Ready to compute splitting bound data for paper.
This commit is contained in:
parent
a09ca308d9
commit
e19a274c8e
4
Makefile
4
Makefile
@ -8,8 +8,8 @@ CXX = clang++ -fno-color-diagnostics --stdlib=libc++ --std=c++11 -I/u/cseed/llvm
|
|||||||
|
|
||||||
INCLUDES = -I/opt/local/include -I.
|
INCLUDES = -I/opt/local/include -I.
|
||||||
|
|
||||||
OPTFLAGS = -g
|
# OPTFLAGS = -g
|
||||||
# OPTFLAGS = -O2 -g
|
OPTFLAGS = -O2 -g
|
||||||
# OPTFLAGS = -O2 -DNDEBUG
|
# OPTFLAGS = -O2 -DNDEBUG
|
||||||
|
|
||||||
LDFLAGS = -L/opt/local/lib -L/u/cseed/llvm-3.1/lib
|
LDFLAGS = -L/opt/local/lib -L/u/cseed/llvm-3.1/lib
|
||||||
|
@ -22,6 +22,7 @@ class Z2
|
|||||||
Z2 &operator = (int x) { v = (bool)(x & 1); return *this; }
|
Z2 &operator = (int x) { v = (bool)(x & 1); return *this; }
|
||||||
|
|
||||||
bool operator == (const Z2 &x) const { return v == x.v; }
|
bool operator == (const Z2 &x) const { return v == x.v; }
|
||||||
|
bool operator != (const Z2 &x) const { return v != x.v; }
|
||||||
|
|
||||||
bool operator == (int x) const { return v == (bool)(x & 1); }
|
bool operator == (int x) const { return v == (bool)(x & 1); }
|
||||||
bool operator != (int x) const { return !operator == (x); }
|
bool operator != (int x) const { return !operator == (x); }
|
||||||
|
@ -67,6 +67,11 @@ template<class T> class fraction_field
|
|||||||
return fraction_field (new_num, denom*xe);
|
return fraction_field (new_num, denom*xe);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fraction_field operator - () const
|
||||||
|
{
|
||||||
|
return fraction_field (-num, denom);
|
||||||
|
}
|
||||||
|
|
||||||
fraction_field operator * (const fraction_field &x) const
|
fraction_field operator * (const fraction_field &x) const
|
||||||
{
|
{
|
||||||
T d1 = num.gcd (x.denom);
|
T d1 = num.gcd (x.denom);
|
||||||
@ -211,7 +216,6 @@ fraction_field<T>::reduce ()
|
|||||||
}
|
}
|
||||||
|
|
||||||
T d = num.gcd (denom);
|
T d = num.gcd (denom);
|
||||||
|
|
||||||
num = num.divide_exact (d);
|
num = num.divide_exact (d);
|
||||||
denom = denom.divide_exact (d);
|
denom = denom.divide_exact (d);
|
||||||
}
|
}
|
||||||
@ -221,7 +225,6 @@ fraction_field<T>::check ()
|
|||||||
{
|
{
|
||||||
if (num == 0)
|
if (num == 0)
|
||||||
return;
|
return;
|
||||||
// check denom == 1
|
|
||||||
|
|
||||||
// assert (num.gcd (denom) == 1);
|
// assert (num.gcd (denom) == 1);
|
||||||
}
|
}
|
||||||
|
@ -5,7 +5,7 @@
|
|||||||
template<unsigned n>
|
template<unsigned n>
|
||||||
class multivariate_monomial
|
class multivariate_monomial
|
||||||
{
|
{
|
||||||
private:
|
public:
|
||||||
unsigned v[n];
|
unsigned v[n];
|
||||||
|
|
||||||
public:
|
public:
|
||||||
@ -265,6 +265,12 @@ public:
|
|||||||
|
|
||||||
monomial common_monomial () const;
|
monomial common_monomial () const;
|
||||||
|
|
||||||
|
multivariate_polynomial gcd (const multivariate_polynomial &b) const
|
||||||
|
{
|
||||||
|
// ???
|
||||||
|
return multivariate_polynomial (1);
|
||||||
|
}
|
||||||
|
|
||||||
pair<multivariate_polynomial, multivariate_polynomial>
|
pair<multivariate_polynomial, multivariate_polynomial>
|
||||||
uncommon_factors (multivariate_polynomial b, basedvector<multivariate_polynomial, 1> ds);
|
uncommon_factors (multivariate_polynomial b, basedvector<multivariate_polynomial, 1> ds);
|
||||||
maybe<multivariate_polynomial>
|
maybe<multivariate_polynomial>
|
||||||
|
288
main.cpp
288
main.cpp
@ -1114,11 +1114,11 @@ test_forgetful_signs ()
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<class R> sseq
|
template<class R> sseq
|
||||||
compute_forgetfulss (knot_diagram &kd)
|
compute_forgetfulss (knot_diagram &kd,
|
||||||
|
basedvector<R, 1> comp_weight)
|
||||||
{
|
{
|
||||||
unsigned n = kd.num_components ();
|
unsigned n = kd.num_components ();
|
||||||
|
|
||||||
|
|
||||||
unionfind<1> u (kd.num_edges ());
|
unionfind<1> u (kd.num_edges ());
|
||||||
for (unsigned i = 1; i <= kd.n_crossings; i ++)
|
for (unsigned i = 1; i <= kd.n_crossings; i ++)
|
||||||
{
|
{
|
||||||
@ -1140,9 +1140,7 @@ compute_forgetfulss (knot_diagram &kd)
|
|||||||
}
|
}
|
||||||
assert (t == n);
|
assert (t == n);
|
||||||
|
|
||||||
basedvector<R, 1> comp_weight (n);
|
assert (comp_weight.size () == n);
|
||||||
for (unsigned i = 1; i <= n; i ++)
|
|
||||||
comp_weight[i] = R ((int)i);
|
|
||||||
|
|
||||||
map<unsigned, R> crossing_over_sign;
|
map<unsigned, R> crossing_over_sign;
|
||||||
|
|
||||||
@ -1275,18 +1273,15 @@ compute_forgetfulss (knot_diagram &kd)
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#if 0
|
||||||
printf ("E_%d: ", (-dq) / 2);
|
printf ("E_%d: ", (-dq) / 2);
|
||||||
display (C->free_poincare_polynomial ());
|
display (C->free_poincare_polynomial ());
|
||||||
|
#endif
|
||||||
|
|
||||||
if (d == 0)
|
if (d == 0)
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
#if 0
|
|
||||||
sseq_builder b (c.khC, d);
|
|
||||||
return b.build_sseq ();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
return sseq (bounds, pages);
|
return sseq (bounds, pages);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2209,9 +2204,281 @@ compare_gss_splitting ()
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<class R> unsigned
|
||||||
|
splitting_bound (knot_diagram &kd,
|
||||||
|
basedvector<R, 1> comp_weight)
|
||||||
|
{
|
||||||
|
sseq ss = compute_forgetfulss<R> (kd, comp_weight);
|
||||||
|
|
||||||
|
assert (ss.pages.size () >= 1);
|
||||||
|
return ss.pages.size () - 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
basedvector<basedvector<unsigned, 1>, 1>
|
||||||
|
permutations (basedvector<unsigned, 1> v)
|
||||||
|
{
|
||||||
|
unsigned n = v.size ();
|
||||||
|
basedvector<basedvector<unsigned, 1>, 1> ps;
|
||||||
|
|
||||||
|
if (n == 1)
|
||||||
|
{
|
||||||
|
ps.append (v);
|
||||||
|
return ps;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (unsigned i = 1; i <= n; i ++)
|
||||||
|
{
|
||||||
|
unsigned x = v[i];
|
||||||
|
|
||||||
|
basedvector<unsigned, 1> v2 (n - 1);
|
||||||
|
for (unsigned j = 1; j < i; j ++)
|
||||||
|
v2[j] = v[j];
|
||||||
|
for (unsigned j = i + 1; j <= n; j ++)
|
||||||
|
v2[j - 1] = v[j];
|
||||||
|
|
||||||
|
basedvector<basedvector<unsigned, 1>, 1> ps2 = permutations (v2);
|
||||||
|
for (unsigned j = 1; j <= ps2.size (); j ++)
|
||||||
|
{
|
||||||
|
basedvector<unsigned, 1> p2 = ps2[j];
|
||||||
|
assert (p2.size () == n - 1);
|
||||||
|
|
||||||
|
basedvector<unsigned, 1> v3 (n);
|
||||||
|
v3[1] = x;
|
||||||
|
for (unsigned k = 1; k <= n - 1; k ++)
|
||||||
|
v3[k + 1] = p2[k];
|
||||||
|
ps.append (v3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return ps;
|
||||||
|
}
|
||||||
|
|
||||||
|
basedvector<basedvector<unsigned, 1>, 1>
|
||||||
|
permutations (unsigned n)
|
||||||
|
{
|
||||||
|
basedvector<unsigned, 1> v (n);
|
||||||
|
for (unsigned i = 1; i <= n; i ++)
|
||||||
|
v[i] = i;
|
||||||
|
return permutations (v);
|
||||||
|
}
|
||||||
|
|
||||||
|
void
|
||||||
|
compute_splitting_bounds ()
|
||||||
|
{
|
||||||
|
typedef fraction_field<polynomial<Z2> > Z2x;
|
||||||
|
|
||||||
|
for (unsigned i = 1; i <= 12; i ++)
|
||||||
|
for (unsigned j = 1; j <= mt_links (i); j ++)
|
||||||
|
{
|
||||||
|
knot_diagram kd (mt_link (i, j));
|
||||||
|
unsigned m = kd.num_components ();
|
||||||
|
if (m == 1)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
show (kd); newline ();
|
||||||
|
printf (" m = %d\n", m);
|
||||||
|
|
||||||
|
unionfind<1> u (kd.num_edges ());
|
||||||
|
|
||||||
|
for (unsigned i = 1; i <= kd.n_crossings; i ++)
|
||||||
|
{
|
||||||
|
u.join (kd.ept_edge (kd.crossings[i][1]),
|
||||||
|
kd.ept_edge (kd.crossings[i][3]));
|
||||||
|
u.join (kd.ept_edge (kd.crossings[i][2]),
|
||||||
|
kd.ept_edge (kd.crossings[i][4]));
|
||||||
|
}
|
||||||
|
assert (u.num_sets () == m);
|
||||||
|
|
||||||
|
map<unsigned, unsigned> root_comp;
|
||||||
|
unsigned t = 0;
|
||||||
|
for (unsigned i = 1; i <= kd.num_edges (); i ++)
|
||||||
|
{
|
||||||
|
if (u.find (i) == i)
|
||||||
|
{
|
||||||
|
++ t;
|
||||||
|
root_comp.push (i, t);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
assert (t == m);
|
||||||
|
|
||||||
|
basedvector<Q, 1> comp_weightQ (m);
|
||||||
|
for (unsigned i = 1; i <= m; i ++)
|
||||||
|
comp_weightQ[i] = Q (i);
|
||||||
|
unsigned bQ = splitting_bound<Q> (kd, comp_weightQ);
|
||||||
|
|
||||||
|
basedvector<Z2x, 1> comp_weightZ2x (m);
|
||||||
|
for (unsigned i = 1; i <= m; i ++)
|
||||||
|
comp_weightZ2x[i] = Z2x (polynomial<Z2> (Z2 (1), i));
|
||||||
|
unsigned bZ2x = splitting_bound<Z2x> (kd, comp_weightZ2x);
|
||||||
|
|
||||||
|
// lower bound
|
||||||
|
unsigned b = std::max (bQ, bZ2x);
|
||||||
|
|
||||||
|
printf (" bQ = %d\n", bQ);
|
||||||
|
printf (" bZ2x = %d\n", bZ2x);
|
||||||
|
printf (" b = %d\n", b);
|
||||||
|
|
||||||
|
unsigned total_lk = kd.total_linking_number ();
|
||||||
|
unsigned b_lk_weak = total_lk == 0 ? 2 : total_lk;
|
||||||
|
|
||||||
|
printf (" b_lk_weak = %d\n", b_lk_weak);
|
||||||
|
|
||||||
|
basedvector<basedvector<unsigned, 1>, 1> ps = permutations (m);
|
||||||
|
#if 0
|
||||||
|
printf ("ps, |ps| = %d, m = %d:\n", ps.size (), m);
|
||||||
|
for (unsigned i = 1; i <= ps.size (); i ++)
|
||||||
|
{
|
||||||
|
basedvector<unsigned, 1> p = ps[i];
|
||||||
|
assert (p.size () == m);
|
||||||
|
|
||||||
|
printf (" % 3d: ", i);
|
||||||
|
for (unsigned j = 1; j <= m; j ++)
|
||||||
|
printf (" %d", p[j]);
|
||||||
|
newline ();
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
unsigned r = kd.n_crossings;
|
||||||
|
for (unsigned i = 1; i <= ps.size (); i ++)
|
||||||
|
{
|
||||||
|
basedvector<unsigned, 1> p = ps[i];
|
||||||
|
|
||||||
|
unsigned ri = 0;
|
||||||
|
for (unsigned j = 1; j <= kd.n_crossings; j ++)
|
||||||
|
{
|
||||||
|
unsigned upper_e = kd.ept_edge (kd.crossings[j][2]),
|
||||||
|
lower_e = kd.ept_edge (kd.crossings[j][1]);
|
||||||
|
|
||||||
|
unsigned upper_c = root_comp(u.find (upper_e)),
|
||||||
|
lower_c = root_comp(u.find (lower_e));
|
||||||
|
|
||||||
|
if (upper_c != lower_c
|
||||||
|
&& p[upper_c] < p[lower_c])
|
||||||
|
ri ++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ri < r)
|
||||||
|
r = ri;
|
||||||
|
}
|
||||||
|
printf (" r = %d\n", r);
|
||||||
|
|
||||||
|
assert (b <= r);
|
||||||
|
|
||||||
|
// non-trivial link, sp at least 1.
|
||||||
|
assert (b_lk_weak >= 1);
|
||||||
|
if (b <= 1
|
||||||
|
&& b_lk_weak == 1)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
if (b > b_lk_weak)
|
||||||
|
{
|
||||||
|
if (b == r)
|
||||||
|
printf (" > sp = %d (b)\n", b);
|
||||||
|
else
|
||||||
|
printf (" > %d <= sp <= %d (b)\n", b, r);
|
||||||
|
}
|
||||||
|
else if (b == b_lk_weak)
|
||||||
|
{
|
||||||
|
if (b == r)
|
||||||
|
printf (" > sp = %d (b + b_lk_weak)\n", b);
|
||||||
|
else
|
||||||
|
printf (" > %d <= sp <= %d (b + b_lk_weak)\n", b, r);
|
||||||
|
|
||||||
|
}
|
||||||
|
else if (b_lk_weak == r)
|
||||||
|
{
|
||||||
|
assert (b < b_lk_weak);
|
||||||
|
|
||||||
|
printf (" > sp = %d (b_lk_weak)\n", b_lk_weak);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void
|
||||||
|
compute_forgetful_tables ()
|
||||||
|
{
|
||||||
|
// typedef fraction_field<multivariate_polynomial<Z2, 10> > R;
|
||||||
|
typedef Z2 R;
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
for (unsigned i = 1; i <= 10; i ++)
|
||||||
|
for (unsigned j = 1; j <= mt_links (i); j ++)
|
||||||
|
{
|
||||||
|
knot_diagram kd (mt_link (i, j));
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
// knot_diagram kd (mt_link (12, 0, 2087));
|
||||||
|
// knot_diagram kd (mt_link (12, 0, 1705));
|
||||||
|
// knot_diagram kd (mt_link (14, 0, 66759));
|
||||||
|
// knot_diagram kd (mt_link (14, 0, 65798));
|
||||||
|
knot_diagram kd (mt_link (13, 0, 8862));
|
||||||
|
|
||||||
|
abort ();
|
||||||
|
// sseq ss = compute_forgetfulss<R> (kd);
|
||||||
|
sseq ss;
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
if (ss.pages.size () < 2)
|
||||||
|
continue;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (unsigned k = 1; k <= ss.pages.size (); k ++)
|
||||||
|
{
|
||||||
|
if (k == 1)
|
||||||
|
printf ("%s &", kd.name.c_str ());
|
||||||
|
else
|
||||||
|
printf (" &");
|
||||||
|
|
||||||
|
printf (" $E_%d$ & %d & $", k, ss.pages[k].total_rank ());
|
||||||
|
|
||||||
|
bool first = 1;
|
||||||
|
|
||||||
|
const sseq_bounds &b = ss.bounds;
|
||||||
|
|
||||||
|
for (int i = b.minh; i <= b.maxh; i ++)
|
||||||
|
for (int j = b.minq; j <= b.maxq; j ++)
|
||||||
|
{
|
||||||
|
unsigned r = ss.pages[k].rank[i - b.minh][j - b.minq];
|
||||||
|
|
||||||
|
if (r > 0)
|
||||||
|
{
|
||||||
|
|
||||||
|
if (first)
|
||||||
|
first = 0;
|
||||||
|
else
|
||||||
|
printf (" + ");
|
||||||
|
|
||||||
|
if (i == 0
|
||||||
|
&& j == 0)
|
||||||
|
printf ("%d", r);
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if (r != 1)
|
||||||
|
printf ("%d", r);
|
||||||
|
|
||||||
|
if (i != 0)
|
||||||
|
printf ("t^{%d}", i);
|
||||||
|
if (j != 0)
|
||||||
|
printf ("q^{%d}", j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
printf ("$ \\\\\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
int
|
int
|
||||||
main ()
|
main ()
|
||||||
{
|
{
|
||||||
|
compute_splitting_bounds ();
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
compute_forgetful_tables ();
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
#if 0
|
||||||
{
|
{
|
||||||
knot_diagram kd (mt_link (5, 1, 3));
|
knot_diagram kd (mt_link (5, 1, 3));
|
||||||
show (kd); newline ();
|
show (kd); newline ();
|
||||||
@ -2220,6 +2487,7 @@ main ()
|
|||||||
ss.texshow (stdout, "L5a3");
|
ss.texshow (stdout, "L5a3");
|
||||||
}
|
}
|
||||||
return 0;
|
return 0;
|
||||||
|
#endif
|
||||||
|
|
||||||
compute_lee_bound ();
|
compute_lee_bound ();
|
||||||
return 0;
|
return 0;
|
||||||
|
Loading…
Reference in New Issue
Block a user