9ee5950195
PID. Goal: compute spectral sequences over PID. Updated main to compute Lee Z/2 bound.
515 lines
10 KiB
C++
515 lines
10 KiB
C++
|
|
/* univariate polynomial in a single variable `x' with coefficients in
|
|
T. */
|
|
|
|
template<class T>
|
|
class polynomial
|
|
{
|
|
private:
|
|
map<unsigned, T> coeffs;
|
|
|
|
polynomial (const map<unsigned, T> &coeffs_) : coeffs(coeffs_) { }
|
|
|
|
public:
|
|
polynomial () { }
|
|
|
|
polynomial (int x)
|
|
{
|
|
T c (x);
|
|
if (c != 0)
|
|
coeffs.push (0, c);
|
|
}
|
|
|
|
polynomial (T c)
|
|
{
|
|
if (c != 0)
|
|
coeffs.push (0, c);
|
|
}
|
|
|
|
polynomial (int x, unsigned e)
|
|
{
|
|
T c (x);
|
|
if (c != 0)
|
|
coeffs.push (e, c);
|
|
}
|
|
|
|
polynomial (T c, unsigned e)
|
|
{
|
|
if (c != 0)
|
|
coeffs.push (e, c);
|
|
}
|
|
|
|
polynomial (const polynomial &p) : coeffs(p.coeffs) { }
|
|
polynomial (copy, const polynomial &p) : coeffs(COPY, p.coeffs) { }
|
|
polynomial (reader &r) : coeffs(r) { }
|
|
~polynomial () { }
|
|
|
|
polynomial &operator = (const polynomial &p) { coeffs = p.coeffs; return *this; }
|
|
polynomial &operator = (int x)
|
|
{
|
|
coeffs = map<unsigned, T> ();
|
|
T c (x);
|
|
if (c != 0)
|
|
coeffs.push (0, c);
|
|
return *this;
|
|
}
|
|
|
|
polynomial &operator = (T c)
|
|
{
|
|
coeffs = map<unsigned, T> ();
|
|
if (c != 0)
|
|
coeffs.push (0, c);
|
|
return *this;
|
|
}
|
|
|
|
unsigned degree () const;
|
|
bool is_unit () const;
|
|
|
|
polynomial recip () const
|
|
{
|
|
assert (coeffs.card () == 1);
|
|
|
|
pair<unsigned, T> p = coeffs.head ();
|
|
assert (p.first == 0);
|
|
return polynomial (p.second.recip ());
|
|
}
|
|
|
|
bool operator == (const polynomial &p) const
|
|
{
|
|
#ifndef NDEBUG
|
|
check ();
|
|
p.check ();
|
|
#endif
|
|
return coeffs == p.coeffs;
|
|
}
|
|
bool operator != (const polynomial &p) const { return !operator == (p); }
|
|
|
|
bool operator == (int x) const
|
|
{
|
|
T c (x);
|
|
if (c == 0)
|
|
return coeffs.is_empty ();
|
|
else if (coeffs.card () != 1)
|
|
return 0;
|
|
else
|
|
{
|
|
pair<unsigned, T> p = coeffs.head ();
|
|
return p.first == 0
|
|
&& p.second == c;
|
|
}
|
|
}
|
|
|
|
bool operator != (int x) const { return !operator == (x); }
|
|
|
|
polynomial &operator += (polynomial p);
|
|
polynomial &operator -= (polynomial p);
|
|
polynomial &operator *= (polynomial p) { return operator = (*this * p); }
|
|
polynomial &operator *= (T s);
|
|
|
|
// ??? rename
|
|
polynomial &add_term (T c, unsigned e)
|
|
{
|
|
T &c2 = coeffs[e];
|
|
c2 += c;
|
|
if (c2 == 0)
|
|
coeffs -= e;
|
|
return *this;
|
|
}
|
|
|
|
polynomial operator - () const { return polynomial () - *this; }
|
|
polynomial operator + (polynomial p) const
|
|
{
|
|
polynomial r (COPY, *this);
|
|
r += p;
|
|
return r;
|
|
}
|
|
|
|
polynomial operator - (const polynomial &p) const
|
|
{
|
|
polynomial r (COPY, *this);
|
|
r -= p;
|
|
return r;
|
|
}
|
|
|
|
polynomial operator * (const polynomial &p) const;
|
|
|
|
bool divides (const polynomial &num) const;
|
|
|
|
// *this | num
|
|
bool operator | (const polynomial &num) const { return divides (num); }
|
|
|
|
tuple<polynomial, polynomial> divide_with_remainder (const polynomial &denom) const;
|
|
|
|
polynomial mod (const polynomial &denom) const;
|
|
|
|
polynomial divide_exact (const polynomial &denom) const;
|
|
polynomial div (const polynomial &denom) const { return divide_exact (denom); }
|
|
|
|
polynomial gcd (const polynomial &b) const;
|
|
polynomial lcm (const polynomial &b) const;
|
|
tuple<polynomial, polynomial, polynomial> extended_gcd (const polynomial &b) const;
|
|
|
|
#ifndef NDEBUG
|
|
void check () const;
|
|
#endif
|
|
|
|
void write_self (writer &w) const { write (w, coeffs); }
|
|
static void show_ring () { T::show_ring (); printf ("[x]"); }
|
|
void display_self () const { show_self (); newline (); }
|
|
void show_self () const;
|
|
};
|
|
|
|
template<class T> unsigned
|
|
polynomial<T>::degree () const
|
|
{
|
|
return coeffs.tail ().first;
|
|
}
|
|
|
|
template<class T> bool
|
|
polynomial<T>::is_unit () const
|
|
{
|
|
// ??? is_singleton
|
|
if (coeffs.card () != 1)
|
|
return 0;
|
|
|
|
pair<unsigned, T> p = coeffs.head ();
|
|
return p.first == 0
|
|
&& p.second.is_unit ();
|
|
}
|
|
|
|
template<class T> polynomial<T> &
|
|
polynomial<T>::operator += (polynomial p)
|
|
{
|
|
for (typename map<unsigned, T>::const_iter i = p.coeffs; i; i ++)
|
|
{
|
|
unsigned e = i.key ();
|
|
T &c = coeffs[e];
|
|
c += i.val ();
|
|
if (c == 0)
|
|
coeffs -= e;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class T> polynomial<T> &
|
|
polynomial<T>::operator -= (polynomial p)
|
|
{
|
|
for (typename map<unsigned, T>::const_iter i = p.coeffs; i; i ++)
|
|
{
|
|
unsigned e = i.key ();
|
|
T &c = coeffs[e];
|
|
c -= i.val ();
|
|
if (c == 0)
|
|
coeffs -= e;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<class T> polynomial<T> &
|
|
polynomial<T>::operator *= (T s)
|
|
{
|
|
if (s == 0)
|
|
coeffs.clear ();
|
|
else
|
|
{
|
|
for (typename map<unsigned, T>::iter i = coeffs; i; i ++)
|
|
i.val () *= s;
|
|
}
|
|
}
|
|
|
|
template<class T> polynomial<T>
|
|
polynomial<T>::operator * (const polynomial &p) const
|
|
{
|
|
polynomial r;
|
|
|
|
for (typename map<unsigned, T>::const_iter i = coeffs; i; i ++)
|
|
for (typename map<unsigned, T>::const_iter j = p.coeffs; j; j ++)
|
|
{
|
|
unsigned e = i.key () + j.key ();
|
|
T &c = r.coeffs[e];
|
|
c += i.val () * j.val ();
|
|
if (c == 0)
|
|
r.coeffs -= e;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
template<class T> tuple<polynomial<T>, polynomial<T> >
|
|
polynomial<T>::divide_with_remainder (const polynomial &d) const
|
|
{
|
|
// num = *this
|
|
assert (d != 0);
|
|
|
|
polynomial r (COPY, *this);
|
|
polynomial q;
|
|
|
|
pair<unsigned, T> d_leading_term = d.coeffs.tail ();
|
|
for (;;)
|
|
{
|
|
if (r == 0)
|
|
break;
|
|
|
|
pair<unsigned, T> r_leading_term = r.coeffs.tail ();
|
|
if (r_leading_term.first < d_leading_term.first)
|
|
break;
|
|
|
|
polynomial m (r_leading_term.second / d_leading_term.second,
|
|
r_leading_term.first - d_leading_term.first);
|
|
r -= m * d;
|
|
q += m;
|
|
}
|
|
|
|
assert (r == 0 || r.degree () < d.degree ());
|
|
// assert (*this == q*d + r);
|
|
|
|
return make_tuple (q, r);
|
|
}
|
|
|
|
template<class T> polynomial<T>
|
|
polynomial<T>::mod (const polynomial &denom) const
|
|
{
|
|
polynomial q, r;
|
|
tie (q, r) = divide_with_remainder (denom);
|
|
return r;
|
|
}
|
|
|
|
template<class T> bool
|
|
polynomial<T>::divides (const polynomial &num) const
|
|
{
|
|
// denom = *this
|
|
polynomial q, r;
|
|
tie (q, r) = num.divide_with_remainder (*this);
|
|
return r == 0;
|
|
}
|
|
|
|
template<class T> polynomial<T>
|
|
polynomial<T>::divide_exact (const polynomial &denom) const
|
|
{
|
|
polynomial q, r;
|
|
tie (q, r) = divide_with_remainder (denom);
|
|
assert (r == 0);
|
|
return q;
|
|
}
|
|
|
|
template<class T> polynomial<T>
|
|
polynomial<T>::gcd (const polynomial &b) const
|
|
{
|
|
polynomial a = *this;
|
|
while (b != 0)
|
|
{
|
|
polynomial r;
|
|
tie (ignore, r) = a.divide_with_remainder (b);
|
|
a = b;
|
|
b = r;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
template<class T> polynomial<T>
|
|
polynomial<T>::lcm (const polynomial &b) const
|
|
{
|
|
// a = *this
|
|
return divide_exact (gcd (b)) * b;
|
|
}
|
|
|
|
template<class T> tuple<polynomial<T>, polynomial<T>, polynomial<T> >
|
|
polynomial<T>::extended_gcd (const polynomial &b) const
|
|
{
|
|
// a = *this
|
|
if (b == 0)
|
|
return make_tuple (*this, polynomial (1), polynomial (0));
|
|
|
|
polynomial q, r;
|
|
tie (q, r) = divide_with_remainder (b);
|
|
if (r == 0)
|
|
return make_tuple (b, polynomial (0), polynomial (1));
|
|
else
|
|
{
|
|
polynomial d, s, t;
|
|
|
|
tie (d, s, t) = b.extended_gcd (r);
|
|
|
|
polynomial s2 = t,
|
|
t2 = s - t*q;
|
|
|
|
return make_tuple (d, s2, t2);
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
template<class T> void
|
|
polynomial<T>::check () const
|
|
{
|
|
for (typename map<unsigned, T>::const_iter i = coeffs; i; i ++)
|
|
assert (i.val () != 0);
|
|
}
|
|
#endif
|
|
|
|
template<class T> void
|
|
polynomial<T>::show_self () const
|
|
{
|
|
unsigned first = 1;
|
|
for (typename map<unsigned, T>::const_iter i = coeffs; i; i ++)
|
|
{
|
|
unsigned e = i.key ();
|
|
T c = i.val ();
|
|
|
|
assert (c != 0);
|
|
|
|
if (first)
|
|
first = 0;
|
|
else
|
|
printf (" + ");
|
|
|
|
if (e == 0 && c == 1)
|
|
printf ("1");
|
|
else if (e == 0)
|
|
show (c);
|
|
else if (c == 1)
|
|
{
|
|
if (e == 1)
|
|
printf ("x");
|
|
else
|
|
printf ("x^%d", e);
|
|
}
|
|
else
|
|
{
|
|
show (c);
|
|
if (e == 1)
|
|
printf ("*x");
|
|
else
|
|
printf ("*x^%d", e);
|
|
}
|
|
}
|
|
if (first)
|
|
printf ("0");
|
|
}
|
|
|
|
template<>
|
|
class polynomial<Z2>
|
|
{
|
|
private:
|
|
set<unsigned> coeffs;
|
|
|
|
explicit polynomial (const set<unsigned> &coeffs_) : coeffs(coeffs_) { }
|
|
|
|
public:
|
|
polynomial () { }
|
|
polynomial (int x)
|
|
{
|
|
Z2 c (x);
|
|
if (c != 0)
|
|
coeffs.push (0);
|
|
}
|
|
|
|
polynomial (Z2 c)
|
|
{
|
|
if (c != 0)
|
|
coeffs.push (0);
|
|
}
|
|
|
|
polynomial (Z2 c, unsigned e)
|
|
{
|
|
if (c != 0)
|
|
coeffs.push (e);
|
|
}
|
|
|
|
polynomial (const polynomial &p) : coeffs(p.coeffs) { }
|
|
polynomial (copy, const polynomial &p) : coeffs(COPY, p.coeffs) { }
|
|
~polynomial () { }
|
|
|
|
polynomial &operator = (const polynomial &p) { coeffs = p.coeffs; return *this; }
|
|
|
|
polynomial &operator = (int x)
|
|
{
|
|
coeffs = set<unsigned> ();
|
|
Z2 c (x);
|
|
if (c != 0)
|
|
coeffs.push (0);
|
|
return *this;
|
|
}
|
|
|
|
polynomial &operator = (Z2 c)
|
|
{
|
|
coeffs = set<unsigned> ();
|
|
if (c == 1)
|
|
coeffs.push (0);
|
|
return *this;
|
|
}
|
|
|
|
bool operator == (const polynomial &p) const { return coeffs == p.coeffs; }
|
|
bool operator != (const polynomial &p) const { return !operator == (p); }
|
|
|
|
bool operator == (int x) const
|
|
{
|
|
Z2 c (x);
|
|
if (c == 0)
|
|
return coeffs.is_empty ();
|
|
else
|
|
return coeffs.card () == 1
|
|
&& coeffs.head () == 0;
|
|
}
|
|
|
|
bool operator != (int x) const { return !operator == (x); }
|
|
|
|
unsigned degree () const { return coeffs.tail (); }
|
|
bool is_unit () const
|
|
{
|
|
return coeffs.card () == 1
|
|
&& coeffs.head () == 0;
|
|
}
|
|
|
|
polynomial recip () const
|
|
{
|
|
assert (is_unit ());
|
|
return 1;
|
|
}
|
|
|
|
polynomial &operator += (polynomial p) { coeffs ^= p.coeffs; return *this; }
|
|
polynomial &operator -= (polynomial p) { coeffs ^= p.coeffs; return *this; }
|
|
polynomial &operator *= (polynomial p) { return operator = (*this * p); }
|
|
polynomial &operator *= (Z2 s)
|
|
{
|
|
if (s == 0)
|
|
coeffs.clear ();
|
|
return *this;
|
|
}
|
|
|
|
polynomial &add_term (Z2 c, unsigned e)
|
|
{
|
|
if (c == 1)
|
|
coeffs.toggle (e);
|
|
return *this;
|
|
}
|
|
|
|
polynomial operator - () const { return polynomial (COPY, *this); };
|
|
polynomial operator + (polynomial p) const
|
|
{
|
|
polynomial r (COPY, *this);
|
|
r += p;
|
|
return r;
|
|
}
|
|
|
|
polynomial operator - (polynomial p) const
|
|
{
|
|
polynomial r (COPY, *this);
|
|
r -= p;
|
|
return r;
|
|
}
|
|
|
|
polynomial operator * (polynomial p) const;
|
|
|
|
pair<polynomial, polynomial> divide_with_remainder (polynomial d) const;
|
|
|
|
polynomial mod (polynomial d) const;
|
|
|
|
bool divides (polynomial d) const;
|
|
polynomial divide_exact (polynomial d) const;
|
|
|
|
polynomial gcd (polynomial b) const;
|
|
|
|
static void show_ring () { printf ("Z2[x]"); }
|
|
void display_self () const { show_self (); newline (); }
|
|
void show_self () const;
|
|
};
|