417fe1ea4d
Added intersection and sum for free_submodule. Modified mpimain to dump cohomology, sq1 and sq2 as objects (instead of poincare series).
514 lines
11 KiB
C++
514 lines
11 KiB
C++
|
|
template<class R> class linear_combination_const_iter;
|
|
|
|
template<class R>
|
|
class linear_combination
|
|
{
|
|
private:
|
|
// friend class linear_combination_iter<R>;
|
|
friend class linear_combination_const_iter<R>;
|
|
|
|
friend class module<R>;
|
|
friend class free_submodule<R>;
|
|
friend class quotient_module<R>;
|
|
friend class mod_map<R>;
|
|
|
|
typedef module<R> Rmod;
|
|
|
|
public:
|
|
// typedef linear_combination_iter<R> iter;
|
|
typedef linear_combination_const_iter<R> const_iter;
|
|
|
|
private:
|
|
ptr<const Rmod> m;
|
|
map<unsigned, R> v;
|
|
|
|
public:
|
|
linear_combination () { }
|
|
explicit linear_combination (ptr<const Rmod> m_) : m(m_) { }
|
|
linear_combination (ptr<const Rmod> m_, int x)
|
|
: m(m_)
|
|
{
|
|
assert (x == 0);
|
|
}
|
|
|
|
linear_combination (const linear_combination &lc) : m(lc.m), v(lc.v) { }
|
|
linear_combination (copy, const linear_combination &lc)
|
|
: m(lc.m)
|
|
{
|
|
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
|
v.push (i.key (), R (COPY, i.val ()));
|
|
}
|
|
|
|
linear_combination (reader &r)
|
|
{
|
|
m = r.read_mod<R> ();
|
|
v = map<unsigned, R> (r);
|
|
}
|
|
|
|
~linear_combination () { }
|
|
|
|
linear_combination &operator = (const linear_combination &lc)
|
|
{
|
|
m = lc.m;
|
|
v = lc.v;
|
|
return *this;
|
|
}
|
|
|
|
bool operator == (const linear_combination &lc2) const
|
|
{
|
|
assert (m == lc2.m);
|
|
linear_combination lc3 (COPY, *this);
|
|
lc3 -= lc2;
|
|
return lc3 == 0;
|
|
}
|
|
bool operator != (const linear_combination &lc) const { return !operator == (lc); }
|
|
|
|
bool operator == (int x) const
|
|
{
|
|
assert (x == 0);
|
|
#ifndef NDEBUG
|
|
check ();
|
|
#endif
|
|
return v.is_empty ();
|
|
}
|
|
|
|
bool operator != (int x) const { return !operator == (x); }
|
|
|
|
bool homogeneous () const
|
|
{
|
|
if (v.is_empty ())
|
|
return 1;
|
|
|
|
pair<unsigned, R> p = v.head ();
|
|
grading hq = m->generator_grading (p.first);
|
|
for (typename map<unsigned, R>::const_iter i = v; i; i ++)
|
|
{
|
|
if (hq != m->generator_grading (i.key ()))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
pair<unsigned, R> head () const { return v.head (); }
|
|
grading hq () const
|
|
{
|
|
// assert (homogeneous ());
|
|
|
|
pair<unsigned, R> p = v.head ();
|
|
return m->generator_grading (p.first);
|
|
}
|
|
|
|
R annihilator () const;
|
|
|
|
void set_coeff (R c, unsigned i)
|
|
{
|
|
if (c == 0)
|
|
v -= i;
|
|
else
|
|
v[i] = c;
|
|
}
|
|
|
|
linear_combination operator * (R c) const
|
|
{
|
|
linear_combination r (COPY, *this);
|
|
r *= c;
|
|
return r;
|
|
}
|
|
|
|
linear_combination operator + (const linear_combination &lc) const
|
|
{
|
|
linear_combination r (COPY, *this);
|
|
r += lc;
|
|
return r;
|
|
}
|
|
|
|
linear_combination operator - (const linear_combination &lc) const
|
|
{
|
|
linear_combination r (COPY, *this);
|
|
r -= lc;
|
|
return r;
|
|
}
|
|
|
|
linear_combination &operator += (unsigned i) { return muladd (1, i); }
|
|
linear_combination &operator -= (unsigned i) { return mulsub (1, i); }
|
|
|
|
linear_combination &operator *= (R c);
|
|
linear_combination &operator /= (R c);
|
|
|
|
linear_combination &operator += (const linear_combination &lc);
|
|
linear_combination &operator -= (const linear_combination &lc);
|
|
|
|
linear_combination &muladd (R c, unsigned i);
|
|
linear_combination &muladd (R c, const linear_combination &lc);
|
|
|
|
linear_combination &mulsub (R c, unsigned i);
|
|
linear_combination &mulsub (R c, const linear_combination &lc);
|
|
|
|
void yank (unsigned i) { v.yank (i); }
|
|
void clear () { v.clear (); }
|
|
|
|
bool operator % (unsigned i) const { return v % i; }
|
|
R operator () (unsigned i) const { return v(i, R (0)); }
|
|
|
|
unsigned card () const { return v.card (); }
|
|
|
|
linear_combination<R> tensor (const linear_combination<R> &lc) const
|
|
{
|
|
linear_combination<R> r (m->tensor (lc.m));
|
|
for (linear_combination_const_iter<R> i = *this; i; i ++)
|
|
for (linear_combination_const_iter<R> j = lc; j; j ++)
|
|
{
|
|
r.muladd (i.val () * j.val (), m->tensor_generators (i.key (), lc.m, j.key ()));
|
|
}
|
|
return r;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void check () const
|
|
{
|
|
for (typename map<unsigned, R>::const_iter i = v; i; i ++)
|
|
assert (!m->is_zero (i.val (), i.key ()));
|
|
}
|
|
#endif
|
|
|
|
void write_self (writer &w) const
|
|
{
|
|
write (w, *m);
|
|
write (w, v);
|
|
}
|
|
|
|
void show_self () const;
|
|
void display_self () const { show_self (); newline (); }
|
|
};
|
|
|
|
template<class R> linear_combination<R>
|
|
operator * (R c, const linear_combination<R> &lc)
|
|
{
|
|
return lc * c;
|
|
}
|
|
|
|
template<class R>
|
|
class linear_combination_const_iter
|
|
{
|
|
typename map<unsigned, R>::const_iter i;
|
|
|
|
public:
|
|
linear_combination_const_iter (const linear_combination<R> &lc) : i(lc.v) { }
|
|
~linear_combination_const_iter () { }
|
|
|
|
operator bool () const { return i; }
|
|
linear_combination_const_iter &operator ++ () { i ++; return *this; }
|
|
void operator ++ (int) { i ++; }
|
|
unsigned key () const { return i.key (); }
|
|
R val () { return i.val (); }
|
|
};
|
|
|
|
template<class R> R
|
|
linear_combination<R>::annihilator () const
|
|
{
|
|
R r (1);
|
|
for (typename map<unsigned, R>::const_iter i = v; i; i ++)
|
|
r = r.lcm (m->annihilator (i.val (), i.key ()));
|
|
return r;
|
|
}
|
|
|
|
template<class R> linear_combination<R> &
|
|
linear_combination<R>::operator *= (R c)
|
|
{
|
|
if (c == 0)
|
|
v.clear ();
|
|
else if (c != 1)
|
|
{
|
|
for (typename map<unsigned, R>::iter i = v; i; i ++)
|
|
i.val () *= c;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class R> linear_combination<R> &
|
|
linear_combination<R>::operator += (const linear_combination &lc)
|
|
{
|
|
assert (m == lc.m);
|
|
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
|
{
|
|
unsigned k = i.key ();
|
|
R &c = v[k];
|
|
c += i.val ();
|
|
if (m->is_zero (c, k))
|
|
v -= k;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class R> linear_combination<R> &
|
|
linear_combination<R>::operator -= (const linear_combination &lc)
|
|
{
|
|
assert (m == lc.m);
|
|
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
|
{
|
|
unsigned k = i.key ();
|
|
R &c = v[k];
|
|
c -= i.val ();
|
|
if (m->is_zero (c, k))
|
|
v -= k;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class R> linear_combination<R> &
|
|
linear_combination<R>::muladd (R c, unsigned i)
|
|
{
|
|
R &ic = v[i];
|
|
ic += c;
|
|
if (m->is_zero (ic, i))
|
|
v -= i;
|
|
return *this;
|
|
}
|
|
|
|
template<class R> linear_combination<R> &
|
|
linear_combination<R>::muladd (R c, const linear_combination &lc)
|
|
{
|
|
assert (m == lc.m);
|
|
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
|
{
|
|
unsigned k = i.key ();
|
|
R &vc = v[k];
|
|
vc += (c * i.val ());
|
|
if (vc == 0)
|
|
v -= k;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class R> linear_combination<R> &
|
|
linear_combination<R>::mulsub (R c, unsigned i)
|
|
{
|
|
R &ic = v[i];
|
|
ic -= c;
|
|
if (m->is_zero (ic, i))
|
|
v -= i;
|
|
return *this;
|
|
}
|
|
|
|
template<class R> linear_combination<R> &
|
|
linear_combination<R>::mulsub (R c, const linear_combination &lc)
|
|
{
|
|
assert (m == lc.m);
|
|
for (typename map<unsigned, R>::const_iter i = lc.v; i; i ++)
|
|
{
|
|
unsigned k = i.key ();
|
|
R &vc = v[k];
|
|
vc -= (c * i.val ());
|
|
if (vc == 0)
|
|
v -= k;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class R> void
|
|
linear_combination<R>::show_self () const
|
|
{
|
|
bool first = 1;
|
|
for (typename map<unsigned, R>::const_iter i = v; i; i ++)
|
|
{
|
|
if (first)
|
|
first = 0;
|
|
else
|
|
printf (" + ");
|
|
show (i.val ());
|
|
|
|
// printf ("*%d", i.key ());
|
|
printf ("*");
|
|
m->show_generator (i.key ());
|
|
}
|
|
}
|
|
|
|
template<>
|
|
class linear_combination<Z2>
|
|
{
|
|
private:
|
|
// friend class linear_combination_iter<Z2>;
|
|
friend class linear_combination_const_iter<Z2>;
|
|
|
|
friend class module<Z2>;
|
|
friend class free_submodule<Z2>;
|
|
friend class quotient_module<Z2>;
|
|
friend class mod_map<Z2>;
|
|
|
|
typedef module<Z2> Z2mod;
|
|
|
|
public:
|
|
typedef linear_combination_const_iter<Z2> const_iter;
|
|
|
|
private:
|
|
ptr<const Z2mod> m;
|
|
set<unsigned> v;
|
|
|
|
public:
|
|
linear_combination () { }
|
|
linear_combination (ptr<const Z2mod> m_) : m(m_) { }
|
|
linear_combination (const linear_combination &lc) : m(lc.m), v(lc.v) { }
|
|
linear_combination (copy, const linear_combination &lc) : m(lc.m), v(COPY, lc.v) { }
|
|
linear_combination (reader &r)
|
|
{
|
|
m = r.read_mod<Z2> ();
|
|
v = set<unsigned> (r);
|
|
}
|
|
|
|
~linear_combination () { }
|
|
|
|
linear_combination &operator = (const linear_combination &lc)
|
|
{
|
|
m = lc.m;
|
|
v = lc.v;
|
|
return *this;
|
|
}
|
|
|
|
bool operator == (const linear_combination &lc) const { assert (m == lc.m); return v == lc.v; }
|
|
|
|
bool operator == (int x) const { assert (x == 0); return v.is_empty (); }
|
|
bool operator != (int x) const { return !operator == (x); }
|
|
|
|
pair<unsigned, Z2> head () const { return pair<unsigned, Z2> (v.head (), Z2 (1)); }
|
|
grading hq () const
|
|
{
|
|
// assert (homogeneous ());
|
|
return m->generator_grading (v.head ());
|
|
}
|
|
|
|
Z2 annihilator () const
|
|
{
|
|
return Z2 (operator == (0) ? 1 : 0);
|
|
}
|
|
|
|
void set_coeff (Z2 c, unsigned i)
|
|
{
|
|
if (c == 0)
|
|
v -= i;
|
|
else
|
|
v += i;
|
|
}
|
|
|
|
linear_combination operator * (Z2 c) const
|
|
{
|
|
if (c == 1)
|
|
return *this;
|
|
else
|
|
return linear_combination (m);
|
|
}
|
|
|
|
linear_combination operator + (const linear_combination &lc) const
|
|
{
|
|
linear_combination r (COPY, *this);
|
|
r += lc;
|
|
return r;
|
|
}
|
|
|
|
linear_combination operator - (const linear_combination &lc) const
|
|
{
|
|
linear_combination r (COPY, *this);
|
|
r -= lc;
|
|
return r;
|
|
}
|
|
|
|
linear_combination &operator *= (Z2 c)
|
|
{
|
|
if (c == 0)
|
|
v.clear ();
|
|
return *this;
|
|
}
|
|
linear_combination &operator /= (Z2 c) { assert (c == 1); return *this; }
|
|
|
|
linear_combination &operator += (unsigned i) { v.toggle (i); return *this; }
|
|
linear_combination &operator -= (unsigned i) { v.toggle (i); return *this; }
|
|
|
|
linear_combination &muladd (Z2 c, unsigned i)
|
|
{
|
|
if (c == 1)
|
|
operator += (i);
|
|
return *this;
|
|
}
|
|
|
|
linear_combination &mulsub (Z2 c, unsigned i)
|
|
{
|
|
if (c == 1)
|
|
operator -= (i);
|
|
return *this;
|
|
}
|
|
|
|
linear_combination &operator += (const linear_combination &lc) { v ^= lc.v; return *this; }
|
|
linear_combination &operator -= (const linear_combination &lc) { v ^= lc.v; return *this; }
|
|
|
|
linear_combination &muladd (Z2 c, const linear_combination &lc)
|
|
{
|
|
if (c == 1)
|
|
operator += (lc);
|
|
return *this;
|
|
}
|
|
linear_combination &mulsub (Z2 c, const linear_combination &lc)
|
|
{
|
|
if (c == 1)
|
|
operator -= (lc);
|
|
return *this;
|
|
}
|
|
|
|
void yank (unsigned i) { v.yank (i); }
|
|
void clear () { v.clear (); }
|
|
|
|
bool operator % (unsigned i) const { return v % i; }
|
|
Z2 operator () (unsigned i) const { return Z2 (v % i); }
|
|
|
|
unsigned card () const { return v.card (); }
|
|
|
|
#ifndef NDEBUG
|
|
void check () const;
|
|
#endif
|
|
|
|
void write_self (writer &w) const
|
|
{
|
|
write (w, *m);
|
|
write (w, v);
|
|
}
|
|
|
|
void show_self () const;
|
|
void display_self () const { show_self (); newline (); }
|
|
};
|
|
|
|
inline void
|
|
linear_combination<Z2>::show_self () const
|
|
{
|
|
bool first = 1;
|
|
for (set_const_iter<unsigned> i = v; i; i ++)
|
|
{
|
|
if (first)
|
|
first = 0;
|
|
else
|
|
printf ("+");
|
|
// printf ("%d", i.val ());
|
|
m->show_generator (i.val ());
|
|
}
|
|
}
|
|
|
|
inline linear_combination<Z2>
|
|
operator * (Z2 c, const linear_combination<Z2> &lc)
|
|
{
|
|
return lc * c;
|
|
}
|
|
|
|
template<>
|
|
class linear_combination_const_iter<Z2>
|
|
{
|
|
set<unsigned>::const_iter i;
|
|
|
|
public:
|
|
linear_combination_const_iter (const linear_combination<Z2> &lc) : i(lc.v) { }
|
|
~linear_combination_const_iter () { }
|
|
|
|
operator bool () const { return i; }
|
|
linear_combination_const_iter &operator ++ () { i ++; return *this; }
|
|
void operator ++ (int) { i ++; }
|
|
unsigned key () const { return i.val (); }
|
|
Z2 val () { return Z2 (1); }
|
|
};
|