9ee5950195
PID. Goal: compute spectral sequences over PID. Updated main to compute Lee Z/2 bound.
484 lines
10 KiB
C++
484 lines
10 KiB
C++
|
|
/* multivariate polynomial in a (vector) variable x with coefficients
|
|
in T. */
|
|
|
|
class multivariate_laurent_monomial
|
|
{
|
|
public:
|
|
map<unsigned, int> m;
|
|
|
|
explicit multivariate_laurent_monomial (const map<unsigned, int> &m_) : m(m_) { }
|
|
|
|
public:
|
|
multivariate_laurent_monomial () { }
|
|
|
|
multivariate_laurent_monomial (variable, unsigned j)
|
|
{
|
|
m.push (j, 1);
|
|
}
|
|
|
|
multivariate_laurent_monomial (variable, unsigned j, int e)
|
|
{
|
|
if (e != 0)
|
|
m.push (j, e);
|
|
}
|
|
|
|
multivariate_laurent_monomial (const multivariate_laurent_monomial &e) : m(e.m) { }
|
|
multivariate_laurent_monomial (copy, const multivariate_laurent_monomial &e)
|
|
: m(COPY, e.m)
|
|
{
|
|
}
|
|
|
|
multivariate_laurent_monomial (reader &r) : m(r) { }
|
|
|
|
~multivariate_laurent_monomial () { }
|
|
|
|
multivariate_laurent_monomial &operator = (const multivariate_laurent_monomial &e)
|
|
{
|
|
m = e.m;
|
|
return *this;
|
|
}
|
|
|
|
unsigned degree () const
|
|
{
|
|
int d = 0;
|
|
for (map<unsigned, int>::const_iter i = m; i; i ++)
|
|
d += i.val ();
|
|
return d;
|
|
}
|
|
|
|
bool operator == (const multivariate_laurent_monomial &e) const
|
|
{
|
|
#ifndef NDEBUG
|
|
check ();
|
|
e.check ();
|
|
#endif
|
|
return m == e.m;
|
|
}
|
|
bool operator != (const multivariate_laurent_monomial &e) const { return !operator == (e); }
|
|
|
|
bool operator == (int x) const
|
|
{
|
|
assert (x == 1);
|
|
#ifndef NDEBUG
|
|
check ();
|
|
#endif
|
|
return m.is_empty ();
|
|
}
|
|
|
|
bool operator != (int x) const { return !operator == (x); }
|
|
|
|
bool operator < (const multivariate_laurent_monomial &e) const
|
|
{
|
|
#ifndef NDEBUG
|
|
check ();
|
|
e.check ();
|
|
#endif
|
|
return m < e.m;
|
|
}
|
|
|
|
bool operator <= (const multivariate_laurent_monomial &e) const
|
|
{
|
|
#ifndef NDEBUG
|
|
check ();
|
|
e.check ();
|
|
#endif
|
|
return m <= e.m;
|
|
}
|
|
|
|
multivariate_laurent_monomial &operator *= (const multivariate_laurent_monomial &e)
|
|
{
|
|
for (map<unsigned, int>::const_iter i = e.m; i; i ++)
|
|
{
|
|
pair<int &, bool> p = m.find (i.key ());
|
|
if (p.second)
|
|
{
|
|
p.first += i.val ();
|
|
if (p.first == 0)
|
|
m -= i.key ();
|
|
}
|
|
else
|
|
p.first = i.val ();
|
|
}
|
|
#ifndef NDEBUG
|
|
check ();
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
multivariate_laurent_monomial operator * (const multivariate_laurent_monomial &e) const
|
|
{
|
|
multivariate_laurent_monomial r;
|
|
r *= *this;
|
|
r *= e;
|
|
return r;
|
|
}
|
|
|
|
int operator () (unsigned j) const
|
|
{
|
|
return m(j, 0);
|
|
}
|
|
|
|
void set_exponent (unsigned j, int e)
|
|
{
|
|
if (e)
|
|
m[j] = e;
|
|
else
|
|
m -= j;
|
|
}
|
|
|
|
void push_exponent (unsigned j, int e)
|
|
{
|
|
assert (! (m % j));
|
|
if (e != 0)
|
|
m.push (j, e);
|
|
}
|
|
|
|
void show_self () const
|
|
{
|
|
for (map<unsigned, int>::const_iter i = m; i; i ++)
|
|
{
|
|
assert (i.val () != 0);
|
|
if (i.val () == 1)
|
|
printf ("x%d", i.key ());
|
|
else
|
|
printf ("x%d^%d", i.key (), i.val ());
|
|
}
|
|
}
|
|
|
|
void write_self (writer &w) const { write (w, m); }
|
|
|
|
#ifndef NDEBUG
|
|
void check () const
|
|
{
|
|
for (map<unsigned, int>::const_iter i = m; i; i ++)
|
|
assert (i.val () != 0);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
template<class T>
|
|
class multivariate_laurentpoly
|
|
{
|
|
public:
|
|
typedef ::linear_combination<multivariate_laurentpoly<T> > linear_combination;
|
|
typedef ::linear_combination_const_iter<multivariate_laurentpoly<T> >
|
|
linear_combination_const_iter;
|
|
|
|
public:
|
|
typedef multivariate_laurent_monomial monomial;
|
|
|
|
map<monomial, T> coeffs;
|
|
|
|
explicit multivariate_laurentpoly (const map<monomial, T> &coeffs_) : coeffs(coeffs_) { }
|
|
|
|
void normalize ()
|
|
{
|
|
for (typename map<monomial, T>::iter i = coeffs; i; i ++)
|
|
{
|
|
if (i.val () == 0)
|
|
i.del ();
|
|
}
|
|
#ifndef NDEBUG
|
|
check ();
|
|
#endif
|
|
}
|
|
|
|
public:
|
|
multivariate_laurentpoly () { }
|
|
multivariate_laurentpoly (int x)
|
|
{
|
|
T c (x);
|
|
if (c != 0)
|
|
coeffs.push (monomial (), c);
|
|
}
|
|
|
|
multivariate_laurentpoly (T c)
|
|
{
|
|
if (c != 0)
|
|
coeffs.push (monomial (), c);
|
|
}
|
|
|
|
multivariate_laurentpoly (T c, variable, unsigned i)
|
|
{
|
|
if (c != 0)
|
|
coeffs.push (monomial (VARIABLE, i), c);
|
|
}
|
|
|
|
multivariate_laurentpoly (T c, variable, unsigned i, int e)
|
|
{
|
|
if (c != 0)
|
|
coeffs.push (monomial (VARIABLE, i, e), c);
|
|
}
|
|
|
|
multivariate_laurentpoly (T c, const monomial &m)
|
|
{
|
|
if (c != 0)
|
|
coeffs.push (m, c);
|
|
}
|
|
|
|
multivariate_laurentpoly (const multivariate_laurentpoly &p) : coeffs(p.coeffs) { }
|
|
multivariate_laurentpoly (copy, const multivariate_laurentpoly &p)
|
|
// ??? COPY2?
|
|
: coeffs(COPY, p.coeffs)
|
|
{
|
|
}
|
|
|
|
multivariate_laurentpoly (reader &r) : coeffs(r) { }
|
|
|
|
~multivariate_laurentpoly () { }
|
|
|
|
multivariate_laurentpoly &operator = (const multivariate_laurentpoly &p)
|
|
{
|
|
coeffs = p.coeffs;
|
|
return *this;
|
|
}
|
|
|
|
multivariate_laurentpoly &operator = (int x) { return operator = (T (x)); }
|
|
multivariate_laurentpoly &operator = (T c)
|
|
{
|
|
coeffs = map<monomial, T> ();
|
|
if (c != 0)
|
|
coeffs.push (monomial (), c);
|
|
return *this;
|
|
}
|
|
|
|
bool operator == (const multivariate_laurentpoly &p) const
|
|
{
|
|
#ifndef NDEBUG
|
|
check ();
|
|
p.check ();
|
|
#endif
|
|
return coeffs == p.coeffs;
|
|
}
|
|
bool operator != (const multivariate_laurentpoly &p) const { return !operator == (p); }
|
|
|
|
bool operator == (int x) const
|
|
{
|
|
#ifndef NDEBUG
|
|
check ();
|
|
#endif
|
|
T c (x);
|
|
if (c == 0)
|
|
return coeffs.is_empty ();
|
|
else
|
|
{
|
|
if (coeffs.card () != 1)
|
|
return 0;
|
|
|
|
pair<monomial, T> p = coeffs.head ();
|
|
return p.first == 1
|
|
&& p.second == c;
|
|
}
|
|
}
|
|
|
|
bool operator != (int x) const { return !operator == (x); }
|
|
|
|
bool operator < (const multivariate_laurentpoly &p) const
|
|
{
|
|
#ifndef NDEBUG
|
|
check ();
|
|
p.check ();
|
|
#endif
|
|
return coeffs < p.coeffs;
|
|
}
|
|
|
|
bool operator <= (const multivariate_laurentpoly &p) const
|
|
{
|
|
#ifndef NDEBUG
|
|
check ();
|
|
p.check ();
|
|
#endif
|
|
return coeffs <= p.coeffs;
|
|
}
|
|
|
|
unsigned card () const { return coeffs.card (); }
|
|
pair<monomial, T> head () const { return coeffs.head (); }
|
|
|
|
multivariate_laurentpoly &operator += (const multivariate_laurentpoly &p);
|
|
multivariate_laurentpoly &operator -= (const multivariate_laurentpoly &p);
|
|
multivariate_laurentpoly &operator *= (const multivariate_laurentpoly &p)
|
|
{
|
|
return operator = (*this * p);
|
|
}
|
|
|
|
multivariate_laurentpoly &operator *= (T s);
|
|
|
|
multivariate_laurentpoly &muladdeq (T c, variable, unsigned i)
|
|
{
|
|
monomial m (VARIABLE, i);
|
|
T &c2 = coeffs[m];
|
|
c2 += c;
|
|
if (c2 == 0)
|
|
coeffs -= m;
|
|
return *this;
|
|
}
|
|
|
|
multivariate_laurentpoly &muladdeq (T c, const monomial &m)
|
|
{
|
|
T &c2 = coeffs[m];
|
|
c2 += c;
|
|
if (c2 == 0)
|
|
coeffs -= m;
|
|
return *this;
|
|
}
|
|
|
|
multivariate_laurentpoly &muladdeq (multivariate_laurentpoly a, multivariate_laurentpoly b);
|
|
|
|
multivariate_laurentpoly operator - () const { return multivariate_laurentpoly () - *this; }
|
|
multivariate_laurentpoly operator + (const multivariate_laurentpoly &p) const
|
|
{
|
|
multivariate_laurentpoly r (COPY, *this);
|
|
r += p;
|
|
return r;
|
|
}
|
|
|
|
multivariate_laurentpoly operator - (const multivariate_laurentpoly &p) const
|
|
{
|
|
multivariate_laurentpoly r (COPY, *this);
|
|
r -= p;
|
|
return r;
|
|
}
|
|
|
|
multivariate_laurentpoly operator * (const multivariate_laurentpoly &p) const;
|
|
|
|
#ifndef NDEBUG
|
|
void check () const;
|
|
#endif
|
|
|
|
static void show_ring ()
|
|
{
|
|
T::show_ring ();
|
|
printf ("[x_1^+/-1, ..., x_n^+/-1]");
|
|
}
|
|
|
|
void display_self () const { show_self (); newline (); }
|
|
void show_self () const;
|
|
void write_self (writer &w) const { write (w, coeffs); }
|
|
};
|
|
|
|
template<class T> multivariate_laurentpoly<T>
|
|
operator * (const T &s, const multivariate_laurentpoly<T> &p)
|
|
{
|
|
multivariate_laurentpoly<T> r (COPY, p);
|
|
r *= s;
|
|
return r;
|
|
}
|
|
|
|
template<class T> multivariate_laurentpoly<T> &
|
|
multivariate_laurentpoly<T>::operator += (const multivariate_laurentpoly &p)
|
|
{
|
|
for (typename map<monomial, T>::const_iter i = p.coeffs; i; i ++)
|
|
{
|
|
monomial m = i.key ();
|
|
T &c = coeffs[m];
|
|
c += i.val ();
|
|
if (c == 0)
|
|
coeffs -= m;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class T> multivariate_laurentpoly<T> &
|
|
multivariate_laurentpoly<T>::operator -= (const multivariate_laurentpoly &p)
|
|
{
|
|
for (typename map<monomial, T>::const_iter i = p.coeffs; i; i ++)
|
|
{
|
|
monomial m = i.key ();
|
|
T &c = coeffs[m];
|
|
c -= i.val ();
|
|
if (c == 0)
|
|
coeffs -= m;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class T> multivariate_laurentpoly<T> &
|
|
multivariate_laurentpoly<T>::operator *= (T s)
|
|
{
|
|
if (s == 0)
|
|
coeffs.clear ();
|
|
else
|
|
{
|
|
for (typename map<monomial, T>::iter i = coeffs; i; i ++)
|
|
i.val () *= s;
|
|
normalize ();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class T> multivariate_laurentpoly<T>
|
|
multivariate_laurentpoly<T>::operator * (const multivariate_laurentpoly &p) const
|
|
{
|
|
multivariate_laurentpoly r;
|
|
|
|
for (typename map<monomial, T>::const_iter i = coeffs; i; i ++)
|
|
for (typename map<monomial, T>::const_iter j = p.coeffs; j; j ++)
|
|
{
|
|
monomial m = i.key () * j.key ();
|
|
r.coeffs[m].muladdeq (i.val (), j.val ());
|
|
}
|
|
r.normalize ();
|
|
return r;
|
|
}
|
|
|
|
template<class T> multivariate_laurentpoly<T> &
|
|
multivariate_laurentpoly<T>::muladdeq (multivariate_laurentpoly a, multivariate_laurentpoly b)
|
|
{
|
|
for (typename map<monomial, T>::const_iter i = a.coeffs; i; i ++)
|
|
for (typename map<monomial, T>::const_iter j = b.coeffs; j; j ++)
|
|
{
|
|
monomial m = i.key () * j.key ();
|
|
coeffs[m].muladdeq (i.val (), j.val ());
|
|
}
|
|
normalize ();
|
|
return *this;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
template<class T> void
|
|
multivariate_laurentpoly<T>::check () const
|
|
{
|
|
for (typename map<monomial, T>::const_iter i = coeffs; i; i ++)
|
|
assert (i.val () != 0);
|
|
}
|
|
#endif
|
|
|
|
template<class T> void
|
|
multivariate_laurentpoly<T>::show_self () const
|
|
{
|
|
unsigned first = 1;
|
|
for (typename map<monomial, T>::const_iter i = coeffs; i; i ++)
|
|
{
|
|
monomial m = i.key ();
|
|
T c = i.val ();
|
|
|
|
assert (c != 0);
|
|
|
|
if (first)
|
|
first = 0;
|
|
else
|
|
printf (" + ");
|
|
|
|
if (m == 1)
|
|
{
|
|
if (c == 1)
|
|
printf ("1");
|
|
else
|
|
show (c);
|
|
}
|
|
else
|
|
{
|
|
if (c != 1)
|
|
{
|
|
show (c);
|
|
printf ("*");
|
|
}
|
|
|
|
show (m);
|
|
}
|
|
}
|
|
if (first)
|
|
printf ("0");
|
|
}
|