||||
kbbicdfhjikabeg
|
||||
kbbicdfihjkeabg
|
||||
kbbicdfjghkieab
|
||||
kbbicdfjhgkieab
|
||||
kbbicdfjhkiegab
|
||||
kbbicdgfiabjkeh
|
||||
kbbicdgfiabkjeh
|
||||
kbbicdghijkabef
|
||||
kbbicdgihjkeabf
|
||||
kbbiceafhbijdkg
|
||||
kbbiceafhbjdkgi
|
||||
kbbiceafhbjidkg
|
||||
kbbiceafibjkdhg
|
||||
kbbiceafibkjdhg
|
||||
kbbiceagbhjdkfi
|
||||
kbbiceagbidjfkh
|
||||
kbbiceagbidjkfh
|
||||
kbbiceagbidkjfh
|
||||
kbbiceagbjhdkfi
|
||||
kbbiceaghbikjfd
|
||||
kbbiceagjbikdfh
|
||||
kbbiceahbijdgkf
|
||||
kbbiceahbijdkfg
|
||||
kbbiceahbijdkgf
|
||||
kbbiceahbijkdfg
|
||||
kbbiceahbijkdgf
|
||||
kbbiceahbjidgkf
|
||||
kbbiceahbjkidgf
|
||||
kbbiceahbkjidgf
|
||||
kbbiceahfbijdkg
|
||||
kbbiceahfbjdkgi
|
||||
kbbiceahfbjidkg
|
||||
kbbiceahgbikjfd
|
||||
kbbiceaifbjkdhg
|
||||
kbbiceaifbkjdhg
|
||||
kbbiceajgbikdfh
|
||||
kbbicefgikajdhb
|
||||
kbbicefhigkajdb
|
||||
kbbicefhijkadbg
|
||||
kbbicefigkajdhb
|
||||
kbbicefihgkajdb
|
||||
kbbicefihjkadbg
|
||||
kbbiceghijkadbf
|
||||
kbbicegihjkadbf
|
||||
kbbicegijhkfadb
|
||||
kbbicegjihkfadb
|
||||
kbbicfaghibkjed
|
||||
kbbicfaghjbdkei
|
||||
kbbicfaghjbidke
|
||||
kbbicfagibejdkh
|
||||
kbbicfagibejkdh
|
||||
kbbicfagibekjdh
|
||||
kbbicfagibkdjeh
|
||||
kbbicfagibkejdh
|
||||
kbbicfagihbkjed
|
||||
kbbicfagijbkdeh
|
||||
kbbicfagijbkedh
|
||||
kbbicfagikbejdh
|
||||
kbbicfahgbijked
|
||||
kbbicfahgjbdkei
|
||||
kbbicfahgjbidke
|
||||
kbbicfahibejkgd
|
||||
kbbicfahibjedkg
|
||||
kbbicfahibjkdeg
|
||||
kbbicfahibjkedg
|
||||
kbbicfahibkejdg
|
||||
kbbicfahibkjdeg
|
||||
kbbicfahibkjedg
|
||||
kbbicfahigbkjde
|
||||
kbbicfahigbkjed
|
||||
kbbicfahjbidkeg
|
||||
kbbicfahjbiekgd
|
||||
kbbicfahjbikegd
|
||||
kbbicfahjbkdgei
|
||||
kbbicfahjgbekdi
|
||||
kbbicfaigbejdkh
|
||||
kbbicfaigbejkdh
|
||||
kbbicfaigbekjdh
|
||||
kbbicfaihbejkgd
|
||||
kbbicfaihbjedkg
|
||||
kbbicfaihbkejdg
|
||||
kbbicfaijgbkedh
|
||||
kbbicfaijhbegkd
|
||||
kbbicfajgbhekdi
|
||||
kbbicfajghbekdi
|
||||
kbbicfajhgbekdi
|
||||
kbbicfajhgbiekd
|
||||
kbbicfajigbkedh
|
||||
kbbicfehakidjgb
|
||||
kbbicfehakijdgb
|
||||
kbbicfehakjidgb
|
||||
kbbicfghijkadeb
|
||||
kbbicfghijkaedb
|
||||
kbbicfgijhkaedb
|
||||
kbbicfgjihkaedb
|
||||
kbbicfigajhdbke
|
||||
kbbicgahijbfdke
|
||||
kbbicgahijbfked
|
||||
kbbicgahijbkdef
|
||||
kbbicgahijbkdfe
|
||||
kbbicgahijbkfed
|
||||
kbbicgahijkbdef
|
||||
kbbicgahijkbdfe
|
||||
kbbicgahijkbfed
|
||||
kbbicgahikbfjed
|
||||
kbbicgahikjbedf
|
||||
kbbicgahjibfked
|
||||
kbbicgahjibkfed
|
||||
kbbicgahjikbfed
|
||||
kbbicgaihjbekfd
|
||||
kbbicgaihjbfdke
|
||||
kbbicgaihjbkdfe
|
||||
kbbicgaijhbefkd
|
||||
kbbicgaijhbfekd
|
||||
kbbicgaijhbfkde
|
||||
kbbicgaijhbfked
|
||||
kbbicgaijkhbfde
|
||||
kbbicgaijkhbfed
|
||||
kbbicgaikjbedfh
|
||||
kbbicgajhibfekd
|
||||
kbbicgajihbfekd
|
||||
kbbicgajkhibfed
|
||||
kbbicgajkihbfed
|
||||
kbbicgakjihbfed
|
||||
kbbicgehaijdbkf
|
||||
kbbicgehajidbkf
|
||||
kbbicgehajkidbf
|
||||
kbbicgehakjidbf
|
||||
kbbicgfhiakjdeb
|
||||
kbbicgfhiakjedb
|
||||
kbchdefakhjbcgi
|
||||
kbchdefakhjcbgi
|
||||
kbchdefchijkabg
|
||||
kbchdefchikjabg
|
||||
kbchdefcihjbakg
|
||||
kbchdefgaijkbch
|
||||
kbchdefgaijkcbh
|
||||
kbchdefhaijkbcg
|
||||
kbchdefhaijkcbg
|
||||
kbchdefhajikgbc
|
||||
kbchdefhajikgcb
|
||||
kbchdefhgijakbc
|
||||
kbchdegachjbkfi
|
||||
kbchdegacibjfkh
|
||||
kbchdegacibjkfh
|
||||
kbchdegacibkjfh
|
||||
kbchdegacjhbkfi
|
||||
kbchdegakbicjfh
|
||||
kbchdegakcibjfh
|
||||
kbchdegakhibjfc
|
||||
kbchdegakhicjfb
|
||||
kbchdegakihbjfc
|
||||
kbchdegakihcjfb
|
||||
kbchdegcahjbkfi
|
||||
kbchdegcaibjfkh
|
||||
kbchdegcaibjkfh
|
||||
kbchdegcaibkjfh
|
||||
kbchdegcajhbkfi
|
||||
kbchdegchbjakfi
|
||||
kbchdegchijkafb
|
||||
kbchdegchjikafb
|
||||
kbchdegfijckbah
|
||||
kbchdegfjihckab
|
||||
kbchdeghaijkbfc
|
||||
kbchdeghaijkcfb
|
||||
kbchdeghajikbfc
|
||||
kbchdeghajikcfb
|
||||
kbchdeghibjkafc
|
||||
kbchdeghijbkcaf
|
||||
kbchdeghjbikcfa
|
||||
kbchdeghjibkfac
|
||||
kbchdeghjicfkba
|
||||
kbchdeghjikcfab
|
||||
kbchdegijhbfkac
|
||||
kbchdegijhbfkca
|
||||
kbchdegijkhcfab
|
||||
kbchdehacijbgkf
|
||||
kbchdehacijbkfg
|
||||
kbchdehacijbkgf
|
||||
kbchdehacijkbfg
|
||||
kbchdehacijkbgf
|
||||
kbchdehacjibgkf
|
||||
kbchdehacjkibgf
|
||||
kbchdehackjibgf
|
||||
kbchdehakbijcgf
|
||||
kbchdehakbjicgf
|
||||
kbchdehakcijbgf
|
||||
kbchdehakcjibgf
|
||||
kbchdehakibjfcg
|
||||
kbchdehakicjfbg
|
||||
kbchdehcaijbgkf
|
||||
kbchdehcaijbkfg
|
||||
kbchdehcaijbkgf
|
||||
kbchdehcaijkbfg
|
||||
kbchdehcaijkbgf
|
||||
kbchdehcajibgkf
|
||||
kbchdehcajkibgf
|
||||
kbchdehcakjibgf
|
||||
kbchdehcgiakjfb
|
||||
kbchdehcibjkafg
|
||||
kbchdehcibjkagf
|
||||
kbchdehcjibkfag
|
||||
kbchdehgaibkjfc
|
||||
kbchdehgaickjfb
|
||||
kbchdfhaibjeckg
|
||||
kbchdfhaicjbekg
|
||||
kbchdfhaikbjceg
|
||||
kbchdfhajcibgke
|
||||
kbchdfhajckibeg
|
||||
kbchdfhajkbicge
|
||||
kbchdfhajkcibge
|
||||
kbchdfhakbejcgi
|
||||
kbchdfhakcjibge
|
||||
kbchdfhakjbicge
|
||||
kbchdfhbgjaicke
|
||||
kbchdfhbiajkceg
|
||||
kbchdfhbiakjceg
|
||||
kbchdfhbjaickeg
|
||||
kbchdfhbjakcgei
|
||||
kbchdfhbjakicge
|
||||
kbchdfhciajbkeg
|
||||
kbchdfhcjaibgke
|
||||
kbchdfiagbkjche
|
||||
kbchdfiaghckjbe
|
||||
kbchdfiagjckebh
|
||||
kbchdfiagkcejbh
|
||||
kbchdfiahbjkceg
|
||||
kbchdfiahbkjceg
|
||||
kbchdfiahgbkjce
|
||||
kbchdfiahkbejcg
|
||||
kbchdfiajbkechg
|
||||
kbchdfiakbejcgh
|
||||
kbchdfiakbejchg
|
||||
kbchdfiakgbejch
|
||||
kbchdfiakhcejbg
|
||||
kbchdfiechjakgb
|
||||
kbchdfihckjaegb
|
||||
kbdgefghadijkbc
|
||||
kbdgefghakjicbd
|
||||
kbdgefghakjidcb
|
||||
kbdgefghcijkdab
|
||||
kbdgefghdaijkbc
|
||||
kbdgefghdibjkac
|
||||
kbdgefghdijckab
|
||||
kbdgefghiabjkcd
|
||||
kbdgefghiabjkdc
|
||||
kbdgefghiajckbd
|
||||
kbdgefghibajkcd
|
||||
kbdgefghibajkdc
|
||||
kbdgefgiadbjckh
|
||||
kbdgefgiadbjkch
|
||||
kbdgefgiadbkjch
|
||||
kbdgefgiadjckbh
|
||||
kbdgefgiadkjchb
|
||||
kbdgefgiakbcjdh
|
||||
kbdgefgiakbdjch
|
||||
kbdgefgiakcbjdh
|
||||
kbdgefgiakdjchb
|
||||
kbdgefgiakhbjcd
|
||||
kbdgefgiakhbjdc
|
||||
kbdgefgibadjckh
|
||||
kbdgefgibadjkch
|
||||
kbdgefgibadkjch
|
||||
kbdgefgibakcjdh
|
||||
kbdgefgicabjdkh
|
||||
kbdgefgicabjkdh
|
||||
kbdgefgicabkjdh
|
||||
kbdgefgidabjckh
|
||||
kbdgefgidabjkch
|
||||
kbdgefgidabkjch
|
||||
kbdgefgidajckbh
|
||||
kbdgefgidakjchb
|
||||
kbdgefgidhjkacb
|
||||
kbdgefgidjbckah
|
||||
kbdgefgidjcbkah
|
||||
kbdgefgidkbjcha
|
||||
kbdgefgihajkcdb
|
||||
kbdgefgihajkdcb
|
||||
kbdgefgihjbkcda
|
||||
kbdgefgihjbkdca
|
||||
kbdgefhgakjicbd
|
||||
kbdgefhgdijckab
|
||||
kbdgefhgdijkbac
|
||||
kbdgefhgiajckbd
|
||||
kbdgefhgiajckdb
|
||||
kbdgefhiadjbckg
|
||||
kbdgefhiadjcbkg
|
||||
kbdgefhiadjkcbg
|
||||
kbdgefhiadkbjcg
|
||||
kbdgefhiadkjcbg
|
||||
kbdgefhiakbjcdg
|
||||
kbdgefhiakdjcbg
|
||||
kbdgefhibajkcdg
|
||||
kbdgefhibakjcdg
|
||||
kbdgefhicajbkdg
|
||||
kbdgefhidajbckg
|
||||
kbdgefhidkjbcga
|
||||
kbdgefhjbaickdg
|
||||
kbdgefhjbakcgdi
|
||||
kbdgefhjcaikbdg
|
||||
kbdgefhjcibkadg
|
||||
kbdgefigakcdjbh
|
||||
kbdgefigakhdjbc
|
||||
kbdgefigdakcjbh
|
||||
kbdgefighajkcbd
|
||||
kbdgefighjbkcad
|
||||
kbdgefigjacdkbh
|
||||
kbdgefihcajdkbg
|
||||
kbdgefihcjbdkag
|
||||
kbdgefihdajkcbg
|
||||
kbdgefihdakjcbg
|
||||
kbdgefjgcahdkbi
|
||||
kbdgefjgdhcakbi
|
||||
kbdgefjgdhikacb
|
||||
kbdgefjgdihcakb
|
||||
kbdgefjghacdkbi
|
||||
kbdgefjghaikdbc
|
||||
kbdgefjghibkdac
|
||||
kbdgefjgiacdkbh
|
||||
kbdgefjgihbdakc
|
||||
kbdgefjhcaikdbg
|
||||
kbdgefjhcibkdag
|
||||
kbdgefjhdaickbg
|
||||
kbdgefjhdakcgbi
|
||||
kbdgefjhdibckag
|
||||
kbdgegjhaidbfkc
|
||||
kbdgegjhdicakbf
|
||||
kbdgegjhdkcafbi
|
||||
kbdgegkhaidbjfc
|
||||
kbdgegkhcajidbf
|
||||
kbdgegkhcijbdfa
|
||||
kbdgegkhcjibdfa
|
||||
kbeffcehbaijdkg
|
||||
kbeffcehbajdkgi
|
||||
kbeffcehbajidkg
|
||||
kbeffceibajkdhg
|
||||
kbeffdehbaijckg
|
||||
kbeffdehbajckgi
|
||||
kbeffdeibajkchg
|
||||
kbeffdghiekjabc
|
||||
kbeffdgijeckbah
|
||||
kbeffdgjhaibekc
|
||||
kbeffdgjicekbah
|
||||
kbeffdgjiehckab
|
||||
kbeffdhkiacjebg
|
||||
kbeffdigjhackbe
|
||||
kbeffghijaebckd
|
||||
kbeffghijaebkdc
|
||||
kbeffghijaecbkd
|
||||
kbeffghijaekcdb
|
||||
kbeffghijaekdcb
|
||||
kbeffghijakbcde
|
||||
kbeffghijakbedc
|
||||
kbeffghijakecdb
|
||||
kbeffghijakedcb
|
||||
kbeffghijbakcde
|
||||
kbeffghijcabkde
|
||||
kbeffghijcbakde
|
||||
kbeffghijdabcke
|
||||
kbeffghijdacbke
|
||||
kbeffghjiaebkdc
|
||||
kbeffghjiaecbkd
|
||||
kbeffghjiakbedc
|
||||
kbeffghjieabkdc
|
||||
kbeffghkiaejdbc
|
||||
kbeffghkidabjec
|
||||
kbeffghkidajceb
|
||||
kbeffghkidbajec
|
||||
kbeffghkidjbcea
|
||||
kbeffgihjbakced
|
||||
kbeffgihjcaekbd
|
||||
kbeffgikhcajdbe
|
||||
kbeffgikhcjbdae
|
||||
kbeffgjhidabkec
|
||||
kbeffgjhieakdbc
|
||||
kbeffhjgiakcebd
|
||||
kcbbgceagbhjdkfi
|
||||
kcbbgceagbidjfkh
|
||||
kcbbgceagbidjkfh
|
||||
kcbbgceagbidkjfh
|
||||
kcbbgceagbjhdkfi
|
||||
kcbbgceahbijdgkf
|
||||
kcbbgceahbijdkfg
|
||||
kcbbgceahbijdkgf
|
||||
kcbbgceahbijkdfg
|
||||
kcbbgceahbijkdgf
|
||||
kcbbgceahbjidgkf
|
||||
kcbbgceahbjkidgf
|
||||
kcbbgceahbkjidgf
|
||||
kcbcfcdfgijabkeh
|
||||
kcbcfcdfgjhabkei
|
||||
kcbcfcdfgjiabkeh
|
||||
kcbcfcdfhkijabeg
|
||||
kcbcfcfaghibjkde
|
||||
kcbcfcfaghibjked
|
||||
kcbcfcfagibejdkh
|
||||
kcbcfcfagibejkdh
|
||||
kcbcfcfagibekjdh
|
||||
kcbcfcfagibkdjeh
|
||||
kcbcfcfagibkejdh
|
||||
kcbcfcfagiebjdkh
|
||||
kcbcfcfagiebjkdh
|
||||
kcbcfcfagiebkjdh
|
||||
kcbcfcfahgbijked
|
||||
kcbcfcfahibjedkg
|
||||
kcbcfcfahibjkdeg
|
||||
kcbcfcfahibjkedg
|
||||
kcbcfcfahibkejdg
|
||||
kcbcfcfahibkjdeg
|
||||
kcbcfcfahibkjedg
|
||||
kcbcfcfahigbkjde
|
||||
kcbcfcfahijbkdeg
|
||||
kcbcfcfahjbidkeg
|
||||
kcbcfcfahjbiekgd
|
||||
kcbcfcfahjbikegd
|
||||
kcbcfcfahjbkdgei
|
||||
kcbcfcfahjibdgke
|
||||
kcbcfcfgiajebkdh
|
||||
kcbcfcfgjahebkdi
|
||||
kcbcfcfgjaiebkdh
|
||||
kcbcfcfgjaihebkd
|
||||
kcbdecdghijeabkf
|
||||
kcbdecdghijfabke
|
||||
kcbdecdghjkiabfe
|
||||
kcbdecdghkjiabfe
|
||||
kcbdecdgikhjfabe
|
||||
kcbdeceagbidjfkh
|
||||
kcbdeceagbidjkfh
|
||||
kcbdeceagbidkjfh
|
||||
kcbdeceghikfajdb
|
||||
kcbdecegihkfajdb
|
||||
kcbdecgahijbfdke
|
||||
kcbdecgahijbfked
|
||||
kcbdecgahijbkdef
|
||||
kcbdecgahijbkdfe
|
||||
kcbdecgahijbkfed
|
||||
kcbdecgahijdbfke
|
||||
kcbdecgahijdbkef
|
||||
kcbdecgahijebdkf
|
||||
kcbdecgahijfbdke
|
||||
kcbdecgahijfbked
|
||||
kcbdecgahikebjdf
|
||||
kcbdecgahjibkfed
|
||||
kcbdecgahjifbked
|
||||
kcbdecgahkiebjfd
|
||||
kcbdecgaihjbekfd
|
||||
kcbdecgaihjbkdfe
|
||||
kcbdecgaihjebdkf
|
||||
kcbdecgaikjbedfh
|
||||
kcbdecghijadfbke
|
||||
kcbdecghijaefbkd
|
||||
kcbdecghjkadifbe
|
||||
kcbdecghjkaeifbd
|
||||
kcbdecghjkaifbed
|
||||
kcbdecghkaidjfeb
|
||||
kcbedcdhfjabgkei
|
||||
kcbedceafhbjdkgi
|
||||
kcbedceaghbjdkfi
|
||||
kcbedceahbijdgkf
|
||||
kcbedceahbijdkfg
|
||||
kcbedceahbijdkgf
|
||||
kcbedceahbijgdkf
|
||||
kcbfccdifjabkgeh
|
||||
kcbfccdifjabkheg
|
||||
kcbfcceafibjkdhg
|
||||
kcbfcceafibjkhdg
|
||||
kcbfcceagbidjfkh
|
||||
kcbfcceagibjkhfd
|
||||
kcbfcceahibjkdfg
|
||||
kcbfcceahibjkdgf
|
||||
kcbfcceaijbdkgfh
|
||||
kcbfcceaijbdkhfg
|
||||
kcbfccfagibejdkh
|
||||
kcbfccfeiahjbdkg
|
||||
kcbgbcdeghjabkfi
|
||||
kcbgbcdfghjabkei
|
||||
kcbgbcdfgjkabehi
|
||||
kcbgbcdfhjikabeg
|
||||
kcbgbcdjgkiabefh
|
||||
kcbgbceafhbjdkgi
|
||||
kcbgbceagbijdkfh
|
||||
kcbgbceajbgikfdh
|
||||
kcbgbceajbhikfdg
|
||||
kcbgbcefgjiakbdh
|
||||
kcbgbcefhjiakbdg
|
||||
kcbgbcejghkadbfi
|
||||
kcbgbcejhgkadbfi
|
||||
kcbgbcfaghjbdkei
|
||||
kcbgbcfagijbdkeh
|
||||
kcbgbcfagjbiekdh
|
||||
kcbgbcfahgjbdkei
|
||||
kcbgbcfajhbkdgei
|
||||
kcccedegacibjfkh
|
||||
kcccedegacibjkfh
|
||||
kcccedegcaibjfkh
|
||||
kcccedegcaibjkfh
|
||||
kcccedeghijckabf
|
||||
kcccedeghikbjacf
|
||||
kcccedeghjibkfac
|
||||
kcccedeghjickfab
|
||||
kcccedeghjifckba
|
||||
kcccedghaijbkcef
|
||||
kcccedghaijbkcfe
|
||||
kcccedghaijbkfec
|
||||
kcccedghaijcbkef
|
||||
kcccedghaijcbkfe
|
||||
kcccedghaijebckf
|
||||
kcccedghaikfjecb
|
||||
kcccedghakifjebc
|
||||
kcccedghakjibcfe
|
||||
kcccedghbijafcke
|
||||
kcccedghijbfekac
|
||||
kcccedghikaebjfc
|
||||
kcccedghikaejcfb
|
||||
kcccedghikajbfce
|
||||
kcccedghikbaejfc
|
||||
kcccedgiahjbfcke
|
||||
kcccedgiahjcfkbe
|
||||
kcccedgiahkbfjce
|
||||
kcccedgiajhbfkce
|
||||
kcccedgihjbfakec
|
||||
kccdddfhaibjckge
|
||||
kdbbbeceagbidjfkh
|
||||
kdbbbeceagbidjkfh
|
||||
kdbbbeceagbidkjfh
|
||||
kdbbcdceahbijdgkf
|
||||
kdbbcdceahbijdkfg
|
||||
kdbbcdceahbijdkgf
|
||||
kdbbcdceahbijgdkf
|
||||
kdbbdcceagbidjfkh
|
||||
kdbbebceagbhjdkfi
|
||||
kdbbebceagbijdkfh
|
||||
kdbbebceagbjkdfhi
|
||||
kdbcbdcdfhiejabkg
|
||||
kdbccccfagibejdkh
|
||||
kdbccccfagiebjdkh
|
||||
kdbccccfgiajebdkh
|
||||
kdbcdbcfahjbkideg
|
||||
kdbcdbcfajhbkdgei
|
||||
kebbbbcceagbidjfkh
|
644
mtlinks/hyperbolic_data_11n
Normal file
644
mtlinks/hyperbolic_data_11n
Normal file
@ -0,0 +1,644 @@
|
||||
kakbdeGaHJCKFI
|
||||
kakbdeGahjCkfi
|
||||
kakbdegaHJcKFI
|
||||
kakbdeGaICJFKH
|
||||
kakbdeGaiCjfkh
|
||||
kakbdegaIcJFKH
|
||||
kakbdegaIcjFkh
|
||||
kakbdegaicJfKH
|
||||
kakbdeGaICJKFH
|
||||
kakbdeGaiCjkfh
|
||||
kakbdegaIcJKFH
|
||||
kakbdeGaICKJFH
|
||||
kakbdeHaIJCKFG
|
||||
kakbdeHaijCkfg
|
||||
kakbdehaIJcKFG
|
||||
kakbdeHaIJCKGF
|
||||
kakbdeHaijCkgf
|
||||
kakbdehaIJcKGF
|
||||
kakbdeHaIJKCFG
|
||||
kakbdeHaIJKCGF
|
||||
kakbdFaGICJEKH
|
||||
kakbdFagiCjekh
|
||||
kakbdfaGIcJEKH
|
||||
kakbdFaGICJKEH
|
||||
kakbdFagiCjkeh
|
||||
kakbdfaGIcJKEH
|
||||
kakbdfagIcJKEH
|
||||
kakbdFaGICKJEH
|
||||
kakbdFagiCkjeh
|
||||
kakbdfaGIcKJEH
|
||||
kakbdFaHCJEKGI
|
||||
kakbdFahCjekgi
|
||||
kakbdfaHcJEKGI
|
||||
kakbdFaHICJKGE
|
||||
kakbdFahiCjkge
|
||||
kakbdfaHIcJKGE
|
||||
kakbdFaICJKEHG
|
||||
kakbdFaICKJEHG
|
||||
kakbdFaIHCJKGE
|
||||
kakbdFaihCjkge
|
||||
kakbdfaIHcJKGE
|
||||
kakbdFaIJCEKGH
|
||||
kakbdFaijCekgh
|
||||
kakbdfaIJcEKGH
|
||||
kakbdFaJICEKGH
|
||||
kakbdFajiCekgh
|
||||
kakbdfaJIcEKGH
|
||||
kakbdFHaIJKECG
|
||||
kakbdFHaIKJECG
|
||||
kakbdFIaHJCEKG
|
||||
kakbdGaHICKJEF
|
||||
kakbdGahiCkjef
|
||||
kakbdgaHIcKJEF
|
||||
kakbdGaHICKJFE
|
||||
kakbdGahiCkjfe
|
||||
kakbdgaHIcKJFE
|
||||
kakbdGaHIJCEKF
|
||||
kakbdGaHIJCKFE
|
||||
kakbdGahijCkfe
|
||||
kakbdgaHIJcKFE
|
||||
kakbdGaHIKCJFE
|
||||
kakbdGaHJICKFE
|
||||
kakbdGahjiCkfe
|
||||
kakbdgaHJIcKFE
|
||||
kakbdGaIHJCEKF
|
||||
kakbdGaihjCekf
|
||||
kakbdgaIHJcEKF
|
||||
kakbdgaIHjcEkf
|
||||
kakbdgaihJceKF
|
||||
kakbdGaIJCKFEH
|
||||
kakbdGaJHCIFKE
|
||||
kakbdGaJhCifKE
|
||||
kakbdGajHCIFke
|
||||
kakbdGajhCifke
|
||||
kakbdgaJhcifKE
|
||||
kakbdGaJHICFKE
|
||||
kakbdGajHICFke
|
||||
kakbdgaJhicfKE
|
||||
kakbdGaJICKFEH
|
||||
kakbdgeaIcJKFH
|
||||
kakbdHaJKICFGE
|
||||
kakbdHFaIJKECG
|
||||
kakbdHFaIKJECG
|
||||
kakbdIFaHJCEKG
|
||||
kakbefGHaIJKCD
|
||||
kakbefGhaIjkCd
|
||||
kakbefgiajdKcH
|
||||
kakbefHIajCDkg
|
||||
kakbefhiaJcdKG
|
||||
kakbefHIajDCkg
|
||||
kakbefhiaJdcKG
|
||||
kakbefJHaIDKCG
|
||||
kakbeGFaJIKCDH
|
||||
kakbegFaJiKcDH
|
||||
kakbegFaJikcDh
|
||||
kakbegfajiKcdH
|
||||
kakbeGFIaCJKDH
|
||||
kakbeGFiaCjkdh
|
||||
kakbegfIacJKDH
|
||||
kakbeGFIaCKJDH
|
||||
kakbeGFiaCkjdh
|
||||
kakbegfIacKJDH
|
||||
kakbegfJahcKDI
|
||||
kakbeGHaJKICDF
|
||||
kakbeGHaJKIDCF
|
||||
kakbeGHajkIDCf
|
||||
kakbeghaJKidcF
|
||||
kakbeGHiajCkfd
|
||||
kakbeGHIaJKDFC
|
||||
kakbeGhiajKdfC
|
||||
kakbegHIajkDfc
|
||||
kakbegiajdKcfH
|
||||
kakbeGIHaJKDFC
|
||||
kakbeGIHajKDfC
|
||||
kakbeGihajKdfC
|
||||
kakbegIHajkDfc
|
||||
kakbegihaJkdFc
|
||||
kakbeGJaHIDKCF
|
||||
kakbeGjaHIDKcF
|
||||
kakbegJahidkCf
|
||||
kakbeHFIaJCKDG
|
||||
kakbeHFiaJCkdG
|
||||
kakbeHGfaIJKDC
|
||||
kakbehGIaDjkFc
|
||||
kakbeHIgajkCfd
|
||||
kakbeIFaHJDKGC
|
||||
kakbeiFHaJDkcG
|
||||
kakbeIGHaCJKFD
|
||||
kakbeIGHaJDKFC
|
||||
kakbeIGHaJKFCD
|
||||
kakbeIHGaJDKFC
|
||||
kakbeiHGajDkfc
|
||||
kakbeIJaHCDKGF
|
||||
kakbeIKGaJDCFH
|
||||
kakbfgHkIaJECd
|
||||
kakbfHgiadKjeC
|
||||
kakbfHGIJaCKED
|
||||
kakbfHGijaCked
|
||||
kakbfHGJIaCKED
|
||||
kakbfHGjiaCked
|
||||
kakbfhgJIacKED
|
||||
kakbfHJGIaDKEC
|
||||
kakbfHkIaJECGd
|
||||
kakbfiGhakJecD
|
||||
kakbgEJKIaDCFH
|
||||
kakbgEJKiaDCfH
|
||||
kakbgejkIadcFh
|
||||
kakbgIJKCaDEFH
|
||||
kakcdeihJKbaGF
|
||||
kakcdeihKJbaGF
|
||||
kakcdfaHIbJKGE
|
||||
kakcdfaIJbEKGH
|
||||
kakcdfjHIkbEag
|
||||
kakcdfjhiKbeaG
|
||||
kakcdfjihKbeaG
|
||||
kakcEFgHIkjBAd
|
||||
kakcEfghIkjBad
|
||||
kakcefIJhkbaDg
|
||||
kakcefijhKbadG
|
||||
kakcEfjhIkdBag
|
||||
kakcefjihKbadG
|
||||
kakcEFkHIdjBAg
|
||||
kakcEfkhIdjBag
|
||||
kakcEghJBIakFD
|
||||
kakcEghjBiakfd
|
||||
kakceGiajkBfdh
|
||||
kakcegjaIbkFdh
|
||||
kakcegjbIakdFh
|
||||
kakcEHfIAjkBDg
|
||||
kakcEHfIAkjBDg
|
||||
kakcehfiaKJbdG
|
||||
kakcEhfjAibkdg
|
||||
kakceHfjaiBkdg
|
||||
kakcEhgjBiakdf
|
||||
kakcEHgJIAkFBD
|
||||
kakcEhijAdbkfg
|
||||
kakceHijadBkfg
|
||||
kakcEhijBdakgf
|
||||
kakcEJgAIdkFBh
|
||||
kakcFHgIJAkBED
|
||||
kakcFHgJIAkBED
|
||||
kakcFhigBjkade
|
||||
kakcGeIakjBfDh
|
||||
kakcGeiakjBfdh
|
||||
kakcihgJbakfDE
|
||||
kbbicDEgHJAbKFI
|
||||
kbbicDEgHJaBKFI
|
||||
kbbicdEgHJabKFI
|
||||
kbbicDEhGIJAbKF
|
||||
kbbicDEhGIJaBKF
|
||||
kbbicdEhGIJabKF
|
||||
kbbicDEhGJIAbKF
|
||||
kbbicDEhGJIaBKF
|
||||
kbbicdEhGJIabKF
|
||||
kbbicDEhIJKAbGF
|
||||
kbbicDEhIJKaBGF
|
||||
kbbicdEhIJKabGF
|
||||
kbbicDEhIKJAbGF
|
||||
kbbicDEhIKJaBGF
|
||||
kbbicdEhIKJabGF
|
||||
kbbicDFgHJAbKEI
|
||||
kbbicDFgHJaBKEI
|
||||
kbbicdFgHJabKEI
|
||||
kbbicDFhIJKAbEG
|
||||
kbbicDFhIJKaBEG
|
||||
kbbicdFhIJKabEG
|
||||
kbbicDFhJGKAbEI
|
||||
kbbicDFhJGKaBEI
|
||||
kbbicdFhJGKabEI
|
||||
kbbicdFhjGKabei
|
||||
kbbicDFhJIKAbEG
|
||||
kbbicDFhJIKaBEG
|
||||
kbbicdFhJIKabEG
|
||||
kbbicDFiHJKEAbG
|
||||
kbbicDFiHJKEaBG
|
||||
kbbicdFiHJKEabG
|
||||
kbbicDFjGHKIEAb
|
||||
kbbicdFjGHKIEab
|
||||
kbbicdFjghKieab
|
||||
kbbicdfjGHkIEab
|
||||
kbbicDFjHGKIEAb
|
||||
kbbicdFjHGKIEab
|
||||
kbbicDFjHKIEGAb
|
||||
kbbicdFjHKIEGab
|
||||
kbbicDGfIAbJKEH
|
||||
kbbicdGfIabJKEH
|
||||
kbbicDGfIAbKJEH
|
||||
kbbicdGfIabKJEH
|
||||
kbbicDGhIJKAbEF
|
||||
kbbicDGhIJKaBEF
|
||||
kbbicdGhIJKabEF
|
||||
kbbicDGiHJKEAbF
|
||||
kbbicDGiHJKEaBF
|
||||
kbbicdGiHJKEabF
|
||||
kbbiceafHbIJDKG
|
||||
kbbiceafHbijDkg
|
||||
kbbiceafhbIJdKG
|
||||
kbbiceafHbJDKGI
|
||||
kbbiceaGbHJDKFI
|
||||
kbbiceaGbhjDkfi
|
||||
kbbiceagbHJdKFI
|
||||
kbbiceaGbIDJFKH
|
||||
kbbiceaGbiDjfkh
|
||||
kbbiceagbIdJFKH
|
||||
kbbiceagbIdjFkh
|
||||
kbbiceagbidJfKH
|
||||
kbbiceaGbIDJKFH
|
||||
kbbiceaGbiDjkfh
|
||||
kbbiceagbIdJKFH
|
||||
kbbiceaGbIDKJFH
|
||||
kbbicEaGHBIKJFD
|
||||
kbbicEaGJBIKDFH
|
||||
kbbiceaHbIJDKFG
|
||||
kbbiceaHbijDkfg
|
||||
kbbiceahbIJdKFG
|
||||
kbbiceaHbIJDKGF
|
||||
kbbiceaHbijDkgf
|
||||
kbbiceahbIJdKGF
|
||||
kbbiceaHbIJKDFG
|
||||
kbbiceaHbIJKDGF
|
||||
kbbicEaHGBIKJFD
|
||||
kbbicEaJGBIKDFH
|
||||
kbbicEFhiJKadBG
|
||||
kbbicEFihGKAjdb
|
||||
kbbicEGhiJKadBF
|
||||
kbbiceGijHKFadb
|
||||
kbbicEGjiHKFAdb
|
||||
kbbiceGjiHKFadb
|
||||
kbbicfagIbeJDKH
|
||||
kbbicfagIbejDkh
|
||||
kbbicfagibeJdKH
|
||||
kbbicfagIbeJKDH
|
||||
kbbicFaHGBIJKED
|
||||
kbbicfaHGbIJKED
|
||||
kbbicfaHgbijKeD
|
||||
kbbicfaHGJbDKEI
|
||||
kbbicfaHGjbDkei
|
||||
kbbicfahgJbdKEI
|
||||
kbbicfaHGJbIDKE
|
||||
kbbicfaHIbJEDKG
|
||||
kbbicfaHIbjEDkg
|
||||
kbbicfahibJedKG
|
||||
kbbicfaHIbJKDEG
|
||||
kbbicfaHIbJKEDG
|
||||
kbbicfaHIbjkEDg
|
||||
kbbicfahibJKedG
|
||||
kbbicFaHJBIDKEG
|
||||
kbbicfaHJbIDKEG
|
||||
kbbicfaHJbiDkEG
|
||||
kbbicFaHJBIEKGD
|
||||
kbbicfaHJbIEKGD
|
||||
kbbicFaHJBIKEGD
|
||||
kbbicfaHJbIKEGD
|
||||
kbbicfaIHbJEDKG
|
||||
kbbicFaIJHBEGKD
|
||||
kbbicFaIJhBegKD
|
||||
kbbicfaIJHbEGKD
|
||||
kbbicfaIJhbegKD
|
||||
kbbicfaijHbEGkd
|
||||
kbbicfajGbHEkdi
|
||||
kbbicfeHakiDjgb
|
||||
kbbicfehakIdJGb
|
||||
kbbicGaIHJBEKFD
|
||||
kbbicGaIhJBeKFD
|
||||
kbbicgaIHJbEKFD
|
||||
kbbicgaIhJbeKFD
|
||||
kbbicgaIhJbekFD
|
||||
kbbicgaiHjbEkfd
|
||||
kbbicGaIKJBEDFH
|
||||
kbbicgaIKJbEDFH
|
||||
kbchdeFakHjBcgi
|
||||
kbchdeFakHjbCgi
|
||||
kbchdeFakhJBcGI
|
||||
kbchdeFakhJbCGI
|
||||
kbchdEFcHIJKABG
|
||||
kbchdEFchIjkABg
|
||||
kbchdEfcHiJKAbG
|
||||
kbchdEfcHiJKaBG
|
||||
kbchdEfcHijkAbg
|
||||
kbchdEfchIjkAbg
|
||||
kbchdEfchIjkaBg
|
||||
kbchdefchiJKabG
|
||||
kbchdEFcHIKJABG
|
||||
kbchdEFchIkjABg
|
||||
kbchdEfcHiKJAbG
|
||||
kbchdEfcHiKJaBG
|
||||
kbchdEfcHikjAbg
|
||||
kbchdEfchIkjAbg
|
||||
kbchdEfchIkjaBg
|
||||
kbchdefchiKJabG
|
||||
kbchdEFcIHJBAKG
|
||||
kbchdEFciHjBAkg
|
||||
kbchdEfcIhJbAKG
|
||||
kbchdEfcIhjbAkg
|
||||
kbchdEfciHjBakg
|
||||
kbchdEfciHjbAkg
|
||||
kbchdefcihJbaKG
|
||||
kbchdeFGaiJKbCH
|
||||
kbchdeFHaiJKbCG
|
||||
kbchdefHaiJKbcG
|
||||
kbchdeFhaJikgBc
|
||||
kbchdefHajIKGcb
|
||||
kbchdEfhgIjakBc
|
||||
kbchdeFHgIjaKbC
|
||||
kbchdeFhgIjakBc
|
||||
kbchdeFhgiJakBc
|
||||
kbchdegacIbJFKH
|
||||
kbchdegacIbjFkh
|
||||
kbchdegacibJfKH
|
||||
kbchdegacIbJKFH
|
||||
kbchdegcaIbJFKH
|
||||
kbchdegcaIbjFkh
|
||||
kbchdegcaibJfKH
|
||||
kbchdegcaIbJKFH
|
||||
kbchdegchIJkaFb
|
||||
kbchdegchJIkaFb
|
||||
kbchdEgfIjckbAh
|
||||
kbchdegfijcKbaH
|
||||
kbchdEgFjIhcKAb
|
||||
kbchdEgfJihckAb
|
||||
kbchdEgfjIhckAb
|
||||
kbchdeGFjiHCKab
|
||||
kbchdEGHiBJKaFC
|
||||
kbchdEghjBikcfa
|
||||
kbchdEGhJICFkBa
|
||||
kbchdEGhjICFkBa
|
||||
kbchdEghJikcfAb
|
||||
kbchdEGIjHBFKaC
|
||||
kbchdEGiJHBFkAc
|
||||
kbchdEGiJHBFkaC
|
||||
kbchdfhaibJecKG
|
||||
kbchdfhaikbJceG
|
||||
kbchdfhaJckibEg
|
||||
kbchdfHakbeJCGI
|
||||
kbchdfHakbejCgi
|
||||
kbchdfhakbeJcGI
|
||||
kbchdfhbgJaicKE
|
||||
kbchdfhbJaickEg
|
||||
kbchdfhbJakicgE
|
||||
kbchdfhcIajbkEg
|
||||
kbchdfiahbJKceG
|
||||
kbchdfIakbeJCGH
|
||||
kbdgefGHadiJkBC
|
||||
kbdgefGhadIjKbC
|
||||
kbdgefGhadIjkBc
|
||||
kbdgefGhadiJkbC
|
||||
kbdgeFGhcIJKdAB
|
||||
kbdgeFGhciJkdAB
|
||||
kbdgeFgHcIjKDaB
|
||||
kbdgeFgHciJkDaB
|
||||
kbdgeFghciJkdAb
|
||||
kbdgefGHdaIJKBC
|
||||
kbdgefGHdaiJkBC
|
||||
kbdgefGhdaIjkBc
|
||||
kbdgefGhdaiJkbC
|
||||
kbdgeFGhdiBJkaC
|
||||
kbdgeFghdiJckaB
|
||||
kbdgefgHIabjKcD
|
||||
kbdgefGHIajCKbD
|
||||
kbdgefgHIbajKcD
|
||||
kbdgefgiadjcKbH
|
||||
kbdgeFGIdHJKACB
|
||||
kbdgeFGIdhJkACB
|
||||
kbdgeFgIdhJkACb
|
||||
kbdgeFgidHjKacB
|
||||
kbdgefGidhJkacB
|
||||
kbdgefGIhaJkCDb
|
||||
kbdgefGihaJkdcB
|
||||
kbdgeFGIhjBkCDa
|
||||
kbdgeFGihJBkdcA
|
||||
kbdgeFhJciBkaDg
|
||||
kbdgefIgakcdJBH
|
||||
kbdgefIgJacdKBH
|
||||
kbdgefjGcaHDkbi
|
||||
kbdgeFJGdHCAKBI
|
||||
kbdgefJgdhcaKBI
|
||||
kbdgefjGdiHCakb
|
||||
kbdgefJgIacdKBH
|
||||
kbdgeGJHaIDBFKC
|
||||
kbdgegJhaidbfKC
|
||||
kbdgegkHcajIDbf
|
||||
kbdgeGkHcjiBDfa
|
||||
kbeffCEHBaIJDKG
|
||||
kbeffCEHBaijDkg
|
||||
kbeffCEhBaIJdKG
|
||||
kbeffCEhBaijdkg
|
||||
kbeffcehbaIJdKG
|
||||
kbeffCEhBajdkgi
|
||||
kbeffDGHIekJABC
|
||||
kbeffDghIekjAbc
|
||||
kbeffDGIJeCKBAH
|
||||
kbeffDgIJecKBAH
|
||||
kbeffdgijecKbaH
|
||||
kbeffDGJICeKBAH
|
||||
kbeffDgjIcekbAh
|
||||
kbeffdigjHacKbe
|
||||
kbeffgHkIaeJDBc
|
||||
kbeffgHkIaejDBc
|
||||
kbeffghkIdabJEc
|
||||
kcbbgcEaGBHJDKFI
|
||||
kcbbgcEaGBhjDkfi
|
||||
kcbbgceagbHJdKFI
|
||||
kcbbgcEaGBIDJFKH
|
||||
kcbbgcEaGBIDjFkh
|
||||
kcbbgcEaGBiDJfKH
|
||||
kcbbgcEaGBiDjfkh
|
||||
kcbbgceagbIdJFKH
|
||||
kcbbgceagbIdjFkh
|
||||
kcbbgceagbidJfKH
|
||||
kcbbgcEaGBIDJKFH
|
||||
kcbbgcEaGBiDjkfh
|
||||
kcbbgceagbIdJKFH
|
||||
kcbbgcEaHBIJDKFG
|
||||
kcbbgcEaHBijDkfg
|
||||
kcbbgceahbIJdKFG
|
||||
kcbbgcEaHBIJDKGF
|
||||
kcbbgcEaHBijDkgf
|
||||
kcbbgceahbIJdKGF
|
||||
kcbcfcDFgIJAbKEH
|
||||
kcbcfcDFgIJaBKEH
|
||||
kcbcfcDFgIjAbkEh
|
||||
kcbcfcDFgIjaBkEh
|
||||
kcbcfcDFgiJAbKeH
|
||||
kcbcfcDFgiJaBKeH
|
||||
kcbcfcdFgIJabKEH
|
||||
kcbcfcdFgIjabkEh
|
||||
kcbcfcdFgiJabKeH
|
||||
kcbcfcdfgIJabKEH
|
||||
kcbcfcdfgiJabKeH
|
||||
kcbcfcDFgJHAbKEI
|
||||
kcbcfcDFgJHaBKEI
|
||||
kcbcfcdFgJHabKEI
|
||||
kcbcfcDFgJIAbKEH
|
||||
kcbcfcDFgJIaBKEH
|
||||
kcbcfcdFgJIabKEH
|
||||
kcbcfcDFhKIJAbEG
|
||||
kcbcfcDFhKIJaBEG
|
||||
kcbcfcdFhKIJabEG
|
||||
kcbcfcfagHIbjKDe
|
||||
kcbcfcfagHIbjKdE
|
||||
kcbcfcfagHibJkDe
|
||||
kcbcfcfagHibJkdE
|
||||
kcbcfcFaHGBIJKED
|
||||
kcbcfcfaHGbIJKED
|
||||
kcbcfcfaHgbijKeD
|
||||
kcbcfcFaHIBJEDKG
|
||||
kcbcfcFaHIBjEDkg
|
||||
kcbcfcfaHIbJEDKG
|
||||
kcbcfcfaHIbjEDkg
|
||||
kcbcfcfahibJedKG
|
||||
kcbcfcFaHIBJKDEG
|
||||
kcbcfcFaHJBIDKEG
|
||||
kcbcfcfaHJbIDKEG
|
||||
kcbcfcfaHJbiDkEG
|
||||
kcbcfcFaHJBIEKGD
|
||||
kcbcfcfaHJbIEKGD
|
||||
kcbcfcFaHJBIKEGD
|
||||
kcbcfcfaHJbIKEGD
|
||||
kcbcfcFaHJIBDGKE
|
||||
kcbcfcfaHJIbDGKE
|
||||
kcbcfcfaHjibDGke
|
||||
kcbcfcfahJIbdgKE
|
||||
kcbcfcfgIajebkDh
|
||||
kcbcfcfgiaJebKdH
|
||||
kcbdecDGhIJEAbKF
|
||||
kcbdecDGhIJEaBKF
|
||||
kcbdecdGhIJEabKF
|
||||
kcbdecDGhIJFAbKE
|
||||
kcbdecDGhIJFaBKE
|
||||
kcbdecdGhIJFabKE
|
||||
kcbdecDGhJKIAbFE
|
||||
kcbdecDGhJKIaBFE
|
||||
kcbdecdGhJKIabFE
|
||||
kcbdecDGhKJIAbFE
|
||||
kcbdecDGhKJIaBFE
|
||||
kcbdecdGhKJIabFE
|
||||
kcbdecDGiKHJFAbE
|
||||
kcbdecDGiKHJFaBE
|
||||
kcbdecdGiKHJFabE
|
||||
kcbdecdGikHjFabe
|
||||
kcbdecdgiKhJfabE
|
||||
kcbdeceaGbIDJFKH
|
||||
kcbdeceaGbIDjFkh
|
||||
kcbdeceaGbiDJfKH
|
||||
kcbdeceaGbiDjfkh
|
||||
kcbdeceagbidJfKH
|
||||
kcbdeceaGbIDJKFH
|
||||
kcbdeceaGbIDKJFH
|
||||
kcbdecEGhiKFajdB
|
||||
kcbdecgahkIebJFd
|
||||
kcbdecGaIHJBEKFD
|
||||
kcbdecGaIhJBeKFD
|
||||
kcbdecgaIHJbEKFD
|
||||
kcbdecgaiHjbEkfd
|
||||
kcbdecgaIHJEbDKF
|
||||
kcbdecGaIKJBEDFH
|
||||
kcbdecgaIKJbEDFH
|
||||
kcbedcdHfJabGKEI
|
||||
kcbedceaHbIJDGKF
|
||||
kcbedceaHbijDgkf
|
||||
kcbedceahbIJdGKF
|
||||
kcbedceaHbIJDKFG
|
||||
kcbedceaHbIJDKGF
|
||||
kcbedceaHbIJGDKF
|
||||
kcbfccdIfJabKGEH
|
||||
kcbfccdIfjabKGeH
|
||||
kcbfccdifJabkgEh
|
||||
kcbfccdIfJabKHEG
|
||||
kcbfcceafIbJKDHG
|
||||
kcbfcceafIbjkDhg
|
||||
kcbfcceafibJKdHG
|
||||
kcbfcceafIbJKHDG
|
||||
kcbfcceaGbIDJFKH
|
||||
kcbfcceaGbiDjfkh
|
||||
kcbfcceagbIdJFKH
|
||||
kcbfccEaGIBJKHFD
|
||||
kcbfccEaIJBDKGFH
|
||||
kcbfccEaIJBDKHFG
|
||||
kcbfccfeIahJbDKG
|
||||
kcbgbcDEgHJAbKFI
|
||||
kcbgbcDEgHJAbkFi
|
||||
kcbgbcDEgHJaBKFI
|
||||
kcbgbcDEgHJaBkFi
|
||||
kcbgbcDEgHjAbkfi
|
||||
kcbgbcdEgHJabKFI
|
||||
kcbgbcdEgHJabkFi
|
||||
kcbgbcdEgHjabkfi
|
||||
kcbgbcdeghJabKFI
|
||||
kcbgbcdeghJabkFi
|
||||
kcbgbcDFgHJAbKEI
|
||||
kcbgbcDFgHJaBKEI
|
||||
kcbgbcdFgJKabEHI
|
||||
kcbgbcdFgjkabehi
|
||||
kcbgbcDFhJIKAbEG
|
||||
kcbgbcDFhjIkAbeg
|
||||
kcbgbcdFhJIKabEG
|
||||
kcbgbcdFhjIkabeg
|
||||
kcbgbcdfhJiKabEG
|
||||
kcbgbcDJgKIAbEFH
|
||||
kcbgbcDJgKIaBEFH
|
||||
kcbgbcdJgKIabEFH
|
||||
kcbgbceafhbJdKGI
|
||||
kcbgbceaJbGIKFDH
|
||||
kcbgbceaJbGIkFDh
|
||||
kcbgbceaJbgiKfDH
|
||||
kcbgbceaJbgikfDh
|
||||
kcbgbceajbGIkFdh
|
||||
kcbgbceaJbHIKFDG
|
||||
kcbgbceJghKadbFI
|
||||
kcbgbceJghkadbfI
|
||||
kcbgbceJhgKadbFI
|
||||
kcbgbceJhgkadbfI
|
||||
kcbgbcfaHGJbDKEI
|
||||
kcbgbcfaHGjbDkei
|
||||
kcbgbcFaJHBKDGEI
|
||||
kcbgbcfaJHbKDGEI
|
||||
kcccedeGacIBJFKH
|
||||
kcccedeGacIBjFkh
|
||||
kcccedeGaciBJfKH
|
||||
kcccedeGaciBjfkh
|
||||
kcccedegacibJfKH
|
||||
kcccedeGacIBJKFH
|
||||
kcccedEGHiJCKaBF
|
||||
kcccedEGhIjCKaBf
|
||||
kcccedEgHiJckAbF
|
||||
kcccedEghIjckAbf
|
||||
kcccedEghIjckaBf
|
||||
kcccedeGhijCKabf
|
||||
kcccedEGHiKBJaCF
|
||||
kcccedEGhIKBjAcF
|
||||
kcccedEghIkbjAcf
|
||||
kcccedEgHjIbkFAc
|
||||
kcccedEGhJifCkBa
|
||||
kcccedEghJifckBa
|
||||
kcccedEghJifckbA
|
||||
kcccedeGhjifCkba
|
||||
kcccedgHakIfJEBc
|
||||
kcccedgHakIfjEBc
|
||||
kcccedgHakifJeBc
|
||||
kcccedghakIfjEbc
|
||||
kcccedGHijBFEKac
|
||||
kccdddfHaIbJCKGE
|
||||
kdbbbecEaGBIDJFKH
|
||||
kdbbbecEaGBIDjFkh
|
||||
kdbbbecEaGBiDJfKH
|
||||
kdbbbeceagbidJfKH
|
||||
kdbbcdcEaHBIJDGKF
|
||||
kdbbcdcEaHBijDgkf
|
||||
kdbbcdceahbIJdGKF
|
||||
kdbbdccEaGBIDJFKH
|
||||
kdbbdccEaGBiDjfkh
|
||||
kdbbdcceagbIdJFKH
|
||||
kdbbebceagbhJdKFI
|
||||
kdbbebceagbhJdkFi
|
||||
kdbbebcEaGBJKDFHI
|
||||
kdbbebcEaGBjkDfhi
|
||||
kdbbebceagbJKdFHI
|
||||
kdbcbdcDFhIEJAbKG
|
||||
kdbcbdcDFhIEJaBKG
|
||||
kdbccccfgIaJebDKH
|
||||
kdbcdbcfaHJbKIDEG
|
||||
kdbcdbcfaHjbkIDeg
|
||||
kdbcdbcFaJHBKDGEI
|
||||
kdbcdbcfaJHbKDGEI
|
3308
mtlinks/hyperbolic_data_12a
Normal file
3308
mtlinks/hyperbolic_data_12a
Normal file
File diff suppressed because it is too large
Load Diff
3144
mtlinks/hyperbolic_data_12n
Normal file
3144
mtlinks/hyperbolic_data_12n
Normal file
File diff suppressed because it is too large
Load Diff
12417
mtlinks/hyperbolic_data_13a
Normal file
12417
mtlinks/hyperbolic_data_13a
Normal file
File diff suppressed because it is too large
Load Diff
16454
mtlinks/hyperbolic_data_13n
Normal file
16454
mtlinks/hyperbolic_data_13n
Normal file
File diff suppressed because it is too large
Load Diff
51347
mtlinks/hyperbolic_data_14a
Normal file
51347
mtlinks/hyperbolic_data_14a
Normal file
File diff suppressed because it is too large
Load Diff
91616
mtlinks/hyperbolic_data_14n
Normal file
91616
mtlinks/hyperbolic_data_14n
Normal file
File diff suppressed because it is too large
Load Diff
16
mutant_knot_groups/dat11
Normal file
16
mutant_knot_groups/dat11
Normal file
@ -0,0 +1,16 @@
|
||||
440 441
|
||||
401 409
|
||||
443 445
|
||||
518 519
|
||||
406 412
|
||||
438 442
|
||||
408 414
|
||||
403 411
|
||||
57 231
|
||||
407 413
|
||||
44 47
|
||||
402 410
|
||||
252 254
|
||||
251 253
|
||||
19 25
|
||||
24 26
|
75
mutant_knot_groups/dat12
Normal file
75
mutant_knot_groups/dat12
Normal file
@ -0,0 +1,75 @@
|
||||
1344 1345 1509
|
||||
1498 1502
|
||||
1377 1422
|
||||
1347 1508
|
||||
1958 1969
|
||||
1355 1517
|
||||
1381 1426
|
||||
1351 1513
|
||||
1311 1319
|
||||
1979 1980
|
||||
1412 1417
|
||||
1495 1516
|
||||
1352 1549
|
||||
1981 1984
|
||||
1519 1520
|
||||
1841 1844
|
||||
1373 1418
|
||||
1316 1322
|
||||
1378 1423
|
||||
1350 1354 1512
|
||||
1544 1552
|
||||
1379 1424
|
||||
1493 1514
|
||||
1375 1420
|
||||
1959 1970
|
||||
1348 1349 1507
|
||||
167 692
|
||||
1343 1511
|
||||
1496 1500
|
||||
1540 1550
|
||||
195 693
|
||||
1380 1425
|
||||
1386 1413
|
||||
1374 1419
|
||||
1652 1653
|
||||
1314 1320
|
||||
1410 1415
|
||||
1346 1510
|
||||
164 166
|
||||
811 817
|
||||
36 694
|
||||
1709 1710
|
||||
1494 1515
|
||||
1376 1421
|
||||
1309 1317
|
||||
116 122 182
|
||||
1315 1321
|
||||
1497 1501
|
||||
30 33 157
|
||||
1543 1551
|
||||
1310 1318
|
||||
1387 1414
|
||||
45 65
|
||||
1411 1416
|
||||
114 117
|
||||
829 832
|
||||
639 680
|
||||
29 113
|
||||
675 688
|
||||
830 831
|
||||
91 111
|
||||
844 846
|
||||
44 64
|
||||
67 136
|
||||
134 188
|
||||
108 120
|
||||
101 115
|
||||
131 133
|
||||
126 132
|
||||
102 107
|
||||
7 14
|
||||
13 15
|
||||
154 162
|
||||
59 63
|
||||
48 60
|
774
mutant_knot_groups/dat13
Normal file
774
mutant_knot_groups/dat13
Normal file
@ -0,0 +1,774 @@
|
||||
5713 5851
|
||||
5489 5490
|
||||
5111 5171
|
||||
6077 6084
|
||||
5185 5379
|
||||
6159 6185
|
||||
5480 5481
|
||||
6258 6263
|
||||
6160 6184 6187
|
||||
5112 5170
|
||||
6853 7483
|
||||
5217 5395
|
||||
6170 6197 6199
|
||||
5530 5572
|
||||
8642 8660
|
||||
5744 5897
|
||||
7278 7279
|
||||
5741 5894
|
||||
5485 5486
|
||||
5103 5163
|
||||
5337 5365
|
||||
5119 5178
|
||||
6169 6198
|
||||
5529 5539
|
||||
6165 6191 6194
|
||||
5602 5644
|
||||
6168 6211
|
||||
6069 6074
|
||||
5104 5162
|
||||
5105 5164
|
||||
7282 7284
|
||||
5808 5938
|
||||
5106 5165
|
||||
6162 6189
|
||||
8690 8729
|
||||
5720 5854
|
||||
5705 5912
|
||||
3377 3380
|
||||
5809 5937 5940
|
||||
7286 7289
|
||||
5190 5378
|
||||
8696 8723
|
||||
8745 8824
|
||||
5678 5758
|
||||
6072 6076
|
||||
6164 6192
|
||||
8639 8644
|
||||
5861 5984
|
||||
6094 6126
|
||||
7455 7724
|
||||
8721 8735
|
||||
8697 8724
|
||||
8615 8616
|
||||
5605 5643
|
||||
5817 5968
|
||||
8629 8646
|
||||
6172 6201
|
||||
5784 5820
|
||||
5108 5166
|
||||
5118 5177
|
||||
5735 5879
|
||||
6259 6264
|
||||
5357 5415
|
||||
5617 5830
|
||||
8045 8047
|
||||
8678 8713
|
||||
5905 5949
|
||||
6846 6848
|
||||
7812 7832
|
||||
5814 5965
|
||||
5701 5908
|
||||
5359 5417
|
||||
5350 5432
|
||||
5723 5877
|
||||
6158 6183 6188
|
||||
5505 5594
|
||||
8726 8739
|
||||
8663 8820
|
||||
6171 6212
|
||||
7288 7292
|
||||
5187 5387
|
||||
8641 8716
|
||||
6621 6652
|
||||
8643 8661
|
||||
5121 5180
|
||||
5040 5053
|
||||
5841 5952
|
||||
631 636 2616
|
||||
5124 5183
|
||||
6373 6379
|
||||
5340 5368
|
||||
5299 5731
|
||||
6533 6563
|
||||
7391 8524
|
||||
5671 5760
|
||||
5860 5983 8268
|
||||
5522 5584
|
||||
5213 5382
|
||||
5314 5325 5514
|
||||
7808 7855
|
||||
6624 6655
|
||||
5608 5648
|
||||
5331 5356
|
||||
8640 8645
|
||||
5039 5042 5054
|
||||
5244 5371
|
||||
5029 5033
|
||||
5328 5426
|
||||
5754 5829
|
||||
6646 6666
|
||||
5675 5766
|
||||
5726 5849
|
||||
5102 5161
|
||||
5343 6239
|
||||
5303 5527
|
||||
8689 8731
|
||||
5846 5961
|
||||
5866 5935
|
||||
5845 5960 5962
|
||||
5362 5420
|
||||
5804 5878
|
||||
7285 7290
|
||||
5621 5833
|
||||
5247 5374
|
||||
5107 5167
|
||||
8725 8743
|
||||
5990 6005
|
||||
5886 5927
|
||||
5702 5909
|
||||
5281 5293
|
||||
6154 6174
|
||||
5300 5301 5508
|
||||
5842 5951 5954
|
||||
8681 8708
|
||||
5203 5377
|
||||
5795 5974
|
||||
5815 5966
|
||||
6117 6210
|
||||
6161 6186
|
||||
8704 8710
|
||||
5211 5380
|
||||
4911 4961
|
||||
5495 5497
|
||||
5335 5363
|
||||
3333 3343
|
||||
5184 5385
|
||||
5196 5421
|
||||
5046 5058
|
||||
6894 8520
|
||||
6053 6078
|
||||
5673 5800
|
||||
5311 5836
|
||||
5315 5507
|
||||
8765 8772
|
||||
6173 6200 6202
|
||||
6988 8521
|
||||
5316 5523
|
||||
5844 5956
|
||||
6228 6229
|
||||
6619 6650
|
||||
4907 4957
|
||||
7957 8279
|
||||
5478 5573
|
||||
5904 5980
|
||||
5460 5582
|
||||
5901 5945
|
||||
5476 5583
|
||||
7811 7834
|
||||
8728 8742
|
||||
535 544
|
||||
5812 5963
|
||||
6071 6075
|
||||
6531 6561
|
||||
8720 8734
|
||||
5696 5971
|
||||
5115 5174
|
||||
5026 5050
|
||||
5345 6241
|
||||
5988 6003
|
||||
8795 8808
|
||||
6157 6208
|
||||
5308 5309 5837
|
||||
5618 5831
|
||||
8687 8740
|
||||
5351 5433
|
||||
5779 5826
|
||||
7064 7079
|
||||
1638 3072
|
||||
8706 8741
|
||||
7126 7127
|
||||
5907 5975
|
||||
6163 6190 6195
|
||||
5304 5305 5524
|
||||
5051 5060
|
||||
8749 8750 8775 8812 8814 8816
|
||||
5613 5746
|
||||
5358 5416
|
||||
5739 5892
|
||||
8630 8647
|
||||
7635 8536
|
||||
5711 5959
|
||||
8770 8774
|
||||
5619 5832
|
||||
5888 5929
|
||||
5250 5253
|
||||
8722 8733
|
||||
8692 8718
|
||||
5681 5803
|
||||
5285 5297
|
||||
4943 4949
|
||||
5859 5982
|
||||
8150 8335
|
||||
5200 5425
|
||||
5242 5369
|
||||
6093 6127
|
||||
5787 5823
|
||||
5682 5768
|
||||
8388 8395
|
||||
5687 5729
|
||||
5670 5761
|
||||
7083 7128
|
||||
4906 4955
|
||||
7453 7722
|
||||
5858 5981
|
||||
7277 7281
|
||||
8684 8702
|
||||
5469 5540
|
||||
5302 5513
|
||||
5344 6240
|
||||
5110 5169
|
||||
5241 5334
|
||||
528 557 2614
|
||||
5704 5916
|
||||
6671 7276
|
||||
5677 5762
|
||||
5615 5750
|
||||
6123 6182
|
||||
8691 8730
|
||||
7820 8012
|
||||
6001 6002
|
||||
8512 8516
|
||||
8736 8737
|
||||
5120 5179
|
||||
6649 6669
|
||||
4908 4958
|
||||
994 3035
|
||||
5742 5895
|
||||
5811 5942
|
||||
5117 5175
|
||||
7454 7723
|
||||
5283 5295
|
||||
6265 6269
|
||||
5348 5430
|
||||
8780 8801
|
||||
6099 6130
|
||||
5201 5375
|
||||
638 2618
|
||||
5679 5759
|
||||
4918 4946
|
||||
5047 5059 5089
|
||||
5414 5429
|
||||
5188 5384
|
||||
5692 5734
|
||||
8744 8825
|
||||
5317 5326 5528
|
||||
5353 5435
|
||||
1538 3038
|
||||
8013 8391
|
||||
4909 4959
|
||||
5336 5364
|
||||
5807 5936 5941
|
||||
5318 5327 5857
|
||||
5700 5914
|
||||
7958 8280
|
||||
5749 5764
|
||||
8142 8488
|
||||
8683 8709
|
||||
8703 8712
|
||||
8766 8773
|
||||
5902 5944
|
||||
5319 5856
|
||||
8620 8626 8651 8657
|
||||
7819 8287
|
||||
1231 1237
|
||||
5611 5647
|
||||
8662 8821
|
||||
5084 5092
|
||||
6096 6129
|
||||
8778 8818
|
||||
6375 6380
|
||||
6674 7519
|
||||
6167 6196
|
||||
5186 5386
|
||||
8685 8700
|
||||
8619 8625 8650 8656
|
||||
5306 5730
|
||||
8617 8623 8648 8654
|
||||
5189 5383
|
||||
4902 4952
|
||||
6623 6654
|
||||
8679 8714
|
||||
5204 5226 5388 5402
|
||||
3378 3381
|
||||
5282 5294
|
||||
5212 5381
|
||||
5239 5332
|
||||
549 556
|
||||
5782 5818
|
||||
5900 5978
|
||||
5526 5586
|
||||
8144 8336
|
||||
5320 5855
|
||||
525 542
|
||||
5360 5418
|
||||
3289 3425
|
||||
5669 5798
|
||||
5840 5950 5955
|
||||
5885 5926
|
||||
7690 8519
|
||||
6166 6193
|
||||
6532 6562
|
||||
5198 5423
|
||||
5862 5933
|
||||
1697 3042
|
||||
5887 5928
|
||||
5816 5967
|
||||
3198 3421
|
||||
6134 6144
|
||||
4904 4954
|
||||
3334 3344
|
||||
5044 5056
|
||||
5338 5366
|
||||
5684 5765
|
||||
8776 8777 8817 8819
|
||||
5708 5913
|
||||
5122 5181
|
||||
1459 3071
|
||||
6648 6668
|
||||
5752 5827
|
||||
5210 5232 5394 5406
|
||||
4900 4950
|
||||
5045 5057
|
||||
5197 5422
|
||||
6120 6153
|
||||
5510 5595
|
||||
5709 5957
|
||||
5206 5228 5390
|
||||
8789 8792
|
||||
5683 5769
|
||||
8698 8699
|
||||
5245 5372
|
||||
8748 8752 8811 8815
|
||||
5614 5745
|
||||
5109 5168
|
||||
6771 6976
|
||||
7815 7833
|
||||
8686 8695
|
||||
8747 8826
|
||||
5791 5972
|
||||
6118 6151
|
||||
5525 5585
|
||||
5911 5977
|
||||
5930 5943
|
||||
5113 5172
|
||||
7821 8288
|
||||
5740 5893
|
||||
665 2620
|
||||
8705 8711
|
||||
5352 5434
|
||||
6371 6377
|
||||
5910 5976
|
||||
7331 7334
|
||||
5444 5459
|
||||
6622 6653
|
||||
5123 5182
|
||||
2720 2727
|
||||
5989 6004
|
||||
5717 5871
|
||||
5813 5964
|
||||
3225 3255
|
||||
3182 3192
|
||||
6121 6180
|
||||
360 414 1392
|
||||
5243 5370
|
||||
5607 5646
|
||||
995 3039
|
||||
5219 5233 5396 5407
|
||||
5676 5801
|
||||
5024 5048
|
||||
6139 6205
|
||||
8682 8701
|
||||
3177 3184
|
||||
5307 5839
|
||||
5329 5354
|
||||
8779 8782 8802 8803
|
||||
5810 5939
|
||||
8746 8827
|
||||
5511 5596
|
||||
5693 5969
|
||||
5038 5043 5052
|
||||
7338 7339
|
||||
5843 5953
|
||||
6057 6080
|
||||
108 2619
|
||||
867 3040
|
||||
8727 8738
|
||||
5412 5427
|
||||
3179 3257
|
||||
5781 5788
|
||||
5349 5431
|
||||
5721 5875
|
||||
5932 5947
|
||||
5284 5296
|
||||
5202 5376
|
||||
632 637 2617
|
||||
4905 4956
|
||||
7335 7337
|
||||
1232 1238
|
||||
6155 6206
|
||||
5114 5173
|
||||
8665 8822
|
||||
7062 7106
|
||||
5743 5896
|
||||
5891 5923
|
||||
5724 5847
|
||||
4910 4960
|
||||
5312 5313 5835
|
||||
6249 6254
|
||||
4901 4951
|
||||
6056 6079
|
||||
5620 5834
|
||||
6098 6131
|
||||
5116 5176
|
||||
5889 5921
|
||||
3352 3416
|
||||
6135 6203
|
||||
482 485
|
||||
5783 5819
|
||||
5477 5574
|
||||
8622 8628 8653 8659
|
||||
529 558 2615
|
||||
8783 8799
|
||||
8794 8797 8809 8810
|
||||
8603 8605
|
||||
5205 5221 5227 5389
|
||||
5468 5541
|
||||
5248 5251
|
||||
3299 3408
|
||||
5883 5924
|
||||
541 555 664
|
||||
5703 5915
|
||||
8664 8823
|
||||
3161 3166
|
||||
5225 5238 5401 5411
|
||||
8751 8813
|
||||
5041 5055
|
||||
5246 5373
|
||||
6132 6142
|
||||
5903 5979
|
||||
3210 3216
|
||||
5672 5799
|
||||
5199 5424
|
||||
1396 1718
|
||||
2800 2801
|
||||
104 107 527
|
||||
5223 5236 5399 5409
|
||||
5690 5732
|
||||
359 413 2613
|
||||
596 601
|
||||
5025 5049
|
||||
6647 6667
|
||||
5685 5727
|
||||
5747 5757
|
||||
5361 5419
|
||||
5680 5802
|
||||
355 402
|
||||
5027 5031
|
||||
5712 5869
|
||||
6237 6238
|
||||
5220 5234 5397
|
||||
167 186
|
||||
5794 5973
|
||||
8675 8680
|
||||
6620 6651
|
||||
133 195
|
||||
5240 5333
|
||||
8043 8049
|
||||
5865 5934
|
||||
5339 5367
|
||||
3196 3419
|
||||
3250 3282
|
||||
5906 5948
|
||||
906 916
|
||||
505 554 815
|
||||
5080 5090
|
||||
4903 4953
|
||||
3235 3267
|
||||
5753 5828
|
||||
6376 6381
|
||||
536 545
|
||||
403 408
|
||||
6007 6008
|
||||
184 200
|
||||
8091 8093
|
||||
4916 4944
|
||||
5674 5767
|
||||
5207 5229 5391 5403
|
||||
6091 6125
|
||||
3287 3423
|
||||
276 350
|
||||
2448 2596
|
||||
3265 3277
|
||||
5616 5751
|
||||
5777 5824
|
||||
5208 5230 5392 5404
|
||||
1995 2006
|
||||
526 543
|
||||
3209 3213
|
||||
5310 5838
|
||||
5931 5946
|
||||
72 79 657
|
||||
171 621
|
||||
76 524
|
||||
480 481
|
||||
3241 3251
|
||||
6372 6378
|
||||
354 400
|
||||
419 434
|
||||
5330 5355
|
||||
5710 5958
|
||||
4941 4947
|
||||
3171 3186
|
||||
3180 3194
|
||||
8796 8807
|
||||
6119 6152
|
||||
926 940
|
||||
3249 3281
|
||||
5443 5458
|
||||
938 945
|
||||
3181 3195
|
||||
8601 8604
|
||||
5695 5970
|
||||
6245 6252
|
||||
6122 6181
|
||||
3236 3268
|
||||
5028 5032
|
||||
3272 3285
|
||||
3234 3262
|
||||
328 389
|
||||
162 203
|
||||
5785 5821
|
||||
5722 5876
|
||||
8798 8806
|
||||
3172 3187
|
||||
8781 8800
|
||||
8618 8624 8649 8655
|
||||
5413 5428
|
||||
5222 5235 5398 5408
|
||||
6156 6207
|
||||
2576 2612
|
||||
125 193
|
||||
96 106
|
||||
8621 8627 8652 8658
|
||||
5691 5733
|
||||
5083 5091
|
||||
343 396
|
||||
3228 3247
|
||||
399 597
|
||||
6138 6204
|
||||
7189 7191
|
||||
5725 5848
|
||||
6772 6977
|
||||
5249 5252
|
||||
4917 4945
|
||||
3208 3221
|
||||
3296 3406
|
||||
130 192
|
||||
113 124
|
||||
3207 3223
|
||||
5748 5763
|
||||
8 29
|
||||
3349 3414
|
||||
311 376
|
||||
3271 3286
|
||||
3231 3273
|
||||
3227 3246
|
||||
7063 7107
|
||||
4942 4948
|
||||
6133 6143
|
||||
3245 3284
|
||||
345 406
|
||||
157 160 358
|
||||
2503 2608
|
||||
381 410
|
||||
323 346
|
||||
70 74 390
|
||||
5890 5922
|
||||
5686 5728
|
||||
1813 1831
|
||||
2504 2566
|
||||
150 154
|
||||
5884 5925
|
||||
3248 3261
|
||||
3205 3220
|
||||
1160 1162
|
||||
3183 3193
|
||||
6095 6128
|
||||
275 314
|
||||
3178 3185
|
||||
3331 3335
|
||||
1155 1161
|
||||
244 265
|
||||
3258 3279
|
||||
3238 3254
|
||||
181 205
|
||||
132 191
|
||||
374 393
|
||||
5224 5237 5400 5410
|
||||
140 189
|
||||
3204 3219
|
||||
5600 5642
|
||||
3317 3320
|
||||
139 188
|
||||
291 337
|
||||
948 3041
|
||||
312 377
|
||||
917 1201
|
||||
1316 3048
|
||||
69 73
|
||||
1781 1816
|
||||
3229 3233
|
||||
1996 2022
|
||||
1179 1425
|
||||
3199 3422
|
||||
927 941
|
||||
5209 5231 5393 5405
|
||||
344 405
|
||||
3290 3426
|
||||
5778 5825
|
||||
128 190
|
||||
5716 5870
|
||||
127 202
|
||||
182 206
|
||||
3001 3024
|
||||
1604 3058
|
||||
947 3037
|
||||
385 411
|
||||
156 353
|
||||
3197 3420
|
||||
3230 3283
|
||||
3278 3280
|
||||
341 372
|
||||
340 404
|
||||
243 253
|
||||
436 608
|
||||
1993 2024
|
||||
573 593
|
||||
3288 3424
|
||||
939 946
|
||||
2404 2929
|
||||
5786 5822
|
||||
1069 3044
|
||||
1486 3043
|
||||
218 232
|
||||
3237 3239
|
||||
3328 3339
|
||||
3332 3341
|
||||
1063 3059
|
||||
209 438
|
||||
335 409
|
||||
112 123
|
||||
290 336
|
||||
384 412
|
||||
309 366
|
||||
6248 6253
|
||||
583 595
|
||||
1022 3036
|
||||
1123 1394
|
||||
668 690
|
||||
301 386
|
||||
3167 3169 3188 3190
|
||||
1126 1163
|
||||
1991 2021
|
||||
46 67
|
||||
1990 2020
|
||||
590 599
|
||||
7 28
|
||||
2407 2656
|
||||
3329 3340
|
||||
2802 2808
|
||||
242 270
|
||||
293 308
|
||||
168 187
|
||||
185 201
|
||||
239 272
|
||||
733 739
|
||||
1997 2636
|
||||
584 589
|
||||
2138 2624
|
||||
3168 3170 3189 3191
|
||||
316 349
|
||||
520 538
|
||||
361 395
|
||||
2197 2803
|
||||
318 378
|
||||
64 77
|
||||
165 183
|
||||
738 740
|
||||
56 71
|
||||
234 269
|
||||
5606 5645
|
||||
1114 1143
|
||||
138 166
|
||||
338 365
|
||||
208 325
|
||||
967 1059
|
||||
654 662
|
||||
518 530
|
||||
313 317
|
||||
233 268
|
||||
294 407
|
||||
3264 3276
|
||||
57 63
|
||||
305 364
|
||||
471 483
|
||||
3266 3275
|
||||
3240 3253
|
||||
394 397
|
||||
519 550
|
||||
207 430
|
||||
429 433
|
||||
217 231
|
||||
3242 3252
|
||||
508 539
|
||||
141 142
|
||||
306 356
|
||||
303 401
|
||||
199 204
|
||||
93 102
|
||||
507 517
|
||||
3232 3259
|
||||
488 511
|
||||
513 546
|
||||
292 307
|
||||
23 27
|
||||
11 24
|
||||
129 136 194 197
|
||||
3374 3375
|
||||
512 514
|
||||
1662 3034
|
||||
3348 3351 3411
|
||||
3224 3226
|
||||
135 137 196 198
|
||||
322 348
|
||||
324 347
|
||||
3292 3301 3405 3409
|
||||
373 392
|
||||
3294 3298 3347 3403
|
||||
3346 3354 3413 3417
|
||||
3355 3415
|
||||
375 391
|
||||
3302 3407
|
||||
3368 3394
|
||||
3293 3295 3402
|
||||
3345 3356 3412 3418
|
||||
3291 3303 3404 3410
|
||||
304 362
|
||||
3393 3399
|
||||
274 281
|
||||
623 629
|
||||
3363 3365 3395 3396
|
||||
3388 3390 3400 3401
|
||||
3147 3149
|
||||
3145 3148
|
4435
mutant_knot_groups/dat14
Normal file
4435
mutant_knot_groups/dat14
Normal file
File diff suppressed because it is too large
Load Diff
29049
mutant_knot_groups/dat15
Normal file
29049
mutant_knot_groups/dat15
Normal file
File diff suppressed because it is too large
Load Diff
BIN
nonalternating
Normal file
BIN
nonalternating
Normal file
Binary file not shown.
56
planar_diagram.cpp
Normal file
56
planar_diagram.cpp
Normal file
@ -0,0 +1,56 @@
|
||||
|
||||
#include <knotkit.h>
|
||||
|
||||
planar_diagram::planar_diagram (const std::string &name_, unsigned n_crossings, const int crossings_ar[][4])
|
||||
: name(name_),
|
||||
crossings(n_crossings)
|
||||
{
|
||||
for (unsigned i = 1; i <= n_crossings; i ++)
|
||||
{
|
||||
for (unsigned j = 1; j <= 4; j ++)
|
||||
crossings[i].append (crossings_ar[i - 1][j - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
planar_diagram::planar_diagram (const knot_diagram &kd)
|
||||
: name(kd.name),
|
||||
crossings(kd.planar_diagram_crossings ())
|
||||
{
|
||||
}
|
||||
|
||||
void
|
||||
planar_diagram::display_bohua () const
|
||||
{
|
||||
printf ("%s\t[", name.c_str ());
|
||||
for (unsigned i = 1; i <= crossings.size (); i ++)
|
||||
{
|
||||
if (i > 1)
|
||||
printf (",");
|
||||
printf ("[%d,%d,%d,%d]",
|
||||
crossings[i][1],
|
||||
crossings[i][2],
|
||||
crossings[i][3],
|
||||
crossings[i][4]);
|
||||
}
|
||||
printf ("]\n");
|
||||
|
||||
}
|
||||
|
||||
void
|
||||
planar_diagram::display_self () const
|
||||
{
|
||||
printf ("planar_diagram %s ", name.c_str ());
|
||||
for (unsigned i = 1; i <= crossings.size (); i ++)
|
||||
{
|
||||
int i1 = crossings[i][1],
|
||||
i2 = crossings[i][2],
|
||||
i3 = crossings[i][3],
|
||||
i4 = crossings[i][4];
|
||||
|
||||
if (i1 >= 10 || i2 >= 10 || i3 >= 10 || i4 >= 10)
|
||||
printf ("X_%d,%d,%d,%d", i1, i2, i3, i4);
|
||||
else
|
||||
printf ("X_%d%d%d%d", i1, i2, i3, i4);
|
||||
}
|
||||
printf ("\n");
|
||||
}
|
28
planar_diagram.h
Normal file
28
planar_diagram.h
Normal file
@ -0,0 +1,28 @@
|
||||
|
||||
/* Planar diagram of a knot. For details, see:
|
||||
http://katlas.org/wiki/Planar_Diagrams */
|
||||
|
||||
class planar_diagram
|
||||
{
|
||||
public:
|
||||
std::string name;
|
||||
basedvector<basedvector<int, 1>, 1> crossings;
|
||||
|
||||
public:
|
||||
planar_diagram () { }
|
||||
planar_diagram (const std::string &name, unsigned n_crossings, const int crossings_ar[][4]);
|
||||
planar_diagram (const std::string &name_, const basedvector<basedvector<int, 1>, 1> &crossings_)
|
||||
: name(name_), crossings(crossings_)
|
||||
{ }
|
||||
planar_diagram (const knot_diagram &kd);
|
||||
planar_diagram (const planar_diagram &pd)
|
||||
: name(pd.name),
|
||||
crossings(pd.crossings)
|
||||
{ }
|
||||
~planar_diagram () { }
|
||||
|
||||
void display_bohua () const;
|
||||
|
||||
void show_self () const { printf ("planar_diagram %s", name.c_str ()); }
|
||||
void display_self () const;
|
||||
};
|
165
rd_parser/location.hh
Normal file
165
rd_parser/location.hh
Normal file
@ -0,0 +1,165 @@
|
||||
/* A Bison parser, made by GNU Bison 2.4.3. */
|
||||
|
||||
/* Locations for Bison parsers in C++
|
||||
|
||||
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010 Free Software
|
||||
Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* As a special exception, you may create a larger work that contains
|
||||
part or all of the Bison parser skeleton and distribute that work
|
||||
under terms of your choice, so long as that work isn't itself a
|
||||
parser generator using the skeleton or a modified version thereof
|
||||
as a parser skeleton. Alternatively, if you modify or redistribute
|
||||
the parser skeleton itself, you may (at your option) remove this
|
||||
special exception, which will cause the skeleton and the resulting
|
||||
Bison output files to be licensed under the GNU General Public
|
||||
License without this special exception.
|
||||
|
||||
This special exception was added by the Free Software Foundation in
|
||||
version 2.2 of Bison. */
|
||||
|
||||
/**
|
||||
** \file location.hh
|
||||
** Define the yy::location class.
|
||||
*/
|
||||
|
||||
#ifndef BISON_LOCATION_HH
|
||||
# define BISON_LOCATION_HH
|
||||
|
||||
# include <iostream>
|
||||
# include <string>
|
||||
# include "position.hh"
|
||||
|
||||
|
||||
namespace yy {
|
||||
|
||||
/* Line 163 of location.cc */
|
||||
#line 51 "rd_parser/location.hh"
|
||||
|
||||
/// Abstract a location.
|
||||
class location
|
||||
{
|
||||
public:
|
||||
|
||||
/// Construct a location.
|
||||
location ()
|
||||
: begin (), end ()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/// Initialization.
|
||||
inline void initialize (std::string* fn)
|
||||
{
|
||||
begin.initialize (fn);
|
||||
end = begin;
|
||||
}
|
||||
|
||||
/** \name Line and Column related manipulators
|
||||
** \{ */
|
||||
public:
|
||||
/// Reset initial location to final location.
|
||||
inline void step ()
|
||||
{
|
||||
begin = end;
|
||||
}
|
||||
|
||||
/// Extend the current location to the COUNT next columns.
|
||||
inline void columns (unsigned int count = 1)
|
||||
{
|
||||
end += count;
|
||||
}
|
||||
|
||||
/// Extend the current location to the COUNT next lines.
|
||||
inline void lines (unsigned int count = 1)
|
||||
{
|
||||
end.lines (count);
|
||||
}
|
||||
/** \} */
|
||||
|
||||
|
||||
public:
|
||||
/// Beginning of the located region.
|
||||
position begin;
|
||||
/// End of the located region.
|
||||
position end;
|
||||
};
|
||||
|
||||
/// Join two location objects to create a location.
|
||||
inline const location operator+ (const location& begin, const location& end)
|
||||
{
|
||||
location res = begin;
|
||||
res.end = end.end;
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Add two location objects.
|
||||
inline const location operator+ (const location& begin, unsigned int width)
|
||||
{
|
||||
location res = begin;
|
||||
res.columns (width);
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Add and assign a location.
|
||||
inline location& operator+= (location& res, unsigned int width)
|
||||
{
|
||||
res.columns (width);
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Compare two location objects.
|
||||
inline bool
|
||||
operator== (const location& loc1, const location& loc2)
|
||||
{
|
||||
return loc1.begin == loc2.begin && loc1.end == loc2.end;
|
||||
}
|
||||
|
||||
/// Compare two location objects.
|
||||
inline bool
|
||||
operator!= (const location& loc1, const location& loc2)
|
||||
{
|
||||
return !(loc1 == loc2);
|
||||
}
|
||||
|
||||
/** \brief Intercept output stream redirection.
|
||||
** \param ostr the destination output stream
|
||||
** \param loc a reference to the location to redirect
|
||||
**
|
||||
** Avoid duplicate information.
|
||||
*/
|
||||
inline std::ostream& operator<< (std::ostream& ostr, const location& loc)
|
||||
{
|
||||
position last = loc.end - 1;
|
||||
ostr << loc.begin;
|
||||
if (last.filename
|
||||
&& (!loc.begin.filename
|
||||
|| *loc.begin.filename != *last.filename))
|
||||
ostr << '-' << last;
|
||||
else if (loc.begin.line != last.line)
|
||||
ostr << '-' << last.line << '.' << last.column;
|
||||
else if (loc.begin.column != last.column)
|
||||
ostr << '-' << last.column;
|
||||
return ostr;
|
||||
}
|
||||
|
||||
|
||||
} // yy
|
||||
|
||||
/* Line 272 of location.cc */
|
||||
#line 164 "rd_parser/location.hh"
|
||||
|
||||
#endif // not BISON_LOCATION_HH
|
162
rd_parser/position.hh
Normal file
162
rd_parser/position.hh
Normal file
@ -0,0 +1,162 @@
|
||||
/* A Bison parser, made by GNU Bison 2.4.3. */
|
||||
|
||||
/* Positions for Bison parsers in C++
|
||||
|
||||
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010 Free Software
|
||||
Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* As a special exception, you may create a larger work that contains
|
||||
part or all of the Bison parser skeleton and distribute that work
|
||||
under terms of your choice, so long as that work isn't itself a
|
||||
parser generator using the skeleton or a modified version thereof
|
||||
as a parser skeleton. Alternatively, if you modify or redistribute
|
||||
the parser skeleton itself, you may (at your option) remove this
|
||||
special exception, which will cause the skeleton and the resulting
|
||||
Bison output files to be licensed under the GNU General Public
|
||||
License without this special exception.
|
||||
|
||||
This special exception was added by the Free Software Foundation in
|
||||
version 2.2 of Bison. */
|
||||
|
||||
/**
|
||||
** \file position.hh
|
||||
** Define the yy::position class.
|
||||
*/
|
||||
|
||||
#ifndef BISON_POSITION_HH
|
||||
# define BISON_POSITION_HH
|
||||
|
||||
# include <iostream>
|
||||
# include <string>
|
||||
# include <algorithm>
|
||||
|
||||
|
||||
namespace yy {
|
||||
|
||||
/* Line 38 of location.cc */
|
||||
#line 51 "rd_parser/position.hh"
|
||||
/// Abstract a position.
|
||||
class position
|
||||
{
|
||||
public:
|
||||
|
||||
/// Construct a position.
|
||||
position ()
|
||||
: filename (0), line (1), column (1)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/// Initialization.
|
||||
inline void initialize (std::string* fn)
|
||||
{
|
||||
filename = fn;
|
||||
line = 1;
|
||||
column = 1;
|
||||
}
|
||||
|
||||
/** \name Line and Column related manipulators
|
||||
** \{ */
|
||||
public:
|
||||
/// (line related) Advance to the COUNT next lines.
|
||||
inline void lines (int count = 1)
|
||||
{
|
||||
column = 1;
|
||||
line += count;
|
||||
}
|
||||
|
||||
/// (column related) Advance to the COUNT next columns.
|
||||
inline void columns (int count = 1)
|
||||
{
|
||||
column = std::max (1u, column + count);
|
||||
}
|
||||
/** \} */
|
||||
|
||||
public:
|
||||
/// File name to which this position refers.
|
||||
std::string* filename;
|
||||
/// Current line number.
|
||||
unsigned int line;
|
||||
/// Current column number.
|
||||
unsigned int column;
|
||||
};
|
||||
|
||||
/// Add and assign a position.
|
||||
inline const position&
|
||||
operator+= (position& res, const int width)
|
||||
{
|
||||
res.columns (width);
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Add two position objects.
|
||||
inline const position
|
||||
operator+ (const position& begin, const int width)
|
||||
{
|
||||
position res = begin;
|
||||
return res += width;
|
||||
}
|
||||
|
||||
/// Add and assign a position.
|
||||
inline const position&
|
||||
operator-= (position& res, const int width)
|
||||
{
|
||||
return res += -width;
|
||||
}
|
||||
|
||||
/// Add two position objects.
|
||||
inline const position
|
||||
operator- (const position& begin, const int width)
|
||||
{
|
||||
return begin + -width;
|
||||
}
|
||||
|
||||
/// Compare two position objects.
|
||||
inline bool
|
||||
operator== (const position& pos1, const position& pos2)
|
||||
{
|
||||
return (pos1.line == pos2.line
|
||||
&& pos1.column == pos2.column
|
||||
&& (pos1.filename == pos2.filename
|
||||
|| (pos1.filename && pos2.filename
|
||||
&& *pos1.filename == *pos2.filename)));
|
||||
}
|
||||
|
||||
/// Compare two position objects.
|
||||
inline bool
|
||||
operator!= (const position& pos1, const position& pos2)
|
||||
{
|
||||
return !(pos1 == pos2);
|
||||
}
|
||||
|
||||
/** \brief Intercept output stream redirection.
|
||||
** \param ostr the destination output stream
|
||||
** \param pos a reference to the position to redirect
|
||||
*/
|
||||
inline std::ostream&
|
||||
operator<< (std::ostream& ostr, const position& pos)
|
||||
{
|
||||
if (pos.filename)
|
||||
ostr << *pos.filename << ':';
|
||||
return ostr << pos.line << '.' << pos.column;
|
||||
}
|
||||
|
||||
|
||||
} // yy
|
||||
|
||||
/* Line 145 of location.cc */
|
||||
#line 162 "rd_parser/position.hh"
|
||||
#endif // not BISON_POSITION_HH
|
1030
rd_parser/rd_parser.cc
Normal file
1030
rd_parser/rd_parser.cc
Normal file
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user